# Properties

 Label 980.2.a.c Level $980$ Weight $2$ Character orbit 980.a Self dual yes Analytic conductor $7.825$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [980,2,Mod(1,980)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(980, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("980.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$980 = 2^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 980.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.82533939809$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} - q^{5} - 2 q^{9}+O(q^{10})$$ q - q^3 - q^5 - 2 * q^9 $$q - q^{3} - q^{5} - 2 q^{9} + 3 q^{11} + q^{13} + q^{15} + 3 q^{17} - 2 q^{19} - 6 q^{23} + q^{25} + 5 q^{27} - 9 q^{29} - 8 q^{31} - 3 q^{33} - 10 q^{37} - q^{39} + 2 q^{43} + 2 q^{45} + 3 q^{47} - 3 q^{51} - 3 q^{55} + 2 q^{57} - 12 q^{59} - 8 q^{61} - q^{65} + 8 q^{67} + 6 q^{69} - 14 q^{73} - q^{75} + 5 q^{79} + q^{81} + 12 q^{83} - 3 q^{85} + 9 q^{87} - 12 q^{89} + 8 q^{93} + 2 q^{95} - 17 q^{97} - 6 q^{99}+O(q^{100})$$ q - q^3 - q^5 - 2 * q^9 + 3 * q^11 + q^13 + q^15 + 3 * q^17 - 2 * q^19 - 6 * q^23 + q^25 + 5 * q^27 - 9 * q^29 - 8 * q^31 - 3 * q^33 - 10 * q^37 - q^39 + 2 * q^43 + 2 * q^45 + 3 * q^47 - 3 * q^51 - 3 * q^55 + 2 * q^57 - 12 * q^59 - 8 * q^61 - q^65 + 8 * q^67 + 6 * q^69 - 14 * q^73 - q^75 + 5 * q^79 + q^81 + 12 * q^83 - 3 * q^85 + 9 * q^87 - 12 * q^89 + 8 * q^93 + 2 * q^95 - 17 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 −1.00000 0 0 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.a.c 1
3.b odd 2 1 8820.2.a.r 1
4.b odd 2 1 3920.2.a.u 1
5.b even 2 1 4900.2.a.p 1
5.c odd 4 2 4900.2.e.l 2
7.b odd 2 1 140.2.a.a 1
7.c even 3 2 980.2.i.h 2
7.d odd 6 2 980.2.i.d 2
21.c even 2 1 1260.2.a.c 1
28.d even 2 1 560.2.a.c 1
35.c odd 2 1 700.2.a.d 1
35.f even 4 2 700.2.e.c 2
56.e even 2 1 2240.2.a.r 1
56.h odd 2 1 2240.2.a.g 1
84.h odd 2 1 5040.2.a.h 1
105.g even 2 1 6300.2.a.d 1
105.k odd 4 2 6300.2.k.c 2
140.c even 2 1 2800.2.a.y 1
140.j odd 4 2 2800.2.g.j 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.a 1 7.b odd 2 1
560.2.a.c 1 28.d even 2 1
700.2.a.d 1 35.c odd 2 1
700.2.e.c 2 35.f even 4 2
980.2.a.c 1 1.a even 1 1 trivial
980.2.i.d 2 7.d odd 6 2
980.2.i.h 2 7.c even 3 2
1260.2.a.c 1 21.c even 2 1
2240.2.a.g 1 56.h odd 2 1
2240.2.a.r 1 56.e even 2 1
2800.2.a.y 1 140.c even 2 1
2800.2.g.j 2 140.j odd 4 2
3920.2.a.u 1 4.b odd 2 1
4900.2.a.p 1 5.b even 2 1
4900.2.e.l 2 5.c odd 4 2
5040.2.a.h 1 84.h odd 2 1
6300.2.a.d 1 105.g even 2 1
6300.2.k.c 2 105.k odd 4 2
8820.2.a.r 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(980))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{11} - 3$$ T11 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T + 1$$
$7$ $$T$$
$11$ $$T - 3$$
$13$ $$T - 1$$
$17$ $$T - 3$$
$19$ $$T + 2$$
$23$ $$T + 6$$
$29$ $$T + 9$$
$31$ $$T + 8$$
$37$ $$T + 10$$
$41$ $$T$$
$43$ $$T - 2$$
$47$ $$T - 3$$
$53$ $$T$$
$59$ $$T + 12$$
$61$ $$T + 8$$
$67$ $$T - 8$$
$71$ $$T$$
$73$ $$T + 14$$
$79$ $$T - 5$$
$83$ $$T - 12$$
$89$ $$T + 12$$
$97$ $$T + 17$$