Properties

Label 140.2.a.b
Level $140$
Weight $2$
Character orbit 140.a
Self dual yes
Analytic conductor $1.118$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3 q^{3} - q^{5} - q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - q^{5} - q^{7} + 6 q^{9} - 5 q^{11} - 3 q^{13} - 3 q^{15} - q^{17} + 6 q^{19} - 3 q^{21} + 6 q^{23} + q^{25} + 9 q^{27} - 9 q^{29} - 4 q^{31} - 15 q^{33} + q^{35} + 2 q^{37} - 9 q^{39} - 4 q^{41} + 10 q^{43} - 6 q^{45} - q^{47} + q^{49} - 3 q^{51} + 4 q^{53} + 5 q^{55} + 18 q^{57} - 8 q^{59} - 8 q^{61} - 6 q^{63} + 3 q^{65} + 12 q^{67} + 18 q^{69} + 8 q^{71} + 2 q^{73} + 3 q^{75} + 5 q^{77} + 13 q^{79} + 9 q^{81} - 4 q^{83} + q^{85} - 27 q^{87} + 4 q^{89} + 3 q^{91} - 12 q^{93} - 6 q^{95} - 13 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −1.00000 0 −1.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.2.a.b 1
3.b odd 2 1 1260.2.a.h 1
4.b odd 2 1 560.2.a.a 1
5.b even 2 1 700.2.a.b 1
5.c odd 4 2 700.2.e.a 2
7.b odd 2 1 980.2.a.b 1
7.c even 3 2 980.2.i.b 2
7.d odd 6 2 980.2.i.j 2
8.b even 2 1 2240.2.a.c 1
8.d odd 2 1 2240.2.a.bb 1
12.b even 2 1 5040.2.a.bd 1
15.d odd 2 1 6300.2.a.bf 1
15.e even 4 2 6300.2.k.p 2
20.d odd 2 1 2800.2.a.be 1
20.e even 4 2 2800.2.g.c 2
21.c even 2 1 8820.2.a.n 1
28.d even 2 1 3920.2.a.bl 1
35.c odd 2 1 4900.2.a.u 1
35.f even 4 2 4900.2.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.a.b 1 1.a even 1 1 trivial
560.2.a.a 1 4.b odd 2 1
700.2.a.b 1 5.b even 2 1
700.2.e.a 2 5.c odd 4 2
980.2.a.b 1 7.b odd 2 1
980.2.i.b 2 7.c even 3 2
980.2.i.j 2 7.d odd 6 2
1260.2.a.h 1 3.b odd 2 1
2240.2.a.c 1 8.b even 2 1
2240.2.a.bb 1 8.d odd 2 1
2800.2.a.be 1 20.d odd 2 1
2800.2.g.c 2 20.e even 4 2
3920.2.a.bl 1 28.d even 2 1
4900.2.a.u 1 35.c odd 2 1
4900.2.e.a 2 35.f even 4 2
5040.2.a.bd 1 12.b even 2 1
6300.2.a.bf 1 15.d odd 2 1
6300.2.k.p 2 15.e even 4 2
8820.2.a.n 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(140))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 5 \) Copy content Toggle raw display
$13$ \( T + 3 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 4 \) Copy content Toggle raw display
$43$ \( T - 10 \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T - 4 \) Copy content Toggle raw display
$59$ \( T + 8 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 13 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T - 4 \) Copy content Toggle raw display
$97$ \( T + 13 \) Copy content Toggle raw display
show more
show less