Properties

Label 98.8.a.l.1.2
Level $98$
Weight $8$
Character 98.1
Self dual yes
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,8,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-32,0,256,0,0,0,-2048,7228] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{1801})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 903x^{2} + 904x + 200702 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(20.3049\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -40.2177 q^{3} +64.0000 q^{4} +98.9949 q^{5} +321.741 q^{6} -512.000 q^{8} -569.539 q^{9} -791.960 q^{10} +3779.21 q^{11} -2573.93 q^{12} +4944.73 q^{13} -3981.35 q^{15} +4096.00 q^{16} -25954.4 q^{17} +4556.31 q^{18} -43331.3 q^{19} +6335.68 q^{20} -30233.7 q^{22} -35219.3 q^{23} +20591.4 q^{24} -68325.0 q^{25} -39557.8 q^{26} +110862. q^{27} +152177. q^{29} +31850.8 q^{30} +33696.2 q^{31} -32768.0 q^{32} -151991. q^{33} +207635. q^{34} -36450.5 q^{36} +394229. q^{37} +346651. q^{38} -198865. q^{39} -50685.4 q^{40} +148840. q^{41} +871204. q^{43} +241870. q^{44} -56381.5 q^{45} +281754. q^{46} -725308. q^{47} -164732. q^{48} +546600. q^{50} +1.04383e6 q^{51} +316463. q^{52} +1.81855e6 q^{53} -886893. q^{54} +374123. q^{55} +1.74269e6 q^{57} -1.21741e6 q^{58} +1.14304e6 q^{59} -254806. q^{60} -2.06761e6 q^{61} -269570. q^{62} +262144. q^{64} +489503. q^{65} +1.21593e6 q^{66} +2.31943e6 q^{67} -1.66108e6 q^{68} +1.41644e6 q^{69} -1.15064e6 q^{71} +291604. q^{72} -919421. q^{73} -3.15384e6 q^{74} +2.74787e6 q^{75} -2.77321e6 q^{76} +1.59092e6 q^{78} +6.22035e6 q^{79} +405483. q^{80} -3.21301e6 q^{81} -1.19072e6 q^{82} +6.86089e6 q^{83} -2.56935e6 q^{85} -6.96963e6 q^{86} -6.12020e6 q^{87} -1.93496e6 q^{88} +6.98286e6 q^{89} +451052. q^{90} -2.25403e6 q^{92} -1.35518e6 q^{93} +5.80246e6 q^{94} -4.28958e6 q^{95} +1.31785e6 q^{96} -2.35300e6 q^{97} -2.15241e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 2048 q^{8} + 7228 q^{9} - 6272 q^{11} + 7840 q^{15} + 16384 q^{16} - 57824 q^{18} + 50176 q^{22} - 12544 q^{23} - 273300 q^{25} - 75736 q^{29} - 62720 q^{30} - 131072 q^{32}+ \cdots - 62164928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −40.2177 −0.859988 −0.429994 0.902832i \(-0.641484\pi\)
−0.429994 + 0.902832i \(0.641484\pi\)
\(4\) 64.0000 0.500000
\(5\) 98.9949 0.354175 0.177088 0.984195i \(-0.443332\pi\)
0.177088 + 0.984195i \(0.443332\pi\)
\(6\) 321.741 0.608104
\(7\) 0 0
\(8\) −512.000 −0.353553
\(9\) −569.539 −0.260420
\(10\) −791.960 −0.250440
\(11\) 3779.21 0.856105 0.428052 0.903754i \(-0.359200\pi\)
0.428052 + 0.903754i \(0.359200\pi\)
\(12\) −2573.93 −0.429994
\(13\) 4944.73 0.624224 0.312112 0.950045i \(-0.398964\pi\)
0.312112 + 0.950045i \(0.398964\pi\)
\(14\) 0 0
\(15\) −3981.35 −0.304586
\(16\) 4096.00 0.250000
\(17\) −25954.4 −1.28127 −0.640633 0.767847i \(-0.721328\pi\)
−0.640633 + 0.767847i \(0.721328\pi\)
\(18\) 4556.31 0.184145
\(19\) −43331.3 −1.44932 −0.724661 0.689106i \(-0.758003\pi\)
−0.724661 + 0.689106i \(0.758003\pi\)
\(20\) 6335.68 0.177088
\(21\) 0 0
\(22\) −30233.7 −0.605357
\(23\) −35219.3 −0.603577 −0.301789 0.953375i \(-0.597584\pi\)
−0.301789 + 0.953375i \(0.597584\pi\)
\(24\) 20591.4 0.304052
\(25\) −68325.0 −0.874560
\(26\) −39557.8 −0.441393
\(27\) 110862. 1.08395
\(28\) 0 0
\(29\) 152177. 1.15866 0.579329 0.815094i \(-0.303315\pi\)
0.579329 + 0.815094i \(0.303315\pi\)
\(30\) 31850.8 0.215375
\(31\) 33696.2 0.203149 0.101575 0.994828i \(-0.467612\pi\)
0.101575 + 0.994828i \(0.467612\pi\)
\(32\) −32768.0 −0.176777
\(33\) −151991. −0.736240
\(34\) 207635. 0.905992
\(35\) 0 0
\(36\) −36450.5 −0.130210
\(37\) 394229. 1.27951 0.639754 0.768580i \(-0.279036\pi\)
0.639754 + 0.768580i \(0.279036\pi\)
\(38\) 346651. 1.02482
\(39\) −198865. −0.536826
\(40\) −50685.4 −0.125220
\(41\) 148840. 0.337269 0.168635 0.985679i \(-0.446064\pi\)
0.168635 + 0.985679i \(0.446064\pi\)
\(42\) 0 0
\(43\) 871204. 1.67101 0.835507 0.549480i \(-0.185174\pi\)
0.835507 + 0.549480i \(0.185174\pi\)
\(44\) 241870. 0.428052
\(45\) −56381.5 −0.0922343
\(46\) 281754. 0.426794
\(47\) −725308. −1.01901 −0.509507 0.860467i \(-0.670172\pi\)
−0.509507 + 0.860467i \(0.670172\pi\)
\(48\) −164732. −0.214997
\(49\) 0 0
\(50\) 546600. 0.618407
\(51\) 1.04383e6 1.10187
\(52\) 316463. 0.312112
\(53\) 1.81855e6 1.67788 0.838939 0.544225i \(-0.183176\pi\)
0.838939 + 0.544225i \(0.183176\pi\)
\(54\) −886893. −0.766466
\(55\) 374123. 0.303211
\(56\) 0 0
\(57\) 1.74269e6 1.24640
\(58\) −1.21741e6 −0.819295
\(59\) 1.14304e6 0.724569 0.362284 0.932068i \(-0.381997\pi\)
0.362284 + 0.932068i \(0.381997\pi\)
\(60\) −254806. −0.152293
\(61\) −2.06761e6 −1.16631 −0.583155 0.812361i \(-0.698182\pi\)
−0.583155 + 0.812361i \(0.698182\pi\)
\(62\) −269570. −0.143648
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 489503. 0.221085
\(66\) 1.21593e6 0.520600
\(67\) 2.31943e6 0.942147 0.471074 0.882094i \(-0.343867\pi\)
0.471074 + 0.882094i \(0.343867\pi\)
\(68\) −1.66108e6 −0.640633
\(69\) 1.41644e6 0.519069
\(70\) 0 0
\(71\) −1.15064e6 −0.381534 −0.190767 0.981635i \(-0.561098\pi\)
−0.190767 + 0.981635i \(0.561098\pi\)
\(72\) 291604. 0.0920724
\(73\) −919421. −0.276620 −0.138310 0.990389i \(-0.544167\pi\)
−0.138310 + 0.990389i \(0.544167\pi\)
\(74\) −3.15384e6 −0.904749
\(75\) 2.74787e6 0.752111
\(76\) −2.77321e6 −0.724661
\(77\) 0 0
\(78\) 1.59092e6 0.379593
\(79\) 6.22035e6 1.41945 0.709725 0.704479i \(-0.248819\pi\)
0.709725 + 0.704479i \(0.248819\pi\)
\(80\) 405483. 0.0885438
\(81\) −3.21301e6 −0.671761
\(82\) −1.19072e6 −0.238485
\(83\) 6.86089e6 1.31706 0.658532 0.752552i \(-0.271178\pi\)
0.658532 + 0.752552i \(0.271178\pi\)
\(84\) 0 0
\(85\) −2.56935e6 −0.453793
\(86\) −6.96963e6 −1.18159
\(87\) −6.12020e6 −0.996433
\(88\) −1.93496e6 −0.302679
\(89\) 6.98286e6 1.04995 0.524974 0.851118i \(-0.324075\pi\)
0.524974 + 0.851118i \(0.324075\pi\)
\(90\) 451052. 0.0652195
\(91\) 0 0
\(92\) −2.25403e6 −0.301789
\(93\) −1.35518e6 −0.174706
\(94\) 5.80246e6 0.720551
\(95\) −4.28958e6 −0.513313
\(96\) 1.31785e6 0.152026
\(97\) −2.35300e6 −0.261770 −0.130885 0.991398i \(-0.541782\pi\)
−0.130885 + 0.991398i \(0.541782\pi\)
\(98\) 0 0
\(99\) −2.15241e6 −0.222947
\(100\) −4.37280e6 −0.437280
\(101\) −1.80656e7 −1.74473 −0.872364 0.488856i \(-0.837414\pi\)
−0.872364 + 0.488856i \(0.837414\pi\)
\(102\) −8.35060e6 −0.779143
\(103\) 1.47032e7 1.32581 0.662906 0.748703i \(-0.269323\pi\)
0.662906 + 0.748703i \(0.269323\pi\)
\(104\) −2.53170e6 −0.220697
\(105\) 0 0
\(106\) −1.45484e7 −1.18644
\(107\) −2.99447e6 −0.236307 −0.118154 0.992995i \(-0.537698\pi\)
−0.118154 + 0.992995i \(0.537698\pi\)
\(108\) 7.09514e6 0.541973
\(109\) 1.78392e7 1.31942 0.659710 0.751520i \(-0.270679\pi\)
0.659710 + 0.751520i \(0.270679\pi\)
\(110\) −2.99298e6 −0.214403
\(111\) −1.58550e7 −1.10036
\(112\) 0 0
\(113\) −2.07812e7 −1.35486 −0.677431 0.735586i \(-0.736907\pi\)
−0.677431 + 0.735586i \(0.736907\pi\)
\(114\) −1.39415e7 −0.881337
\(115\) −3.48653e6 −0.213772
\(116\) 9.73931e6 0.579329
\(117\) −2.81621e6 −0.162561
\(118\) −9.14432e6 −0.512347
\(119\) 0 0
\(120\) 2.03845e6 0.107688
\(121\) −5.20473e6 −0.267085
\(122\) 1.65409e7 0.824706
\(123\) −5.98601e6 −0.290048
\(124\) 2.15656e6 0.101575
\(125\) −1.44978e7 −0.663922
\(126\) 0 0
\(127\) 1.51943e7 0.658215 0.329107 0.944293i \(-0.393252\pi\)
0.329107 + 0.944293i \(0.393252\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −3.50378e7 −1.43705
\(130\) −3.91602e6 −0.156330
\(131\) 3.92464e7 1.52528 0.762642 0.646821i \(-0.223902\pi\)
0.762642 + 0.646821i \(0.223902\pi\)
\(132\) −9.72743e6 −0.368120
\(133\) 0 0
\(134\) −1.85554e7 −0.666199
\(135\) 1.09747e7 0.383907
\(136\) 1.32886e7 0.452996
\(137\) 2.73797e7 0.909717 0.454858 0.890564i \(-0.349690\pi\)
0.454858 + 0.890564i \(0.349690\pi\)
\(138\) −1.13315e7 −0.367038
\(139\) 1.67008e7 0.527456 0.263728 0.964597i \(-0.415048\pi\)
0.263728 + 0.964597i \(0.415048\pi\)
\(140\) 0 0
\(141\) 2.91702e7 0.876340
\(142\) 9.20509e6 0.269786
\(143\) 1.86872e7 0.534401
\(144\) −2.33283e6 −0.0651050
\(145\) 1.50647e7 0.410368
\(146\) 7.35537e6 0.195600
\(147\) 0 0
\(148\) 2.52307e7 0.639754
\(149\) 1.01132e7 0.250459 0.125230 0.992128i \(-0.460033\pi\)
0.125230 + 0.992128i \(0.460033\pi\)
\(150\) −2.19830e7 −0.531823
\(151\) −2.23141e7 −0.527424 −0.263712 0.964601i \(-0.584947\pi\)
−0.263712 + 0.964601i \(0.584947\pi\)
\(152\) 2.21857e7 0.512412
\(153\) 1.47820e7 0.333668
\(154\) 0 0
\(155\) 3.33575e6 0.0719504
\(156\) −1.27274e7 −0.268413
\(157\) 4.77487e7 0.984719 0.492360 0.870392i \(-0.336134\pi\)
0.492360 + 0.870392i \(0.336134\pi\)
\(158\) −4.97628e7 −1.00370
\(159\) −7.31380e7 −1.44296
\(160\) −3.24387e6 −0.0626099
\(161\) 0 0
\(162\) 2.57041e7 0.475007
\(163\) 7.55940e7 1.36720 0.683598 0.729859i \(-0.260414\pi\)
0.683598 + 0.729859i \(0.260414\pi\)
\(164\) 9.52578e6 0.168635
\(165\) −1.50464e7 −0.260758
\(166\) −5.48871e7 −0.931305
\(167\) 5.56387e7 0.924420 0.462210 0.886771i \(-0.347057\pi\)
0.462210 + 0.886771i \(0.347057\pi\)
\(168\) 0 0
\(169\) −3.82982e7 −0.610344
\(170\) 2.05548e7 0.320880
\(171\) 2.46789e7 0.377432
\(172\) 5.57570e7 0.835507
\(173\) −8.43239e7 −1.23820 −0.619098 0.785314i \(-0.712502\pi\)
−0.619098 + 0.785314i \(0.712502\pi\)
\(174\) 4.89616e7 0.704584
\(175\) 0 0
\(176\) 1.54797e7 0.214026
\(177\) −4.59704e7 −0.623121
\(178\) −5.58628e7 −0.742426
\(179\) −2.62488e7 −0.342077 −0.171039 0.985264i \(-0.554712\pi\)
−0.171039 + 0.985264i \(0.554712\pi\)
\(180\) −3.60841e6 −0.0461171
\(181\) 7.16289e7 0.897869 0.448935 0.893565i \(-0.351804\pi\)
0.448935 + 0.893565i \(0.351804\pi\)
\(182\) 0 0
\(183\) 8.31545e7 1.00301
\(184\) 1.80323e7 0.213397
\(185\) 3.90267e7 0.453170
\(186\) 1.08415e7 0.123536
\(187\) −9.80871e7 −1.09690
\(188\) −4.64197e7 −0.509507
\(189\) 0 0
\(190\) 3.43167e7 0.362967
\(191\) −6.53616e7 −0.678743 −0.339372 0.940652i \(-0.610214\pi\)
−0.339372 + 0.940652i \(0.610214\pi\)
\(192\) −1.05428e7 −0.107499
\(193\) 6.33769e7 0.634572 0.317286 0.948330i \(-0.397229\pi\)
0.317286 + 0.948330i \(0.397229\pi\)
\(194\) 1.88240e7 0.185100
\(195\) −1.96867e7 −0.190130
\(196\) 0 0
\(197\) −8.21193e7 −0.765268 −0.382634 0.923900i \(-0.624983\pi\)
−0.382634 + 0.923900i \(0.624983\pi\)
\(198\) 1.72193e7 0.157647
\(199\) 2.80666e7 0.252467 0.126233 0.992001i \(-0.459711\pi\)
0.126233 + 0.992001i \(0.459711\pi\)
\(200\) 3.49824e7 0.309204
\(201\) −9.32820e7 −0.810236
\(202\) 1.44525e8 1.23371
\(203\) 0 0
\(204\) 6.68048e7 0.550937
\(205\) 1.47344e7 0.119452
\(206\) −1.17626e8 −0.937491
\(207\) 2.00587e7 0.157184
\(208\) 2.02536e7 0.156056
\(209\) −1.63758e8 −1.24077
\(210\) 0 0
\(211\) 1.62082e8 1.18781 0.593905 0.804535i \(-0.297586\pi\)
0.593905 + 0.804535i \(0.297586\pi\)
\(212\) 1.16387e8 0.838939
\(213\) 4.62759e7 0.328115
\(214\) 2.39558e7 0.167095
\(215\) 8.62448e7 0.591831
\(216\) −5.67611e7 −0.383233
\(217\) 0 0
\(218\) −1.42714e8 −0.932971
\(219\) 3.69770e7 0.237890
\(220\) 2.39439e7 0.151605
\(221\) −1.28337e8 −0.799798
\(222\) 1.26840e8 0.778073
\(223\) 2.91229e6 0.0175860 0.00879300 0.999961i \(-0.497201\pi\)
0.00879300 + 0.999961i \(0.497201\pi\)
\(224\) 0 0
\(225\) 3.89137e7 0.227753
\(226\) 1.66249e8 0.958033
\(227\) 1.70208e8 0.965806 0.482903 0.875674i \(-0.339582\pi\)
0.482903 + 0.875674i \(0.339582\pi\)
\(228\) 1.11532e8 0.623200
\(229\) 2.61310e8 1.43791 0.718954 0.695057i \(-0.244621\pi\)
0.718954 + 0.695057i \(0.244621\pi\)
\(230\) 2.78922e7 0.151160
\(231\) 0 0
\(232\) −7.79145e7 −0.409648
\(233\) −2.75249e8 −1.42554 −0.712771 0.701396i \(-0.752560\pi\)
−0.712771 + 0.701396i \(0.752560\pi\)
\(234\) 2.25297e7 0.114948
\(235\) −7.18018e7 −0.360909
\(236\) 7.31546e7 0.362284
\(237\) −2.50168e8 −1.22071
\(238\) 0 0
\(239\) −1.83277e8 −0.868392 −0.434196 0.900819i \(-0.642967\pi\)
−0.434196 + 0.900819i \(0.642967\pi\)
\(240\) −1.63076e7 −0.0761466
\(241\) −8.49864e7 −0.391102 −0.195551 0.980694i \(-0.562650\pi\)
−0.195551 + 0.980694i \(0.562650\pi\)
\(242\) 4.16378e7 0.188857
\(243\) −1.13234e8 −0.506240
\(244\) −1.32327e8 −0.583155
\(245\) 0 0
\(246\) 4.78881e7 0.205095
\(247\) −2.14262e8 −0.904701
\(248\) −1.72525e7 −0.0718241
\(249\) −2.75929e8 −1.13266
\(250\) 1.15982e8 0.469464
\(251\) −2.02873e8 −0.809777 −0.404888 0.914366i \(-0.632690\pi\)
−0.404888 + 0.914366i \(0.632690\pi\)
\(252\) 0 0
\(253\) −1.33101e8 −0.516725
\(254\) −1.21554e8 −0.465428
\(255\) 1.03333e8 0.390256
\(256\) 1.67772e7 0.0625000
\(257\) 4.82854e8 1.77439 0.887196 0.461393i \(-0.152650\pi\)
0.887196 + 0.461393i \(0.152650\pi\)
\(258\) 2.80302e8 1.01615
\(259\) 0 0
\(260\) 3.13282e7 0.110542
\(261\) −8.66706e7 −0.301738
\(262\) −3.13971e8 −1.07854
\(263\) 2.11160e8 0.715758 0.357879 0.933768i \(-0.383500\pi\)
0.357879 + 0.933768i \(0.383500\pi\)
\(264\) 7.78195e7 0.260300
\(265\) 1.80028e8 0.594263
\(266\) 0 0
\(267\) −2.80834e8 −0.902943
\(268\) 1.48443e8 0.471074
\(269\) −3.12650e8 −0.979321 −0.489660 0.871913i \(-0.662879\pi\)
−0.489660 + 0.871913i \(0.662879\pi\)
\(270\) −8.77979e7 −0.271463
\(271\) −4.54515e8 −1.38725 −0.693627 0.720335i \(-0.743988\pi\)
−0.693627 + 0.720335i \(0.743988\pi\)
\(272\) −1.06309e8 −0.320317
\(273\) 0 0
\(274\) −2.19037e8 −0.643267
\(275\) −2.58215e8 −0.748715
\(276\) 9.06520e7 0.259535
\(277\) −1.47766e7 −0.0417729 −0.0208864 0.999782i \(-0.506649\pi\)
−0.0208864 + 0.999782i \(0.506649\pi\)
\(278\) −1.33607e8 −0.372968
\(279\) −1.91913e7 −0.0529041
\(280\) 0 0
\(281\) −3.26508e8 −0.877852 −0.438926 0.898523i \(-0.644641\pi\)
−0.438926 + 0.898523i \(0.644641\pi\)
\(282\) −2.33362e8 −0.619666
\(283\) −5.20692e8 −1.36562 −0.682808 0.730598i \(-0.739242\pi\)
−0.682808 + 0.730598i \(0.739242\pi\)
\(284\) −7.36407e7 −0.190767
\(285\) 1.72517e8 0.441444
\(286\) −1.49497e8 −0.377879
\(287\) 0 0
\(288\) 1.86626e7 0.0460362
\(289\) 2.63292e8 0.641645
\(290\) −1.20518e8 −0.290174
\(291\) 9.46321e7 0.225120
\(292\) −5.88429e7 −0.138310
\(293\) −1.89711e8 −0.440611 −0.220306 0.975431i \(-0.570705\pi\)
−0.220306 + 0.975431i \(0.570705\pi\)
\(294\) 0 0
\(295\) 1.13155e8 0.256624
\(296\) −2.01845e8 −0.452374
\(297\) 4.18969e8 0.927972
\(298\) −8.09057e7 −0.177102
\(299\) −1.74150e8 −0.376768
\(300\) 1.75864e8 0.376056
\(301\) 0 0
\(302\) 1.78513e8 0.372945
\(303\) 7.26557e8 1.50045
\(304\) −1.77485e8 −0.362330
\(305\) −2.04683e8 −0.413078
\(306\) −1.18256e8 −0.235939
\(307\) 1.00531e9 1.98297 0.991486 0.130214i \(-0.0415663\pi\)
0.991486 + 0.130214i \(0.0415663\pi\)
\(308\) 0 0
\(309\) −5.91329e8 −1.14018
\(310\) −2.66860e7 −0.0508766
\(311\) 2.92979e8 0.552300 0.276150 0.961115i \(-0.410941\pi\)
0.276150 + 0.961115i \(0.410941\pi\)
\(312\) 1.01819e8 0.189796
\(313\) 5.90505e8 1.08847 0.544237 0.838931i \(-0.316819\pi\)
0.544237 + 0.838931i \(0.316819\pi\)
\(314\) −3.81989e8 −0.696302
\(315\) 0 0
\(316\) 3.98103e8 0.709725
\(317\) −3.93367e8 −0.693569 −0.346785 0.937945i \(-0.612727\pi\)
−0.346785 + 0.937945i \(0.612727\pi\)
\(318\) 5.85104e8 1.02032
\(319\) 5.75108e8 0.991933
\(320\) 2.59509e7 0.0442719
\(321\) 1.20431e8 0.203222
\(322\) 0 0
\(323\) 1.12464e9 1.85697
\(324\) −2.05633e8 −0.335881
\(325\) −3.37849e8 −0.545922
\(326\) −6.04752e8 −0.966753
\(327\) −7.17452e8 −1.13469
\(328\) −7.62062e7 −0.119243
\(329\) 0 0
\(330\) 1.20371e8 0.184384
\(331\) 8.93074e8 1.35360 0.676798 0.736168i \(-0.263367\pi\)
0.676798 + 0.736168i \(0.263367\pi\)
\(332\) 4.39097e8 0.658532
\(333\) −2.24529e8 −0.333210
\(334\) −4.45109e8 −0.653663
\(335\) 2.29612e8 0.333685
\(336\) 0 0
\(337\) 1.22512e9 1.74371 0.871855 0.489765i \(-0.162917\pi\)
0.871855 + 0.489765i \(0.162917\pi\)
\(338\) 3.06386e8 0.431578
\(339\) 8.35770e8 1.16517
\(340\) −1.64439e8 −0.226896
\(341\) 1.27345e8 0.173917
\(342\) −1.97431e8 −0.266885
\(343\) 0 0
\(344\) −4.46056e8 −0.590793
\(345\) 1.40220e8 0.183841
\(346\) 6.74592e8 0.875537
\(347\) 3.03828e8 0.390368 0.195184 0.980767i \(-0.437470\pi\)
0.195184 + 0.980767i \(0.437470\pi\)
\(348\) −3.91693e8 −0.498216
\(349\) −8.97387e8 −1.13003 −0.565016 0.825080i \(-0.691130\pi\)
−0.565016 + 0.825080i \(0.691130\pi\)
\(350\) 0 0
\(351\) 5.48180e8 0.676626
\(352\) −1.23837e8 −0.151339
\(353\) −1.92936e8 −0.233454 −0.116727 0.993164i \(-0.537240\pi\)
−0.116727 + 0.993164i \(0.537240\pi\)
\(354\) 3.67763e8 0.440613
\(355\) −1.13907e8 −0.135130
\(356\) 4.46903e8 0.524974
\(357\) 0 0
\(358\) 2.09991e8 0.241885
\(359\) 5.45101e8 0.621793 0.310897 0.950444i \(-0.399371\pi\)
0.310897 + 0.950444i \(0.399371\pi\)
\(360\) 2.88673e7 0.0326097
\(361\) 9.83734e8 1.10053
\(362\) −5.73031e8 −0.634889
\(363\) 2.09322e8 0.229690
\(364\) 0 0
\(365\) −9.10180e7 −0.0979721
\(366\) −6.65236e8 −0.709238
\(367\) −1.38009e9 −1.45739 −0.728694 0.684839i \(-0.759873\pi\)
−0.728694 + 0.684839i \(0.759873\pi\)
\(368\) −1.44258e8 −0.150894
\(369\) −8.47703e7 −0.0878317
\(370\) −3.12214e8 −0.320439
\(371\) 0 0
\(372\) −8.67317e7 −0.0873530
\(373\) 1.58943e9 1.58584 0.792921 0.609324i \(-0.208559\pi\)
0.792921 + 0.609324i \(0.208559\pi\)
\(374\) 7.84697e8 0.775624
\(375\) 5.83068e8 0.570966
\(376\) 3.71358e8 0.360276
\(377\) 7.52473e8 0.723263
\(378\) 0 0
\(379\) 8.75070e8 0.825669 0.412834 0.910806i \(-0.364539\pi\)
0.412834 + 0.910806i \(0.364539\pi\)
\(380\) −2.74533e8 −0.256657
\(381\) −6.11079e8 −0.566057
\(382\) 5.22892e8 0.479944
\(383\) −1.72010e9 −1.56443 −0.782217 0.623006i \(-0.785911\pi\)
−0.782217 + 0.623006i \(0.785911\pi\)
\(384\) 8.43426e7 0.0760129
\(385\) 0 0
\(386\) −5.07015e8 −0.448710
\(387\) −4.96184e8 −0.435166
\(388\) −1.50592e8 −0.130885
\(389\) −5.90498e8 −0.508621 −0.254311 0.967123i \(-0.581849\pi\)
−0.254311 + 0.967123i \(0.581849\pi\)
\(390\) 1.57493e8 0.134442
\(391\) 9.14095e8 0.773344
\(392\) 0 0
\(393\) −1.57840e9 −1.31173
\(394\) 6.56955e8 0.541126
\(395\) 6.15784e8 0.502734
\(396\) −1.37754e8 −0.111473
\(397\) 1.60244e9 1.28533 0.642664 0.766148i \(-0.277829\pi\)
0.642664 + 0.766148i \(0.277829\pi\)
\(398\) −2.24533e8 −0.178521
\(399\) 0 0
\(400\) −2.79859e8 −0.218640
\(401\) −2.09943e9 −1.62591 −0.812953 0.582329i \(-0.802141\pi\)
−0.812953 + 0.582329i \(0.802141\pi\)
\(402\) 7.46256e8 0.572923
\(403\) 1.66619e8 0.126811
\(404\) −1.15620e9 −0.872364
\(405\) −3.18072e8 −0.237921
\(406\) 0 0
\(407\) 1.48988e9 1.09539
\(408\) −5.34438e8 −0.389571
\(409\) −2.46721e9 −1.78310 −0.891548 0.452926i \(-0.850380\pi\)
−0.891548 + 0.452926i \(0.850380\pi\)
\(410\) −1.17875e8 −0.0844656
\(411\) −1.10115e9 −0.782346
\(412\) 9.41006e8 0.662906
\(413\) 0 0
\(414\) −1.60470e8 −0.111146
\(415\) 6.79193e8 0.466471
\(416\) −1.62029e8 −0.110348
\(417\) −6.71669e8 −0.453606
\(418\) 1.31007e9 0.877357
\(419\) −7.76135e8 −0.515452 −0.257726 0.966218i \(-0.582973\pi\)
−0.257726 + 0.966218i \(0.582973\pi\)
\(420\) 0 0
\(421\) −2.83817e9 −1.85375 −0.926876 0.375369i \(-0.877516\pi\)
−0.926876 + 0.375369i \(0.877516\pi\)
\(422\) −1.29666e9 −0.839908
\(423\) 4.13091e8 0.265372
\(424\) −9.31099e8 −0.593220
\(425\) 1.77333e9 1.12054
\(426\) −3.70207e8 −0.232012
\(427\) 0 0
\(428\) −1.91646e8 −0.118154
\(429\) −7.51555e8 −0.459579
\(430\) −6.89958e8 −0.418488
\(431\) −2.40721e9 −1.44825 −0.724126 0.689667i \(-0.757757\pi\)
−0.724126 + 0.689667i \(0.757757\pi\)
\(432\) 4.54089e8 0.270987
\(433\) −3.89959e7 −0.0230840 −0.0115420 0.999933i \(-0.503674\pi\)
−0.0115420 + 0.999933i \(0.503674\pi\)
\(434\) 0 0
\(435\) −6.05869e8 −0.352912
\(436\) 1.14171e9 0.659710
\(437\) 1.52610e9 0.874777
\(438\) −2.95816e8 −0.168214
\(439\) 2.57665e9 1.45355 0.726775 0.686875i \(-0.241018\pi\)
0.726775 + 0.686875i \(0.241018\pi\)
\(440\) −1.91551e8 −0.107201
\(441\) 0 0
\(442\) 1.02670e9 0.565542
\(443\) 1.74303e9 0.952558 0.476279 0.879294i \(-0.341985\pi\)
0.476279 + 0.879294i \(0.341985\pi\)
\(444\) −1.01472e9 −0.550181
\(445\) 6.91267e8 0.371866
\(446\) −2.32983e7 −0.0124352
\(447\) −4.06730e8 −0.215392
\(448\) 0 0
\(449\) −1.79538e9 −0.936037 −0.468019 0.883719i \(-0.655032\pi\)
−0.468019 + 0.883719i \(0.655032\pi\)
\(450\) −3.11310e8 −0.161046
\(451\) 5.62499e8 0.288738
\(452\) −1.32999e9 −0.677431
\(453\) 8.97421e8 0.453579
\(454\) −1.36166e9 −0.682928
\(455\) 0 0
\(456\) −8.92255e8 −0.440669
\(457\) −3.06780e9 −1.50356 −0.751780 0.659414i \(-0.770804\pi\)
−0.751780 + 0.659414i \(0.770804\pi\)
\(458\) −2.09048e9 −1.01675
\(459\) −2.87734e9 −1.38882
\(460\) −2.23138e8 −0.106886
\(461\) −2.33753e9 −1.11123 −0.555616 0.831439i \(-0.687518\pi\)
−0.555616 + 0.831439i \(0.687518\pi\)
\(462\) 0 0
\(463\) 1.03447e8 0.0484377 0.0242188 0.999707i \(-0.492290\pi\)
0.0242188 + 0.999707i \(0.492290\pi\)
\(464\) 6.23316e8 0.289665
\(465\) −1.34156e8 −0.0618765
\(466\) 2.20199e9 1.00801
\(467\) −4.79172e8 −0.217712 −0.108856 0.994058i \(-0.534719\pi\)
−0.108856 + 0.994058i \(0.534719\pi\)
\(468\) −1.80238e8 −0.0812803
\(469\) 0 0
\(470\) 5.74415e8 0.255201
\(471\) −1.92034e9 −0.846847
\(472\) −5.85237e8 −0.256174
\(473\) 3.29246e9 1.43056
\(474\) 2.00135e9 0.863173
\(475\) 2.96061e9 1.26752
\(476\) 0 0
\(477\) −1.03574e9 −0.436953
\(478\) 1.46622e9 0.614046
\(479\) 3.61346e9 1.50227 0.751136 0.660147i \(-0.229506\pi\)
0.751136 + 0.660147i \(0.229506\pi\)
\(480\) 1.30461e8 0.0538438
\(481\) 1.94936e9 0.798700
\(482\) 6.79891e8 0.276551
\(483\) 0 0
\(484\) −3.33103e8 −0.133542
\(485\) −2.32935e8 −0.0927126
\(486\) 9.05875e8 0.357965
\(487\) 3.62741e9 1.42313 0.711565 0.702620i \(-0.247987\pi\)
0.711565 + 0.702620i \(0.247987\pi\)
\(488\) 1.05862e9 0.412353
\(489\) −3.04021e9 −1.17577
\(490\) 0 0
\(491\) 7.23318e7 0.0275768 0.0137884 0.999905i \(-0.495611\pi\)
0.0137884 + 0.999905i \(0.495611\pi\)
\(492\) −3.83105e8 −0.145024
\(493\) −3.94966e9 −1.48455
\(494\) 1.71409e9 0.639720
\(495\) −2.13077e8 −0.0789622
\(496\) 1.38020e8 0.0507873
\(497\) 0 0
\(498\) 2.20743e9 0.800912
\(499\) 2.73543e9 0.985541 0.492770 0.870159i \(-0.335984\pi\)
0.492770 + 0.870159i \(0.335984\pi\)
\(500\) −9.27860e8 −0.331961
\(501\) −2.23766e9 −0.794990
\(502\) 1.62298e9 0.572599
\(503\) −9.77342e8 −0.342420 −0.171210 0.985235i \(-0.554768\pi\)
−0.171210 + 0.985235i \(0.554768\pi\)
\(504\) 0 0
\(505\) −1.78840e9 −0.617940
\(506\) 1.06481e9 0.365380
\(507\) 1.54026e9 0.524889
\(508\) 9.72435e8 0.329107
\(509\) −5.12379e9 −1.72218 −0.861091 0.508451i \(-0.830218\pi\)
−0.861091 + 0.508451i \(0.830218\pi\)
\(510\) −8.26667e8 −0.275953
\(511\) 0 0
\(512\) −1.34218e8 −0.0441942
\(513\) −4.80378e9 −1.57099
\(514\) −3.86283e9 −1.25468
\(515\) 1.45554e9 0.469570
\(516\) −2.24242e9 −0.718526
\(517\) −2.74109e9 −0.872382
\(518\) 0 0
\(519\) 3.39131e9 1.06483
\(520\) −2.50626e8 −0.0781652
\(521\) 5.06397e9 1.56877 0.784384 0.620275i \(-0.212979\pi\)
0.784384 + 0.620275i \(0.212979\pi\)
\(522\) 6.93364e8 0.213361
\(523\) −2.17853e9 −0.665898 −0.332949 0.942945i \(-0.608044\pi\)
−0.332949 + 0.942945i \(0.608044\pi\)
\(524\) 2.51177e9 0.762642
\(525\) 0 0
\(526\) −1.68928e9 −0.506118
\(527\) −8.74564e8 −0.260288
\(528\) −6.22556e8 −0.184060
\(529\) −2.16443e9 −0.635694
\(530\) −1.44022e9 −0.420207
\(531\) −6.51006e8 −0.188692
\(532\) 0 0
\(533\) 7.35975e8 0.210532
\(534\) 2.24667e9 0.638477
\(535\) −2.96438e8 −0.0836942
\(536\) −1.18755e9 −0.333099
\(537\) 1.05567e9 0.294183
\(538\) 2.50120e9 0.692484
\(539\) 0 0
\(540\) 7.02383e8 0.191953
\(541\) 3.32200e9 0.902005 0.451002 0.892523i \(-0.351067\pi\)
0.451002 + 0.892523i \(0.351067\pi\)
\(542\) 3.63612e9 0.980936
\(543\) −2.88075e9 −0.772157
\(544\) 8.50473e8 0.226498
\(545\) 1.76599e9 0.467306
\(546\) 0 0
\(547\) 2.97826e9 0.778049 0.389025 0.921227i \(-0.372812\pi\)
0.389025 + 0.921227i \(0.372812\pi\)
\(548\) 1.75230e9 0.454858
\(549\) 1.17758e9 0.303731
\(550\) 2.06572e9 0.529421
\(551\) −6.59403e9 −1.67927
\(552\) −7.25216e8 −0.183519
\(553\) 0 0
\(554\) 1.18213e8 0.0295379
\(555\) −1.56956e9 −0.389721
\(556\) 1.06885e9 0.263728
\(557\) −1.63407e9 −0.400662 −0.200331 0.979728i \(-0.564202\pi\)
−0.200331 + 0.979728i \(0.564202\pi\)
\(558\) 1.53530e8 0.0374089
\(559\) 4.30786e9 1.04309
\(560\) 0 0
\(561\) 3.94484e9 0.943320
\(562\) 2.61206e9 0.620735
\(563\) 4.04502e8 0.0955303 0.0477652 0.998859i \(-0.484790\pi\)
0.0477652 + 0.998859i \(0.484790\pi\)
\(564\) 1.86689e9 0.438170
\(565\) −2.05723e9 −0.479859
\(566\) 4.16554e9 0.965637
\(567\) 0 0
\(568\) 5.89126e8 0.134893
\(569\) −8.81934e7 −0.0200698 −0.0100349 0.999950i \(-0.503194\pi\)
−0.0100349 + 0.999950i \(0.503194\pi\)
\(570\) −1.38014e9 −0.312148
\(571\) −4.25590e9 −0.956676 −0.478338 0.878176i \(-0.658761\pi\)
−0.478338 + 0.878176i \(0.658761\pi\)
\(572\) 1.19598e9 0.267201
\(573\) 2.62869e9 0.583711
\(574\) 0 0
\(575\) 2.40636e9 0.527865
\(576\) −1.49301e8 −0.0325525
\(577\) −1.80650e9 −0.391493 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(578\) −2.10633e9 −0.453711
\(579\) −2.54887e9 −0.545724
\(580\) 9.64143e8 0.205184
\(581\) 0 0
\(582\) −7.57057e8 −0.159184
\(583\) 6.87270e9 1.43644
\(584\) 4.70743e8 0.0978001
\(585\) −2.78791e8 −0.0575749
\(586\) 1.51769e9 0.311559
\(587\) 1.17257e9 0.239279 0.119640 0.992817i \(-0.461826\pi\)
0.119640 + 0.992817i \(0.461826\pi\)
\(588\) 0 0
\(589\) −1.46010e9 −0.294428
\(590\) −9.05242e8 −0.181461
\(591\) 3.30265e9 0.658122
\(592\) 1.61476e9 0.319877
\(593\) 4.44047e9 0.874455 0.437227 0.899351i \(-0.355961\pi\)
0.437227 + 0.899351i \(0.355961\pi\)
\(594\) −3.35176e9 −0.656175
\(595\) 0 0
\(596\) 6.47246e8 0.125230
\(597\) −1.12877e9 −0.217118
\(598\) 1.39320e9 0.266415
\(599\) 1.54770e9 0.294235 0.147117 0.989119i \(-0.453000\pi\)
0.147117 + 0.989119i \(0.453000\pi\)
\(600\) −1.40691e9 −0.265912
\(601\) 8.34134e9 1.56738 0.783691 0.621151i \(-0.213335\pi\)
0.783691 + 0.621151i \(0.213335\pi\)
\(602\) 0 0
\(603\) −1.32100e9 −0.245354
\(604\) −1.42810e9 −0.263712
\(605\) −5.15242e8 −0.0945948
\(606\) −5.81246e9 −1.06098
\(607\) −5.27449e7 −0.00957238 −0.00478619 0.999989i \(-0.501523\pi\)
−0.00478619 + 0.999989i \(0.501523\pi\)
\(608\) 1.41988e9 0.256206
\(609\) 0 0
\(610\) 1.63746e9 0.292090
\(611\) −3.58645e9 −0.636093
\(612\) 9.46050e8 0.166834
\(613\) 2.51149e9 0.440373 0.220186 0.975458i \(-0.429333\pi\)
0.220186 + 0.975458i \(0.429333\pi\)
\(614\) −8.04250e9 −1.40217
\(615\) −5.92585e8 −0.102728
\(616\) 0 0
\(617\) 4.91512e9 0.842434 0.421217 0.906960i \(-0.361603\pi\)
0.421217 + 0.906960i \(0.361603\pi\)
\(618\) 4.73063e9 0.806231
\(619\) −2.21335e9 −0.375087 −0.187543 0.982256i \(-0.560053\pi\)
−0.187543 + 0.982256i \(0.560053\pi\)
\(620\) 2.13488e8 0.0359752
\(621\) −3.90446e9 −0.654246
\(622\) −2.34383e9 −0.390535
\(623\) 0 0
\(624\) −8.14553e8 −0.134206
\(625\) 3.90268e9 0.639415
\(626\) −4.72404e9 −0.769668
\(627\) 6.58598e9 1.06705
\(628\) 3.05591e9 0.492360
\(629\) −1.02320e10 −1.63939
\(630\) 0 0
\(631\) −4.58134e9 −0.725922 −0.362961 0.931804i \(-0.618234\pi\)
−0.362961 + 0.931804i \(0.618234\pi\)
\(632\) −3.18482e9 −0.501851
\(633\) −6.51857e9 −1.02150
\(634\) 3.14693e9 0.490428
\(635\) 1.50416e9 0.233123
\(636\) −4.68083e9 −0.721478
\(637\) 0 0
\(638\) −4.60087e9 −0.701402
\(639\) 6.55332e8 0.0993592
\(640\) −2.07607e8 −0.0313050
\(641\) 1.45075e9 0.217565 0.108783 0.994066i \(-0.465305\pi\)
0.108783 + 0.994066i \(0.465305\pi\)
\(642\) −9.63446e8 −0.143699
\(643\) −2.87720e9 −0.426807 −0.213404 0.976964i \(-0.568455\pi\)
−0.213404 + 0.976964i \(0.568455\pi\)
\(644\) 0 0
\(645\) −3.46856e9 −0.508968
\(646\) −8.99711e9 −1.31307
\(647\) 4.04829e9 0.587634 0.293817 0.955862i \(-0.405074\pi\)
0.293817 + 0.955862i \(0.405074\pi\)
\(648\) 1.64506e9 0.237503
\(649\) 4.31979e9 0.620307
\(650\) 2.70279e9 0.386025
\(651\) 0 0
\(652\) 4.83802e9 0.683598
\(653\) 3.89699e9 0.547688 0.273844 0.961774i \(-0.411705\pi\)
0.273844 + 0.961774i \(0.411705\pi\)
\(654\) 5.73961e9 0.802344
\(655\) 3.88520e9 0.540217
\(656\) 6.09650e8 0.0843174
\(657\) 5.23646e8 0.0720375
\(658\) 0 0
\(659\) −1.61283e9 −0.219528 −0.109764 0.993958i \(-0.535010\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(660\) −9.62967e8 −0.130379
\(661\) −8.68218e8 −0.116929 −0.0584647 0.998289i \(-0.518620\pi\)
−0.0584647 + 0.998289i \(0.518620\pi\)
\(662\) −7.14459e9 −0.957138
\(663\) 5.16143e9 0.687817
\(664\) −3.51278e9 −0.465653
\(665\) 0 0
\(666\) 1.79623e9 0.235615
\(667\) −5.35956e9 −0.699340
\(668\) 3.56087e9 0.462210
\(669\) −1.17125e8 −0.0151238
\(670\) −1.83689e9 −0.235951
\(671\) −7.81394e9 −0.998484
\(672\) 0 0
\(673\) −3.31380e9 −0.419058 −0.209529 0.977802i \(-0.567193\pi\)
−0.209529 + 0.977802i \(0.567193\pi\)
\(674\) −9.80096e9 −1.23299
\(675\) −7.57462e9 −0.947976
\(676\) −2.45108e9 −0.305172
\(677\) 1.19606e10 1.48146 0.740732 0.671801i \(-0.234479\pi\)
0.740732 + 0.671801i \(0.234479\pi\)
\(678\) −6.68616e9 −0.823897
\(679\) 0 0
\(680\) 1.31551e9 0.160440
\(681\) −6.84537e9 −0.830582
\(682\) −1.01876e9 −0.122978
\(683\) 9.98538e9 1.19920 0.599601 0.800299i \(-0.295326\pi\)
0.599601 + 0.800299i \(0.295326\pi\)
\(684\) 1.57945e9 0.188716
\(685\) 2.71045e9 0.322199
\(686\) 0 0
\(687\) −1.05093e10 −1.23658
\(688\) 3.56845e9 0.417753
\(689\) 8.99225e9 1.04737
\(690\) −1.12176e9 −0.129996
\(691\) 4.47288e9 0.515720 0.257860 0.966182i \(-0.416983\pi\)
0.257860 + 0.966182i \(0.416983\pi\)
\(692\) −5.39673e9 −0.619098
\(693\) 0 0
\(694\) −2.43062e9 −0.276032
\(695\) 1.65330e9 0.186812
\(696\) 3.13354e9 0.352292
\(697\) −3.86306e9 −0.432132
\(698\) 7.17910e9 0.799053
\(699\) 1.10699e10 1.22595
\(700\) 0 0
\(701\) −5.17153e9 −0.567029 −0.283515 0.958968i \(-0.591500\pi\)
−0.283515 + 0.958968i \(0.591500\pi\)
\(702\) −4.38544e9 −0.478447
\(703\) −1.70825e10 −1.85442
\(704\) 9.90698e8 0.107013
\(705\) 2.88770e9 0.310378
\(706\) 1.54349e9 0.165077
\(707\) 0 0
\(708\) −2.94211e9 −0.311560
\(709\) 1.46593e10 1.54473 0.772364 0.635180i \(-0.219074\pi\)
0.772364 + 0.635180i \(0.219074\pi\)
\(710\) 9.11257e8 0.0955514
\(711\) −3.54273e9 −0.369653
\(712\) −3.57522e9 −0.371213
\(713\) −1.18676e9 −0.122616
\(714\) 0 0
\(715\) 1.84994e9 0.189272
\(716\) −1.67993e9 −0.171039
\(717\) 7.37098e9 0.746807
\(718\) −4.36080e9 −0.439674
\(719\) 1.53624e10 1.54137 0.770686 0.637215i \(-0.219914\pi\)
0.770686 + 0.637215i \(0.219914\pi\)
\(720\) −2.30938e8 −0.0230586
\(721\) 0 0
\(722\) −7.86987e9 −0.778193
\(723\) 3.41796e9 0.336343
\(724\) 4.58425e9 0.448935
\(725\) −1.03975e10 −1.01332
\(726\) −1.67458e9 −0.162415
\(727\) −1.61641e10 −1.56021 −0.780104 0.625650i \(-0.784834\pi\)
−0.780104 + 0.625650i \(0.784834\pi\)
\(728\) 0 0
\(729\) 1.15809e10 1.10712
\(730\) 7.28144e8 0.0692767
\(731\) −2.26116e10 −2.14101
\(732\) 5.32189e9 0.501507
\(733\) 3.39753e9 0.318639 0.159320 0.987227i \(-0.449070\pi\)
0.159320 + 0.987227i \(0.449070\pi\)
\(734\) 1.10407e10 1.03053
\(735\) 0 0
\(736\) 1.15407e9 0.106698
\(737\) 8.76561e9 0.806577
\(738\) 6.78162e8 0.0621064
\(739\) −1.00733e10 −0.918157 −0.459079 0.888396i \(-0.651820\pi\)
−0.459079 + 0.888396i \(0.651820\pi\)
\(740\) 2.49771e9 0.226585
\(741\) 8.61711e9 0.778033
\(742\) 0 0
\(743\) 1.17736e9 0.105305 0.0526523 0.998613i \(-0.483233\pi\)
0.0526523 + 0.998613i \(0.483233\pi\)
\(744\) 6.93854e8 0.0617679
\(745\) 1.00116e9 0.0887065
\(746\) −1.27154e10 −1.12136
\(747\) −3.90754e9 −0.342990
\(748\) −6.27758e9 −0.548449
\(749\) 0 0
\(750\) −4.66455e9 −0.403734
\(751\) −1.84155e10 −1.58651 −0.793256 0.608888i \(-0.791616\pi\)
−0.793256 + 0.608888i \(0.791616\pi\)
\(752\) −2.97086e9 −0.254753
\(753\) 8.15906e9 0.696398
\(754\) −6.01978e9 −0.511424
\(755\) −2.20898e9 −0.186800
\(756\) 0 0
\(757\) 4.60910e9 0.386171 0.193086 0.981182i \(-0.438150\pi\)
0.193086 + 0.981182i \(0.438150\pi\)
\(758\) −7.00056e9 −0.583836
\(759\) 5.35302e9 0.444378
\(760\) 2.19627e9 0.181484
\(761\) −1.32369e10 −1.08878 −0.544389 0.838833i \(-0.683238\pi\)
−0.544389 + 0.838833i \(0.683238\pi\)
\(762\) 4.88863e9 0.400263
\(763\) 0 0
\(764\) −4.18314e9 −0.339372
\(765\) 1.46335e9 0.118177
\(766\) 1.37608e10 1.10622
\(767\) 5.65202e9 0.452293
\(768\) −6.74741e8 −0.0537493
\(769\) 1.16678e10 0.925225 0.462613 0.886561i \(-0.346912\pi\)
0.462613 + 0.886561i \(0.346912\pi\)
\(770\) 0 0
\(771\) −1.94192e10 −1.52596
\(772\) 4.05612e9 0.317286
\(773\) −1.55330e10 −1.20956 −0.604781 0.796392i \(-0.706739\pi\)
−0.604781 + 0.796392i \(0.706739\pi\)
\(774\) 3.96947e9 0.307708
\(775\) −2.30229e9 −0.177666
\(776\) 1.20474e9 0.0925498
\(777\) 0 0
\(778\) 4.72398e9 0.359650
\(779\) −6.44945e9 −0.488812
\(780\) −1.25995e9 −0.0950651
\(781\) −4.34850e9 −0.326633
\(782\) −7.31276e9 −0.546837
\(783\) 1.68706e10 1.25592
\(784\) 0 0
\(785\) 4.72688e9 0.348763
\(786\) 1.26272e10 0.927530
\(787\) 1.04461e10 0.763907 0.381954 0.924181i \(-0.375251\pi\)
0.381954 + 0.924181i \(0.375251\pi\)
\(788\) −5.25564e9 −0.382634
\(789\) −8.49236e9 −0.615544
\(790\) −4.92627e9 −0.355487
\(791\) 0 0
\(792\) 1.10203e9 0.0788236
\(793\) −1.02238e10 −0.728040
\(794\) −1.28195e10 −0.908864
\(795\) −7.24029e9 −0.511059
\(796\) 1.79626e9 0.126233
\(797\) −1.06705e10 −0.746584 −0.373292 0.927714i \(-0.621771\pi\)
−0.373292 + 0.927714i \(0.621771\pi\)
\(798\) 0 0
\(799\) 1.88249e10 1.30563
\(800\) 2.23887e9 0.154602
\(801\) −3.97701e9 −0.273428
\(802\) 1.67954e10 1.14969
\(803\) −3.47469e9 −0.236816
\(804\) −5.97005e9 −0.405118
\(805\) 0 0
\(806\) −1.33295e9 −0.0896687
\(807\) 1.25740e10 0.842205
\(808\) 9.24960e9 0.616855
\(809\) 1.89825e10 1.26048 0.630238 0.776402i \(-0.282957\pi\)
0.630238 + 0.776402i \(0.282957\pi\)
\(810\) 2.54458e9 0.168236
\(811\) 1.30672e9 0.0860222 0.0430111 0.999075i \(-0.486305\pi\)
0.0430111 + 0.999075i \(0.486305\pi\)
\(812\) 0 0
\(813\) 1.82795e10 1.19302
\(814\) −1.19190e10 −0.774560
\(815\) 7.48342e9 0.484227
\(816\) 4.27551e9 0.275469
\(817\) −3.77504e10 −2.42184
\(818\) 1.97377e10 1.26084
\(819\) 0 0
\(820\) 9.43004e8 0.0597262
\(821\) −1.89023e9 −0.119210 −0.0596052 0.998222i \(-0.518984\pi\)
−0.0596052 + 0.998222i \(0.518984\pi\)
\(822\) 8.80917e9 0.553202
\(823\) 4.63014e9 0.289531 0.144765 0.989466i \(-0.453757\pi\)
0.144765 + 0.989466i \(0.453757\pi\)
\(824\) −7.52805e9 −0.468745
\(825\) 1.03848e10 0.643886
\(826\) 0 0
\(827\) −9.32056e9 −0.573024 −0.286512 0.958077i \(-0.592496\pi\)
−0.286512 + 0.958077i \(0.592496\pi\)
\(828\) 1.28376e9 0.0785918
\(829\) 2.28125e10 1.39070 0.695349 0.718672i \(-0.255250\pi\)
0.695349 + 0.718672i \(0.255250\pi\)
\(830\) −5.43355e9 −0.329845
\(831\) 5.94279e8 0.0359242
\(832\) 1.29623e9 0.0780280
\(833\) 0 0
\(834\) 5.37335e9 0.320748
\(835\) 5.50795e9 0.327406
\(836\) −1.04805e10 −0.620385
\(837\) 3.73561e9 0.220203
\(838\) 6.20908e9 0.364480
\(839\) −2.53946e10 −1.48448 −0.742241 0.670133i \(-0.766237\pi\)
−0.742241 + 0.670133i \(0.766237\pi\)
\(840\) 0 0
\(841\) 5.90790e9 0.342489
\(842\) 2.27054e10 1.31080
\(843\) 1.31314e10 0.754943
\(844\) 1.03733e10 0.593905
\(845\) −3.79133e9 −0.216169
\(846\) −3.30473e9 −0.187646
\(847\) 0 0
\(848\) 7.44879e9 0.419470
\(849\) 2.09410e10 1.17441
\(850\) −1.41867e10 −0.792345
\(851\) −1.38845e10 −0.772282
\(852\) 2.96166e9 0.164058
\(853\) 5.55257e9 0.306318 0.153159 0.988202i \(-0.451055\pi\)
0.153159 + 0.988202i \(0.451055\pi\)
\(854\) 0 0
\(855\) 2.44308e9 0.133677
\(856\) 1.53317e9 0.0835473
\(857\) 1.72828e10 0.937953 0.468977 0.883211i \(-0.344623\pi\)
0.468977 + 0.883211i \(0.344623\pi\)
\(858\) 6.01244e9 0.324971
\(859\) 2.95579e9 0.159110 0.0795550 0.996830i \(-0.474650\pi\)
0.0795550 + 0.996830i \(0.474650\pi\)
\(860\) 5.51966e9 0.295916
\(861\) 0 0
\(862\) 1.92577e10 1.02407
\(863\) 5.09978e9 0.270093 0.135047 0.990839i \(-0.456882\pi\)
0.135047 + 0.990839i \(0.456882\pi\)
\(864\) −3.63271e9 −0.191616
\(865\) −8.34764e9 −0.438538
\(866\) 3.11967e8 0.0163229
\(867\) −1.05890e10 −0.551807
\(868\) 0 0
\(869\) 2.35080e10 1.21520
\(870\) 4.84695e9 0.249546
\(871\) 1.14689e10 0.588111
\(872\) −9.13368e9 −0.466485
\(873\) 1.34012e9 0.0681703
\(874\) −1.22088e10 −0.618561
\(875\) 0 0
\(876\) 2.36653e9 0.118945
\(877\) 2.38261e9 0.119276 0.0596382 0.998220i \(-0.481005\pi\)
0.0596382 + 0.998220i \(0.481005\pi\)
\(878\) −2.06132e10 −1.02782
\(879\) 7.62973e9 0.378920
\(880\) 1.53241e9 0.0758027
\(881\) 1.38819e10 0.683964 0.341982 0.939707i \(-0.388902\pi\)
0.341982 + 0.939707i \(0.388902\pi\)
\(882\) 0 0
\(883\) −1.59763e10 −0.780932 −0.390466 0.920617i \(-0.627686\pi\)
−0.390466 + 0.920617i \(0.627686\pi\)
\(884\) −8.21359e9 −0.399899
\(885\) −4.55084e9 −0.220694
\(886\) −1.39442e10 −0.673560
\(887\) 3.80171e10 1.82914 0.914568 0.404431i \(-0.132530\pi\)
0.914568 + 0.404431i \(0.132530\pi\)
\(888\) 8.11775e9 0.389037
\(889\) 0 0
\(890\) −5.53014e9 −0.262949
\(891\) −1.21427e10 −0.575098
\(892\) 1.86386e8 0.00879300
\(893\) 3.14286e10 1.47688
\(894\) 3.25384e9 0.152305
\(895\) −2.59850e9 −0.121155
\(896\) 0 0
\(897\) 7.00390e9 0.324016
\(898\) 1.43630e10 0.661878
\(899\) 5.12778e9 0.235380
\(900\) 2.49048e9 0.113876
\(901\) −4.71994e10 −2.14981
\(902\) −4.49999e9 −0.204169
\(903\) 0 0
\(904\) 1.06400e10 0.479016
\(905\) 7.09090e9 0.318003
\(906\) −7.17937e9 −0.320728
\(907\) −2.10728e10 −0.937772 −0.468886 0.883259i \(-0.655345\pi\)
−0.468886 + 0.883259i \(0.655345\pi\)
\(908\) 1.08933e10 0.482903
\(909\) 1.02891e10 0.454362
\(910\) 0 0
\(911\) −2.32696e9 −0.101970 −0.0509852 0.998699i \(-0.516236\pi\)
−0.0509852 + 0.998699i \(0.516236\pi\)
\(912\) 7.13804e9 0.311600
\(913\) 2.59288e10 1.12755
\(914\) 2.45424e10 1.06318
\(915\) 8.23187e9 0.355243
\(916\) 1.67238e10 0.718954
\(917\) 0 0
\(918\) 2.30188e10 0.982047
\(919\) −4.56675e10 −1.94090 −0.970450 0.241301i \(-0.922426\pi\)
−0.970450 + 0.241301i \(0.922426\pi\)
\(920\) 1.78510e9 0.0755798
\(921\) −4.04313e10 −1.70533
\(922\) 1.87003e10 0.785760
\(923\) −5.68958e9 −0.238163
\(924\) 0 0
\(925\) −2.69357e10 −1.11901
\(926\) −8.27574e8 −0.0342506
\(927\) −8.37405e9 −0.345268
\(928\) −4.98653e9 −0.204824
\(929\) 1.60424e10 0.656470 0.328235 0.944596i \(-0.393546\pi\)
0.328235 + 0.944596i \(0.393546\pi\)
\(930\) 1.07325e9 0.0437533
\(931\) 0 0
\(932\) −1.76159e10 −0.712771
\(933\) −1.17829e10 −0.474972
\(934\) 3.83337e9 0.153945
\(935\) −9.71013e9 −0.388494
\(936\) 1.44190e9 0.0574738
\(937\) −3.60968e10 −1.43344 −0.716722 0.697359i \(-0.754358\pi\)
−0.716722 + 0.697359i \(0.754358\pi\)
\(938\) 0 0
\(939\) −2.37487e10 −0.936076
\(940\) −4.59532e9 −0.180455
\(941\) 8.61873e9 0.337194 0.168597 0.985685i \(-0.446076\pi\)
0.168597 + 0.985685i \(0.446076\pi\)
\(942\) 1.53627e10 0.598811
\(943\) −5.24205e9 −0.203568
\(944\) 4.68189e9 0.181142
\(945\) 0 0
\(946\) −2.63397e10 −1.01156
\(947\) −3.74410e9 −0.143259 −0.0716295 0.997431i \(-0.522820\pi\)
−0.0716295 + 0.997431i \(0.522820\pi\)
\(948\) −1.60108e10 −0.610355
\(949\) −4.54628e9 −0.172673
\(950\) −2.36849e10 −0.896271
\(951\) 1.58203e10 0.596462
\(952\) 0 0
\(953\) −9.19089e9 −0.343979 −0.171990 0.985099i \(-0.555020\pi\)
−0.171990 + 0.985099i \(0.555020\pi\)
\(954\) 8.28589e9 0.308973
\(955\) −6.47046e9 −0.240394
\(956\) −1.17297e10 −0.434196
\(957\) −2.31295e10 −0.853051
\(958\) −2.89077e10 −1.06227
\(959\) 0 0
\(960\) −1.04369e9 −0.0380733
\(961\) −2.63772e10 −0.958730
\(962\) −1.55949e10 −0.564766
\(963\) 1.70547e9 0.0615392
\(964\) −5.43913e9 −0.195551
\(965\) 6.27400e9 0.224749
\(966\) 0 0
\(967\) −2.94926e10 −1.04887 −0.524434 0.851451i \(-0.675723\pi\)
−0.524434 + 0.851451i \(0.675723\pi\)
\(968\) 2.66482e9 0.0944287
\(969\) −4.52304e10 −1.59697
\(970\) 1.86348e9 0.0655577
\(971\) 2.71931e10 0.953215 0.476608 0.879116i \(-0.341866\pi\)
0.476608 + 0.879116i \(0.341866\pi\)
\(972\) −7.24700e9 −0.253120
\(973\) 0 0
\(974\) −2.90193e10 −1.00631
\(975\) 1.35875e10 0.469486
\(976\) −8.46893e9 −0.291578
\(977\) 4.00042e10 1.37238 0.686191 0.727422i \(-0.259282\pi\)
0.686191 + 0.727422i \(0.259282\pi\)
\(978\) 2.43217e10 0.831397
\(979\) 2.63897e10 0.898866
\(980\) 0 0
\(981\) −1.01601e10 −0.343603
\(982\) −5.78655e8 −0.0194998
\(983\) −8.39258e9 −0.281811 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(984\) 3.06484e9 0.102547
\(985\) −8.12940e9 −0.271039
\(986\) 3.15972e10 1.04974
\(987\) 0 0
\(988\) −1.37127e10 −0.452351
\(989\) −3.06832e10 −1.00859
\(990\) 1.70462e9 0.0558347
\(991\) −2.36957e10 −0.773415 −0.386707 0.922203i \(-0.626388\pi\)
−0.386707 + 0.922203i \(0.626388\pi\)
\(992\) −1.10416e9 −0.0359120
\(993\) −3.59173e10 −1.16408
\(994\) 0 0
\(995\) 2.77845e9 0.0894174
\(996\) −1.76595e10 −0.566330
\(997\) 1.02812e9 0.0328558 0.0164279 0.999865i \(-0.494771\pi\)
0.0164279 + 0.999865i \(0.494771\pi\)
\(998\) −2.18835e10 −0.696882
\(999\) 4.37049e10 1.38692
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.8.a.l.1.2 4
7.2 even 3 98.8.c.n.67.3 8
7.3 odd 6 98.8.c.n.79.2 8
7.4 even 3 98.8.c.n.79.3 8
7.5 odd 6 98.8.c.n.67.2 8
7.6 odd 2 inner 98.8.a.l.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.8.a.l.1.2 4 1.1 even 1 trivial
98.8.a.l.1.3 yes 4 7.6 odd 2 inner
98.8.c.n.67.2 8 7.5 odd 6
98.8.c.n.67.3 8 7.2 even 3
98.8.c.n.79.2 8 7.3 odd 6
98.8.c.n.79.3 8 7.4 even 3