Properties

Label 98.8.a
Level $98$
Weight $8$
Character orbit 98.a
Rep. character $\chi_{98}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $12$
Sturm bound $112$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(112\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(98))\).

Total New Old
Modular forms 106 23 83
Cusp forms 90 23 67
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(28\)\(6\)\(22\)\(24\)\(6\)\(18\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(25\)\(6\)\(19\)\(21\)\(6\)\(15\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(26\)\(4\)\(22\)\(22\)\(4\)\(18\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(27\)\(7\)\(20\)\(23\)\(7\)\(16\)\(4\)\(0\)\(4\)
Plus space\(+\)\(55\)\(13\)\(42\)\(47\)\(13\)\(34\)\(8\)\(0\)\(8\)
Minus space\(-\)\(51\)\(10\)\(41\)\(43\)\(10\)\(33\)\(8\)\(0\)\(8\)

Trace form

\( 23 q - 8 q^{2} + 66 q^{3} + 1472 q^{4} + 36 q^{5} - 592 q^{6} - 512 q^{8} + 14883 q^{9} + 4096 q^{10} - 6028 q^{11} + 4224 q^{12} + 2352 q^{13} + 43832 q^{15} + 94208 q^{16} - 15222 q^{17} - 38824 q^{18}+ \cdots - 21405796 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
98.8.a.a 98.a 1.a $1$ $30.614$ \(\Q\) None 2.8.a.a \(-8\) \(-12\) \(210\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}-12q^{3}+2^{6}q^{4}+210q^{5}+\cdots\)
98.8.a.b 98.a 1.a $1$ $30.614$ \(\Q\) None 14.8.a.a \(-8\) \(82\) \(-448\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+82q^{3}+2^{6}q^{4}-448q^{5}+\cdots\)
98.8.a.c 98.a 1.a $1$ $30.614$ \(\Q\) None 14.8.a.b \(8\) \(66\) \(400\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+66q^{3}+2^{6}q^{4}+20^{2}q^{5}+\cdots\)
98.8.a.d 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{949}) \) None 14.8.c.b \(-16\) \(-56\) \(14\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-28-\beta )q^{3}+2^{6}q^{4}+(7+\cdots)q^{5}+\cdots\)
98.8.a.e 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{22}) \) None 98.8.a.e \(-16\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+3\beta q^{3}+2^{6}q^{4}+7\beta q^{5}-24\beta q^{6}+\cdots\)
98.8.a.f 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{949}) \) None 14.8.c.b \(-16\) \(56\) \(-14\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(28-\beta )q^{3}+2^{6}q^{4}+(-7+\cdots)q^{5}+\cdots\)
98.8.a.g 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{1969}) \) None 14.8.a.c \(16\) \(-70\) \(-126\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-35-\beta )q^{3}+2^{6}q^{4}+(-63+\cdots)q^{5}+\cdots\)
98.8.a.h 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{2389}) \) None 14.8.c.a \(16\) \(-56\) \(-238\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-28-\beta )q^{3}+2^{6}q^{4}+(-119+\cdots)q^{5}+\cdots\)
98.8.a.i 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{2}) \) None 98.8.a.i \(16\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+15\beta q^{3}+2^{6}q^{4}-86\beta q^{5}+\cdots\)
98.8.a.j 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{37}) \) None 98.8.a.j \(16\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}-\beta q^{3}+2^{6}q^{4}-5\beta q^{5}-8\beta q^{6}+\cdots\)
98.8.a.k 98.a 1.a $2$ $30.614$ \(\Q(\sqrt{2389}) \) None 14.8.c.a \(16\) \(56\) \(238\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(28-\beta )q^{3}+2^{6}q^{4}+(119+\cdots)q^{5}+\cdots\)
98.8.a.l 98.a 1.a $4$ $30.614$ \(\Q(\sqrt{2}, \sqrt{1801})\) None 98.8.a.l \(-32\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(2\beta _{1}+\beta _{3})q^{3}+2^{6}q^{4}+10\beta _{1}q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(98))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(98)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)