Properties

Label 975.2.bn.d.407.18
Level $975$
Weight $2$
Character 975.407
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.18
Character \(\chi\) \(=\) 975.407
Dual form 975.2.bn.d.218.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42342 - 0.381405i) q^{2} +(0.323695 - 1.70154i) q^{3} +(0.148609 - 0.0857994i) q^{4} +(-0.188219 - 2.54546i) q^{6} +(-3.97287 - 1.06453i) q^{7} +(-1.90523 + 1.90523i) q^{8} +(-2.79044 - 1.10156i) q^{9} +(-2.13830 + 3.70364i) q^{11} +(-0.0978867 - 0.280636i) q^{12} +(3.59901 + 0.217053i) q^{13} -6.06108 q^{14} +(-2.15688 + 3.73582i) q^{16} +(-2.26413 - 0.606673i) q^{17} +(-4.39212 - 0.503692i) q^{18} +(-2.42558 - 4.20123i) q^{19} +(-3.09733 + 6.41539i) q^{21} +(-1.63112 + 6.08741i) q^{22} +(-2.72722 + 0.730756i) q^{23} +(2.62510 + 3.85852i) q^{24} +(5.20570 - 1.06372i) q^{26} +(-2.77759 + 4.39147i) q^{27} +(-0.681739 + 0.182671i) q^{28} +(-0.553990 + 0.959539i) q^{29} -2.59652i q^{31} +(-0.250564 + 0.935116i) q^{32} +(5.60972 + 4.83724i) q^{33} -3.45421 q^{34} +(-0.509198 + 0.0757171i) q^{36} +(0.255918 + 0.955101i) q^{37} +(-5.05499 - 5.05499i) q^{38} +(1.53431 - 6.05359i) q^{39} +(-0.575209 + 0.996292i) q^{41} +(-1.96194 + 10.3131i) q^{42} +(-9.84550 - 2.63809i) q^{43} +0.733860i q^{44} +(-3.60327 + 2.08035i) q^{46} +(3.07931 + 3.07931i) q^{47} +(5.65846 + 4.87927i) q^{48} +(8.58827 + 4.95844i) q^{49} +(-1.76516 + 3.65613i) q^{51} +(0.553469 - 0.276537i) q^{52} +(-2.89463 - 2.89463i) q^{53} +(-2.27876 + 7.31030i) q^{54} +(9.59737 - 5.54104i) q^{56} +(-7.93368 + 2.76729i) q^{57} +(-0.422589 + 1.57712i) q^{58} +(7.54722 - 4.35739i) q^{59} +(1.64416 + 2.84776i) q^{61} +(-0.990323 - 3.69594i) q^{62} +(9.91342 + 7.34684i) q^{63} -7.20087i q^{64} +(9.82995 + 4.74586i) q^{66} +(-1.59596 - 5.95621i) q^{67} +(-0.388523 + 0.104104i) q^{68} +(0.360619 + 4.87700i) q^{69} +(-4.38783 - 7.59994i) q^{71} +(7.41514 - 3.21771i) q^{72} +(-8.00201 - 8.00201i) q^{73} +(0.728560 + 1.26190i) q^{74} +(-0.720926 - 0.416227i) q^{76} +(12.4378 - 12.4378i) q^{77} +(-0.124901 - 9.20200i) q^{78} +2.06111i q^{79} +(6.57314 + 6.14767i) q^{81} +(-0.438775 + 1.63753i) q^{82} +(6.21215 - 6.21215i) q^{83} +(0.0901463 + 1.21913i) q^{84} -15.0205 q^{86} +(1.45336 + 1.25323i) q^{87} +(-2.98233 - 11.1302i) q^{88} +(-3.27478 - 1.89069i) q^{89} +(-14.0673 - 4.69357i) q^{91} +(-0.342591 + 0.342591i) q^{92} +(-4.41806 - 0.840480i) q^{93} +(5.55763 + 3.20870i) q^{94} +(1.51003 + 0.729035i) q^{96} +(-4.91400 - 1.31670i) q^{97} +(14.1159 + 3.78234i) q^{98} +(10.0466 - 7.97935i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42342 0.381405i 1.00651 0.269694i 0.282340 0.959314i \(-0.408889\pi\)
0.724171 + 0.689621i \(0.242223\pi\)
\(3\) 0.323695 1.70154i 0.186885 0.982382i
\(4\) 0.148609 0.0857994i 0.0743045 0.0428997i
\(5\) 0 0
\(6\) −0.188219 2.54546i −0.0768400 1.03918i
\(7\) −3.97287 1.06453i −1.50160 0.402353i −0.587966 0.808886i \(-0.700071\pi\)
−0.913636 + 0.406533i \(0.866738\pi\)
\(8\) −1.90523 + 1.90523i −0.673599 + 0.673599i
\(9\) −2.79044 1.10156i −0.930148 0.367186i
\(10\) 0 0
\(11\) −2.13830 + 3.70364i −0.644722 + 1.11669i 0.339644 + 0.940554i \(0.389693\pi\)
−0.984366 + 0.176137i \(0.943640\pi\)
\(12\) −0.0978867 0.280636i −0.0282575 0.0810127i
\(13\) 3.59901 + 0.217053i 0.998186 + 0.0601997i
\(14\) −6.06108 −1.61989
\(15\) 0 0
\(16\) −2.15688 + 3.73582i −0.539219 + 0.933955i
\(17\) −2.26413 0.606673i −0.549133 0.147140i −0.0264240 0.999651i \(-0.508412\pi\)
−0.522709 + 0.852511i \(0.675079\pi\)
\(18\) −4.39212 0.503692i −1.03523 0.118721i
\(19\) −2.42558 4.20123i −0.556466 0.963827i −0.997788 0.0664784i \(-0.978824\pi\)
0.441322 0.897349i \(-0.354510\pi\)
\(20\) 0 0
\(21\) −3.09733 + 6.41539i −0.675892 + 1.39995i
\(22\) −1.63112 + 6.08741i −0.347755 + 1.29784i
\(23\) −2.72722 + 0.730756i −0.568664 + 0.152373i −0.531684 0.846943i \(-0.678441\pi\)
−0.0369803 + 0.999316i \(0.511774\pi\)
\(24\) 2.62510 + 3.85852i 0.535845 + 0.787617i
\(25\) 0 0
\(26\) 5.20570 1.06372i 1.02092 0.208613i
\(27\) −2.77759 + 4.39147i −0.534548 + 0.845138i
\(28\) −0.681739 + 0.182671i −0.128837 + 0.0345217i
\(29\) −0.553990 + 0.959539i −0.102873 + 0.178182i −0.912867 0.408256i \(-0.866137\pi\)
0.809994 + 0.586438i \(0.199470\pi\)
\(30\) 0 0
\(31\) 2.59652i 0.466348i −0.972435 0.233174i \(-0.925089\pi\)
0.972435 0.233174i \(-0.0749112\pi\)
\(32\) −0.250564 + 0.935116i −0.0442938 + 0.165307i
\(33\) 5.60972 + 4.83724i 0.976528 + 0.842056i
\(34\) −3.45421 −0.592391
\(35\) 0 0
\(36\) −0.509198 + 0.0757171i −0.0848663 + 0.0126195i
\(37\) 0.255918 + 0.955101i 0.0420727 + 0.157018i 0.983766 0.179454i \(-0.0574331\pi\)
−0.941694 + 0.336472i \(0.890766\pi\)
\(38\) −5.05499 5.05499i −0.820027 0.820027i
\(39\) 1.53431 6.05359i 0.245686 0.969350i
\(40\) 0 0
\(41\) −0.575209 + 0.996292i −0.0898326 + 0.155595i −0.907440 0.420181i \(-0.861967\pi\)
0.817608 + 0.575776i \(0.195300\pi\)
\(42\) −1.96194 + 10.3131i −0.302734 + 1.59135i
\(43\) −9.84550 2.63809i −1.50142 0.402305i −0.587847 0.808972i \(-0.700024\pi\)
−0.913577 + 0.406666i \(0.866691\pi\)
\(44\) 0.733860i 0.110634i
\(45\) 0 0
\(46\) −3.60327 + 2.08035i −0.531273 + 0.306730i
\(47\) 3.07931 + 3.07931i 0.449164 + 0.449164i 0.895077 0.445913i \(-0.147121\pi\)
−0.445913 + 0.895077i \(0.647121\pi\)
\(48\) 5.65846 + 4.87927i 0.816728 + 0.704261i
\(49\) 8.58827 + 4.95844i 1.22690 + 0.708349i
\(50\) 0 0
\(51\) −1.76516 + 3.65613i −0.247172 + 0.511960i
\(52\) 0.553469 0.276537i 0.0767523 0.0383488i
\(53\) −2.89463 2.89463i −0.397608 0.397608i 0.479780 0.877389i \(-0.340716\pi\)
−0.877389 + 0.479780i \(0.840716\pi\)
\(54\) −2.27876 + 7.31030i −0.310100 + 0.994805i
\(55\) 0 0
\(56\) 9.59737 5.54104i 1.28250 0.740453i
\(57\) −7.93368 + 2.76729i −1.05084 + 0.366537i
\(58\) −0.422589 + 1.57712i −0.0554886 + 0.207086i
\(59\) 7.54722 4.35739i 0.982564 0.567284i 0.0795208 0.996833i \(-0.474661\pi\)
0.903043 + 0.429550i \(0.141328\pi\)
\(60\) 0 0
\(61\) 1.64416 + 2.84776i 0.210513 + 0.364619i 0.951875 0.306486i \(-0.0991534\pi\)
−0.741362 + 0.671105i \(0.765820\pi\)
\(62\) −0.990323 3.69594i −0.125771 0.469385i
\(63\) 9.91342 + 7.34684i 1.24897 + 0.925615i
\(64\) 7.20087i 0.900109i
\(65\) 0 0
\(66\) 9.82995 + 4.74586i 1.20998 + 0.584175i
\(67\) −1.59596 5.95621i −0.194978 0.727667i −0.992273 0.124077i \(-0.960403\pi\)
0.797295 0.603590i \(-0.206264\pi\)
\(68\) −0.388523 + 0.104104i −0.0471153 + 0.0126245i
\(69\) 0.360619 + 4.87700i 0.0434135 + 0.587122i
\(70\) 0 0
\(71\) −4.38783 7.59994i −0.520739 0.901947i −0.999709 0.0241156i \(-0.992323\pi\)
0.478970 0.877831i \(-0.341010\pi\)
\(72\) 7.41514 3.21771i 0.873882 0.379210i
\(73\) −8.00201 8.00201i −0.936565 0.936565i 0.0615398 0.998105i \(-0.480399\pi\)
−0.998105 + 0.0615398i \(0.980399\pi\)
\(74\) 0.728560 + 1.26190i 0.0846934 + 0.146693i
\(75\) 0 0
\(76\) −0.720926 0.416227i −0.0826958 0.0477445i
\(77\) 12.4378 12.4378i 1.41742 1.41742i
\(78\) −0.124901 9.20200i −0.0141423 1.04192i
\(79\) 2.06111i 0.231893i 0.993255 + 0.115946i \(0.0369901\pi\)
−0.993255 + 0.115946i \(0.963010\pi\)
\(80\) 0 0
\(81\) 6.57314 + 6.14767i 0.730349 + 0.683074i
\(82\) −0.438775 + 1.63753i −0.0484546 + 0.180835i
\(83\) 6.21215 6.21215i 0.681872 0.681872i −0.278550 0.960422i \(-0.589854\pi\)
0.960422 + 0.278550i \(0.0898538\pi\)
\(84\) 0.0901463 + 1.21913i 0.00983576 + 0.133018i
\(85\) 0 0
\(86\) −15.0205 −1.61970
\(87\) 1.45336 + 1.25323i 0.155817 + 0.134360i
\(88\) −2.98233 11.1302i −0.317918 1.18649i
\(89\) −3.27478 1.89069i −0.347126 0.200413i 0.316293 0.948662i \(-0.397562\pi\)
−0.663419 + 0.748248i \(0.730895\pi\)
\(90\) 0 0
\(91\) −14.0673 4.69357i −1.47466 0.492019i
\(92\) −0.342591 + 0.342591i −0.0357175 + 0.0357175i
\(93\) −4.41806 0.840480i −0.458132 0.0871537i
\(94\) 5.55763 + 3.20870i 0.573225 + 0.330952i
\(95\) 0 0
\(96\) 1.51003 + 0.729035i 0.154116 + 0.0744068i
\(97\) −4.91400 1.31670i −0.498941 0.133691i 0.000567486 1.00000i \(-0.499819\pi\)
−0.499508 + 0.866309i \(0.666486\pi\)
\(98\) 14.1159 + 3.78234i 1.42592 + 0.382075i
\(99\) 10.0466 7.97935i 1.00972 0.801955i
\(100\) 0 0
\(101\) 16.9579 + 9.79064i 1.68737 + 0.974205i 0.956518 + 0.291673i \(0.0942119\pi\)
0.730855 + 0.682533i \(0.239121\pi\)
\(102\) −1.11811 + 5.87745i −0.110709 + 0.581954i
\(103\) −11.6815 + 11.6815i −1.15101 + 1.15101i −0.164663 + 0.986350i \(0.552654\pi\)
−0.986350 + 0.164663i \(0.947346\pi\)
\(104\) −7.27046 + 6.44339i −0.712928 + 0.631827i
\(105\) 0 0
\(106\) −5.22431 3.01626i −0.507430 0.292965i
\(107\) 2.39707 + 8.94599i 0.231734 + 0.864841i 0.979594 + 0.200986i \(0.0644145\pi\)
−0.747861 + 0.663856i \(0.768919\pi\)
\(108\) −0.0359895 + 0.890927i −0.00346309 + 0.0857295i
\(109\) −13.8177 −1.32349 −0.661746 0.749728i \(-0.730184\pi\)
−0.661746 + 0.749728i \(0.730184\pi\)
\(110\) 0 0
\(111\) 1.70798 0.126293i 0.162114 0.0119872i
\(112\) 12.5459 12.5459i 1.18547 1.18547i
\(113\) −0.372017 + 1.38839i −0.0349964 + 0.130608i −0.981214 0.192923i \(-0.938203\pi\)
0.946218 + 0.323531i \(0.104870\pi\)
\(114\) −10.2375 + 6.96497i −0.958831 + 0.652329i
\(115\) 0 0
\(116\) 0.190128i 0.0176529i
\(117\) −9.80374 4.57019i −0.906356 0.422514i
\(118\) 9.08095 9.08095i 0.835969 0.835969i
\(119\) 8.34928 + 4.82046i 0.765377 + 0.441891i
\(120\) 0 0
\(121\) −3.64466 6.31273i −0.331332 0.573884i
\(122\) 3.42648 + 3.42648i 0.310219 + 0.310219i
\(123\) 1.50903 + 1.30123i 0.136065 + 0.117328i
\(124\) −0.222780 0.385866i −0.0200062 0.0346518i
\(125\) 0 0
\(126\) 16.9131 + 6.67663i 1.50674 + 0.594801i
\(127\) −2.87595 + 0.770609i −0.255199 + 0.0683805i −0.384150 0.923270i \(-0.625506\pi\)
0.128951 + 0.991651i \(0.458839\pi\)
\(128\) −3.24757 12.1201i −0.287048 1.07128i
\(129\) −7.67575 + 15.8985i −0.675812 + 1.39979i
\(130\) 0 0
\(131\) 2.62072i 0.228973i −0.993425 0.114487i \(-0.963478\pi\)
0.993425 0.114487i \(-0.0365223\pi\)
\(132\) 1.24869 + 0.237547i 0.108684 + 0.0206758i
\(133\) 5.16418 + 19.2730i 0.447792 + 1.67118i
\(134\) −4.54345 7.86949i −0.392494 0.679820i
\(135\) 0 0
\(136\) 5.46953 3.15784i 0.469009 0.270782i
\(137\) −2.68583 + 10.0236i −0.229466 + 0.856377i 0.751100 + 0.660188i \(0.229523\pi\)
−0.980566 + 0.196189i \(0.937143\pi\)
\(138\) 2.37342 + 6.80448i 0.202039 + 0.579236i
\(139\) −1.68558 + 0.973168i −0.142969 + 0.0825431i −0.569778 0.821799i \(-0.692971\pi\)
0.426809 + 0.904342i \(0.359638\pi\)
\(140\) 0 0
\(141\) 6.23632 4.24280i 0.525193 0.357308i
\(142\) −9.14438 9.14438i −0.767379 0.767379i
\(143\) −8.49966 + 12.8653i −0.710777 + 1.07585i
\(144\) 10.1339 8.04867i 0.844488 0.670722i
\(145\) 0 0
\(146\) −14.4422 8.33823i −1.19525 0.690077i
\(147\) 11.2169 13.0082i 0.925158 1.07290i
\(148\) 0.119979 + 0.119979i 0.00986220 + 0.00986220i
\(149\) −8.56121 + 4.94282i −0.701362 + 0.404931i −0.807854 0.589382i \(-0.799371\pi\)
0.106493 + 0.994313i \(0.466038\pi\)
\(150\) 0 0
\(151\) 20.0349i 1.63042i −0.579165 0.815210i \(-0.696621\pi\)
0.579165 0.815210i \(-0.303379\pi\)
\(152\) 12.6256 + 3.38301i 1.02407 + 0.274398i
\(153\) 5.64965 + 4.18696i 0.456747 + 0.338496i
\(154\) 12.9604 22.4481i 1.04438 1.80892i
\(155\) 0 0
\(156\) −0.291383 1.03126i −0.0233293 0.0825669i
\(157\) 5.41204 + 5.41204i 0.431928 + 0.431928i 0.889284 0.457356i \(-0.151203\pi\)
−0.457356 + 0.889284i \(0.651203\pi\)
\(158\) 0.786117 + 2.93383i 0.0625401 + 0.233403i
\(159\) −5.86230 + 3.98834i −0.464910 + 0.316296i
\(160\) 0 0
\(161\) 11.6128 0.915215
\(162\) 11.7011 + 6.24369i 0.919325 + 0.490551i
\(163\) −1.81388 + 6.76947i −0.142074 + 0.530226i 0.857795 + 0.513993i \(0.171834\pi\)
−0.999868 + 0.0162335i \(0.994833\pi\)
\(164\) 0.197410i 0.0154152i
\(165\) 0 0
\(166\) 6.47316 11.2118i 0.502415 0.870208i
\(167\) −24.5943 + 6.59002i −1.90316 + 0.509951i −0.907143 + 0.420822i \(0.861742\pi\)
−0.996020 + 0.0891292i \(0.971592\pi\)
\(168\) −6.32166 18.1239i −0.487726 1.39829i
\(169\) 12.9058 + 1.56235i 0.992752 + 0.120181i
\(170\) 0 0
\(171\) 2.14055 + 14.3952i 0.163692 + 1.10083i
\(172\) −1.68948 + 0.452694i −0.128821 + 0.0345176i
\(173\) 4.95717 18.5004i 0.376887 1.40656i −0.473681 0.880696i \(-0.657075\pi\)
0.850568 0.525865i \(-0.176258\pi\)
\(174\) 2.54674 + 1.22956i 0.193068 + 0.0932124i
\(175\) 0 0
\(176\) −9.22410 15.9766i −0.695292 1.20428i
\(177\) −4.97125 14.2523i −0.373662 1.07127i
\(178\) −5.38251 1.44224i −0.403436 0.108100i
\(179\) 3.01935 5.22967i 0.225677 0.390884i −0.730845 0.682543i \(-0.760874\pi\)
0.956522 + 0.291659i \(0.0942072\pi\)
\(180\) 0 0
\(181\) 5.56311 0.413503 0.206751 0.978394i \(-0.433711\pi\)
0.206751 + 0.978394i \(0.433711\pi\)
\(182\) −21.8139 1.31558i −1.61695 0.0975170i
\(183\) 5.37777 1.87578i 0.397536 0.138662i
\(184\) 3.80371 6.58822i 0.280413 0.485690i
\(185\) 0 0
\(186\) −6.60933 + 0.488713i −0.484620 + 0.0358342i
\(187\) 7.08830 7.08830i 0.518348 0.518348i
\(188\) 0.721817 + 0.193410i 0.0526439 + 0.0141059i
\(189\) 15.7098 14.4899i 1.14272 1.05398i
\(190\) 0 0
\(191\) 2.61637 1.51056i 0.189314 0.109300i −0.402348 0.915487i \(-0.631806\pi\)
0.591661 + 0.806187i \(0.298472\pi\)
\(192\) −12.2525 2.33089i −0.884251 0.168217i
\(193\) 3.38290 0.906445i 0.243506 0.0652473i −0.135002 0.990845i \(-0.543104\pi\)
0.378508 + 0.925598i \(0.376437\pi\)
\(194\) −7.49689 −0.538245
\(195\) 0 0
\(196\) 1.70173 0.121552
\(197\) 4.48363 1.20138i 0.319445 0.0855951i −0.0955335 0.995426i \(-0.530456\pi\)
0.414979 + 0.909831i \(0.363789\pi\)
\(198\) 11.2572 15.1898i 0.800012 1.07949i
\(199\) −3.93217 + 2.27024i −0.278744 + 0.160933i −0.632855 0.774271i \(-0.718117\pi\)
0.354111 + 0.935204i \(0.384784\pi\)
\(200\) 0 0
\(201\) −10.6513 + 0.787588i −0.751285 + 0.0555522i
\(202\) 27.8724 + 7.46839i 1.96110 + 0.525474i
\(203\) 3.22238 3.22238i 0.226167 0.226167i
\(204\) 0.0513743 + 0.694783i 0.00359692 + 0.0486446i
\(205\) 0 0
\(206\) −12.1723 + 21.0831i −0.848086 + 1.46893i
\(207\) 8.41511 + 0.965054i 0.584891 + 0.0670759i
\(208\) −8.57349 + 12.9771i −0.594465 + 0.899800i
\(209\) 20.7465 1.43506
\(210\) 0 0
\(211\) −6.07034 + 10.5141i −0.417899 + 0.723823i −0.995728 0.0923352i \(-0.970567\pi\)
0.577829 + 0.816158i \(0.303900\pi\)
\(212\) −0.678526 0.181811i −0.0466014 0.0124868i
\(213\) −14.3519 + 5.00598i −0.983375 + 0.343004i
\(214\) 6.82408 + 11.8197i 0.466485 + 0.807975i
\(215\) 0 0
\(216\) −3.07480 13.6587i −0.209214 0.929355i
\(217\) −2.76406 + 10.3156i −0.187637 + 0.700269i
\(218\) −19.6684 + 5.27012i −1.33211 + 0.356938i
\(219\) −16.2059 + 11.0255i −1.09509 + 0.745034i
\(220\) 0 0
\(221\) −8.01697 2.67486i −0.539279 0.179931i
\(222\) 2.38300 0.831198i 0.159937 0.0557864i
\(223\) 16.8709 4.52055i 1.12976 0.302718i 0.354933 0.934892i \(-0.384504\pi\)
0.774827 + 0.632174i \(0.217837\pi\)
\(224\) 1.99091 3.44836i 0.133023 0.230403i
\(225\) 0 0
\(226\) 2.11815i 0.140897i
\(227\) 2.48265 9.26536i 0.164779 0.614964i −0.833289 0.552837i \(-0.813545\pi\)
0.998068 0.0621264i \(-0.0197882\pi\)
\(228\) −0.941584 + 1.09195i −0.0623579 + 0.0723161i
\(229\) 5.60158 0.370163 0.185081 0.982723i \(-0.440745\pi\)
0.185081 + 0.982723i \(0.440745\pi\)
\(230\) 0 0
\(231\) −17.1373 25.1894i −1.12755 1.65734i
\(232\) −0.772662 2.88361i −0.0507277 0.189318i
\(233\) 19.2843 + 19.2843i 1.26336 + 1.26336i 0.949456 + 0.313900i \(0.101636\pi\)
0.313900 + 0.949456i \(0.398364\pi\)
\(234\) −15.6980 2.76612i −1.02621 0.180827i
\(235\) 0 0
\(236\) 0.747723 1.29509i 0.0486726 0.0843034i
\(237\) 3.50705 + 0.667171i 0.227807 + 0.0433374i
\(238\) 13.7231 + 3.67709i 0.889536 + 0.238351i
\(239\) 17.3432i 1.12184i −0.827870 0.560921i \(-0.810447\pi\)
0.827870 0.560921i \(-0.189553\pi\)
\(240\) 0 0
\(241\) −1.44789 + 0.835937i −0.0932665 + 0.0538475i −0.545908 0.837845i \(-0.683815\pi\)
0.452641 + 0.891693i \(0.350482\pi\)
\(242\) −7.59559 7.59559i −0.488263 0.488263i
\(243\) 12.5882 9.19446i 0.807531 0.589825i
\(244\) 0.488673 + 0.282135i 0.0312841 + 0.0180619i
\(245\) 0 0
\(246\) 2.64429 + 1.27665i 0.168594 + 0.0813963i
\(247\) −7.81780 15.6467i −0.497435 0.995578i
\(248\) 4.94695 + 4.94695i 0.314131 + 0.314131i
\(249\) −8.55934 12.5810i −0.542426 0.797290i
\(250\) 0 0
\(251\) 6.81314 3.93357i 0.430042 0.248285i −0.269323 0.963050i \(-0.586800\pi\)
0.699364 + 0.714765i \(0.253466\pi\)
\(252\) 2.10358 + 0.241240i 0.132513 + 0.0151967i
\(253\) 3.12515 11.6632i 0.196477 0.733260i
\(254\) −3.79978 + 2.19380i −0.238419 + 0.137651i
\(255\) 0 0
\(256\) −2.04446 3.54111i −0.127779 0.221319i
\(257\) −2.46492 9.19920i −0.153757 0.573830i −0.999209 0.0397776i \(-0.987335\pi\)
0.845451 0.534053i \(-0.179332\pi\)
\(258\) −4.86205 + 25.5579i −0.302698 + 1.59116i
\(259\) 4.06692i 0.252706i
\(260\) 0 0
\(261\) 2.60286 2.06729i 0.161113 0.127962i
\(262\) −0.999554 3.73039i −0.0617526 0.230464i
\(263\) −22.7323 + 6.09110i −1.40173 + 0.375593i −0.878967 0.476883i \(-0.841767\pi\)
−0.522766 + 0.852476i \(0.675100\pi\)
\(264\) −19.9038 + 1.47175i −1.22500 + 0.0905798i
\(265\) 0 0
\(266\) 14.7016 + 25.4640i 0.901414 + 1.56130i
\(267\) −4.27711 + 4.96014i −0.261755 + 0.303556i
\(268\) −0.748213 0.748213i −0.0457044 0.0457044i
\(269\) 5.95253 + 10.3101i 0.362932 + 0.628617i 0.988442 0.151599i \(-0.0484424\pi\)
−0.625510 + 0.780216i \(0.715109\pi\)
\(270\) 0 0
\(271\) −17.4412 10.0697i −1.05947 0.611688i −0.134188 0.990956i \(-0.542843\pi\)
−0.925287 + 0.379268i \(0.876176\pi\)
\(272\) 7.14988 7.14988i 0.433525 0.433525i
\(273\) −12.5398 + 22.4168i −0.758943 + 1.35673i
\(274\) 15.2923i 0.923839i
\(275\) 0 0
\(276\) 0.472035 + 0.693825i 0.0284132 + 0.0417633i
\(277\) 1.13875 4.24989i 0.0684211 0.255351i −0.923240 0.384224i \(-0.874469\pi\)
0.991661 + 0.128873i \(0.0411358\pi\)
\(278\) −2.02812 + 2.02812i −0.121638 + 0.121638i
\(279\) −2.86021 + 7.24543i −0.171236 + 0.433773i
\(280\) 0 0
\(281\) −23.0139 −1.37290 −0.686448 0.727179i \(-0.740831\pi\)
−0.686448 + 0.727179i \(0.740831\pi\)
\(282\) 7.25869 8.41785i 0.432248 0.501276i
\(283\) 3.53515 + 13.1933i 0.210143 + 0.784263i 0.987820 + 0.155600i \(0.0497309\pi\)
−0.777678 + 0.628663i \(0.783602\pi\)
\(284\) −1.30414 0.752946i −0.0773865 0.0446791i
\(285\) 0 0
\(286\) −7.19170 + 21.5546i −0.425254 + 1.27455i
\(287\) 3.34581 3.34581i 0.197497 0.197497i
\(288\) 1.72927 2.33338i 0.101898 0.137496i
\(289\) −9.96418 5.75282i −0.586128 0.338401i
\(290\) 0 0
\(291\) −3.83105 + 7.93513i −0.224580 + 0.465166i
\(292\) −1.87574 0.502603i −0.109769 0.0294126i
\(293\) 23.4342 + 6.27918i 1.36904 + 0.366834i 0.867129 0.498084i \(-0.165963\pi\)
0.501914 + 0.864918i \(0.332630\pi\)
\(294\) 11.0050 22.7944i 0.641827 1.32940i
\(295\) 0 0
\(296\) −2.30726 1.33210i −0.134107 0.0774267i
\(297\) −10.3251 19.6775i −0.599124 1.14180i
\(298\) −10.3010 + 10.3010i −0.596721 + 0.596721i
\(299\) −9.97390 + 2.03805i −0.576806 + 0.117863i
\(300\) 0 0
\(301\) 36.3065 + 20.9616i 2.09267 + 1.20821i
\(302\) −7.64142 28.5182i −0.439714 1.64104i
\(303\) 22.1483 25.6853i 1.27239 1.47558i
\(304\) 20.9267 1.20023
\(305\) 0 0
\(306\) 9.63876 + 3.80501i 0.551011 + 0.217518i
\(307\) −12.8951 + 12.8951i −0.735962 + 0.735962i −0.971794 0.235832i \(-0.924219\pi\)
0.235832 + 0.971794i \(0.424219\pi\)
\(308\) 0.781213 2.91553i 0.0445137 0.166128i
\(309\) 16.0952 + 23.6577i 0.915626 + 1.34584i
\(310\) 0 0
\(311\) 8.39481i 0.476026i 0.971262 + 0.238013i \(0.0764960\pi\)
−0.971262 + 0.238013i \(0.923504\pi\)
\(312\) 8.61024 + 14.4566i 0.487459 + 0.818446i
\(313\) 0.445796 0.445796i 0.0251979 0.0251979i −0.694396 0.719593i \(-0.744328\pi\)
0.719593 + 0.694396i \(0.244328\pi\)
\(314\) 9.76780 + 5.63944i 0.551229 + 0.318252i
\(315\) 0 0
\(316\) 0.176842 + 0.306299i 0.00994814 + 0.0172307i
\(317\) 12.5839 + 12.5839i 0.706781 + 0.706781i 0.965857 0.259076i \(-0.0834179\pi\)
−0.259076 + 0.965857i \(0.583418\pi\)
\(318\) −6.82335 + 7.91300i −0.382634 + 0.443739i
\(319\) −2.36919 4.10356i −0.132649 0.229755i
\(320\) 0 0
\(321\) 15.9978 1.18293i 0.892912 0.0660245i
\(322\) 16.5299 4.42917i 0.921174 0.246828i
\(323\) 2.94307 + 10.9837i 0.163757 + 0.611148i
\(324\) 1.50429 + 0.349626i 0.0835719 + 0.0194237i
\(325\) 0 0
\(326\) 10.3276i 0.571995i
\(327\) −4.47271 + 23.5112i −0.247341 + 1.30017i
\(328\) −0.802257 2.99406i −0.0442972 0.165319i
\(329\) −8.95569 15.5117i −0.493743 0.855188i
\(330\) 0 0
\(331\) −12.2822 + 7.09113i −0.675091 + 0.389764i −0.798003 0.602654i \(-0.794110\pi\)
0.122912 + 0.992418i \(0.460777\pi\)
\(332\) 0.390182 1.45618i 0.0214140 0.0799182i
\(333\) 0.337972 2.94706i 0.0185208 0.161498i
\(334\) −32.4946 + 18.7608i −1.77802 + 1.02654i
\(335\) 0 0
\(336\) −17.2862 25.4082i −0.943038 1.38613i
\(337\) 5.88105 + 5.88105i 0.320361 + 0.320361i 0.848906 0.528544i \(-0.177262\pi\)
−0.528544 + 0.848906i \(0.677262\pi\)
\(338\) 18.9663 2.69843i 1.03163 0.146775i
\(339\) 2.24197 + 1.08241i 0.121767 + 0.0587886i
\(340\) 0 0
\(341\) 9.61657 + 5.55213i 0.520767 + 0.300665i
\(342\) 8.53730 + 19.6740i 0.461644 + 1.06385i
\(343\) −8.48328 8.48328i −0.458054 0.458054i
\(344\) 23.7840 13.7317i 1.28235 0.740365i
\(345\) 0 0
\(346\) 28.2246i 1.51736i
\(347\) 4.71314 + 1.26288i 0.253014 + 0.0677950i 0.383097 0.923708i \(-0.374858\pi\)
−0.130082 + 0.991503i \(0.541524\pi\)
\(348\) 0.323510 + 0.0615435i 0.0173419 + 0.00329908i
\(349\) 6.13414 10.6246i 0.328353 0.568724i −0.653832 0.756640i \(-0.726840\pi\)
0.982185 + 0.187916i \(0.0601731\pi\)
\(350\) 0 0
\(351\) −10.9498 + 15.2021i −0.584455 + 0.811426i
\(352\) −2.92756 2.92756i −0.156039 0.156039i
\(353\) 2.79817 + 10.4429i 0.148932 + 0.555820i 0.999549 + 0.0300349i \(0.00956184\pi\)
−0.850617 + 0.525785i \(0.823771\pi\)
\(354\) −12.5121 18.3910i −0.665010 0.977471i
\(355\) 0 0
\(356\) −0.648882 −0.0343907
\(357\) 10.9048 12.6462i 0.577143 0.669310i
\(358\) 2.30319 8.59563i 0.121727 0.454293i
\(359\) 37.2979i 1.96851i 0.176755 + 0.984255i \(0.443440\pi\)
−0.176755 + 0.984255i \(0.556560\pi\)
\(360\) 0 0
\(361\) −2.26687 + 3.92633i −0.119309 + 0.206649i
\(362\) 7.91865 2.12180i 0.416195 0.111519i
\(363\) −11.9211 + 4.15811i −0.625695 + 0.218244i
\(364\) −2.49324 + 0.509463i −0.130681 + 0.0267031i
\(365\) 0 0
\(366\) 6.93940 4.72114i 0.362728 0.246778i
\(367\) −0.634359 + 0.169976i −0.0331133 + 0.00887268i −0.275338 0.961348i \(-0.588790\pi\)
0.242224 + 0.970220i \(0.422123\pi\)
\(368\) 3.15230 11.7645i 0.164325 0.613269i
\(369\) 2.70256 2.14647i 0.140690 0.111741i
\(370\) 0 0
\(371\) 8.41857 + 14.5814i 0.437071 + 0.757028i
\(372\) −0.728677 + 0.254165i −0.0377801 + 0.0131778i
\(373\) −32.4088 8.68391i −1.67806 0.449636i −0.710796 0.703398i \(-0.751665\pi\)
−0.967267 + 0.253762i \(0.918332\pi\)
\(374\) 7.38613 12.7932i 0.381928 0.661518i
\(375\) 0 0
\(376\) −11.7336 −0.605113
\(377\) −2.20209 + 3.33315i −0.113413 + 0.171666i
\(378\) 16.8352 26.6170i 0.865909 1.36903i
\(379\) −8.79891 + 15.2402i −0.451969 + 0.782834i −0.998508 0.0545997i \(-0.982612\pi\)
0.546539 + 0.837434i \(0.315945\pi\)
\(380\) 0 0
\(381\) 0.380286 + 5.14297i 0.0194827 + 0.263482i
\(382\) 3.14806 3.14806i 0.161069 0.161069i
\(383\) −20.2110 5.41553i −1.03274 0.276721i −0.297635 0.954680i \(-0.596198\pi\)
−0.735100 + 0.677959i \(0.762865\pi\)
\(384\) −21.6740 + 1.60264i −1.10605 + 0.0817844i
\(385\) 0 0
\(386\) 4.46957 2.58051i 0.227495 0.131344i
\(387\) 24.5673 + 18.2068i 1.24883 + 0.925505i
\(388\) −0.843237 + 0.225945i −0.0428089 + 0.0114706i
\(389\) 9.74450 0.494066 0.247033 0.969007i \(-0.420544\pi\)
0.247033 + 0.969007i \(0.420544\pi\)
\(390\) 0 0
\(391\) 6.61812 0.334693
\(392\) −25.8095 + 6.91564i −1.30358 + 0.349293i
\(393\) −4.45924 0.848313i −0.224939 0.0427918i
\(394\) 5.92388 3.42015i 0.298441 0.172305i
\(395\) 0 0
\(396\) 0.808389 2.04779i 0.0406231 0.102906i
\(397\) −2.79246 0.748237i −0.140150 0.0375530i 0.188062 0.982157i \(-0.439779\pi\)
−0.328212 + 0.944604i \(0.606446\pi\)
\(398\) −4.73125 + 4.73125i −0.237156 + 0.237156i
\(399\) 34.4653 2.54847i 1.72542 0.127583i
\(400\) 0 0
\(401\) 0.557130 0.964978i 0.0278218 0.0481887i −0.851779 0.523901i \(-0.824476\pi\)
0.879601 + 0.475712i \(0.157810\pi\)
\(402\) −14.8609 + 5.18353i −0.741194 + 0.258531i
\(403\) 0.563582 9.34489i 0.0280740 0.465502i
\(404\) 3.36013 0.167173
\(405\) 0 0
\(406\) 3.35778 5.81584i 0.166644 0.288635i
\(407\) −4.08458 1.09446i −0.202465 0.0542504i
\(408\) −3.60271 10.3288i −0.178361 0.511351i
\(409\) −6.17475 10.6950i −0.305322 0.528833i 0.672011 0.740541i \(-0.265431\pi\)
−0.977333 + 0.211708i \(0.932097\pi\)
\(410\) 0 0
\(411\) 16.1862 + 7.81463i 0.798406 + 0.385467i
\(412\) −0.733710 + 2.73824i −0.0361473 + 0.134904i
\(413\) −34.6226 + 9.27711i −1.70367 + 0.456497i
\(414\) 12.3463 1.83589i 0.606789 0.0902288i
\(415\) 0 0
\(416\) −1.10475 + 3.31111i −0.0541649 + 0.162340i
\(417\) 1.11027 + 3.18308i 0.0543700 + 0.155876i
\(418\) 29.5310 7.91280i 1.44441 0.387028i
\(419\) −9.48656 + 16.4312i −0.463449 + 0.802717i −0.999130 0.0417034i \(-0.986722\pi\)
0.535681 + 0.844420i \(0.320055\pi\)
\(420\) 0 0
\(421\) 30.3717i 1.48022i −0.672484 0.740112i \(-0.734772\pi\)
0.672484 0.740112i \(-0.265228\pi\)
\(422\) −4.63051 + 17.2813i −0.225410 + 0.841241i
\(423\) −5.20061 11.9847i −0.252862 0.582715i
\(424\) 11.0299 0.535657
\(425\) 0 0
\(426\) −18.5195 + 12.5995i −0.897272 + 0.610447i
\(427\) −3.50049 13.0640i −0.169401 0.632212i
\(428\) 1.12379 + 1.12379i 0.0543203 + 0.0543203i
\(429\) 19.1395 + 18.6269i 0.924065 + 0.899316i
\(430\) 0 0
\(431\) 13.0681 22.6347i 0.629469 1.09027i −0.358189 0.933649i \(-0.616606\pi\)
0.987658 0.156624i \(-0.0500611\pi\)
\(432\) −10.4148 19.8484i −0.501083 0.954958i
\(433\) 8.65818 + 2.31995i 0.416086 + 0.111490i 0.460787 0.887511i \(-0.347567\pi\)
−0.0447016 + 0.999000i \(0.514234\pi\)
\(434\) 15.7377i 0.755433i
\(435\) 0 0
\(436\) −2.05343 + 1.18555i −0.0983414 + 0.0567774i
\(437\) 9.68515 + 9.68515i 0.463304 + 0.463304i
\(438\) −18.8627 + 21.8749i −0.901294 + 1.04523i
\(439\) −14.8493 8.57324i −0.708718 0.409179i 0.101868 0.994798i \(-0.467518\pi\)
−0.810586 + 0.585619i \(0.800851\pi\)
\(440\) 0 0
\(441\) −18.5031 23.2967i −0.881099 1.10937i
\(442\) −12.4317 0.749747i −0.591317 0.0356618i
\(443\) 16.8516 + 16.8516i 0.800642 + 0.800642i 0.983196 0.182554i \(-0.0584364\pi\)
−0.182554 + 0.983196i \(0.558436\pi\)
\(444\) 0.242985 0.165312i 0.0115315 0.00784535i
\(445\) 0 0
\(446\) 22.2903 12.8693i 1.05547 0.609378i
\(447\) 5.63915 + 16.1672i 0.266723 + 0.764681i
\(448\) −7.66552 + 28.6081i −0.362162 + 1.35161i
\(449\) −5.80271 + 3.35020i −0.273847 + 0.158105i −0.630634 0.776080i \(-0.717205\pi\)
0.356788 + 0.934185i \(0.383872\pi\)
\(450\) 0 0
\(451\) −2.45994 4.26074i −0.115834 0.200630i
\(452\) 0.0638377 + 0.238245i 0.00300267 + 0.0112061i
\(453\) −34.0901 6.48521i −1.60169 0.304702i
\(454\) 14.1354i 0.663407i
\(455\) 0 0
\(456\) 9.84314 20.3878i 0.460947 0.954744i
\(457\) 9.62717 + 35.9291i 0.450340 + 1.68069i 0.701438 + 0.712731i \(0.252542\pi\)
−0.251097 + 0.967962i \(0.580791\pi\)
\(458\) 7.97341 2.13647i 0.372573 0.0998306i
\(459\) 8.95302 8.25778i 0.417891 0.385440i
\(460\) 0 0
\(461\) −4.19385 7.26397i −0.195327 0.338317i 0.751681 0.659527i \(-0.229244\pi\)
−0.947008 + 0.321211i \(0.895910\pi\)
\(462\) −34.0010 29.3189i −1.58187 1.36404i
\(463\) −7.19262 7.19262i −0.334269 0.334269i 0.519936 0.854205i \(-0.325956\pi\)
−0.854205 + 0.519936i \(0.825956\pi\)
\(464\) −2.38977 4.13921i −0.110942 0.192158i
\(465\) 0 0
\(466\) 34.8048 + 20.0946i 1.61230 + 0.930863i
\(467\) −20.1687 + 20.1687i −0.933297 + 0.933297i −0.997910 0.0646132i \(-0.979419\pi\)
0.0646132 + 0.997910i \(0.479419\pi\)
\(468\) −1.84904 + 0.161984i −0.0854721 + 0.00748770i
\(469\) 25.3622i 1.17112i
\(470\) 0 0
\(471\) 10.9606 7.45693i 0.505039 0.343597i
\(472\) −6.07734 + 22.6810i −0.279732 + 1.04398i
\(473\) 30.8232 30.8232i 1.41725 1.41725i
\(474\) 5.24647 0.387939i 0.240978 0.0178186i
\(475\) 0 0
\(476\) 1.65437 0.0758280
\(477\) 4.88870 + 11.2659i 0.223838 + 0.515831i
\(478\) −6.61480 24.6868i −0.302554 1.12915i
\(479\) 10.4307 + 6.02217i 0.476591 + 0.275160i 0.718995 0.695016i \(-0.244603\pi\)
−0.242404 + 0.970175i \(0.577936\pi\)
\(480\) 0 0
\(481\) 0.713746 + 3.49297i 0.0325440 + 0.159266i
\(482\) −1.74212 + 1.74212i −0.0793515 + 0.0793515i
\(483\) 3.75900 19.7596i 0.171040 0.899091i
\(484\) −1.08326 0.625419i −0.0492390 0.0284281i
\(485\) 0 0
\(486\) 14.4115 17.8888i 0.653717 0.811452i
\(487\) −38.7327 10.3784i −1.75515 0.470290i −0.769434 0.638726i \(-0.779462\pi\)
−0.985713 + 0.168435i \(0.946129\pi\)
\(488\) −8.55811 2.29314i −0.387408 0.103806i
\(489\) 10.9314 + 5.27762i 0.494333 + 0.238662i
\(490\) 0 0
\(491\) −16.8964 9.75516i −0.762525 0.440244i 0.0676765 0.997707i \(-0.478441\pi\)
−0.830202 + 0.557463i \(0.811775\pi\)
\(492\) 0.335901 + 0.0639008i 0.0151436 + 0.00288087i
\(493\) 1.83643 1.83643i 0.0827088 0.0827088i
\(494\) −17.0958 19.2902i −0.769175 0.867906i
\(495\) 0 0
\(496\) 9.70011 + 5.60036i 0.435548 + 0.251464i
\(497\) 9.34191 + 34.8645i 0.419042 + 1.56389i
\(498\) −16.9820 14.6435i −0.760982 0.656192i
\(499\) −7.54758 −0.337876 −0.168938 0.985627i \(-0.554034\pi\)
−0.168938 + 0.985627i \(0.554034\pi\)
\(500\) 0 0
\(501\) 3.25210 + 43.9812i 0.145293 + 1.96494i
\(502\) 8.19769 8.19769i 0.365881 0.365881i
\(503\) 8.24963 30.7880i 0.367833 1.37277i −0.495707 0.868490i \(-0.665091\pi\)
0.863540 0.504281i \(-0.168242\pi\)
\(504\) −32.8847 + 4.88991i −1.46480 + 0.217814i
\(505\) 0 0
\(506\) 17.7936i 0.791023i
\(507\) 6.83594 21.4539i 0.303595 0.952801i
\(508\) −0.361274 + 0.361274i −0.0160290 + 0.0160290i
\(509\) −8.77183 5.06442i −0.388804 0.224476i 0.292838 0.956162i \(-0.405400\pi\)
−0.681642 + 0.731686i \(0.738734\pi\)
\(510\) 0 0
\(511\) 23.2726 + 40.3093i 1.02952 + 1.78318i
\(512\) 13.4843 + 13.4843i 0.595930 + 0.595930i
\(513\) 25.1868 + 1.01744i 1.11202 + 0.0449209i
\(514\) −7.01724 12.1542i −0.309517 0.536099i
\(515\) 0 0
\(516\) 0.223399 + 3.02124i 0.00983460 + 0.133003i
\(517\) −17.9892 + 4.82019i −0.791163 + 0.211992i
\(518\) −1.55114 5.78894i −0.0681533 0.254351i
\(519\) −29.8745 14.4233i −1.31135 0.633113i
\(520\) 0 0
\(521\) 27.9873i 1.22615i −0.790026 0.613074i \(-0.789933\pi\)
0.790026 0.613074i \(-0.210067\pi\)
\(522\) 2.91650 3.93536i 0.127652 0.172246i
\(523\) −4.22208 15.7570i −0.184619 0.689007i −0.994712 0.102705i \(-0.967250\pi\)
0.810093 0.586301i \(-0.199417\pi\)
\(524\) −0.224856 0.389462i −0.00982288 0.0170137i
\(525\) 0 0
\(526\) −30.0345 + 17.3404i −1.30956 + 0.756078i
\(527\) −1.57524 + 5.87886i −0.0686184 + 0.256087i
\(528\) −30.1705 + 10.5236i −1.31300 + 0.457980i
\(529\) −13.0149 + 7.51414i −0.565864 + 0.326702i
\(530\) 0 0
\(531\) −25.8600 + 3.84535i −1.12223 + 0.166874i
\(532\) 2.42106 + 2.42106i 0.104966 + 0.104966i
\(533\) −2.28643 + 3.46081i −0.0990364 + 0.149905i
\(534\) −4.19631 + 8.69168i −0.181592 + 0.376126i
\(535\) 0 0
\(536\) 14.3886 + 8.30725i 0.621492 + 0.358819i
\(537\) −7.92112 6.83036i −0.341822 0.294752i
\(538\) 12.4053 + 12.4053i 0.534829 + 0.534829i
\(539\) −36.7286 + 21.2053i −1.58201 + 0.913376i
\(540\) 0 0
\(541\) 1.73534i 0.0746081i 0.999304 + 0.0373041i \(0.0118770\pi\)
−0.999304 + 0.0373041i \(0.988123\pi\)
\(542\) −28.6667 7.68123i −1.23134 0.329937i
\(543\) 1.80075 9.46582i 0.0772776 0.406217i
\(544\) 1.13462 1.96522i 0.0486464 0.0842580i
\(545\) 0 0
\(546\) −9.29955 + 36.6913i −0.397984 + 1.57024i
\(547\) 11.2029 + 11.2029i 0.479001 + 0.479001i 0.904812 0.425811i \(-0.140011\pi\)
−0.425811 + 0.904812i \(0.640011\pi\)
\(548\) 0.460885 + 1.72005i 0.0196880 + 0.0734767i
\(549\) −1.45095 9.75765i −0.0619251 0.416446i
\(550\) 0 0
\(551\) 5.37498 0.228982
\(552\) −9.97884 8.60472i −0.424728 0.366241i
\(553\) 2.19410 8.18851i 0.0933028 0.348211i
\(554\) 6.48371i 0.275466i
\(555\) 0 0
\(556\) −0.166995 + 0.289243i −0.00708215 + 0.0122666i
\(557\) 40.6785 10.8998i 1.72360 0.461838i 0.744909 0.667166i \(-0.232493\pi\)
0.978693 + 0.205328i \(0.0658262\pi\)
\(558\) −1.30785 + 11.4042i −0.0553655 + 0.482778i
\(559\) −34.8615 11.6315i −1.47448 0.491961i
\(560\) 0 0
\(561\) −9.76654 14.3554i −0.412344 0.606087i
\(562\) −32.7585 + 8.77762i −1.38184 + 0.370262i
\(563\) −0.695238 + 2.59466i −0.0293008 + 0.109352i −0.979028 0.203728i \(-0.934694\pi\)
0.949727 + 0.313080i \(0.101361\pi\)
\(564\) 0.562743 1.16559i 0.0236958 0.0490802i
\(565\) 0 0
\(566\) 10.0640 + 17.4314i 0.423022 + 0.732695i
\(567\) −19.5699 31.4211i −0.821857 1.31956i
\(568\) 22.8394 + 6.11980i 0.958320 + 0.256781i
\(569\) 5.33657 9.24321i 0.223721 0.387496i −0.732214 0.681074i \(-0.761513\pi\)
0.955935 + 0.293579i \(0.0948463\pi\)
\(570\) 0 0
\(571\) −22.6560 −0.948123 −0.474061 0.880492i \(-0.657213\pi\)
−0.474061 + 0.880492i \(0.657213\pi\)
\(572\) −0.159287 + 2.64117i −0.00666011 + 0.110433i
\(573\) −1.72337 4.94080i −0.0719946 0.206405i
\(574\) 3.48639 6.03860i 0.145519 0.252046i
\(575\) 0 0
\(576\) −7.93217 + 20.0936i −0.330507 + 0.837234i
\(577\) −6.87604 + 6.87604i −0.286253 + 0.286253i −0.835597 0.549343i \(-0.814878\pi\)
0.549343 + 0.835597i \(0.314878\pi\)
\(578\) −16.3774 4.38831i −0.681209 0.182529i
\(579\) −0.447320 6.04953i −0.0185900 0.251410i
\(580\) 0 0
\(581\) −31.2930 + 18.0670i −1.29825 + 0.749547i
\(582\) −2.42671 + 12.7562i −0.100590 + 0.528762i
\(583\) 16.9103 4.53110i 0.700352 0.187659i
\(584\) 30.4913 1.26174
\(585\) 0 0
\(586\) 35.7517 1.47689
\(587\) 35.3085 9.46089i 1.45734 0.390493i 0.558769 0.829323i \(-0.311274\pi\)
0.898570 + 0.438830i \(0.144607\pi\)
\(588\) 0.550840 2.89555i 0.0227163 0.119410i
\(589\) −10.9086 + 6.29805i −0.449479 + 0.259507i
\(590\) 0 0
\(591\) −0.592869 8.01793i −0.0243874 0.329814i
\(592\) −4.12007 1.10397i −0.169334 0.0453728i
\(593\) −28.7633 + 28.7633i −1.18117 + 1.18117i −0.201727 + 0.979442i \(0.564655\pi\)
−0.979442 + 0.201727i \(0.935345\pi\)
\(594\) −22.2021 24.0713i −0.910962 0.987658i
\(595\) 0 0
\(596\) −0.848182 + 1.46909i −0.0347429 + 0.0601764i
\(597\) 2.59007 + 7.42559i 0.106004 + 0.303909i
\(598\) −13.4197 + 6.70509i −0.548774 + 0.274192i
\(599\) 10.0471 0.410513 0.205256 0.978708i \(-0.434197\pi\)
0.205256 + 0.978708i \(0.434197\pi\)
\(600\) 0 0
\(601\) −17.9309 + 31.0572i −0.731415 + 1.26685i 0.224864 + 0.974390i \(0.427806\pi\)
−0.956279 + 0.292458i \(0.905527\pi\)
\(602\) 59.6743 + 15.9897i 2.43214 + 0.651691i
\(603\) −2.10767 + 18.3785i −0.0858308 + 0.748430i
\(604\) −1.71899 2.97737i −0.0699446 0.121148i
\(605\) 0 0
\(606\) 21.7299 45.0084i 0.882717 1.82834i
\(607\) 2.93149 10.9405i 0.118985 0.444060i −0.880569 0.473919i \(-0.842839\pi\)
0.999554 + 0.0298588i \(0.00950577\pi\)
\(608\) 4.53639 1.21552i 0.183975 0.0492960i
\(609\) −4.43993 6.52606i −0.179915 0.264449i
\(610\) 0 0
\(611\) 10.4141 + 11.7509i 0.421310 + 0.475389i
\(612\) 1.19883 + 0.137483i 0.0484597 + 0.00555741i
\(613\) 19.2626 5.16141i 0.778011 0.208467i 0.152103 0.988365i \(-0.451395\pi\)
0.625908 + 0.779897i \(0.284729\pi\)
\(614\) −13.4369 + 23.2734i −0.542270 + 0.939239i
\(615\) 0 0
\(616\) 47.3936i 1.90954i
\(617\) 4.81611 17.9740i 0.193889 0.723605i −0.798662 0.601780i \(-0.794459\pi\)
0.992552 0.121825i \(-0.0388748\pi\)
\(618\) 31.9335 + 27.5361i 1.28455 + 1.10767i
\(619\) 36.0310 1.44821 0.724104 0.689691i \(-0.242254\pi\)
0.724104 + 0.689691i \(0.242254\pi\)
\(620\) 0 0
\(621\) 4.36600 14.0062i 0.175202 0.562051i
\(622\) 3.20182 + 11.9493i 0.128381 + 0.479125i
\(623\) 10.9976 + 10.9976i 0.440608 + 0.440608i
\(624\) 19.3058 + 18.7887i 0.772850 + 0.752151i
\(625\) 0 0
\(626\) 0.464527 0.804584i 0.0185662 0.0321576i
\(627\) 6.71553 35.3008i 0.268192 1.40978i
\(628\) 1.26863 + 0.339928i 0.0506238 + 0.0135646i
\(629\) 2.31773i 0.0924141i
\(630\) 0 0
\(631\) 28.1867 16.2736i 1.12209 0.647841i 0.180159 0.983637i \(-0.442339\pi\)
0.941935 + 0.335796i \(0.109005\pi\)
\(632\) −3.92688 3.92688i −0.156203 0.156203i
\(633\) 15.9252 + 13.7323i 0.632971 + 0.545809i
\(634\) 22.7117 + 13.1126i 0.901998 + 0.520769i
\(635\) 0 0
\(636\) −0.528993 + 1.09568i −0.0209759 + 0.0434467i
\(637\) 29.8330 + 19.7096i 1.18203 + 0.780923i
\(638\) −4.93748 4.93748i −0.195477 0.195477i
\(639\) 3.87221 + 26.0406i 0.153182 + 1.03015i
\(640\) 0 0
\(641\) −5.53230 + 3.19407i −0.218513 + 0.126158i −0.605261 0.796027i \(-0.706931\pi\)
0.386749 + 0.922185i \(0.373598\pi\)
\(642\) 22.3205 7.78545i 0.880919 0.307267i
\(643\) −8.33296 + 31.0990i −0.328620 + 1.22643i 0.582003 + 0.813187i \(0.302269\pi\)
−0.910623 + 0.413239i \(0.864398\pi\)
\(644\) 1.72576 0.996370i 0.0680046 0.0392625i
\(645\) 0 0
\(646\) 8.37845 + 14.5119i 0.329646 + 0.570963i
\(647\) −4.45875 16.6403i −0.175291 0.654196i −0.996502 0.0835709i \(-0.973367\pi\)
0.821210 0.570625i \(-0.193299\pi\)
\(648\) −24.2360 + 0.810632i −0.952080 + 0.0318446i
\(649\) 37.2696i 1.46296i
\(650\) 0 0
\(651\) 16.6577 + 8.04226i 0.652865 + 0.315201i
\(652\) 0.311259 + 1.16163i 0.0121898 + 0.0454931i
\(653\) −22.6354 + 6.06514i −0.885791 + 0.237347i −0.672904 0.739730i \(-0.734953\pi\)
−0.212887 + 0.977077i \(0.568287\pi\)
\(654\) 2.60074 + 35.1723i 0.101697 + 1.37535i
\(655\) 0 0
\(656\) −2.48131 4.29775i −0.0968789 0.167799i
\(657\) 13.5145 + 31.1438i 0.527250 + 1.21504i
\(658\) −18.6640 18.6640i −0.727597 0.727597i
\(659\) −6.20035 10.7393i −0.241532 0.418345i 0.719619 0.694369i \(-0.244316\pi\)
−0.961151 + 0.276024i \(0.910983\pi\)
\(660\) 0 0
\(661\) −19.8030 11.4332i −0.770246 0.444702i 0.0627164 0.998031i \(-0.480024\pi\)
−0.832962 + 0.553330i \(0.813357\pi\)
\(662\) −14.7782 + 14.7782i −0.574370 + 0.574370i
\(663\) −7.14642 + 12.7753i −0.277544 + 0.496152i
\(664\) 23.6711i 0.918616i
\(665\) 0 0
\(666\) −0.642947 4.32382i −0.0249137 0.167545i
\(667\) 0.809663 3.02170i 0.0313503 0.117001i
\(668\) −3.08951 + 3.08951i −0.119537 + 0.119537i
\(669\) −2.23084 30.1697i −0.0862491 1.16643i
\(670\) 0 0
\(671\) −14.0628 −0.542888
\(672\) −5.22305 4.50382i −0.201484 0.173739i
\(673\) −1.81967 6.79109i −0.0701431 0.261777i 0.921945 0.387321i \(-0.126599\pi\)
−0.992088 + 0.125543i \(0.959933\pi\)
\(674\) 10.6143 + 6.12816i 0.408847 + 0.236048i
\(675\) 0 0
\(676\) 2.05196 0.875128i 0.0789217 0.0336588i
\(677\) −26.7622 + 26.7622i −1.02856 + 1.02856i −0.0289760 + 0.999580i \(0.509225\pi\)
−0.999580 + 0.0289760i \(0.990775\pi\)
\(678\) 3.60410 + 0.685634i 0.138415 + 0.0263316i
\(679\) 18.1210 + 10.4622i 0.695420 + 0.401501i
\(680\) 0 0
\(681\) −14.9617 7.22346i −0.573334 0.276804i
\(682\) 15.8060 + 4.23522i 0.605245 + 0.162175i
\(683\) −9.97129 2.67180i −0.381541 0.102234i 0.0629506 0.998017i \(-0.479949\pi\)
−0.444491 + 0.895783i \(0.646616\pi\)
\(684\) 1.55320 + 1.95560i 0.0593883 + 0.0747741i
\(685\) 0 0
\(686\) −15.3108 8.83972i −0.584571 0.337502i
\(687\) 1.81320 9.53128i 0.0691780 0.363641i
\(688\) 31.0909 31.0909i 1.18533 1.18533i
\(689\) −9.78953 11.0461i −0.372951 0.420823i
\(690\) 0 0
\(691\) −21.8645 12.6235i −0.831765 0.480220i 0.0226915 0.999743i \(-0.492776\pi\)
−0.854457 + 0.519523i \(0.826110\pi\)
\(692\) −0.850645 3.17465i −0.0323367 0.120682i
\(693\) −48.4079 + 21.0060i −1.83887 + 0.797953i
\(694\) 7.19045 0.272946
\(695\) 0 0
\(696\) −5.15667 + 0.381299i −0.195463 + 0.0144531i
\(697\) 1.90677 1.90677i 0.0722242 0.0722242i
\(698\) 4.67918 17.4629i 0.177110 0.660982i
\(699\) 39.0551 26.5707i 1.47720 1.00499i
\(700\) 0 0
\(701\) 5.83428i 0.220358i −0.993912 0.110179i \(-0.964858\pi\)
0.993912 0.110179i \(-0.0351424\pi\)
\(702\) −9.78800 + 25.8152i −0.369424 + 0.974333i
\(703\) 3.39184 3.39184i 0.127926 0.127926i
\(704\) 26.6695 + 15.3976i 1.00514 + 0.580320i
\(705\) 0 0
\(706\) 7.96595 + 13.7974i 0.299803 + 0.519273i
\(707\) −56.9490 56.9490i −2.14179 2.14179i
\(708\) −1.96161 1.69149i −0.0737220 0.0635702i
\(709\) −9.66759 16.7448i −0.363074 0.628863i 0.625391 0.780311i \(-0.284939\pi\)
−0.988465 + 0.151449i \(0.951606\pi\)
\(710\) 0 0
\(711\) 2.27043 5.75141i 0.0851478 0.215695i
\(712\) 9.84138 2.63699i 0.368821 0.0988254i
\(713\) 1.89742 + 7.08126i 0.0710589 + 0.265195i
\(714\) 10.6988 22.1601i 0.400393 0.829320i
\(715\) 0 0
\(716\) 1.03624i 0.0387259i
\(717\) −29.5101 5.61392i −1.10208 0.209656i
\(718\) 14.2256 + 53.0907i 0.530895 + 1.98133i
\(719\) −19.2268 33.3018i −0.717038 1.24195i −0.962168 0.272456i \(-0.912164\pi\)
0.245130 0.969490i \(-0.421169\pi\)
\(720\) 0 0
\(721\) 58.8443 33.9738i 2.19148 1.26525i
\(722\) −1.72919 + 6.45341i −0.0643537 + 0.240171i
\(723\) 0.953703 + 2.73422i 0.0354686 + 0.101687i
\(724\) 0.826728 0.477312i 0.0307251 0.0177391i
\(725\) 0 0
\(726\) −15.3828 + 10.4655i −0.570910 + 0.388411i
\(727\) −24.8141 24.8141i −0.920304 0.920304i 0.0767466 0.997051i \(-0.475547\pi\)
−0.997051 + 0.0767466i \(0.975547\pi\)
\(728\) 35.7437 17.8591i 1.32475 0.661904i
\(729\) −11.5700 24.3954i −0.428518 0.903533i
\(730\) 0 0
\(731\) 20.6911 + 11.9460i 0.765287 + 0.441838i
\(732\) 0.638244 0.740168i 0.0235902 0.0273574i
\(733\) −28.6087 28.6087i −1.05668 1.05668i −0.998294 0.0583912i \(-0.981403\pi\)
−0.0583912 0.998294i \(-0.518597\pi\)
\(734\) −0.838131 + 0.483895i −0.0309360 + 0.0178609i
\(735\) 0 0
\(736\) 2.73337i 0.100753i
\(737\) 25.4723 + 6.82529i 0.938285 + 0.251413i
\(738\) 3.02821 4.08610i 0.111470 0.150411i
\(739\) 7.80807 13.5240i 0.287225 0.497488i −0.685922 0.727675i \(-0.740601\pi\)
0.973146 + 0.230188i \(0.0739340\pi\)
\(740\) 0 0
\(741\) −29.1541 + 8.23748i −1.07100 + 0.302611i
\(742\) 17.5446 + 17.5446i 0.644082 + 0.644082i
\(743\) −2.10721 7.86421i −0.0773060 0.288510i 0.916440 0.400171i \(-0.131049\pi\)
−0.993746 + 0.111661i \(0.964383\pi\)
\(744\) 10.0187 6.81610i 0.367304 0.249890i
\(745\) 0 0
\(746\) −49.4434 −1.81025
\(747\) −24.1777 + 10.4916i −0.884615 + 0.383868i
\(748\) 0.445213 1.66156i 0.0162786 0.0607525i
\(749\) 38.0930i 1.39189i
\(750\) 0 0
\(751\) −5.93245 + 10.2753i −0.216478 + 0.374951i −0.953729 0.300668i \(-0.902790\pi\)
0.737251 + 0.675619i \(0.236124\pi\)
\(752\) −18.1454 + 4.86206i −0.661696 + 0.177301i
\(753\) −4.48772 12.8661i −0.163542 0.468866i
\(754\) −1.86322 + 5.58436i −0.0678545 + 0.203370i
\(755\) 0 0
\(756\) 1.09140 3.50122i 0.0396937 0.127338i
\(757\) 8.51775 2.28233i 0.309583 0.0829525i −0.100683 0.994919i \(-0.532103\pi\)
0.410266 + 0.911966i \(0.365436\pi\)
\(758\) −6.71189 + 25.0491i −0.243787 + 0.909825i
\(759\) −18.8338 9.09288i −0.683623 0.330051i
\(760\) 0 0
\(761\) −6.00928 10.4084i −0.217836 0.377304i 0.736310 0.676645i \(-0.236567\pi\)
−0.954146 + 0.299341i \(0.903233\pi\)
\(762\) 2.50286 + 7.17558i 0.0906691 + 0.259944i
\(763\) 54.8957 + 14.7093i 1.98736 + 0.532511i
\(764\) 0.259210 0.448965i 0.00937790 0.0162430i
\(765\) 0 0
\(766\) −30.8343 −1.11409
\(767\) 28.1083 14.0441i 1.01493 0.507105i
\(768\) −6.68711 + 2.33248i −0.241300 + 0.0841662i
\(769\) −6.86300 + 11.8871i −0.247486 + 0.428658i −0.962828 0.270117i \(-0.912938\pi\)
0.715342 + 0.698775i \(0.246271\pi\)
\(770\) 0 0
\(771\) −16.4506 + 1.21641i −0.592455 + 0.0438079i
\(772\) 0.424956 0.424956i 0.0152945 0.0152945i
\(773\) −20.8420 5.58461i −0.749636 0.200864i −0.136279 0.990670i \(-0.543514\pi\)
−0.613357 + 0.789806i \(0.710181\pi\)
\(774\) 41.9138 + 16.5459i 1.50656 + 0.594730i
\(775\) 0 0
\(776\) 11.8709 6.85366i 0.426140 0.246032i
\(777\) −6.92000 1.31644i −0.248254 0.0472271i
\(778\) 13.8705 3.71660i 0.497283 0.133247i
\(779\) 5.58086 0.199955
\(780\) 0 0
\(781\) 37.5300 1.34293
\(782\) 9.42037 2.52418i 0.336872 0.0902645i
\(783\) −2.67503 5.09803i −0.0955976 0.182189i
\(784\) −37.0477 + 21.3895i −1.32313 + 0.763910i
\(785\) 0 0
\(786\) −6.67093 + 0.493268i −0.237944 + 0.0175943i
\(787\) −16.6307 4.45618i −0.592820 0.158846i −0.0500781 0.998745i \(-0.515947\pi\)
−0.542742 + 0.839900i \(0.682614\pi\)
\(788\) 0.563229 0.563229i 0.0200642 0.0200642i
\(789\) 3.00589 + 40.6515i 0.107012 + 1.44723i
\(790\) 0 0
\(791\) 2.95595 5.11985i 0.105101 0.182041i
\(792\) −3.93854 + 34.3435i −0.139950 + 1.22034i
\(793\) 5.29922 + 10.6060i 0.188181 + 0.376630i
\(794\) −4.26023 −0.151190
\(795\) 0 0
\(796\) −0.389570 + 0.674755i −0.0138080 + 0.0239161i
\(797\) −44.6186 11.9555i −1.58047 0.423486i −0.641400 0.767207i \(-0.721646\pi\)
−0.939072 + 0.343721i \(0.888313\pi\)
\(798\) 48.0867 16.7728i 1.70225 0.593750i
\(799\) −5.10384 8.84011i −0.180561 0.312741i
\(800\) 0 0
\(801\) 7.05537 + 8.88323i 0.249289 + 0.313873i
\(802\) 0.424984 1.58606i 0.0150067 0.0560058i
\(803\) 46.7473 12.5259i 1.64968 0.442030i
\(804\) −1.51530 + 1.03092i −0.0534407 + 0.0363577i
\(805\) 0 0
\(806\) −2.76197 13.5167i −0.0972863 0.476105i
\(807\) 19.4698 6.79111i 0.685368 0.239058i
\(808\) −50.9620 + 13.6552i −1.79284 + 0.480389i
\(809\) −6.99405 + 12.1140i −0.245898 + 0.425907i −0.962384 0.271694i \(-0.912416\pi\)
0.716486 + 0.697602i \(0.245749\pi\)
\(810\) 0 0
\(811\) 19.5998i 0.688243i −0.938925 0.344122i \(-0.888177\pi\)
0.938925 0.344122i \(-0.111823\pi\)
\(812\) 0.202396 0.755353i 0.00710272 0.0265077i
\(813\) −22.7795 + 26.4172i −0.798912 + 0.926493i
\(814\) −6.23152 −0.218415
\(815\) 0 0
\(816\) −9.85138 14.4801i −0.344867 0.506906i
\(817\) 12.7978 + 47.7621i 0.447738 + 1.67098i
\(818\) −12.8684 12.8684i −0.449933 0.449933i
\(819\) 34.0839 + 28.5931i 1.19099 + 0.999124i
\(820\) 0 0
\(821\) −4.61577 + 7.99475i −0.161091 + 0.279019i −0.935260 0.353960i \(-0.884835\pi\)
0.774169 + 0.632979i \(0.218168\pi\)
\(822\) 26.0203 + 4.95003i 0.907562 + 0.172652i
\(823\) 44.5620 + 11.9403i 1.55333 + 0.416214i 0.930545 0.366177i \(-0.119333\pi\)
0.622788 + 0.782391i \(0.286000\pi\)
\(824\) 44.5118i 1.55064i
\(825\) 0 0
\(826\) −45.7443 + 26.4105i −1.59165 + 0.918938i
\(827\) −31.7914 31.7914i −1.10549 1.10549i −0.993735 0.111759i \(-0.964351\pi\)
−0.111759 0.993735i \(-0.535649\pi\)
\(828\) 1.33336 0.578596i 0.0463376 0.0201076i
\(829\) −21.8064 12.5900i −0.757369 0.437267i 0.0709813 0.997478i \(-0.477387\pi\)
−0.828350 + 0.560210i \(0.810720\pi\)
\(830\) 0 0
\(831\) −6.86273 3.31330i −0.238065 0.114937i
\(832\) 1.56297 25.9160i 0.0541863 0.898477i
\(833\) −16.4368 16.4368i −0.569503 0.569503i
\(834\) 2.79442 + 4.10740i 0.0967628 + 0.142228i
\(835\) 0 0
\(836\) 3.08311 1.78003i 0.106632 0.0615638i
\(837\) 11.4025 + 7.21206i 0.394129 + 0.249285i
\(838\) −7.23644 + 27.0068i −0.249979 + 0.932933i
\(839\) −39.9358 + 23.0569i −1.37874 + 0.796014i −0.992008 0.126179i \(-0.959729\pi\)
−0.386730 + 0.922193i \(0.626395\pi\)
\(840\) 0 0
\(841\) 13.8862 + 24.0516i 0.478834 + 0.829365i
\(842\) −11.5839 43.2317i −0.399207 1.48986i
\(843\) −7.44950 + 39.1590i −0.256574 + 1.34871i
\(844\) 2.08333i 0.0717110i
\(845\) 0 0
\(846\) −11.9737 15.0757i −0.411663 0.518314i
\(847\) 7.75966 + 28.9595i 0.266625 + 0.995059i
\(848\) 17.0572 4.57046i 0.585746 0.156950i
\(849\) 23.5932 1.74455i 0.809718 0.0598729i
\(850\) 0 0
\(851\) −1.39589 2.41775i −0.0478505 0.0828795i
\(852\) −1.70331 + 1.97532i −0.0583544 + 0.0676732i
\(853\) −29.1777 29.1777i −0.999026 0.999026i 0.000973237 1.00000i \(-0.499690\pi\)
−1.00000 0.000973237i \(0.999690\pi\)
\(854\) −9.96536 17.2605i −0.341008 0.590642i
\(855\) 0 0
\(856\) −21.6111 12.4772i −0.738652 0.426461i
\(857\) 27.5270 27.5270i 0.940305 0.940305i −0.0580111 0.998316i \(-0.518476\pi\)
0.998316 + 0.0580111i \(0.0184759\pi\)
\(858\) 34.3480 + 19.2140i 1.17262 + 0.655957i
\(859\) 40.5927i 1.38500i −0.721416 0.692502i \(-0.756508\pi\)
0.721416 0.692502i \(-0.243492\pi\)
\(860\) 0 0
\(861\) −4.60999 6.77603i −0.157108 0.230926i
\(862\) 9.96849 37.2029i 0.339528 1.26714i
\(863\) −28.4894 + 28.4894i −0.969792 + 0.969792i −0.999557 0.0297651i \(-0.990524\pi\)
0.0297651 + 0.999557i \(0.490524\pi\)
\(864\) −3.41057 3.69771i −0.116030 0.125799i
\(865\) 0 0
\(866\) 13.2091 0.448863
\(867\) −13.0140 + 15.0922i −0.441978 + 0.512559i
\(868\) 0.474310 + 1.77015i 0.0160991 + 0.0600827i
\(869\) −7.63362 4.40727i −0.258953 0.149506i
\(870\) 0 0
\(871\) −4.45107 21.7829i −0.150819 0.738084i
\(872\) 26.3258 26.3258i 0.891503 0.891503i
\(873\) 12.2618 + 9.08723i 0.414999 + 0.307556i
\(874\) 17.4800 + 10.0921i 0.591270 + 0.341370i
\(875\) 0 0
\(876\) −1.46236 + 3.02895i −0.0494087 + 0.102339i
\(877\) 17.0059 + 4.55671i 0.574248 + 0.153869i 0.534244 0.845330i \(-0.320596\pi\)
0.0400039 + 0.999200i \(0.487263\pi\)
\(878\) −24.4067 6.53975i −0.823686 0.220706i
\(879\) 18.2698 37.8416i 0.616225 1.27637i
\(880\) 0 0
\(881\) 34.8199 + 20.1033i 1.17311 + 0.677297i 0.954411 0.298495i \(-0.0964847\pi\)
0.218701 + 0.975792i \(0.429818\pi\)
\(882\) −35.2232 26.1039i −1.18603 0.878964i
\(883\) 1.83119 1.83119i 0.0616243 0.0616243i −0.675623 0.737247i \(-0.736125\pi\)
0.737247 + 0.675623i \(0.236125\pi\)
\(884\) −1.42089 + 0.290343i −0.0477899 + 0.00976528i
\(885\) 0 0
\(886\) 30.4142 + 17.5596i 1.02178 + 0.589927i
\(887\) 10.1790 + 37.9885i 0.341777 + 1.27553i 0.896333 + 0.443381i \(0.146221\pi\)
−0.554557 + 0.832146i \(0.687112\pi\)
\(888\) −3.01346 + 3.49470i −0.101125 + 0.117274i
\(889\) 12.2461 0.410721
\(890\) 0 0
\(891\) −36.8241 + 11.1990i −1.23365 + 0.375182i
\(892\) 2.11931 2.11931i 0.0709597 0.0709597i
\(893\) 5.46777 20.4060i 0.182972 0.682861i
\(894\) 14.1931 + 20.8619i 0.474689 + 0.697726i
\(895\) 0 0
\(896\) 51.6087i 1.72413i
\(897\) 0.239305 + 17.6306i 0.00799018 + 0.588670i
\(898\) −6.98192 + 6.98192i −0.232990 + 0.232990i
\(899\) 2.49146 + 1.43844i 0.0830948 + 0.0479748i
\(900\) 0 0
\(901\) 4.79774 + 8.30993i 0.159836 + 0.276844i
\(902\) −5.12660 5.12660i −0.170697 0.170697i
\(903\) 47.4191 54.9917i 1.57801 1.83001i
\(904\) −1.93641 3.35396i −0.0644041 0.111551i
\(905\) 0 0
\(906\) −50.9981 + 3.77095i −1.69430 + 0.125281i
\(907\) 45.1184 12.0894i 1.49813 0.401423i 0.585658 0.810559i \(-0.300836\pi\)
0.912474 + 0.409135i \(0.134170\pi\)
\(908\) −0.426019 1.58993i −0.0141379 0.0527635i
\(909\) −36.5351 46.0003i −1.21179 1.52573i
\(910\) 0 0
\(911\) 17.5547i 0.581613i 0.956782 + 0.290807i \(0.0939236\pi\)
−0.956782 + 0.290807i \(0.906076\pi\)
\(912\) 6.77387 35.6075i 0.224305 1.17908i
\(913\) 9.72415 + 36.2910i 0.321822 + 1.20106i
\(914\) 27.4071 + 47.4704i 0.906545 + 1.57018i
\(915\) 0 0
\(916\) 0.832445 0.480612i 0.0275048 0.0158799i
\(917\) −2.78982 + 10.4118i −0.0921281 + 0.343827i
\(918\) 9.59437 15.1690i 0.316661 0.500653i
\(919\) 28.1500 16.2524i 0.928583 0.536118i 0.0422199 0.999108i \(-0.486557\pi\)
0.886363 + 0.462991i \(0.153224\pi\)
\(920\) 0 0
\(921\) 17.7674 + 26.1155i 0.585455 + 0.860536i
\(922\) −8.74013 8.74013i −0.287841 0.287841i
\(923\) −14.1423 28.3047i −0.465498 0.931659i
\(924\) −4.70800 2.27300i −0.154882 0.0747763i
\(925\) 0 0
\(926\) −12.9814 7.49483i −0.426596 0.246295i
\(927\) 45.4644 19.7287i 1.49325 0.647976i
\(928\) −0.758470 0.758470i −0.0248980 0.0248980i
\(929\) −22.2780 + 12.8622i −0.730916 + 0.421995i −0.818757 0.574140i \(-0.805337\pi\)
0.0878410 + 0.996135i \(0.472003\pi\)
\(930\) 0 0
\(931\) 48.1084i 1.57669i
\(932\) 4.52040 + 1.21124i 0.148071 + 0.0396754i
\(933\) 14.2841 + 2.71736i 0.467639 + 0.0889623i
\(934\) −21.0162 + 36.4010i −0.687670 + 1.19108i
\(935\) 0 0
\(936\) 27.3856 9.97109i 0.895126 0.325915i
\(937\) −19.2546 19.2546i −0.629022 0.629022i 0.318800 0.947822i \(-0.396720\pi\)
−0.947822 + 0.318800i \(0.896720\pi\)
\(938\) 9.67325 + 36.1010i 0.315843 + 1.17874i
\(939\) −0.614235 0.902839i −0.0200448 0.0294630i
\(940\) 0 0
\(941\) −27.3108 −0.890306 −0.445153 0.895455i \(-0.646851\pi\)
−0.445153 + 0.895455i \(0.646851\pi\)
\(942\) 12.7575 14.7948i 0.415662 0.482040i
\(943\) 0.840675 3.13744i 0.0273761 0.102169i
\(944\) 37.5934i 1.22356i
\(945\) 0 0
\(946\) 32.1183 55.6305i 1.04426 1.80870i
\(947\) 2.70642 0.725183i 0.0879469 0.0235653i −0.214577 0.976707i \(-0.568837\pi\)
0.302524 + 0.953142i \(0.402171\pi\)
\(948\) 0.578422 0.201755i 0.0187863 0.00655271i
\(949\) −27.0625 30.5362i −0.878485 0.991247i
\(950\) 0 0
\(951\) 25.4853 17.3386i 0.826416 0.562242i
\(952\) −25.0913 + 6.72320i −0.813215 + 0.217900i
\(953\) −0.742295 + 2.77028i −0.0240453 + 0.0897382i −0.976906 0.213671i \(-0.931458\pi\)
0.952860 + 0.303409i \(0.0981248\pi\)
\(954\) 11.2556 + 14.1716i 0.364412 + 0.458821i
\(955\) 0 0
\(956\) −1.48804 2.57736i −0.0481267 0.0833579i
\(957\) −7.74925 + 2.70296i −0.250498 + 0.0873743i
\(958\) 17.1442 + 4.59377i 0.553903 + 0.148418i
\(959\) 21.3409 36.9634i 0.689132 1.19361i
\(960\) 0 0
\(961\) 24.2581 0.782519
\(962\) 2.34820 + 4.69974i 0.0757089 + 0.151526i
\(963\) 3.16563 27.6038i 0.102011 0.889519i
\(964\) −0.143446 + 0.248456i −0.00462008 + 0.00800222i
\(965\) 0 0
\(966\) −2.18574 29.5599i −0.0703251 0.951073i
\(967\) 34.7663 34.7663i 1.11801 1.11801i 0.125975 0.992033i \(-0.459794\pi\)
0.992033 0.125975i \(-0.0402058\pi\)
\(968\) 18.9711 + 5.08328i 0.609753 + 0.163383i
\(969\) 19.6418 1.45237i 0.630984 0.0466568i
\(970\) 0 0
\(971\) 43.8854 25.3373i 1.40835 0.813112i 0.413121 0.910676i \(-0.364439\pi\)
0.995229 + 0.0975644i \(0.0311052\pi\)
\(972\) 1.08183 2.44644i 0.0346998 0.0784695i
\(973\) 7.73254 2.07193i 0.247894 0.0664229i
\(974\) −59.0914 −1.89341
\(975\) 0 0
\(976\) −14.1850 −0.454050
\(977\) 10.0876 2.70297i 0.322731 0.0864755i −0.0938164 0.995590i \(-0.529907\pi\)
0.416547 + 0.909114i \(0.363240\pi\)
\(978\) 17.5728 + 3.34301i 0.561917 + 0.106898i
\(979\) 14.0049 8.08574i 0.447599 0.258421i
\(980\) 0 0
\(981\) 38.5574 + 15.2209i 1.23104 + 0.485967i
\(982\) −27.7714 7.44133i −0.886221 0.237462i
\(983\) 15.8387 15.8387i 0.505176 0.505176i −0.407866 0.913042i \(-0.633727\pi\)
0.913042 + 0.407866i \(0.133727\pi\)
\(984\) −5.35419 + 0.395904i −0.170685 + 0.0126210i
\(985\) 0 0
\(986\) 1.91359 3.31444i 0.0609413 0.105553i
\(987\) −29.2926 + 10.2174i −0.932395 + 0.325222i
\(988\) −2.50428 1.65448i −0.0796717 0.0526361i
\(989\) 28.7786 0.915107
\(990\) 0 0
\(991\) 12.4412 21.5489i 0.395209 0.684523i −0.597919 0.801557i \(-0.704005\pi\)
0.993128 + 0.117034i \(0.0373387\pi\)
\(992\) 2.42804 + 0.650592i 0.0770905 + 0.0206563i
\(993\) 8.09012 + 23.1940i 0.256732 + 0.736038i
\(994\) 26.5950 + 46.0638i 0.843541 + 1.46106i
\(995\) 0 0
\(996\) −2.35144 1.13527i −0.0745082 0.0359723i
\(997\) 13.3731 49.9090i 0.423529 1.58063i −0.343585 0.939122i \(-0.611641\pi\)
0.767114 0.641511i \(-0.221692\pi\)
\(998\) −10.7434 + 2.87868i −0.340076 + 0.0911231i
\(999\) −4.90513 1.52902i −0.155191 0.0483761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.407.18 96
3.2 odd 2 inner 975.2.bn.d.407.7 96
5.2 odd 4 195.2.bf.a.173.18 yes 96
5.3 odd 4 inner 975.2.bn.d.368.7 96
5.4 even 2 195.2.bf.a.17.7 96
13.10 even 6 inner 975.2.bn.d.257.18 96
15.2 even 4 195.2.bf.a.173.7 yes 96
15.8 even 4 inner 975.2.bn.d.368.18 96
15.14 odd 2 195.2.bf.a.17.18 yes 96
39.23 odd 6 inner 975.2.bn.d.257.7 96
65.23 odd 12 inner 975.2.bn.d.218.7 96
65.49 even 6 195.2.bf.a.62.7 yes 96
65.62 odd 12 195.2.bf.a.23.18 yes 96
195.23 even 12 inner 975.2.bn.d.218.18 96
195.62 even 12 195.2.bf.a.23.7 yes 96
195.179 odd 6 195.2.bf.a.62.18 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.7 96 5.4 even 2
195.2.bf.a.17.18 yes 96 15.14 odd 2
195.2.bf.a.23.7 yes 96 195.62 even 12
195.2.bf.a.23.18 yes 96 65.62 odd 12
195.2.bf.a.62.7 yes 96 65.49 even 6
195.2.bf.a.62.18 yes 96 195.179 odd 6
195.2.bf.a.173.7 yes 96 15.2 even 4
195.2.bf.a.173.18 yes 96 5.2 odd 4
975.2.bn.d.218.7 96 65.23 odd 12 inner
975.2.bn.d.218.18 96 195.23 even 12 inner
975.2.bn.d.257.7 96 39.23 odd 6 inner
975.2.bn.d.257.18 96 13.10 even 6 inner
975.2.bn.d.368.7 96 5.3 odd 4 inner
975.2.bn.d.368.18 96 15.8 even 4 inner
975.2.bn.d.407.7 96 3.2 odd 2 inner
975.2.bn.d.407.18 96 1.1 even 1 trivial