Properties

Label 975.2.bn.d.368.7
Level $975$
Weight $2$
Character 975.368
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.7
Character \(\chi\) \(=\) 975.368
Dual form 975.2.bn.d.257.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.381405 - 1.42342i) q^{2} +(1.70154 + 0.323695i) q^{3} +(-0.148609 + 0.0857994i) q^{4} +(-0.188219 - 2.54546i) q^{6} +(-1.06453 + 3.97287i) q^{7} +(-1.90523 - 1.90523i) q^{8} +(2.79044 + 1.10156i) q^{9} +(-2.13830 + 3.70364i) q^{11} +(-0.280636 + 0.0978867i) q^{12} +(-0.217053 + 3.59901i) q^{13} +6.06108 q^{14} +(-2.15688 + 3.73582i) q^{16} +(-0.606673 + 2.26413i) q^{17} +(0.503692 - 4.39212i) q^{18} +(2.42558 + 4.20123i) q^{19} +(-3.09733 + 6.41539i) q^{21} +(6.08741 + 1.63112i) q^{22} +(-0.730756 - 2.72722i) q^{23} +(-2.62510 - 3.85852i) q^{24} +(5.20570 - 1.06372i) q^{26} +(4.39147 + 2.77759i) q^{27} +(-0.182671 - 0.681739i) q^{28} +(0.553990 - 0.959539i) q^{29} -2.59652i q^{31} +(0.935116 + 0.250564i) q^{32} +(-4.83724 + 5.60972i) q^{33} +3.45421 q^{34} +(-0.509198 + 0.0757171i) q^{36} +(0.955101 - 0.255918i) q^{37} +(5.05499 - 5.05499i) q^{38} +(-1.53431 + 6.05359i) q^{39} +(-0.575209 + 0.996292i) q^{41} +(10.3131 + 1.96194i) q^{42} +(2.63809 - 9.84550i) q^{43} -0.733860i q^{44} +(-3.60327 + 2.08035i) q^{46} +(3.07931 - 3.07931i) q^{47} +(-4.87927 + 5.65846i) q^{48} +(-8.58827 - 4.95844i) q^{49} +(-1.76516 + 3.65613i) q^{51} +(-0.276537 - 0.553469i) q^{52} +(2.89463 - 2.89463i) q^{53} +(2.27876 - 7.31030i) q^{54} +(9.59737 - 5.54104i) q^{56} +(2.76729 + 7.93368i) q^{57} +(-1.57712 - 0.422589i) q^{58} +(-7.54722 + 4.35739i) q^{59} +(1.64416 + 2.84776i) q^{61} +(-3.69594 + 0.990323i) q^{62} +(-7.34684 + 9.91342i) q^{63} +7.20087i q^{64} +(9.82995 + 4.74586i) q^{66} +(-5.95621 + 1.59596i) q^{67} +(-0.104104 - 0.388523i) q^{68} +(-0.360619 - 4.87700i) q^{69} +(-4.38783 - 7.59994i) q^{71} +(-3.21771 - 7.41514i) q^{72} +(8.00201 - 8.00201i) q^{73} +(-0.728560 - 1.26190i) q^{74} +(-0.720926 - 0.416227i) q^{76} +(-12.4378 - 12.4378i) q^{77} +(9.20200 - 0.124901i) q^{78} -2.06111i q^{79} +(6.57314 + 6.14767i) q^{81} +(1.63753 + 0.438775i) q^{82} +(6.21215 + 6.21215i) q^{83} +(-0.0901463 - 1.21913i) q^{84} -15.0205 q^{86} +(1.25323 - 1.45336i) q^{87} +(11.1302 - 2.98233i) q^{88} +(3.27478 + 1.89069i) q^{89} +(-14.0673 - 4.69357i) q^{91} +(0.342591 + 0.342591i) q^{92} +(0.840480 - 4.41806i) q^{93} +(-5.55763 - 3.20870i) q^{94} +(1.51003 + 0.729035i) q^{96} +(-1.31670 + 4.91400i) q^{97} +(-3.78234 + 14.1159i) q^{98} +(-10.0466 + 7.97935i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381405 1.42342i −0.269694 1.00651i −0.959314 0.282340i \(-0.908889\pi\)
0.689621 0.724171i \(-0.257777\pi\)
\(3\) 1.70154 + 0.323695i 0.982382 + 0.186885i
\(4\) −0.148609 + 0.0857994i −0.0743045 + 0.0428997i
\(5\) 0 0
\(6\) −0.188219 2.54546i −0.0768400 1.03918i
\(7\) −1.06453 + 3.97287i −0.402353 + 1.50160i 0.406533 + 0.913636i \(0.366738\pi\)
−0.808886 + 0.587966i \(0.799929\pi\)
\(8\) −1.90523 1.90523i −0.673599 0.673599i
\(9\) 2.79044 + 1.10156i 0.930148 + 0.367186i
\(10\) 0 0
\(11\) −2.13830 + 3.70364i −0.644722 + 1.11669i 0.339644 + 0.940554i \(0.389693\pi\)
−0.984366 + 0.176137i \(0.943640\pi\)
\(12\) −0.280636 + 0.0978867i −0.0810127 + 0.0282575i
\(13\) −0.217053 + 3.59901i −0.0601997 + 0.998186i
\(14\) 6.06108 1.61989
\(15\) 0 0
\(16\) −2.15688 + 3.73582i −0.539219 + 0.933955i
\(17\) −0.606673 + 2.26413i −0.147140 + 0.549133i 0.852511 + 0.522709i \(0.175079\pi\)
−0.999651 + 0.0264240i \(0.991588\pi\)
\(18\) 0.503692 4.39212i 0.118721 1.03523i
\(19\) 2.42558 + 4.20123i 0.556466 + 0.963827i 0.997788 + 0.0664784i \(0.0211764\pi\)
−0.441322 + 0.897349i \(0.645490\pi\)
\(20\) 0 0
\(21\) −3.09733 + 6.41539i −0.675892 + 1.39995i
\(22\) 6.08741 + 1.63112i 1.29784 + 0.347755i
\(23\) −0.730756 2.72722i −0.152373 0.568664i −0.999316 0.0369803i \(-0.988226\pi\)
0.846943 0.531684i \(-0.178441\pi\)
\(24\) −2.62510 3.85852i −0.535845 0.787617i
\(25\) 0 0
\(26\) 5.20570 1.06372i 1.02092 0.208613i
\(27\) 4.39147 + 2.77759i 0.845138 + 0.534548i
\(28\) −0.182671 0.681739i −0.0345217 0.128837i
\(29\) 0.553990 0.959539i 0.102873 0.178182i −0.809994 0.586438i \(-0.800530\pi\)
0.912867 + 0.408256i \(0.133863\pi\)
\(30\) 0 0
\(31\) 2.59652i 0.466348i −0.972435 0.233174i \(-0.925089\pi\)
0.972435 0.233174i \(-0.0749112\pi\)
\(32\) 0.935116 + 0.250564i 0.165307 + 0.0442938i
\(33\) −4.83724 + 5.60972i −0.842056 + 0.976528i
\(34\) 3.45421 0.592391
\(35\) 0 0
\(36\) −0.509198 + 0.0757171i −0.0848663 + 0.0126195i
\(37\) 0.955101 0.255918i 0.157018 0.0420727i −0.179454 0.983766i \(-0.557433\pi\)
0.336472 + 0.941694i \(0.390766\pi\)
\(38\) 5.05499 5.05499i 0.820027 0.820027i
\(39\) −1.53431 + 6.05359i −0.245686 + 0.969350i
\(40\) 0 0
\(41\) −0.575209 + 0.996292i −0.0898326 + 0.155595i −0.907440 0.420181i \(-0.861967\pi\)
0.817608 + 0.575776i \(0.195300\pi\)
\(42\) 10.3131 + 1.96194i 1.59135 + 0.302734i
\(43\) 2.63809 9.84550i 0.402305 1.50142i −0.406666 0.913577i \(-0.633309\pi\)
0.808972 0.587847i \(-0.200024\pi\)
\(44\) 0.733860i 0.110634i
\(45\) 0 0
\(46\) −3.60327 + 2.08035i −0.531273 + 0.306730i
\(47\) 3.07931 3.07931i 0.449164 0.449164i −0.445913 0.895077i \(-0.647121\pi\)
0.895077 + 0.445913i \(0.147121\pi\)
\(48\) −4.87927 + 5.65846i −0.704261 + 0.816728i
\(49\) −8.58827 4.95844i −1.22690 0.708349i
\(50\) 0 0
\(51\) −1.76516 + 3.65613i −0.247172 + 0.511960i
\(52\) −0.276537 0.553469i −0.0383488 0.0767523i
\(53\) 2.89463 2.89463i 0.397608 0.397608i −0.479780 0.877389i \(-0.659284\pi\)
0.877389 + 0.479780i \(0.159284\pi\)
\(54\) 2.27876 7.31030i 0.310100 0.994805i
\(55\) 0 0
\(56\) 9.59737 5.54104i 1.28250 0.740453i
\(57\) 2.76729 + 7.93368i 0.366537 + 1.05084i
\(58\) −1.57712 0.422589i −0.207086 0.0554886i
\(59\) −7.54722 + 4.35739i −0.982564 + 0.567284i −0.903043 0.429550i \(-0.858672\pi\)
−0.0795208 + 0.996833i \(0.525339\pi\)
\(60\) 0 0
\(61\) 1.64416 + 2.84776i 0.210513 + 0.364619i 0.951875 0.306486i \(-0.0991534\pi\)
−0.741362 + 0.671105i \(0.765820\pi\)
\(62\) −3.69594 + 0.990323i −0.469385 + 0.125771i
\(63\) −7.34684 + 9.91342i −0.925615 + 1.24897i
\(64\) 7.20087i 0.900109i
\(65\) 0 0
\(66\) 9.82995 + 4.74586i 1.20998 + 0.584175i
\(67\) −5.95621 + 1.59596i −0.727667 + 0.194978i −0.603590 0.797295i \(-0.706264\pi\)
−0.124077 + 0.992273i \(0.539597\pi\)
\(68\) −0.104104 0.388523i −0.0126245 0.0471153i
\(69\) −0.360619 4.87700i −0.0434135 0.587122i
\(70\) 0 0
\(71\) −4.38783 7.59994i −0.520739 0.901947i −0.999709 0.0241156i \(-0.992323\pi\)
0.478970 0.877831i \(-0.341010\pi\)
\(72\) −3.21771 7.41514i −0.379210 0.873882i
\(73\) 8.00201 8.00201i 0.936565 0.936565i −0.0615398 0.998105i \(-0.519601\pi\)
0.998105 + 0.0615398i \(0.0196011\pi\)
\(74\) −0.728560 1.26190i −0.0846934 0.146693i
\(75\) 0 0
\(76\) −0.720926 0.416227i −0.0826958 0.0477445i
\(77\) −12.4378 12.4378i −1.41742 1.41742i
\(78\) 9.20200 0.124901i 1.04192 0.0141423i
\(79\) 2.06111i 0.231893i −0.993255 0.115946i \(-0.963010\pi\)
0.993255 0.115946i \(-0.0369901\pi\)
\(80\) 0 0
\(81\) 6.57314 + 6.14767i 0.730349 + 0.683074i
\(82\) 1.63753 + 0.438775i 0.180835 + 0.0484546i
\(83\) 6.21215 + 6.21215i 0.681872 + 0.681872i 0.960422 0.278550i \(-0.0898538\pi\)
−0.278550 + 0.960422i \(0.589854\pi\)
\(84\) −0.0901463 1.21913i −0.00983576 0.133018i
\(85\) 0 0
\(86\) −15.0205 −1.61970
\(87\) 1.25323 1.45336i 0.134360 0.155817i
\(88\) 11.1302 2.98233i 1.18649 0.317918i
\(89\) 3.27478 + 1.89069i 0.347126 + 0.200413i 0.663419 0.748248i \(-0.269105\pi\)
−0.316293 + 0.948662i \(0.602438\pi\)
\(90\) 0 0
\(91\) −14.0673 4.69357i −1.47466 0.492019i
\(92\) 0.342591 + 0.342591i 0.0357175 + 0.0357175i
\(93\) 0.840480 4.41806i 0.0871537 0.458132i
\(94\) −5.55763 3.20870i −0.573225 0.330952i
\(95\) 0 0
\(96\) 1.51003 + 0.729035i 0.154116 + 0.0744068i
\(97\) −1.31670 + 4.91400i −0.133691 + 0.498941i −1.00000 0.000567486i \(-0.999819\pi\)
0.866309 + 0.499508i \(0.166486\pi\)
\(98\) −3.78234 + 14.1159i −0.382075 + 1.42592i
\(99\) −10.0466 + 7.97935i −1.00972 + 0.801955i
\(100\) 0 0
\(101\) 16.9579 + 9.79064i 1.68737 + 0.974205i 0.956518 + 0.291673i \(0.0942119\pi\)
0.730855 + 0.682533i \(0.239121\pi\)
\(102\) 5.87745 + 1.11811i 0.581954 + 0.110709i
\(103\) −11.6815 11.6815i −1.15101 1.15101i −0.986350 0.164663i \(-0.947346\pi\)
−0.164663 0.986350i \(-0.552654\pi\)
\(104\) 7.27046 6.44339i 0.712928 0.631827i
\(105\) 0 0
\(106\) −5.22431 3.01626i −0.507430 0.292965i
\(107\) 8.94599 2.39707i 0.864841 0.231734i 0.200986 0.979594i \(-0.435586\pi\)
0.663856 + 0.747861i \(0.268919\pi\)
\(108\) −0.890927 0.0359895i −0.0857295 0.00346309i
\(109\) 13.8177 1.32349 0.661746 0.749728i \(-0.269816\pi\)
0.661746 + 0.749728i \(0.269816\pi\)
\(110\) 0 0
\(111\) 1.70798 0.126293i 0.162114 0.0119872i
\(112\) −12.5459 12.5459i −1.18547 1.18547i
\(113\) −1.38839 0.372017i −0.130608 0.0349964i 0.192923 0.981214i \(-0.438203\pi\)
−0.323531 + 0.946218i \(0.604870\pi\)
\(114\) 10.2375 6.96497i 0.958831 0.652329i
\(115\) 0 0
\(116\) 0.190128i 0.0176529i
\(117\) −4.57019 + 9.80374i −0.422514 + 0.906356i
\(118\) 9.08095 + 9.08095i 0.835969 + 0.835969i
\(119\) −8.34928 4.82046i −0.765377 0.441891i
\(120\) 0 0
\(121\) −3.64466 6.31273i −0.331332 0.573884i
\(122\) 3.42648 3.42648i 0.310219 0.310219i
\(123\) −1.30123 + 1.50903i −0.117328 + 0.136065i
\(124\) 0.222780 + 0.385866i 0.0200062 + 0.0346518i
\(125\) 0 0
\(126\) 16.9131 + 6.67663i 1.50674 + 0.594801i
\(127\) 0.770609 + 2.87595i 0.0683805 + 0.255199i 0.991651 0.128951i \(-0.0411610\pi\)
−0.923270 + 0.384150i \(0.874494\pi\)
\(128\) 12.1201 3.24757i 1.07128 0.287048i
\(129\) 7.67575 15.8985i 0.675812 1.39979i
\(130\) 0 0
\(131\) 2.62072i 0.228973i −0.993425 0.114487i \(-0.963478\pi\)
0.993425 0.114487i \(-0.0365223\pi\)
\(132\) 0.237547 1.24869i 0.0206758 0.108684i
\(133\) −19.2730 + 5.16418i −1.67118 + 0.447792i
\(134\) 4.54345 + 7.86949i 0.392494 + 0.679820i
\(135\) 0 0
\(136\) 5.46953 3.15784i 0.469009 0.270782i
\(137\) 10.0236 + 2.68583i 0.856377 + 0.229466i 0.660188 0.751100i \(-0.270477\pi\)
0.196189 + 0.980566i \(0.437143\pi\)
\(138\) −6.80448 + 2.37342i −0.579236 + 0.202039i
\(139\) 1.68558 0.973168i 0.142969 0.0825431i −0.426809 0.904342i \(-0.640362\pi\)
0.569778 + 0.821799i \(0.307029\pi\)
\(140\) 0 0
\(141\) 6.23632 4.24280i 0.525193 0.357308i
\(142\) −9.14438 + 9.14438i −0.767379 + 0.767379i
\(143\) −12.8653 8.49966i −1.07585 0.710777i
\(144\) −10.1339 + 8.04867i −0.844488 + 0.670722i
\(145\) 0 0
\(146\) −14.4422 8.33823i −1.19525 0.690077i
\(147\) −13.0082 11.2169i −1.07290 0.925158i
\(148\) −0.119979 + 0.119979i −0.00986220 + 0.00986220i
\(149\) 8.56121 4.94282i 0.701362 0.404931i −0.106493 0.994313i \(-0.533962\pi\)
0.807854 + 0.589382i \(0.200629\pi\)
\(150\) 0 0
\(151\) 20.0349i 1.63042i −0.579165 0.815210i \(-0.696621\pi\)
0.579165 0.815210i \(-0.303379\pi\)
\(152\) 3.38301 12.6256i 0.274398 1.02407i
\(153\) −4.18696 + 5.64965i −0.338496 + 0.456747i
\(154\) −12.9604 + 22.4481i −1.04438 + 1.80892i
\(155\) 0 0
\(156\) −0.291383 1.03126i −0.0233293 0.0825669i
\(157\) 5.41204 5.41204i 0.431928 0.431928i −0.457356 0.889284i \(-0.651203\pi\)
0.889284 + 0.457356i \(0.151203\pi\)
\(158\) −2.93383 + 0.786117i −0.233403 + 0.0625401i
\(159\) 5.86230 3.98834i 0.464910 0.316296i
\(160\) 0 0
\(161\) 11.6128 0.915215
\(162\) 6.24369 11.7011i 0.490551 0.919325i
\(163\) −6.76947 1.81388i −0.530226 0.142074i −0.0162335 0.999868i \(-0.505167\pi\)
−0.513993 + 0.857795i \(0.671834\pi\)
\(164\) 0.197410i 0.0154152i
\(165\) 0 0
\(166\) 6.47316 11.2118i 0.502415 0.870208i
\(167\) 6.59002 + 24.5943i 0.509951 + 1.90316i 0.420822 + 0.907143i \(0.361742\pi\)
0.0891292 + 0.996020i \(0.471592\pi\)
\(168\) 18.1239 6.32166i 1.39829 0.487726i
\(169\) −12.9058 1.56235i −0.992752 0.120181i
\(170\) 0 0
\(171\) 2.14055 + 14.3952i 0.163692 + 1.10083i
\(172\) 0.452694 + 1.68948i 0.0345176 + 0.128821i
\(173\) 18.5004 + 4.95717i 1.40656 + 0.376887i 0.880696 0.473681i \(-0.157075\pi\)
0.525865 + 0.850568i \(0.323742\pi\)
\(174\) −2.54674 1.22956i −0.193068 0.0932124i
\(175\) 0 0
\(176\) −9.22410 15.9766i −0.695292 1.20428i
\(177\) −14.2523 + 4.97125i −1.07127 + 0.373662i
\(178\) 1.44224 5.38251i 0.108100 0.403436i
\(179\) −3.01935 + 5.22967i −0.225677 + 0.390884i −0.956522 0.291659i \(-0.905793\pi\)
0.730845 + 0.682543i \(0.239126\pi\)
\(180\) 0 0
\(181\) 5.56311 0.413503 0.206751 0.978394i \(-0.433711\pi\)
0.206751 + 0.978394i \(0.433711\pi\)
\(182\) −1.31558 + 21.8139i −0.0975170 + 1.61695i
\(183\) 1.87578 + 5.37777i 0.138662 + 0.397536i
\(184\) −3.80371 + 6.58822i −0.280413 + 0.485690i
\(185\) 0 0
\(186\) −6.60933 + 0.488713i −0.484620 + 0.0358342i
\(187\) −7.08830 7.08830i −0.518348 0.518348i
\(188\) −0.193410 + 0.721817i −0.0141059 + 0.0526439i
\(189\) −15.7098 + 14.4899i −1.14272 + 1.05398i
\(190\) 0 0
\(191\) 2.61637 1.51056i 0.189314 0.109300i −0.402348 0.915487i \(-0.631806\pi\)
0.591661 + 0.806187i \(0.298472\pi\)
\(192\) −2.33089 + 12.2525i −0.168217 + 0.884251i
\(193\) 0.906445 + 3.38290i 0.0652473 + 0.243506i 0.990845 0.135002i \(-0.0431040\pi\)
−0.925598 + 0.378508i \(0.876437\pi\)
\(194\) 7.49689 0.538245
\(195\) 0 0
\(196\) 1.70173 0.121552
\(197\) −1.20138 4.48363i −0.0855951 0.319445i 0.909831 0.414979i \(-0.136211\pi\)
−0.995426 + 0.0955335i \(0.969544\pi\)
\(198\) 15.1898 + 11.2572i 1.07949 + 0.800012i
\(199\) 3.93217 2.27024i 0.278744 0.160933i −0.354111 0.935204i \(-0.615216\pi\)
0.632855 + 0.774271i \(0.281883\pi\)
\(200\) 0 0
\(201\) −10.6513 + 0.787588i −0.751285 + 0.0555522i
\(202\) 7.46839 27.8724i 0.525474 1.96110i
\(203\) 3.22238 + 3.22238i 0.226167 + 0.226167i
\(204\) −0.0513743 0.694783i −0.00359692 0.0486446i
\(205\) 0 0
\(206\) −12.1723 + 21.0831i −0.848086 + 1.46893i
\(207\) 0.965054 8.41511i 0.0670759 0.584891i
\(208\) −12.9771 8.57349i −0.899800 0.594465i
\(209\) −20.7465 −1.43506
\(210\) 0 0
\(211\) −6.07034 + 10.5141i −0.417899 + 0.723823i −0.995728 0.0923352i \(-0.970567\pi\)
0.577829 + 0.816158i \(0.303900\pi\)
\(212\) −0.181811 + 0.678526i −0.0124868 + 0.0466014i
\(213\) −5.00598 14.3519i −0.343004 0.983375i
\(214\) −6.82408 11.8197i −0.466485 0.807975i
\(215\) 0 0
\(216\) −3.07480 13.6587i −0.209214 0.929355i
\(217\) 10.3156 + 2.76406i 0.700269 + 0.187637i
\(218\) −5.27012 19.6684i −0.356938 1.33211i
\(219\) 16.2059 11.0255i 1.09509 0.745034i
\(220\) 0 0
\(221\) −8.01697 2.67486i −0.539279 0.179931i
\(222\) −0.831198 2.38300i −0.0557864 0.159937i
\(223\) 4.52055 + 16.8709i 0.302718 + 1.12976i 0.934892 + 0.354933i \(0.115496\pi\)
−0.632174 + 0.774827i \(0.717837\pi\)
\(224\) −1.99091 + 3.44836i −0.133023 + 0.230403i
\(225\) 0 0
\(226\) 2.11815i 0.140897i
\(227\) −9.26536 2.48265i −0.614964 0.164779i −0.0621264 0.998068i \(-0.519788\pi\)
−0.552837 + 0.833289i \(0.686455\pi\)
\(228\) −1.09195 0.941584i −0.0723161 0.0623579i
\(229\) −5.60158 −0.370163 −0.185081 0.982723i \(-0.559255\pi\)
−0.185081 + 0.982723i \(0.559255\pi\)
\(230\) 0 0
\(231\) −17.1373 25.1894i −1.12755 1.65734i
\(232\) −2.88361 + 0.772662i −0.189318 + 0.0507277i
\(233\) −19.2843 + 19.2843i −1.26336 + 1.26336i −0.313900 + 0.949456i \(0.601636\pi\)
−0.949456 + 0.313900i \(0.898364\pi\)
\(234\) 15.6980 + 2.76612i 1.02621 + 0.180827i
\(235\) 0 0
\(236\) 0.747723 1.29509i 0.0486726 0.0843034i
\(237\) 0.667171 3.50705i 0.0433374 0.227807i
\(238\) −3.67709 + 13.7231i −0.238351 + 0.889536i
\(239\) 17.3432i 1.12184i 0.827870 + 0.560921i \(0.189553\pi\)
−0.827870 + 0.560921i \(0.810447\pi\)
\(240\) 0 0
\(241\) −1.44789 + 0.835937i −0.0932665 + 0.0538475i −0.545908 0.837845i \(-0.683815\pi\)
0.452641 + 0.891693i \(0.350482\pi\)
\(242\) −7.59559 + 7.59559i −0.488263 + 0.488263i
\(243\) 9.19446 + 12.5882i 0.589825 + 0.807531i
\(244\) −0.488673 0.282135i −0.0312841 0.0180619i
\(245\) 0 0
\(246\) 2.64429 + 1.27665i 0.168594 + 0.0813963i
\(247\) −15.6467 + 7.81780i −0.995578 + 0.497435i
\(248\) −4.94695 + 4.94695i −0.314131 + 0.314131i
\(249\) 8.55934 + 12.5810i 0.542426 + 0.797290i
\(250\) 0 0
\(251\) 6.81314 3.93357i 0.430042 0.248285i −0.269323 0.963050i \(-0.586800\pi\)
0.699364 + 0.714765i \(0.253466\pi\)
\(252\) 0.241240 2.10358i 0.0151967 0.132513i
\(253\) 11.6632 + 3.12515i 0.733260 + 0.196477i
\(254\) 3.79978 2.19380i 0.238419 0.137651i
\(255\) 0 0
\(256\) −2.04446 3.54111i −0.127779 0.221319i
\(257\) −9.19920 + 2.46492i −0.573830 + 0.153757i −0.534053 0.845451i \(-0.679332\pi\)
−0.0397776 + 0.999209i \(0.512665\pi\)
\(258\) −25.5579 4.86205i −1.59116 0.302698i
\(259\) 4.06692i 0.252706i
\(260\) 0 0
\(261\) 2.60286 2.06729i 0.161113 0.127962i
\(262\) −3.73039 + 0.999554i −0.230464 + 0.0617526i
\(263\) −6.09110 22.7323i −0.375593 1.40173i −0.852476 0.522766i \(-0.824900\pi\)
0.476883 0.878967i \(-0.341767\pi\)
\(264\) 19.9038 1.47175i 1.22500 0.0905798i
\(265\) 0 0
\(266\) 14.7016 + 25.4640i 0.901414 + 1.56130i
\(267\) 4.96014 + 4.27711i 0.303556 + 0.261755i
\(268\) 0.748213 0.748213i 0.0457044 0.0457044i
\(269\) −5.95253 10.3101i −0.362932 0.628617i 0.625510 0.780216i \(-0.284891\pi\)
−0.988442 + 0.151599i \(0.951558\pi\)
\(270\) 0 0
\(271\) −17.4412 10.0697i −1.05947 0.611688i −0.134188 0.990956i \(-0.542843\pi\)
−0.925287 + 0.379268i \(0.876176\pi\)
\(272\) −7.14988 7.14988i −0.433525 0.433525i
\(273\) −22.4168 12.5398i −1.35673 0.758943i
\(274\) 15.2923i 0.923839i
\(275\) 0 0
\(276\) 0.472035 + 0.693825i 0.0284132 + 0.0417633i
\(277\) −4.24989 1.13875i −0.255351 0.0684211i 0.128873 0.991661i \(-0.458864\pi\)
−0.384224 + 0.923240i \(0.625531\pi\)
\(278\) −2.02812 2.02812i −0.121638 0.121638i
\(279\) 2.86021 7.24543i 0.171236 0.433773i
\(280\) 0 0
\(281\) −23.0139 −1.37290 −0.686448 0.727179i \(-0.740831\pi\)
−0.686448 + 0.727179i \(0.740831\pi\)
\(282\) −8.41785 7.25869i −0.501276 0.432248i
\(283\) −13.1933 + 3.53515i −0.784263 + 0.210143i −0.628663 0.777678i \(-0.716398\pi\)
−0.155600 + 0.987820i \(0.549731\pi\)
\(284\) 1.30414 + 0.752946i 0.0773865 + 0.0446791i
\(285\) 0 0
\(286\) −7.19170 + 21.5546i −0.425254 + 1.27455i
\(287\) −3.34581 3.34581i −0.197497 0.197497i
\(288\) 2.33338 + 1.72927i 0.137496 + 0.101898i
\(289\) 9.96418 + 5.75282i 0.586128 + 0.338401i
\(290\) 0 0
\(291\) −3.83105 + 7.93513i −0.224580 + 0.465166i
\(292\) −0.502603 + 1.87574i −0.0294126 + 0.109769i
\(293\) −6.27918 + 23.4342i −0.366834 + 1.36904i 0.498084 + 0.867129i \(0.334037\pi\)
−0.864918 + 0.501914i \(0.832630\pi\)
\(294\) −11.0050 + 22.7944i −0.641827 + 1.32940i
\(295\) 0 0
\(296\) −2.30726 1.33210i −0.134107 0.0774267i
\(297\) −19.6775 + 10.3251i −1.14180 + 0.599124i
\(298\) −10.3010 10.3010i −0.596721 0.596721i
\(299\) 9.97390 2.03805i 0.576806 0.117863i
\(300\) 0 0
\(301\) 36.3065 + 20.9616i 2.09267 + 1.20821i
\(302\) −28.5182 + 7.64142i −1.64104 + 0.439714i
\(303\) 25.6853 + 22.1483i 1.47558 + 1.27239i
\(304\) −20.9267 −1.20023
\(305\) 0 0
\(306\) 9.63876 + 3.80501i 0.551011 + 0.217518i
\(307\) 12.8951 + 12.8951i 0.735962 + 0.735962i 0.971794 0.235832i \(-0.0757814\pi\)
−0.235832 + 0.971794i \(0.575781\pi\)
\(308\) 2.91553 + 0.781213i 0.166128 + 0.0445137i
\(309\) −16.0952 23.6577i −0.915626 1.34584i
\(310\) 0 0
\(311\) 8.39481i 0.476026i 0.971262 + 0.238013i \(0.0764960\pi\)
−0.971262 + 0.238013i \(0.923504\pi\)
\(312\) 14.4566 8.61024i 0.818446 0.487459i
\(313\) 0.445796 + 0.445796i 0.0251979 + 0.0251979i 0.719593 0.694396i \(-0.244328\pi\)
−0.694396 + 0.719593i \(0.744328\pi\)
\(314\) −9.76780 5.63944i −0.551229 0.318252i
\(315\) 0 0
\(316\) 0.176842 + 0.306299i 0.00994814 + 0.0172307i
\(317\) 12.5839 12.5839i 0.706781 0.706781i −0.259076 0.965857i \(-0.583418\pi\)
0.965857 + 0.259076i \(0.0834179\pi\)
\(318\) −7.91300 6.82335i −0.443739 0.382634i
\(319\) 2.36919 + 4.10356i 0.132649 + 0.229755i
\(320\) 0 0
\(321\) 15.9978 1.18293i 0.892912 0.0660245i
\(322\) −4.42917 16.5299i −0.246828 0.921174i
\(323\) −10.9837 + 2.94307i −0.611148 + 0.163757i
\(324\) −1.50429 0.349626i −0.0835719 0.0194237i
\(325\) 0 0
\(326\) 10.3276i 0.571995i
\(327\) 23.5112 + 4.47271i 1.30017 + 0.247341i
\(328\) 2.99406 0.802257i 0.165319 0.0442972i
\(329\) 8.95569 + 15.5117i 0.493743 + 0.855188i
\(330\) 0 0
\(331\) −12.2822 + 7.09113i −0.675091 + 0.389764i −0.798003 0.602654i \(-0.794110\pi\)
0.122912 + 0.992418i \(0.460777\pi\)
\(332\) −1.45618 0.390182i −0.0799182 0.0214140i
\(333\) 2.94706 + 0.337972i 0.161498 + 0.0185208i
\(334\) 32.4946 18.7608i 1.77802 1.02654i
\(335\) 0 0
\(336\) −17.2862 25.4082i −0.943038 1.38613i
\(337\) 5.88105 5.88105i 0.320361 0.320361i −0.528544 0.848906i \(-0.677262\pi\)
0.848906 + 0.528544i \(0.177262\pi\)
\(338\) 2.69843 + 18.9663i 0.146775 + 1.03163i
\(339\) −2.24197 1.08241i −0.121767 0.0587886i
\(340\) 0 0
\(341\) 9.61657 + 5.55213i 0.520767 + 0.300665i
\(342\) 19.6740 8.53730i 1.06385 0.461644i
\(343\) 8.48328 8.48328i 0.458054 0.458054i
\(344\) −23.7840 + 13.7317i −1.28235 + 0.740365i
\(345\) 0 0
\(346\) 28.2246i 1.51736i
\(347\) 1.26288 4.71314i 0.0677950 0.253014i −0.923708 0.383097i \(-0.874858\pi\)
0.991503 + 0.130082i \(0.0415242\pi\)
\(348\) −0.0615435 + 0.323510i −0.00329908 + 0.0173419i
\(349\) −6.13414 + 10.6246i −0.328353 + 0.568724i −0.982185 0.187916i \(-0.939827\pi\)
0.653832 + 0.756640i \(0.273160\pi\)
\(350\) 0 0
\(351\) −10.9498 + 15.2021i −0.584455 + 0.811426i
\(352\) −2.92756 + 2.92756i −0.156039 + 0.156039i
\(353\) −10.4429 + 2.79817i −0.555820 + 0.148932i −0.525785 0.850617i \(-0.676229\pi\)
−0.0300349 + 0.999549i \(0.509562\pi\)
\(354\) 12.5121 + 18.3910i 0.665010 + 0.977471i
\(355\) 0 0
\(356\) −0.648882 −0.0343907
\(357\) −12.6462 10.9048i −0.669310 0.577143i
\(358\) 8.59563 + 2.30319i 0.454293 + 0.121727i
\(359\) 37.2979i 1.96851i −0.176755 0.984255i \(-0.556560\pi\)
0.176755 0.984255i \(-0.443440\pi\)
\(360\) 0 0
\(361\) −2.26687 + 3.92633i −0.119309 + 0.206649i
\(362\) −2.12180 7.91865i −0.111519 0.416195i
\(363\) −4.15811 11.9211i −0.218244 0.625695i
\(364\) 2.49324 0.509463i 0.130681 0.0267031i
\(365\) 0 0
\(366\) 6.93940 4.72114i 0.362728 0.246778i
\(367\) 0.169976 + 0.634359i 0.00887268 + 0.0331133i 0.970220 0.242224i \(-0.0778770\pi\)
−0.961348 + 0.275338i \(0.911210\pi\)
\(368\) 11.7645 + 3.15230i 0.613269 + 0.164325i
\(369\) −2.70256 + 2.14647i −0.140690 + 0.111741i
\(370\) 0 0
\(371\) 8.41857 + 14.5814i 0.437071 + 0.757028i
\(372\) 0.254165 + 0.728677i 0.0131778 + 0.0377801i
\(373\) 8.68391 32.4088i 0.449636 1.67806i −0.253762 0.967267i \(-0.581668\pi\)
0.703398 0.710796i \(-0.251665\pi\)
\(374\) −7.38613 + 12.7932i −0.381928 + 0.661518i
\(375\) 0 0
\(376\) −11.7336 −0.605113
\(377\) 3.33315 + 2.20209i 0.171666 + 0.113413i
\(378\) 26.6170 + 16.8352i 1.36903 + 0.865909i
\(379\) 8.79891 15.2402i 0.451969 0.782834i −0.546539 0.837434i \(-0.684055\pi\)
0.998508 + 0.0545997i \(0.0173883\pi\)
\(380\) 0 0
\(381\) 0.380286 + 5.14297i 0.0194827 + 0.263482i
\(382\) −3.14806 3.14806i −0.161069 0.161069i
\(383\) 5.41553 20.2110i 0.276721 1.03274i −0.677959 0.735100i \(-0.737135\pi\)
0.954680 0.297635i \(-0.0961980\pi\)
\(384\) 21.6740 1.60264i 1.10605 0.0817844i
\(385\) 0 0
\(386\) 4.46957 2.58051i 0.227495 0.131344i
\(387\) 18.2068 24.5673i 0.925505 1.24883i
\(388\) −0.225945 0.843237i −0.0114706 0.0428089i
\(389\) −9.74450 −0.494066 −0.247033 0.969007i \(-0.579456\pi\)
−0.247033 + 0.969007i \(0.579456\pi\)
\(390\) 0 0
\(391\) 6.61812 0.334693
\(392\) 6.91564 + 25.8095i 0.349293 + 1.30358i
\(393\) 0.848313 4.45924i 0.0427918 0.224939i
\(394\) −5.92388 + 3.42015i −0.298441 + 0.172305i
\(395\) 0 0
\(396\) 0.808389 2.04779i 0.0406231 0.102906i
\(397\) −0.748237 + 2.79246i −0.0375530 + 0.140150i −0.982157 0.188062i \(-0.939779\pi\)
0.944604 + 0.328212i \(0.106446\pi\)
\(398\) −4.73125 4.73125i −0.237156 0.237156i
\(399\) −34.4653 + 2.54847i −1.72542 + 0.127583i
\(400\) 0 0
\(401\) 0.557130 0.964978i 0.0278218 0.0481887i −0.851779 0.523901i \(-0.824476\pi\)
0.879601 + 0.475712i \(0.157810\pi\)
\(402\) 5.18353 + 14.8609i 0.258531 + 0.741194i
\(403\) 9.34489 + 0.563582i 0.465502 + 0.0280740i
\(404\) −3.36013 −0.167173
\(405\) 0 0
\(406\) 3.35778 5.81584i 0.166644 0.288635i
\(407\) −1.09446 + 4.08458i −0.0542504 + 0.202465i
\(408\) 10.3288 3.60271i 0.511351 0.178361i
\(409\) 6.17475 + 10.6950i 0.305322 + 0.528833i 0.977333 0.211708i \(-0.0679027\pi\)
−0.672011 + 0.740541i \(0.734569\pi\)
\(410\) 0 0
\(411\) 16.1862 + 7.81463i 0.798406 + 0.385467i
\(412\) 2.73824 + 0.733710i 0.134904 + 0.0361473i
\(413\) −9.27711 34.6226i −0.456497 1.70367i
\(414\) −12.3463 + 1.83589i −0.606789 + 0.0902288i
\(415\) 0 0
\(416\) −1.10475 + 3.31111i −0.0541649 + 0.162340i
\(417\) 3.18308 1.11027i 0.155876 0.0543700i
\(418\) 7.91280 + 29.5310i 0.387028 + 1.44441i
\(419\) 9.48656 16.4312i 0.463449 0.802717i −0.535681 0.844420i \(-0.679945\pi\)
0.999130 + 0.0417034i \(0.0132785\pi\)
\(420\) 0 0
\(421\) 30.3717i 1.48022i −0.672484 0.740112i \(-0.734772\pi\)
0.672484 0.740112i \(-0.265228\pi\)
\(422\) 17.2813 + 4.63051i 0.841241 + 0.225410i
\(423\) 11.9847 5.20061i 0.582715 0.252862i
\(424\) −11.0299 −0.535657
\(425\) 0 0
\(426\) −18.5195 + 12.5995i −0.897272 + 0.610447i
\(427\) −13.0640 + 3.50049i −0.632212 + 0.169401i
\(428\) −1.12379 + 1.12379i −0.0543203 + 0.0543203i
\(429\) −19.1395 18.6269i −0.924065 0.899316i
\(430\) 0 0
\(431\) 13.0681 22.6347i 0.629469 1.09027i −0.358189 0.933649i \(-0.616606\pi\)
0.987658 0.156624i \(-0.0500611\pi\)
\(432\) −19.8484 + 10.4148i −0.954958 + 0.501083i
\(433\) −2.31995 + 8.65818i −0.111490 + 0.416086i −0.999000 0.0447016i \(-0.985766\pi\)
0.887511 + 0.460787i \(0.152433\pi\)
\(434\) 15.7377i 0.755433i
\(435\) 0 0
\(436\) −2.05343 + 1.18555i −0.0983414 + 0.0567774i
\(437\) 9.68515 9.68515i 0.463304 0.463304i
\(438\) −21.8749 18.8627i −1.04523 0.901294i
\(439\) 14.8493 + 8.57324i 0.708718 + 0.409179i 0.810586 0.585619i \(-0.199149\pi\)
−0.101868 + 0.994798i \(0.532482\pi\)
\(440\) 0 0
\(441\) −18.5031 23.2967i −0.881099 1.10937i
\(442\) −0.749747 + 12.4317i −0.0356618 + 0.591317i
\(443\) −16.8516 + 16.8516i −0.800642 + 0.800642i −0.983196 0.182554i \(-0.941564\pi\)
0.182554 + 0.983196i \(0.441564\pi\)
\(444\) −0.242985 + 0.165312i −0.0115315 + 0.00784535i
\(445\) 0 0
\(446\) 22.2903 12.8693i 1.05547 0.609378i
\(447\) 16.1672 5.63915i 0.764681 0.266723i
\(448\) −28.6081 7.66552i −1.35161 0.362162i
\(449\) 5.80271 3.35020i 0.273847 0.158105i −0.356788 0.934185i \(-0.616128\pi\)
0.630634 + 0.776080i \(0.282795\pi\)
\(450\) 0 0
\(451\) −2.45994 4.26074i −0.115834 0.200630i
\(452\) 0.238245 0.0638377i 0.0112061 0.00300267i
\(453\) 6.48521 34.0901i 0.304702 1.60169i
\(454\) 14.1354i 0.663407i
\(455\) 0 0
\(456\) 9.84314 20.3878i 0.460947 0.954744i
\(457\) 35.9291 9.62717i 1.68069 0.450340i 0.712731 0.701438i \(-0.247458\pi\)
0.967962 + 0.251097i \(0.0807915\pi\)
\(458\) 2.13647 + 7.97341i 0.0998306 + 0.372573i
\(459\) −8.95302 + 8.25778i −0.417891 + 0.385440i
\(460\) 0 0
\(461\) −4.19385 7.26397i −0.195327 0.338317i 0.751681 0.659527i \(-0.229244\pi\)
−0.947008 + 0.321211i \(0.895910\pi\)
\(462\) −29.3189 + 34.0010i −1.36404 + 1.58187i
\(463\) 7.19262 7.19262i 0.334269 0.334269i −0.519936 0.854205i \(-0.674044\pi\)
0.854205 + 0.519936i \(0.174044\pi\)
\(464\) 2.38977 + 4.13921i 0.110942 + 0.192158i
\(465\) 0 0
\(466\) 34.8048 + 20.0946i 1.61230 + 0.930863i
\(467\) 20.1687 + 20.1687i 0.933297 + 0.933297i 0.997910 0.0646132i \(-0.0205814\pi\)
−0.0646132 + 0.997910i \(0.520581\pi\)
\(468\) −0.161984 1.84904i −0.00748770 0.0854721i
\(469\) 25.3622i 1.17112i
\(470\) 0 0
\(471\) 10.9606 7.45693i 0.505039 0.343597i
\(472\) 22.6810 + 6.07734i 1.04398 + 0.279732i
\(473\) 30.8232 + 30.8232i 1.41725 + 1.41725i
\(474\) −5.24647 + 0.387939i −0.240978 + 0.0178186i
\(475\) 0 0
\(476\) 1.65437 0.0758280
\(477\) 11.2659 4.88870i 0.515831 0.223838i
\(478\) 24.6868 6.61480i 1.12915 0.302554i
\(479\) −10.4307 6.02217i −0.476591 0.275160i 0.242404 0.970175i \(-0.422064\pi\)
−0.718995 + 0.695016i \(0.755397\pi\)
\(480\) 0 0
\(481\) 0.713746 + 3.49297i 0.0325440 + 0.159266i
\(482\) 1.74212 + 1.74212i 0.0793515 + 0.0793515i
\(483\) 19.7596 + 3.75900i 0.899091 + 0.171040i
\(484\) 1.08326 + 0.625419i 0.0492390 + 0.0284281i
\(485\) 0 0
\(486\) 14.4115 17.8888i 0.653717 0.811452i
\(487\) −10.3784 + 38.7327i −0.470290 + 1.75515i 0.168435 + 0.985713i \(0.446129\pi\)
−0.638726 + 0.769434i \(0.720538\pi\)
\(488\) 2.29314 8.55811i 0.103806 0.387408i
\(489\) −10.9314 5.27762i −0.494333 0.238662i
\(490\) 0 0
\(491\) −16.8964 9.75516i −0.762525 0.440244i 0.0676765 0.997707i \(-0.478441\pi\)
−0.830202 + 0.557463i \(0.811775\pi\)
\(492\) 0.0639008 0.335901i 0.00288087 0.0151436i
\(493\) 1.83643 + 1.83643i 0.0827088 + 0.0827088i
\(494\) 17.0958 + 19.2902i 0.769175 + 0.867906i
\(495\) 0 0
\(496\) 9.70011 + 5.60036i 0.435548 + 0.251464i
\(497\) 34.8645 9.34191i 1.56389 0.419042i
\(498\) 14.6435 16.9820i 0.656192 0.760982i
\(499\) 7.54758 0.337876 0.168938 0.985627i \(-0.445966\pi\)
0.168938 + 0.985627i \(0.445966\pi\)
\(500\) 0 0
\(501\) 3.25210 + 43.9812i 0.145293 + 1.96494i
\(502\) −8.19769 8.19769i −0.365881 0.365881i
\(503\) 30.7880 + 8.24963i 1.37277 + 0.367833i 0.868490 0.495707i \(-0.165091\pi\)
0.504281 + 0.863540i \(0.331758\pi\)
\(504\) 32.8847 4.88991i 1.46480 0.217814i
\(505\) 0 0
\(506\) 17.7936i 0.791023i
\(507\) −21.4539 6.83594i −0.952801 0.303595i
\(508\) −0.361274 0.361274i −0.0160290 0.0160290i
\(509\) 8.77183 + 5.06442i 0.388804 + 0.224476i 0.681642 0.731686i \(-0.261266\pi\)
−0.292838 + 0.956162i \(0.594600\pi\)
\(510\) 0 0
\(511\) 23.2726 + 40.3093i 1.02952 + 1.78318i
\(512\) 13.4843 13.4843i 0.595930 0.595930i
\(513\) −1.01744 + 25.1868i −0.0449209 + 1.11202i
\(514\) 7.01724 + 12.1542i 0.309517 + 0.536099i
\(515\) 0 0
\(516\) 0.223399 + 3.02124i 0.00983460 + 0.133003i
\(517\) 4.82019 + 17.9892i 0.211992 + 0.791163i
\(518\) 5.78894 1.55114i 0.254351 0.0681533i
\(519\) 29.8745 + 14.4233i 1.31135 + 0.633113i
\(520\) 0 0
\(521\) 27.9873i 1.22615i −0.790026 0.613074i \(-0.789933\pi\)
0.790026 0.613074i \(-0.210067\pi\)
\(522\) −3.93536 2.91650i −0.172246 0.127652i
\(523\) 15.7570 4.22208i 0.689007 0.184619i 0.102705 0.994712i \(-0.467250\pi\)
0.586301 + 0.810093i \(0.300583\pi\)
\(524\) 0.224856 + 0.389462i 0.00982288 + 0.0170137i
\(525\) 0 0
\(526\) −30.0345 + 17.3404i −1.30956 + 0.756078i
\(527\) 5.87886 + 1.57524i 0.256087 + 0.0686184i
\(528\) −10.5236 30.1705i −0.457980 1.31300i
\(529\) 13.0149 7.51414i 0.565864 0.326702i
\(530\) 0 0
\(531\) −25.8600 + 3.84535i −1.12223 + 0.166874i
\(532\) 2.42106 2.42106i 0.104966 0.104966i
\(533\) −3.46081 2.28643i −0.149905 0.0990364i
\(534\) 4.19631 8.69168i 0.181592 0.376126i
\(535\) 0 0
\(536\) 14.3886 + 8.30725i 0.621492 + 0.358819i
\(537\) −6.83036 + 7.92112i −0.294752 + 0.341822i
\(538\) −12.4053 + 12.4053i −0.534829 + 0.534829i
\(539\) 36.7286 21.2053i 1.58201 0.913376i
\(540\) 0 0
\(541\) 1.73534i 0.0746081i 0.999304 + 0.0373041i \(0.0118770\pi\)
−0.999304 + 0.0373041i \(0.988123\pi\)
\(542\) −7.68123 + 28.6667i −0.329937 + 1.23134i
\(543\) 9.46582 + 1.80075i 0.406217 + 0.0772776i
\(544\) −1.13462 + 1.96522i −0.0486464 + 0.0842580i
\(545\) 0 0
\(546\) −9.29955 + 36.6913i −0.397984 + 1.57024i
\(547\) 11.2029 11.2029i 0.479001 0.479001i −0.425811 0.904812i \(-0.640011\pi\)
0.904812 + 0.425811i \(0.140011\pi\)
\(548\) −1.72005 + 0.460885i −0.0734767 + 0.0196880i
\(549\) 1.45095 + 9.75765i 0.0619251 + 0.416446i
\(550\) 0 0
\(551\) 5.37498 0.228982
\(552\) −8.60472 + 9.97884i −0.366241 + 0.424728i
\(553\) 8.18851 + 2.19410i 0.348211 + 0.0933028i
\(554\) 6.48371i 0.275466i
\(555\) 0 0
\(556\) −0.166995 + 0.289243i −0.00708215 + 0.0122666i
\(557\) −10.8998 40.6785i −0.461838 1.72360i −0.667166 0.744909i \(-0.732493\pi\)
0.205328 0.978693i \(-0.434174\pi\)
\(558\) −11.4042 1.30785i −0.482778 0.0553655i
\(559\) 34.8615 + 11.6315i 1.47448 + 0.491961i
\(560\) 0 0
\(561\) −9.76654 14.3554i −0.412344 0.606087i
\(562\) 8.77762 + 32.7585i 0.370262 + 1.38184i
\(563\) −2.59466 0.695238i −0.109352 0.0293008i 0.203728 0.979028i \(-0.434694\pi\)
−0.313080 + 0.949727i \(0.601361\pi\)
\(564\) −0.562743 + 1.16559i −0.0236958 + 0.0490802i
\(565\) 0 0
\(566\) 10.0640 + 17.4314i 0.423022 + 0.732695i
\(567\) −31.4211 + 19.5699i −1.31956 + 0.821857i
\(568\) −6.11980 + 22.8394i −0.256781 + 0.958320i
\(569\) −5.33657 + 9.24321i −0.223721 + 0.387496i −0.955935 0.293579i \(-0.905154\pi\)
0.732214 + 0.681074i \(0.238487\pi\)
\(570\) 0 0
\(571\) −22.6560 −0.948123 −0.474061 0.880492i \(-0.657213\pi\)
−0.474061 + 0.880492i \(0.657213\pi\)
\(572\) 2.64117 + 0.159287i 0.110433 + 0.00666011i
\(573\) 4.94080 1.72337i 0.206405 0.0719946i
\(574\) −3.48639 + 6.03860i −0.145519 + 0.252046i
\(575\) 0 0
\(576\) −7.93217 + 20.0936i −0.330507 + 0.837234i
\(577\) 6.87604 + 6.87604i 0.286253 + 0.286253i 0.835597 0.549343i \(-0.185122\pi\)
−0.549343 + 0.835597i \(0.685122\pi\)
\(578\) 4.38831 16.3774i 0.182529 0.681209i
\(579\) 0.447320 + 6.04953i 0.0185900 + 0.251410i
\(580\) 0 0
\(581\) −31.2930 + 18.0670i −1.29825 + 0.749547i
\(582\) 12.7562 + 2.42671i 0.528762 + 0.100590i
\(583\) 4.53110 + 16.9103i 0.187659 + 0.700352i
\(584\) −30.4913 −1.26174
\(585\) 0 0
\(586\) 35.7517 1.47689
\(587\) −9.46089 35.3085i −0.390493 1.45734i −0.829323 0.558769i \(-0.811274\pi\)
0.438830 0.898570i \(-0.355393\pi\)
\(588\) 2.89555 + 0.550840i 0.119410 + 0.0227163i
\(589\) 10.9086 6.29805i 0.449479 0.259507i
\(590\) 0 0
\(591\) −0.592869 8.01793i −0.0243874 0.329814i
\(592\) −1.10397 + 4.12007i −0.0453728 + 0.169334i
\(593\) −28.7633 28.7633i −1.18117 1.18117i −0.979442 0.201727i \(-0.935345\pi\)
−0.201727 0.979442i \(-0.564655\pi\)
\(594\) 22.2021 + 24.0713i 0.910962 + 0.987658i
\(595\) 0 0
\(596\) −0.848182 + 1.46909i −0.0347429 + 0.0601764i
\(597\) 7.42559 2.59007i 0.303909 0.106004i
\(598\) −6.70509 13.4197i −0.274192 0.548774i
\(599\) −10.0471 −0.410513 −0.205256 0.978708i \(-0.565803\pi\)
−0.205256 + 0.978708i \(0.565803\pi\)
\(600\) 0 0
\(601\) −17.9309 + 31.0572i −0.731415 + 1.26685i 0.224864 + 0.974390i \(0.427806\pi\)
−0.956279 + 0.292458i \(0.905527\pi\)
\(602\) 15.9897 59.6743i 0.651691 2.43214i
\(603\) −18.3785 2.10767i −0.748430 0.0858308i
\(604\) 1.71899 + 2.97737i 0.0699446 + 0.121148i
\(605\) 0 0
\(606\) 21.7299 45.0084i 0.882717 1.82834i
\(607\) −10.9405 2.93149i −0.444060 0.118985i 0.0298588 0.999554i \(-0.490494\pi\)
−0.473919 + 0.880569i \(0.657161\pi\)
\(608\) 1.21552 + 4.53639i 0.0492960 + 0.183975i
\(609\) 4.43993 + 6.52606i 0.179915 + 0.264449i
\(610\) 0 0
\(611\) 10.4141 + 11.7509i 0.421310 + 0.475389i
\(612\) 0.137483 1.19883i 0.00555741 0.0484597i
\(613\) 5.16141 + 19.2626i 0.208467 + 0.778011i 0.988365 + 0.152103i \(0.0486046\pi\)
−0.779897 + 0.625908i \(0.784729\pi\)
\(614\) 13.4369 23.2734i 0.542270 0.939239i
\(615\) 0 0
\(616\) 47.3936i 1.90954i
\(617\) −17.9740 4.81611i −0.723605 0.193889i −0.121825 0.992552i \(-0.538875\pi\)
−0.601780 + 0.798662i \(0.705541\pi\)
\(618\) −27.5361 + 31.9335i −1.10767 + 1.28455i
\(619\) −36.0310 −1.44821 −0.724104 0.689691i \(-0.757746\pi\)
−0.724104 + 0.689691i \(0.757746\pi\)
\(620\) 0 0
\(621\) 4.36600 14.0062i 0.175202 0.562051i
\(622\) 11.9493 3.20182i 0.479125 0.128381i
\(623\) −10.9976 + 10.9976i −0.440608 + 0.440608i
\(624\) −19.3058 18.7887i −0.772850 0.752151i
\(625\) 0 0
\(626\) 0.464527 0.804584i 0.0185662 0.0321576i
\(627\) −35.3008 6.71553i −1.40978 0.268192i
\(628\) −0.339928 + 1.26863i −0.0135646 + 0.0506238i
\(629\) 2.31773i 0.0924141i
\(630\) 0 0
\(631\) 28.1867 16.2736i 1.12209 0.647841i 0.180159 0.983637i \(-0.442339\pi\)
0.941935 + 0.335796i \(0.109005\pi\)
\(632\) −3.92688 + 3.92688i −0.156203 + 0.156203i
\(633\) −13.7323 + 15.9252i −0.545809 + 0.632971i
\(634\) −22.7117 13.1126i −0.901998 0.520769i
\(635\) 0 0
\(636\) −0.528993 + 1.09568i −0.0209759 + 0.0434467i
\(637\) 19.7096 29.8330i 0.780923 1.18203i
\(638\) 4.93748 4.93748i 0.195477 0.195477i
\(639\) −3.87221 26.0406i −0.153182 1.03015i
\(640\) 0 0
\(641\) −5.53230 + 3.19407i −0.218513 + 0.126158i −0.605261 0.796027i \(-0.706931\pi\)
0.386749 + 0.922185i \(0.373598\pi\)
\(642\) −7.78545 22.3205i −0.307267 0.880919i
\(643\) −31.0990 8.33296i −1.22643 0.328620i −0.413239 0.910623i \(-0.635602\pi\)
−0.813187 + 0.582003i \(0.802269\pi\)
\(644\) −1.72576 + 0.996370i −0.0680046 + 0.0392625i
\(645\) 0 0
\(646\) 8.37845 + 14.5119i 0.329646 + 0.570963i
\(647\) −16.6403 + 4.45875i −0.654196 + 0.175291i −0.570625 0.821210i \(-0.693299\pi\)
−0.0835709 + 0.996502i \(0.526633\pi\)
\(648\) −0.810632 24.2360i −0.0318446 0.952080i
\(649\) 37.2696i 1.46296i
\(650\) 0 0
\(651\) 16.6577 + 8.04226i 0.652865 + 0.315201i
\(652\) 1.16163 0.311259i 0.0454931 0.0121898i
\(653\) −6.06514 22.6354i −0.237347 0.885791i −0.977077 0.212887i \(-0.931713\pi\)
0.739730 0.672904i \(-0.234953\pi\)
\(654\) −2.60074 35.1723i −0.101697 1.37535i
\(655\) 0 0
\(656\) −2.48131 4.29775i −0.0968789 0.167799i
\(657\) 31.1438 13.5145i 1.21504 0.527250i
\(658\) 18.6640 18.6640i 0.727597 0.727597i
\(659\) 6.20035 + 10.7393i 0.241532 + 0.418345i 0.961151 0.276024i \(-0.0890169\pi\)
−0.719619 + 0.694369i \(0.755684\pi\)
\(660\) 0 0
\(661\) −19.8030 11.4332i −0.770246 0.444702i 0.0627164 0.998031i \(-0.480024\pi\)
−0.832962 + 0.553330i \(0.813357\pi\)
\(662\) 14.7782 + 14.7782i 0.574370 + 0.574370i
\(663\) −12.7753 7.14642i −0.496152 0.277544i
\(664\) 23.6711i 0.918616i
\(665\) 0 0
\(666\) −0.642947 4.32382i −0.0249137 0.167545i
\(667\) −3.02170 0.809663i −0.117001 0.0313503i
\(668\) −3.08951 3.08951i −0.119537 0.119537i
\(669\) 2.23084 + 30.1697i 0.0862491 + 1.16643i
\(670\) 0 0
\(671\) −14.0628 −0.542888
\(672\) −4.50382 + 5.22305i −0.173739 + 0.201484i
\(673\) 6.79109 1.81967i 0.261777 0.0701431i −0.125543 0.992088i \(-0.540067\pi\)
0.387321 + 0.921945i \(0.373401\pi\)
\(674\) −10.6143 6.12816i −0.408847 0.236048i
\(675\) 0 0
\(676\) 2.05196 0.875128i 0.0789217 0.0336588i
\(677\) 26.7622 + 26.7622i 1.02856 + 1.02856i 0.999580 + 0.0289760i \(0.00922463\pi\)
0.0289760 + 0.999580i \(0.490775\pi\)
\(678\) −0.685634 + 3.60410i −0.0263316 + 0.138415i
\(679\) −18.1210 10.4622i −0.695420 0.401501i
\(680\) 0 0
\(681\) −14.9617 7.22346i −0.573334 0.276804i
\(682\) 4.23522 15.8060i 0.162175 0.605245i
\(683\) 2.67180 9.97129i 0.102234 0.381541i −0.895783 0.444491i \(-0.853384\pi\)
0.998017 + 0.0629506i \(0.0200511\pi\)
\(684\) −1.55320 1.95560i −0.0593883 0.0747741i
\(685\) 0 0
\(686\) −15.3108 8.83972i −0.584571 0.337502i
\(687\) −9.53128 1.81320i −0.363641 0.0691780i
\(688\) 31.0909 + 31.0909i 1.18533 + 1.18533i
\(689\) 9.78953 + 11.0461i 0.372951 + 0.420823i
\(690\) 0 0
\(691\) −21.8645 12.6235i −0.831765 0.480220i 0.0226915 0.999743i \(-0.492776\pi\)
−0.854457 + 0.519523i \(0.826110\pi\)
\(692\) −3.17465 + 0.850645i −0.120682 + 0.0323367i
\(693\) −21.0060 48.4079i −0.797953 1.83887i
\(694\) −7.19045 −0.272946
\(695\) 0 0
\(696\) −5.15667 + 0.381299i −0.195463 + 0.0144531i
\(697\) −1.90677 1.90677i −0.0722242 0.0722242i
\(698\) 17.4629 + 4.67918i 0.660982 + 0.177110i
\(699\) −39.0551 + 26.5707i −1.47720 + 1.00499i
\(700\) 0 0
\(701\) 5.83428i 0.220358i −0.993912 0.110179i \(-0.964858\pi\)
0.993912 0.110179i \(-0.0351424\pi\)
\(702\) 25.8152 + 9.78800i 0.974333 + 0.369424i
\(703\) 3.39184 + 3.39184i 0.127926 + 0.127926i
\(704\) −26.6695 15.3976i −1.00514 0.580320i
\(705\) 0 0
\(706\) 7.96595 + 13.7974i 0.299803 + 0.519273i
\(707\) −56.9490 + 56.9490i −2.14179 + 2.14179i
\(708\) 1.69149 1.96161i 0.0635702 0.0737220i
\(709\) 9.66759 + 16.7448i 0.363074 + 0.628863i 0.988465 0.151449i \(-0.0483939\pi\)
−0.625391 + 0.780311i \(0.715061\pi\)
\(710\) 0 0
\(711\) 2.27043 5.75141i 0.0851478 0.215695i
\(712\) −2.63699 9.84138i −0.0988254 0.368821i
\(713\) −7.08126 + 1.89742i −0.265195 + 0.0710589i
\(714\) −10.6988 + 22.1601i −0.400393 + 0.829320i
\(715\) 0 0
\(716\) 1.03624i 0.0387259i
\(717\) −5.61392 + 29.5101i −0.209656 + 1.10208i
\(718\) −53.0907 + 14.2256i −1.98133 + 0.530895i
\(719\) 19.2268 + 33.3018i 0.717038 + 1.24195i 0.962168 + 0.272456i \(0.0878359\pi\)
−0.245130 + 0.969490i \(0.578831\pi\)
\(720\) 0 0
\(721\) 58.8443 33.9738i 2.19148 1.26525i
\(722\) 6.45341 + 1.72919i 0.240171 + 0.0643537i
\(723\) −2.73422 + 0.953703i −0.101687 + 0.0354686i
\(724\) −0.826728 + 0.477312i −0.0307251 + 0.0177391i
\(725\) 0 0
\(726\) −15.3828 + 10.4655i −0.570910 + 0.388411i
\(727\) −24.8141 + 24.8141i −0.920304 + 0.920304i −0.997051 0.0767466i \(-0.975547\pi\)
0.0767466 + 0.997051i \(0.475547\pi\)
\(728\) 17.8591 + 35.7437i 0.661904 + 1.32475i
\(729\) 11.5700 + 24.3954i 0.428518 + 0.903533i
\(730\) 0 0
\(731\) 20.6911 + 11.9460i 0.765287 + 0.441838i
\(732\) −0.740168 0.638244i −0.0273574 0.0235902i
\(733\) 28.6087 28.6087i 1.05668 1.05668i 0.0583912 0.998294i \(-0.481403\pi\)
0.998294 0.0583912i \(-0.0185971\pi\)
\(734\) 0.838131 0.483895i 0.0309360 0.0178609i
\(735\) 0 0
\(736\) 2.73337i 0.100753i
\(737\) 6.82529 25.4723i 0.251413 0.938285i
\(738\) 4.08610 + 3.02821i 0.150411 + 0.111470i
\(739\) −7.80807 + 13.5240i −0.287225 + 0.497488i −0.973146 0.230188i \(-0.926066\pi\)
0.685922 + 0.727675i \(0.259399\pi\)
\(740\) 0 0
\(741\) −29.1541 + 8.23748i −1.07100 + 0.302611i
\(742\) 17.5446 17.5446i 0.644082 0.644082i
\(743\) 7.86421 2.10721i 0.288510 0.0773060i −0.111661 0.993746i \(-0.535617\pi\)
0.400171 + 0.916440i \(0.368951\pi\)
\(744\) −10.0187 + 6.81610i −0.367304 + 0.249890i
\(745\) 0 0
\(746\) −49.4434 −1.81025
\(747\) 10.4916 + 24.1777i 0.383868 + 0.884615i
\(748\) 1.66156 + 0.445213i 0.0607525 + 0.0162786i
\(749\) 38.0930i 1.39189i
\(750\) 0 0
\(751\) −5.93245 + 10.2753i −0.216478 + 0.374951i −0.953729 0.300668i \(-0.902790\pi\)
0.737251 + 0.675619i \(0.236124\pi\)
\(752\) 4.86206 + 18.1454i 0.177301 + 0.661696i
\(753\) 12.8661 4.48772i 0.468866 0.163542i
\(754\) 1.86322 5.58436i 0.0678545 0.203370i
\(755\) 0 0
\(756\) 1.09140 3.50122i 0.0396937 0.127338i
\(757\) −2.28233 8.51775i −0.0829525 0.309583i 0.911966 0.410266i \(-0.134564\pi\)
−0.994919 + 0.100683i \(0.967897\pi\)
\(758\) −25.0491 6.71189i −0.909825 0.243787i
\(759\) 18.8338 + 9.09288i 0.683623 + 0.330051i
\(760\) 0 0
\(761\) −6.00928 10.4084i −0.217836 0.377304i 0.736310 0.676645i \(-0.236567\pi\)
−0.954146 + 0.299341i \(0.903233\pi\)
\(762\) 7.17558 2.50286i 0.259944 0.0906691i
\(763\) −14.7093 + 54.8957i −0.532511 + 1.98736i
\(764\) −0.259210 + 0.448965i −0.00937790 + 0.0162430i
\(765\) 0 0
\(766\) −30.8343 −1.11409
\(767\) −14.0441 28.1083i −0.507105 1.01493i
\(768\) −2.33248 6.68711i −0.0841662 0.241300i
\(769\) 6.86300 11.8871i 0.247486 0.428658i −0.715342 0.698775i \(-0.753729\pi\)
0.962828 + 0.270117i \(0.0870622\pi\)
\(770\) 0 0
\(771\) −16.4506 + 1.21641i −0.592455 + 0.0438079i
\(772\) −0.424956 0.424956i −0.0152945 0.0152945i
\(773\) 5.58461 20.8420i 0.200864 0.749636i −0.789806 0.613357i \(-0.789819\pi\)
0.990670 0.136279i \(-0.0435144\pi\)
\(774\) −41.9138 16.5459i −1.50656 0.594730i
\(775\) 0 0
\(776\) 11.8709 6.85366i 0.426140 0.246032i
\(777\) −1.31644 + 6.92000i −0.0472271 + 0.248254i
\(778\) 3.71660 + 13.8705i 0.133247 + 0.497283i
\(779\) −5.58086 −0.199955
\(780\) 0 0
\(781\) 37.5300 1.34293
\(782\) −2.52418 9.42037i −0.0902645 0.336872i
\(783\) 5.09803 2.67503i 0.182189 0.0955976i
\(784\) 37.0477 21.3895i 1.32313 0.763910i
\(785\) 0 0
\(786\) −6.67093 + 0.493268i −0.237944 + 0.0175943i
\(787\) −4.45618 + 16.6307i −0.158846 + 0.592820i 0.839900 + 0.542742i \(0.182614\pi\)
−0.998745 + 0.0500781i \(0.984053\pi\)
\(788\) 0.563229 + 0.563229i 0.0200642 + 0.0200642i
\(789\) −3.00589 40.6515i −0.107012 1.44723i
\(790\) 0 0
\(791\) 2.95595 5.11985i 0.105101 0.182041i
\(792\) 34.3435 + 3.93854i 1.22034 + 0.139950i
\(793\) −10.6060 + 5.29922i −0.376630 + 0.188181i
\(794\) 4.26023 0.151190
\(795\) 0 0
\(796\) −0.389570 + 0.674755i −0.0138080 + 0.0239161i
\(797\) −11.9555 + 44.6186i −0.423486 + 1.58047i 0.343721 + 0.939072i \(0.388313\pi\)
−0.767207 + 0.641400i \(0.778354\pi\)
\(798\) 16.7728 + 48.0867i 0.593750 + 1.70225i
\(799\) 5.10384 + 8.84011i 0.180561 + 0.312741i
\(800\) 0 0
\(801\) 7.05537 + 8.88323i 0.249289 + 0.313873i
\(802\) −1.58606 0.424984i −0.0560058 0.0150067i
\(803\) 12.5259 + 46.7473i 0.442030 + 1.64968i
\(804\) 1.51530 1.03092i 0.0534407 0.0363577i
\(805\) 0 0
\(806\) −2.76197 13.5167i −0.0972863 0.476105i
\(807\) −6.79111 19.4698i −0.239058 0.685368i
\(808\) −13.6552 50.9620i −0.480389 1.79284i
\(809\) 6.99405 12.1140i 0.245898 0.425907i −0.716486 0.697602i \(-0.754251\pi\)
0.962384 + 0.271694i \(0.0875840\pi\)
\(810\) 0 0
\(811\) 19.5998i 0.688243i −0.938925 0.344122i \(-0.888177\pi\)
0.938925 0.344122i \(-0.111823\pi\)
\(812\) −0.755353 0.202396i −0.0265077 0.00710272i
\(813\) −26.4172 22.7795i −0.926493 0.798912i
\(814\) 6.23152 0.218415
\(815\) 0 0
\(816\) −9.85138 14.4801i −0.344867 0.506906i
\(817\) 47.7621 12.7978i 1.67098 0.447738i
\(818\) 12.8684 12.8684i 0.449933 0.449933i
\(819\) −34.0839 28.5931i −1.19099 0.999124i
\(820\) 0 0
\(821\) −4.61577 + 7.99475i −0.161091 + 0.279019i −0.935260 0.353960i \(-0.884835\pi\)
0.774169 + 0.632979i \(0.218168\pi\)
\(822\) 4.95003 26.0203i 0.172652 0.907562i
\(823\) −11.9403 + 44.5620i −0.416214 + 1.55333i 0.366177 + 0.930545i \(0.380667\pi\)
−0.782391 + 0.622788i \(0.786000\pi\)
\(824\) 44.5118i 1.55064i
\(825\) 0 0
\(826\) −45.7443 + 26.4105i −1.59165 + 0.918938i
\(827\) −31.7914 + 31.7914i −1.10549 + 1.10549i −0.111759 + 0.993735i \(0.535649\pi\)
−0.993735 + 0.111759i \(0.964351\pi\)
\(828\) 0.578596 + 1.33336i 0.0201076 + 0.0463376i
\(829\) 21.8064 + 12.5900i 0.757369 + 0.437267i 0.828350 0.560210i \(-0.189280\pi\)
−0.0709813 + 0.997478i \(0.522613\pi\)
\(830\) 0 0
\(831\) −6.86273 3.31330i −0.238065 0.114937i
\(832\) −25.9160 1.56297i −0.898477 0.0541863i
\(833\) 16.4368 16.4368i 0.569503 0.569503i
\(834\) −2.79442 4.10740i −0.0967628 0.142228i
\(835\) 0 0
\(836\) 3.08311 1.78003i 0.106632 0.0615638i
\(837\) 7.21206 11.4025i 0.249285 0.394129i
\(838\) −27.0068 7.23644i −0.932933 0.249979i
\(839\) 39.9358 23.0569i 1.37874 0.796014i 0.386730 0.922193i \(-0.373605\pi\)
0.992008 + 0.126179i \(0.0402713\pi\)
\(840\) 0 0
\(841\) 13.8862 + 24.0516i 0.478834 + 0.829365i
\(842\) −43.2317 + 11.5839i −1.48986 + 0.399207i
\(843\) −39.1590 7.44950i −1.34871 0.256574i
\(844\) 2.08333i 0.0717110i
\(845\) 0 0
\(846\) −11.9737 15.0757i −0.411663 0.518314i
\(847\) 28.9595 7.75966i 0.995059 0.266625i
\(848\) 4.57046 + 17.0572i 0.156950 + 0.585746i
\(849\) −23.5932 + 1.74455i −0.809718 + 0.0598729i
\(850\) 0 0
\(851\) −1.39589 2.41775i −0.0478505 0.0828795i
\(852\) 1.97532 + 1.70331i 0.0676732 + 0.0583544i
\(853\) 29.1777 29.1777i 0.999026 0.999026i −0.000973237 1.00000i \(-0.500310\pi\)
1.00000 0.000973237i \(0.000309791\pi\)
\(854\) 9.96536 + 17.2605i 0.341008 + 0.590642i
\(855\) 0 0
\(856\) −21.6111 12.4772i −0.738652 0.426461i
\(857\) −27.5270 27.5270i −0.940305 0.940305i 0.0580111 0.998316i \(-0.481524\pi\)
−0.998316 + 0.0580111i \(0.981524\pi\)
\(858\) −19.2140 + 34.3480i −0.655957 + 1.17262i
\(859\) 40.5927i 1.38500i 0.721416 + 0.692502i \(0.243492\pi\)
−0.721416 + 0.692502i \(0.756508\pi\)
\(860\) 0 0
\(861\) −4.60999 6.77603i −0.157108 0.230926i
\(862\) −37.2029 9.96849i −1.26714 0.339528i
\(863\) −28.4894 28.4894i −0.969792 0.969792i 0.0297651 0.999557i \(-0.490524\pi\)
−0.999557 + 0.0297651i \(0.990524\pi\)
\(864\) 3.41057 + 3.69771i 0.116030 + 0.125799i
\(865\) 0 0
\(866\) 13.2091 0.448863
\(867\) 15.0922 + 13.0140i 0.512559 + 0.441978i
\(868\) −1.77015 + 0.474310i −0.0600827 + 0.0160991i
\(869\) 7.63362 + 4.40727i 0.258953 + 0.149506i
\(870\) 0 0
\(871\) −4.45107 21.7829i −0.150819 0.738084i
\(872\) −26.3258 26.3258i −0.891503 0.891503i
\(873\) −9.08723 + 12.2618i −0.307556 + 0.414999i
\(874\) −17.4800 10.0921i −0.591270 0.341370i
\(875\) 0 0
\(876\) −1.46236 + 3.02895i −0.0494087 + 0.102339i
\(877\) 4.55671 17.0059i 0.153869 0.574248i −0.845330 0.534244i \(-0.820596\pi\)
0.999200 0.0400039i \(-0.0127370\pi\)
\(878\) 6.53975 24.4067i 0.220706 0.823686i
\(879\) −18.2698 + 37.8416i −0.616225 + 1.27637i
\(880\) 0 0
\(881\) 34.8199 + 20.1033i 1.17311 + 0.677297i 0.954411 0.298495i \(-0.0964847\pi\)
0.218701 + 0.975792i \(0.429818\pi\)
\(882\) −26.1039 + 35.2232i −0.878964 + 1.18603i
\(883\) 1.83119 + 1.83119i 0.0616243 + 0.0616243i 0.737247 0.675623i \(-0.236125\pi\)
−0.675623 + 0.737247i \(0.736125\pi\)
\(884\) 1.42089 0.290343i 0.0477899 0.00976528i
\(885\) 0 0
\(886\) 30.4142 + 17.5596i 1.02178 + 0.589927i
\(887\) 37.9885 10.1790i 1.27553 0.341777i 0.443381 0.896333i \(-0.353779\pi\)
0.832146 + 0.554557i \(0.187112\pi\)
\(888\) −3.49470 3.01346i −0.117274 0.101125i
\(889\) −12.2461 −0.410721
\(890\) 0 0
\(891\) −36.8241 + 11.1990i −1.23365 + 0.375182i
\(892\) −2.11931 2.11931i −0.0709597 0.0709597i
\(893\) 20.4060 + 5.46777i 0.682861 + 0.182972i
\(894\) −14.1931 20.8619i −0.474689 0.697726i
\(895\) 0 0
\(896\) 51.6087i 1.72413i
\(897\) 17.6306 0.239305i 0.588670 0.00799018i
\(898\) −6.98192 6.98192i −0.232990 0.232990i
\(899\) −2.49146 1.43844i −0.0830948 0.0479748i
\(900\) 0 0
\(901\) 4.79774 + 8.30993i 0.159836 + 0.276844i
\(902\) −5.12660 + 5.12660i −0.170697 + 0.170697i
\(903\) 54.9917 + 47.4191i 1.83001 + 1.57801i
\(904\) 1.93641 + 3.35396i 0.0644041 + 0.111551i
\(905\) 0 0
\(906\) −50.9981 + 3.77095i −1.69430 + 0.125281i
\(907\) −12.0894 45.1184i −0.401423 1.49813i −0.810559 0.585658i \(-0.800836\pi\)
0.409135 0.912474i \(-0.365830\pi\)
\(908\) 1.58993 0.426019i 0.0527635 0.0141379i
\(909\) 36.5351 + 46.0003i 1.21179 + 1.52573i
\(910\) 0 0
\(911\) 17.5547i 0.581613i 0.956782 + 0.290807i \(0.0939236\pi\)
−0.956782 + 0.290807i \(0.906076\pi\)
\(912\) −35.6075 6.77387i −1.17908 0.224305i
\(913\) −36.2910 + 9.72415i −1.20106 + 0.321822i
\(914\) −27.4071 47.4704i −0.906545 1.57018i
\(915\) 0 0
\(916\) 0.832445 0.480612i 0.0275048 0.0158799i
\(917\) 10.4118 + 2.78982i 0.343827 + 0.0921281i
\(918\) 15.1690 + 9.59437i 0.500653 + 0.316661i
\(919\) −28.1500 + 16.2524i −0.928583 + 0.536118i −0.886363 0.462991i \(-0.846776\pi\)
−0.0422199 + 0.999108i \(0.513443\pi\)
\(920\) 0 0
\(921\) 17.7674 + 26.1155i 0.585455 + 0.860536i
\(922\) −8.74013 + 8.74013i −0.287841 + 0.287841i
\(923\) 28.3047 14.1423i 0.931659 0.465498i
\(924\) 4.70800 + 2.27300i 0.154882 + 0.0747763i
\(925\) 0 0
\(926\) −12.9814 7.49483i −0.426596 0.246295i
\(927\) −19.7287 45.4644i −0.647976 1.49325i
\(928\) 0.758470 0.758470i 0.0248980 0.0248980i
\(929\) 22.2780 12.8622i 0.730916 0.421995i −0.0878410 0.996135i \(-0.527997\pi\)
0.818757 + 0.574140i \(0.194663\pi\)
\(930\) 0 0
\(931\) 48.1084i 1.57669i
\(932\) 1.21124 4.52040i 0.0396754 0.148071i
\(933\) −2.71736 + 14.2841i −0.0889623 + 0.467639i
\(934\) 21.0162 36.4010i 0.687670 1.19108i
\(935\) 0 0
\(936\) 27.3856 9.97109i 0.895126 0.325915i
\(937\) −19.2546 + 19.2546i −0.629022 + 0.629022i −0.947822 0.318800i \(-0.896720\pi\)
0.318800 + 0.947822i \(0.396720\pi\)
\(938\) −36.1010 + 9.67325i −1.17874 + 0.315843i
\(939\) 0.614235 + 0.902839i 0.0200448 + 0.0294630i
\(940\) 0 0
\(941\) −27.3108 −0.890306 −0.445153 0.895455i \(-0.646851\pi\)
−0.445153 + 0.895455i \(0.646851\pi\)
\(942\) −14.7948 12.7575i −0.482040 0.415662i
\(943\) 3.13744 + 0.840675i 0.102169 + 0.0273761i
\(944\) 37.5934i 1.22356i
\(945\) 0 0
\(946\) 32.1183 55.6305i 1.04426 1.80870i
\(947\) −0.725183 2.70642i −0.0235653 0.0879469i 0.953142 0.302524i \(-0.0978293\pi\)
−0.976707 + 0.214577i \(0.931163\pi\)
\(948\) 0.201755 + 0.578422i 0.00655271 + 0.0187863i
\(949\) 27.0625 + 30.5362i 0.878485 + 0.991247i
\(950\) 0 0
\(951\) 25.4853 17.3386i 0.826416 0.562242i
\(952\) 6.72320 + 25.0913i 0.217900 + 0.813215i
\(953\) −2.77028 0.742295i −0.0897382 0.0240453i 0.213671 0.976906i \(-0.431458\pi\)
−0.303409 + 0.952860i \(0.598125\pi\)
\(954\) −11.2556 14.1716i −0.364412 0.458821i
\(955\) 0 0
\(956\) −1.48804 2.57736i −0.0481267 0.0833579i
\(957\) 2.70296 + 7.74925i 0.0873743 + 0.250498i
\(958\) −4.59377 + 17.1442i −0.148418 + 0.553903i
\(959\) −21.3409 + 36.9634i −0.689132 + 1.19361i
\(960\) 0 0
\(961\) 24.2581 0.782519
\(962\) 4.69974 2.34820i 0.151526 0.0757089i
\(963\) 27.6038 + 3.16563i 0.889519 + 0.102011i
\(964\) 0.143446 0.248456i 0.00462008 0.00800222i
\(965\) 0 0
\(966\) −2.18574 29.5599i −0.0703251 0.951073i
\(967\) −34.7663 34.7663i −1.11801 1.11801i −0.992033 0.125975i \(-0.959794\pi\)
−0.125975 0.992033i \(-0.540206\pi\)
\(968\) −5.08328 + 18.9711i −0.163383 + 0.609753i
\(969\) −19.6418 + 1.45237i −0.630984 + 0.0466568i
\(970\) 0 0
\(971\) 43.8854 25.3373i 1.40835 0.813112i 0.413121 0.910676i \(-0.364439\pi\)
0.995229 + 0.0975644i \(0.0311052\pi\)
\(972\) −2.44644 1.08183i −0.0784695 0.0346998i
\(973\) 2.07193 + 7.73254i 0.0664229 + 0.247894i
\(974\) 59.0914 1.89341
\(975\) 0 0
\(976\) −14.1850 −0.454050
\(977\) −2.70297 10.0876i −0.0864755 0.322731i 0.909114 0.416547i \(-0.136760\pi\)
−0.995590 + 0.0938164i \(0.970093\pi\)
\(978\) −3.34301 + 17.5728i −0.106898 + 0.561917i
\(979\) −14.0049 + 8.08574i −0.447599 + 0.258421i
\(980\) 0 0
\(981\) 38.5574 + 15.2209i 1.23104 + 0.485967i
\(982\) −7.44133 + 27.7714i −0.237462 + 0.886221i
\(983\) 15.8387 + 15.8387i 0.505176 + 0.505176i 0.913042 0.407866i \(-0.133727\pi\)
−0.407866 + 0.913042i \(0.633727\pi\)
\(984\) 5.35419 0.395904i 0.170685 0.0126210i
\(985\) 0 0
\(986\) 1.91359 3.31444i 0.0609413 0.105553i
\(987\) 10.2174 + 29.2926i 0.325222 + 0.932395i
\(988\) 1.65448 2.50428i 0.0526361 0.0796717i
\(989\) −28.7786 −0.915107
\(990\) 0 0
\(991\) 12.4412 21.5489i 0.395209 0.684523i −0.597919 0.801557i \(-0.704005\pi\)
0.993128 + 0.117034i \(0.0373387\pi\)
\(992\) 0.650592 2.42804i 0.0206563 0.0770905i
\(993\) −23.1940 + 8.09012i −0.736038 + 0.256732i
\(994\) −26.5950 46.0638i −0.843541 1.46106i
\(995\) 0 0
\(996\) −2.35144 1.13527i −0.0745082 0.0359723i
\(997\) −49.9090 13.3731i −1.58063 0.423529i −0.641511 0.767114i \(-0.721692\pi\)
−0.939122 + 0.343585i \(0.888359\pi\)
\(998\) −2.87868 10.7434i −0.0911231 0.340076i
\(999\) 4.90513 + 1.52902i 0.155191 + 0.0483761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.368.7 96
3.2 odd 2 inner 975.2.bn.d.368.18 96
5.2 odd 4 inner 975.2.bn.d.407.18 96
5.3 odd 4 195.2.bf.a.17.7 96
5.4 even 2 195.2.bf.a.173.18 yes 96
13.10 even 6 inner 975.2.bn.d.218.7 96
15.2 even 4 inner 975.2.bn.d.407.7 96
15.8 even 4 195.2.bf.a.17.18 yes 96
15.14 odd 2 195.2.bf.a.173.7 yes 96
39.23 odd 6 inner 975.2.bn.d.218.18 96
65.23 odd 12 195.2.bf.a.62.7 yes 96
65.49 even 6 195.2.bf.a.23.18 yes 96
65.62 odd 12 inner 975.2.bn.d.257.18 96
195.23 even 12 195.2.bf.a.62.18 yes 96
195.62 even 12 inner 975.2.bn.d.257.7 96
195.179 odd 6 195.2.bf.a.23.7 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.7 96 5.3 odd 4
195.2.bf.a.17.18 yes 96 15.8 even 4
195.2.bf.a.23.7 yes 96 195.179 odd 6
195.2.bf.a.23.18 yes 96 65.49 even 6
195.2.bf.a.62.7 yes 96 65.23 odd 12
195.2.bf.a.62.18 yes 96 195.23 even 12
195.2.bf.a.173.7 yes 96 15.14 odd 2
195.2.bf.a.173.18 yes 96 5.4 even 2
975.2.bn.d.218.7 96 13.10 even 6 inner
975.2.bn.d.218.18 96 39.23 odd 6 inner
975.2.bn.d.257.7 96 195.62 even 12 inner
975.2.bn.d.257.18 96 65.62 odd 12 inner
975.2.bn.d.368.7 96 1.1 even 1 trivial
975.2.bn.d.368.18 96 3.2 odd 2 inner
975.2.bn.d.407.7 96 15.2 even 4 inner
975.2.bn.d.407.18 96 5.2 odd 4 inner