Properties

Label 975.2.bn.d.218.7
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.7
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42342 - 0.381405i) q^{2} +(-1.13110 + 1.31172i) q^{3} +(0.148609 + 0.0857994i) q^{4} +(2.11032 - 1.43573i) q^{6} +(-3.97287 + 1.06453i) q^{7} +(1.90523 + 1.90523i) q^{8} +(-0.441245 - 2.96737i) q^{9} +(2.13830 + 3.70364i) q^{11} +(-0.280636 + 0.0978867i) q^{12} +(3.59901 - 0.217053i) q^{13} +6.06108 q^{14} +(-2.15688 - 3.73582i) q^{16} +(2.26413 - 0.606673i) q^{17} +(-0.503692 + 4.39212i) q^{18} +(-2.42558 + 4.20123i) q^{19} +(3.09733 - 6.41539i) q^{21} +(-1.63112 - 6.08741i) q^{22} +(2.72722 + 0.730756i) q^{23} +(-4.65412 + 0.344139i) q^{24} +(-5.20570 - 1.06372i) q^{26} +(4.39147 + 2.77759i) q^{27} +(-0.681739 - 0.182671i) q^{28} +(0.553990 + 0.959539i) q^{29} +2.59652i q^{31} +(0.250564 + 0.935116i) q^{32} +(-7.27679 - 1.38431i) q^{33} -3.45421 q^{34} +(0.189026 - 0.478837i) q^{36} +(0.255918 - 0.955101i) q^{37} +(5.05499 - 5.05499i) q^{38} +(-3.78611 + 4.96642i) q^{39} +(0.575209 + 0.996292i) q^{41} +(-6.85566 + 7.95047i) q^{42} +(-9.84550 + 2.63809i) q^{43} +0.733860i q^{44} +(-3.60327 - 2.08035i) q^{46} +(-3.07931 + 3.07931i) q^{47} +(7.34000 + 1.39634i) q^{48} +(8.58827 - 4.95844i) q^{49} +(-1.76516 + 3.65613i) q^{51} +(0.553469 + 0.276537i) q^{52} +(2.89463 - 2.89463i) q^{53} +(-5.19152 - 5.62861i) q^{54} +(-9.59737 - 5.54104i) q^{56} +(-2.76729 - 7.93368i) q^{57} +(-0.422589 - 1.57712i) q^{58} +(-7.54722 - 4.35739i) q^{59} +(1.64416 - 2.84776i) q^{61} +(0.990323 - 3.69594i) q^{62} +(4.91185 + 11.3193i) q^{63} +7.20087i q^{64} +(9.82995 + 4.74586i) q^{66} +(-1.59596 + 5.95621i) q^{67} +(0.388523 + 0.104104i) q^{68} +(-4.04329 + 2.75080i) q^{69} +(4.38783 - 7.59994i) q^{71} +(4.81284 - 6.49418i) q^{72} +(-8.00201 + 8.00201i) q^{73} +(-0.728560 + 1.26190i) q^{74} +(-0.720926 + 0.416227i) q^{76} +(-12.4378 - 12.4378i) q^{77} +(7.28345 - 5.62527i) q^{78} -2.06111i q^{79} +(-8.61061 + 2.61868i) q^{81} +(-0.438775 - 1.63753i) q^{82} +(-6.21215 - 6.21215i) q^{83} +(1.01073 - 0.687636i) q^{84} +15.0205 q^{86} +(-1.88527 - 0.358648i) q^{87} +(-2.98233 + 11.1302i) q^{88} +(3.27478 - 1.89069i) q^{89} +(-14.0673 + 4.69357i) q^{91} +(0.342591 + 0.342591i) q^{92} +(-3.40592 - 2.93691i) q^{93} +(5.55763 - 3.20870i) q^{94} +(-1.51003 - 0.729035i) q^{96} +(-4.91400 + 1.31670i) q^{97} +(-14.1159 + 3.78234i) q^{98} +(10.0466 - 7.97935i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42342 0.381405i −1.00651 0.269694i −0.282340 0.959314i \(-0.591111\pi\)
−0.724171 + 0.689621i \(0.757777\pi\)
\(3\) −1.13110 + 1.31172i −0.653038 + 0.757325i
\(4\) 0.148609 + 0.0857994i 0.0743045 + 0.0428997i
\(5\) 0 0
\(6\) 2.11032 1.43573i 0.861536 0.586135i
\(7\) −3.97287 + 1.06453i −1.50160 + 0.402353i −0.913636 0.406533i \(-0.866738\pi\)
−0.587966 + 0.808886i \(0.700071\pi\)
\(8\) 1.90523 + 1.90523i 0.673599 + 0.673599i
\(9\) −0.441245 2.96737i −0.147082 0.989124i
\(10\) 0 0
\(11\) 2.13830 + 3.70364i 0.644722 + 1.11669i 0.984366 + 0.176137i \(0.0563601\pi\)
−0.339644 + 0.940554i \(0.610307\pi\)
\(12\) −0.280636 + 0.0978867i −0.0810127 + 0.0282575i
\(13\) 3.59901 0.217053i 0.998186 0.0601997i
\(14\) 6.06108 1.61989
\(15\) 0 0
\(16\) −2.15688 3.73582i −0.539219 0.933955i
\(17\) 2.26413 0.606673i 0.549133 0.147140i 0.0264240 0.999651i \(-0.491588\pi\)
0.522709 + 0.852511i \(0.324921\pi\)
\(18\) −0.503692 + 4.39212i −0.118721 + 1.03523i
\(19\) −2.42558 + 4.20123i −0.556466 + 0.963827i 0.441322 + 0.897349i \(0.354510\pi\)
−0.997788 + 0.0664784i \(0.978824\pi\)
\(20\) 0 0
\(21\) 3.09733 6.41539i 0.675892 1.39995i
\(22\) −1.63112 6.08741i −0.347755 1.29784i
\(23\) 2.72722 + 0.730756i 0.568664 + 0.152373i 0.531684 0.846943i \(-0.321559\pi\)
0.0369803 + 0.999316i \(0.488226\pi\)
\(24\) −4.65412 + 0.344139i −0.950019 + 0.0702472i
\(25\) 0 0
\(26\) −5.20570 1.06372i −1.02092 0.208613i
\(27\) 4.39147 + 2.77759i 0.845138 + 0.534548i
\(28\) −0.681739 0.182671i −0.128837 0.0345217i
\(29\) 0.553990 + 0.959539i 0.102873 + 0.178182i 0.912867 0.408256i \(-0.133863\pi\)
−0.809994 + 0.586438i \(0.800530\pi\)
\(30\) 0 0
\(31\) 2.59652i 0.466348i 0.972435 + 0.233174i \(0.0749112\pi\)
−0.972435 + 0.233174i \(0.925089\pi\)
\(32\) 0.250564 + 0.935116i 0.0442938 + 0.165307i
\(33\) −7.27679 1.38431i −1.26673 0.240978i
\(34\) −3.45421 −0.592391
\(35\) 0 0
\(36\) 0.189026 0.478837i 0.0315043 0.0798061i
\(37\) 0.255918 0.955101i 0.0420727 0.157018i −0.941694 0.336472i \(-0.890766\pi\)
0.983766 + 0.179454i \(0.0574331\pi\)
\(38\) 5.05499 5.05499i 0.820027 0.820027i
\(39\) −3.78611 + 4.96642i −0.606263 + 0.795264i
\(40\) 0 0
\(41\) 0.575209 + 0.996292i 0.0898326 + 0.155595i 0.907440 0.420181i \(-0.138033\pi\)
−0.817608 + 0.575776i \(0.804700\pi\)
\(42\) −6.85566 + 7.95047i −1.05785 + 1.22678i
\(43\) −9.84550 + 2.63809i −1.50142 + 0.402305i −0.913577 0.406666i \(-0.866691\pi\)
−0.587847 + 0.808972i \(0.700024\pi\)
\(44\) 0.733860i 0.110634i
\(45\) 0 0
\(46\) −3.60327 2.08035i −0.531273 0.306730i
\(47\) −3.07931 + 3.07931i −0.449164 + 0.449164i −0.895077 0.445913i \(-0.852879\pi\)
0.445913 + 0.895077i \(0.352879\pi\)
\(48\) 7.34000 + 1.39634i 1.05944 + 0.201544i
\(49\) 8.58827 4.95844i 1.22690 0.708349i
\(50\) 0 0
\(51\) −1.76516 + 3.65613i −0.247172 + 0.511960i
\(52\) 0.553469 + 0.276537i 0.0767523 + 0.0383488i
\(53\) 2.89463 2.89463i 0.397608 0.397608i −0.479780 0.877389i \(-0.659284\pi\)
0.877389 + 0.479780i \(0.159284\pi\)
\(54\) −5.19152 5.62861i −0.706477 0.765957i
\(55\) 0 0
\(56\) −9.59737 5.54104i −1.28250 0.740453i
\(57\) −2.76729 7.93368i −0.366537 1.05084i
\(58\) −0.422589 1.57712i −0.0554886 0.207086i
\(59\) −7.54722 4.35739i −0.982564 0.567284i −0.0795208 0.996833i \(-0.525339\pi\)
−0.903043 + 0.429550i \(0.858672\pi\)
\(60\) 0 0
\(61\) 1.64416 2.84776i 0.210513 0.364619i −0.741362 0.671105i \(-0.765820\pi\)
0.951875 + 0.306486i \(0.0991534\pi\)
\(62\) 0.990323 3.69594i 0.125771 0.469385i
\(63\) 4.91185 + 11.3193i 0.618835 + 1.42609i
\(64\) 7.20087i 0.900109i
\(65\) 0 0
\(66\) 9.82995 + 4.74586i 1.20998 + 0.584175i
\(67\) −1.59596 + 5.95621i −0.194978 + 0.727667i 0.797295 + 0.603590i \(0.206264\pi\)
−0.992273 + 0.124077i \(0.960403\pi\)
\(68\) 0.388523 + 0.104104i 0.0471153 + 0.0126245i
\(69\) −4.04329 + 2.75080i −0.486755 + 0.331158i
\(70\) 0 0
\(71\) 4.38783 7.59994i 0.520739 0.901947i −0.478970 0.877831i \(-0.658990\pi\)
0.999709 0.0241156i \(-0.00767696\pi\)
\(72\) 4.81284 6.49418i 0.567199 0.765347i
\(73\) −8.00201 + 8.00201i −0.936565 + 0.936565i −0.998105 0.0615398i \(-0.980399\pi\)
0.0615398 + 0.998105i \(0.480399\pi\)
\(74\) −0.728560 + 1.26190i −0.0846934 + 0.146693i
\(75\) 0 0
\(76\) −0.720926 + 0.416227i −0.0826958 + 0.0477445i
\(77\) −12.4378 12.4378i −1.41742 1.41742i
\(78\) 7.28345 5.62527i 0.824689 0.636937i
\(79\) 2.06111i 0.231893i −0.993255 0.115946i \(-0.963010\pi\)
0.993255 0.115946i \(-0.0369901\pi\)
\(80\) 0 0
\(81\) −8.61061 + 2.61868i −0.956734 + 0.290964i
\(82\) −0.438775 1.63753i −0.0484546 0.180835i
\(83\) −6.21215 6.21215i −0.681872 0.681872i 0.278550 0.960422i \(-0.410146\pi\)
−0.960422 + 0.278550i \(0.910146\pi\)
\(84\) 1.01073 0.687636i 0.110279 0.0750272i
\(85\) 0 0
\(86\) 15.0205 1.61970
\(87\) −1.88527 0.358648i −0.202122 0.0384511i
\(88\) −2.98233 + 11.1302i −0.317918 + 1.18649i
\(89\) 3.27478 1.89069i 0.347126 0.200413i −0.316293 0.948662i \(-0.602438\pi\)
0.663419 + 0.748248i \(0.269105\pi\)
\(90\) 0 0
\(91\) −14.0673 + 4.69357i −1.47466 + 0.492019i
\(92\) 0.342591 + 0.342591i 0.0357175 + 0.0357175i
\(93\) −3.40592 2.93691i −0.353177 0.304543i
\(94\) 5.55763 3.20870i 0.573225 0.330952i
\(95\) 0 0
\(96\) −1.51003 0.729035i −0.154116 0.0744068i
\(97\) −4.91400 + 1.31670i −0.498941 + 0.133691i −0.499508 0.866309i \(-0.666486\pi\)
0.000567486 1.00000i \(0.499819\pi\)
\(98\) −14.1159 + 3.78234i −1.42592 + 0.382075i
\(99\) 10.0466 7.97935i 1.00972 0.801955i
\(100\) 0 0
\(101\) −16.9579 + 9.79064i −1.68737 + 0.974205i −0.730855 + 0.682533i \(0.760879\pi\)
−0.956518 + 0.291673i \(0.905788\pi\)
\(102\) 3.90704 4.53097i 0.386854 0.448633i
\(103\) −11.6815 11.6815i −1.15101 1.15101i −0.986350 0.164663i \(-0.947346\pi\)
−0.164663 0.986350i \(-0.552654\pi\)
\(104\) 7.27046 + 6.44339i 0.712928 + 0.631827i
\(105\) 0 0
\(106\) −5.22431 + 3.01626i −0.507430 + 0.292965i
\(107\) −2.39707 + 8.94599i −0.231734 + 0.864841i 0.747861 + 0.663856i \(0.231081\pi\)
−0.979594 + 0.200986i \(0.935586\pi\)
\(108\) 0.414296 + 0.789560i 0.0398656 + 0.0759755i
\(109\) −13.8177 −1.32349 −0.661746 0.749728i \(-0.730184\pi\)
−0.661746 + 0.749728i \(0.730184\pi\)
\(110\) 0 0
\(111\) 0.963361 + 1.41600i 0.0914382 + 0.134401i
\(112\) 12.5459 + 12.5459i 1.18547 + 1.18547i
\(113\) 0.372017 + 1.38839i 0.0349964 + 0.130608i 0.981214 0.192923i \(-0.0617967\pi\)
−0.946218 + 0.323531i \(0.895130\pi\)
\(114\) 0.913079 + 12.3484i 0.0855177 + 1.15654i
\(115\) 0 0
\(116\) 0.190128i 0.0176529i
\(117\) −2.23212 10.5838i −0.206360 0.978476i
\(118\) 9.08095 + 9.08095i 0.835969 + 0.835969i
\(119\) −8.34928 + 4.82046i −0.765377 + 0.441891i
\(120\) 0 0
\(121\) −3.64466 + 6.31273i −0.331332 + 0.573884i
\(122\) −3.42648 + 3.42648i −0.310219 + 0.310219i
\(123\) −1.95748 0.372385i −0.176500 0.0335768i
\(124\) −0.222780 + 0.385866i −0.0200062 + 0.0346518i
\(125\) 0 0
\(126\) −2.67442 17.9855i −0.238256 1.60227i
\(127\) −2.87595 0.770609i −0.255199 0.0683805i 0.128951 0.991651i \(-0.458839\pi\)
−0.384150 + 0.923270i \(0.625506\pi\)
\(128\) 3.24757 12.1201i 0.287048 1.07128i
\(129\) 7.67575 15.8985i 0.675812 1.39979i
\(130\) 0 0
\(131\) 2.62072i 0.228973i −0.993425 0.114487i \(-0.963478\pi\)
0.993425 0.114487i \(-0.0365223\pi\)
\(132\) −0.962622 0.830066i −0.0837855 0.0722479i
\(133\) 5.16418 19.2730i 0.447792 1.67118i
\(134\) 4.54345 7.86949i 0.392494 0.679820i
\(135\) 0 0
\(136\) 5.46953 + 3.15784i 0.469009 + 0.270782i
\(137\) 2.68583 + 10.0236i 0.229466 + 0.856377i 0.980566 + 0.196189i \(0.0628567\pi\)
−0.751100 + 0.660188i \(0.770477\pi\)
\(138\) 6.80448 2.37342i 0.579236 0.202039i
\(139\) −1.68558 0.973168i −0.142969 0.0825431i 0.426809 0.904342i \(-0.359638\pi\)
−0.569778 + 0.821799i \(0.692971\pi\)
\(140\) 0 0
\(141\) −0.556214 7.52221i −0.0468417 0.633484i
\(142\) −9.14438 + 9.14438i −0.767379 + 0.767379i
\(143\) 8.49966 + 12.8653i 0.710777 + 1.07585i
\(144\) −10.1339 + 8.04867i −0.844488 + 0.670722i
\(145\) 0 0
\(146\) 14.4422 8.33823i 1.19525 0.690077i
\(147\) −3.21005 + 16.8739i −0.264760 + 1.39174i
\(148\) 0.119979 0.119979i 0.00986220 0.00986220i
\(149\) 8.56121 + 4.94282i 0.701362 + 0.404931i 0.807854 0.589382i \(-0.200629\pi\)
−0.106493 + 0.994313i \(0.533962\pi\)
\(150\) 0 0
\(151\) 20.0349i 1.63042i 0.579165 + 0.815210i \(0.303379\pi\)
−0.579165 + 0.815210i \(0.696621\pi\)
\(152\) −12.6256 + 3.38301i −1.02407 + 0.274398i
\(153\) −2.79926 6.45084i −0.226307 0.521519i
\(154\) 12.9604 + 22.4481i 1.04438 + 1.80892i
\(155\) 0 0
\(156\) −0.988767 + 0.413209i −0.0791647 + 0.0330832i
\(157\) 5.41204 5.41204i 0.431928 0.431928i −0.457356 0.889284i \(-0.651203\pi\)
0.889284 + 0.457356i \(0.151203\pi\)
\(158\) −0.786117 + 2.93383i −0.0625401 + 0.233403i
\(159\) 0.522855 + 7.07107i 0.0414651 + 0.560772i
\(160\) 0 0
\(161\) −11.6128 −0.915215
\(162\) 13.2553 0.443356i 1.04143 0.0348333i
\(163\) −1.81388 6.76947i −0.142074 0.530226i −0.999868 0.0162335i \(-0.994833\pi\)
0.857795 0.513993i \(-0.171834\pi\)
\(164\) 0.197410i 0.0154152i
\(165\) 0 0
\(166\) 6.47316 + 11.2118i 0.502415 + 0.870208i
\(167\) 24.5943 + 6.59002i 1.90316 + 0.509951i 0.996020 + 0.0891292i \(0.0284084\pi\)
0.907143 + 0.420822i \(0.138258\pi\)
\(168\) 18.1239 6.32166i 1.39829 0.487726i
\(169\) 12.9058 1.56235i 0.992752 0.120181i
\(170\) 0 0
\(171\) 13.5369 + 5.34383i 1.03519 + 0.408653i
\(172\) −1.68948 0.452694i −0.128821 0.0345176i
\(173\) −4.95717 18.5004i −0.376887 1.40656i −0.850568 0.525865i \(-0.823742\pi\)
0.473681 0.880696i \(-0.342925\pi\)
\(174\) 2.54674 + 1.22956i 0.193068 + 0.0932124i
\(175\) 0 0
\(176\) 9.22410 15.9766i 0.695292 1.20428i
\(177\) 14.2523 4.97125i 1.07127 0.373662i
\(178\) −5.38251 + 1.44224i −0.403436 + 0.108100i
\(179\) −3.01935 5.22967i −0.225677 0.390884i 0.730845 0.682543i \(-0.239126\pi\)
−0.956522 + 0.291659i \(0.905793\pi\)
\(180\) 0 0
\(181\) 5.56311 0.413503 0.206751 0.978394i \(-0.433711\pi\)
0.206751 + 0.978394i \(0.433711\pi\)
\(182\) 21.8139 1.31558i 1.61695 0.0975170i
\(183\) 1.87578 + 5.37777i 0.138662 + 0.397536i
\(184\) 3.80371 + 6.58822i 0.280413 + 0.485690i
\(185\) 0 0
\(186\) 3.72790 + 5.47949i 0.273343 + 0.401776i
\(187\) 7.08830 + 7.08830i 0.518348 + 0.518348i
\(188\) −0.721817 + 0.193410i −0.0526439 + 0.0141059i
\(189\) −20.4035 6.36016i −1.48414 0.462634i
\(190\) 0 0
\(191\) −2.61637 1.51056i −0.189314 0.109300i 0.402348 0.915487i \(-0.368194\pi\)
−0.591661 + 0.806187i \(0.701528\pi\)
\(192\) −9.44556 8.14488i −0.681675 0.587806i
\(193\) 3.38290 + 0.906445i 0.243506 + 0.0652473i 0.378508 0.925598i \(-0.376437\pi\)
−0.135002 + 0.990845i \(0.543104\pi\)
\(194\) 7.49689 0.538245
\(195\) 0 0
\(196\) 1.70173 0.121552
\(197\) −4.48363 1.20138i −0.319445 0.0855951i 0.0955335 0.995426i \(-0.469544\pi\)
−0.414979 + 0.909831i \(0.636211\pi\)
\(198\) −17.3439 + 7.52617i −1.23258 + 0.534861i
\(199\) −3.93217 2.27024i −0.278744 0.160933i 0.354111 0.935204i \(-0.384784\pi\)
−0.632855 + 0.774271i \(0.718117\pi\)
\(200\) 0 0
\(201\) −6.00772 8.83050i −0.423752 0.622856i
\(202\) 27.8724 7.46839i 1.96110 0.525474i
\(203\) −3.22238 3.22238i −0.226167 0.226167i
\(204\) −0.576013 + 0.391883i −0.0403290 + 0.0274373i
\(205\) 0 0
\(206\) 12.1723 + 21.0831i 0.848086 + 1.46893i
\(207\) 0.965054 8.41511i 0.0670759 0.584891i
\(208\) −8.57349 12.9771i −0.594465 0.899800i
\(209\) −20.7465 −1.43506
\(210\) 0 0
\(211\) −6.07034 10.5141i −0.417899 0.723823i 0.577829 0.816158i \(-0.303900\pi\)
−0.995728 + 0.0923352i \(0.970567\pi\)
\(212\) 0.678526 0.181811i 0.0466014 0.0124868i
\(213\) 5.00598 + 14.3519i 0.343004 + 0.983375i
\(214\) 6.82408 11.8197i 0.466485 0.807975i
\(215\) 0 0
\(216\) 3.07480 + 13.6587i 0.209214 + 0.929355i
\(217\) −2.76406 10.3156i −0.187637 0.700269i
\(218\) 19.6684 + 5.27012i 1.33211 + 0.356938i
\(219\) −1.44540 19.5475i −0.0976709 1.32090i
\(220\) 0 0
\(221\) 8.01697 2.67486i 0.539279 0.179931i
\(222\) −0.831198 2.38300i −0.0557864 0.159937i
\(223\) 16.8709 + 4.52055i 1.12976 + 0.302718i 0.774827 0.632174i \(-0.217837\pi\)
0.354933 + 0.934892i \(0.384504\pi\)
\(224\) −1.99091 3.44836i −0.133023 0.230403i
\(225\) 0 0
\(226\) 2.11815i 0.140897i
\(227\) −2.48265 9.26536i −0.164779 0.614964i −0.998068 0.0621264i \(-0.980212\pi\)
0.833289 0.552837i \(-0.186455\pi\)
\(228\) 0.269461 1.41645i 0.0178455 0.0938066i
\(229\) 5.60158 0.370163 0.185081 0.982723i \(-0.440745\pi\)
0.185081 + 0.982723i \(0.440745\pi\)
\(230\) 0 0
\(231\) 30.3833 2.24663i 1.99908 0.147818i
\(232\) −0.772662 + 2.88361i −0.0507277 + 0.189318i
\(233\) −19.2843 + 19.2843i −1.26336 + 1.26336i −0.313900 + 0.949456i \(0.601636\pi\)
−0.949456 + 0.313900i \(0.898364\pi\)
\(234\) −0.859472 + 15.9166i −0.0561854 + 1.04050i
\(235\) 0 0
\(236\) −0.747723 1.29509i −0.0486726 0.0843034i
\(237\) 2.70361 + 2.33131i 0.175618 + 0.151435i
\(238\) 13.7231 3.67709i 0.889536 0.238351i
\(239\) 17.3432i 1.12184i −0.827870 0.560921i \(-0.810447\pi\)
0.827870 0.560921i \(-0.189553\pi\)
\(240\) 0 0
\(241\) −1.44789 0.835937i −0.0932665 0.0538475i 0.452641 0.891693i \(-0.350482\pi\)
−0.545908 + 0.837845i \(0.683815\pi\)
\(242\) 7.59559 7.59559i 0.488263 0.488263i
\(243\) 6.30444 14.2567i 0.404430 0.914569i
\(244\) 0.488673 0.282135i 0.0312841 0.0180619i
\(245\) 0 0
\(246\) 2.64429 + 1.27665i 0.168594 + 0.0813963i
\(247\) −7.81780 + 15.6467i −0.497435 + 0.995578i
\(248\) −4.94695 + 4.94695i −0.314131 + 0.314131i
\(249\) 15.1752 1.12210i 0.961687 0.0711099i
\(250\) 0 0
\(251\) −6.81314 3.93357i −0.430042 0.248285i 0.269323 0.963050i \(-0.413200\pi\)
−0.699364 + 0.714765i \(0.746534\pi\)
\(252\) −0.241240 + 2.10358i −0.0151967 + 0.132513i
\(253\) 3.12515 + 11.6632i 0.196477 + 0.733260i
\(254\) 3.79978 + 2.19380i 0.238419 + 0.137651i
\(255\) 0 0
\(256\) −2.04446 + 3.54111i −0.127779 + 0.221319i
\(257\) 2.46492 9.19920i 0.153757 0.573830i −0.845451 0.534053i \(-0.820668\pi\)
0.999209 0.0397776i \(-0.0126649\pi\)
\(258\) −16.9896 + 19.7027i −1.05773 + 1.22664i
\(259\) 4.06692i 0.252706i
\(260\) 0 0
\(261\) 2.60286 2.06729i 0.161113 0.127962i
\(262\) −0.999554 + 3.73039i −0.0617526 + 0.230464i
\(263\) 22.7323 + 6.09110i 1.40173 + 0.375593i 0.878967 0.476883i \(-0.158233\pi\)
0.522766 + 0.852476i \(0.324900\pi\)
\(264\) −11.2265 16.5013i −0.690942 1.01559i
\(265\) 0 0
\(266\) −14.7016 + 25.4640i −0.901414 + 1.56130i
\(267\) −1.22402 + 6.43416i −0.0749086 + 0.393764i
\(268\) −0.748213 + 0.748213i −0.0457044 + 0.0457044i
\(269\) −5.95253 + 10.3101i −0.362932 + 0.628617i −0.988442 0.151599i \(-0.951558\pi\)
0.625510 + 0.780216i \(0.284891\pi\)
\(270\) 0 0
\(271\) −17.4412 + 10.0697i −1.05947 + 0.611688i −0.925287 0.379268i \(-0.876176\pi\)
−0.134188 + 0.990956i \(0.542843\pi\)
\(272\) −7.14988 7.14988i −0.433525 0.433525i
\(273\) 9.75483 23.7613i 0.590389 1.43810i
\(274\) 15.2923i 0.923839i
\(275\) 0 0
\(276\) −0.836887 + 0.0618819i −0.0503747 + 0.00372485i
\(277\) 1.13875 + 4.24989i 0.0684211 + 0.255351i 0.991661 0.128873i \(-0.0411358\pi\)
−0.923240 + 0.384224i \(0.874469\pi\)
\(278\) 2.02812 + 2.02812i 0.121638 + 0.121638i
\(279\) 7.70483 1.14570i 0.461276 0.0685912i
\(280\) 0 0
\(281\) 23.0139 1.37290 0.686448 0.727179i \(-0.259169\pi\)
0.686448 + 0.727179i \(0.259169\pi\)
\(282\) −2.07728 + 10.9194i −0.123700 + 0.650242i
\(283\) 3.53515 13.1933i 0.210143 0.784263i −0.777678 0.628663i \(-0.783602\pi\)
0.987820 0.155600i \(-0.0497309\pi\)
\(284\) 1.30414 0.752946i 0.0773865 0.0446791i
\(285\) 0 0
\(286\) −7.19170 21.5546i −0.425254 1.27455i
\(287\) −3.34581 3.34581i −0.197497 0.197497i
\(288\) 2.66428 1.15613i 0.156994 0.0681257i
\(289\) −9.96418 + 5.75282i −0.586128 + 0.338401i
\(290\) 0 0
\(291\) 3.83105 7.93513i 0.224580 0.465166i
\(292\) −1.87574 + 0.502603i −0.109769 + 0.0294126i
\(293\) −23.4342 + 6.27918i −1.36904 + 0.366834i −0.867129 0.498084i \(-0.834037\pi\)
−0.501914 + 0.864918i \(0.667370\pi\)
\(294\) 11.0050 22.7944i 0.641827 1.32940i
\(295\) 0 0
\(296\) 2.30726 1.33210i 0.134107 0.0774267i
\(297\) −0.896933 + 22.2038i −0.0520454 + 1.28839i
\(298\) −10.3010 10.3010i −0.596721 0.596721i
\(299\) 9.97390 + 2.03805i 0.576806 + 0.117863i
\(300\) 0 0
\(301\) 36.3065 20.9616i 2.09267 1.20821i
\(302\) 7.64142 28.5182i 0.439714 1.64104i
\(303\) 6.33837 33.3182i 0.364130 1.91408i
\(304\) 20.9267 1.20023
\(305\) 0 0
\(306\) 1.52415 + 10.2499i 0.0871299 + 0.585949i
\(307\) −12.8951 12.8951i −0.735962 0.735962i 0.235832 0.971794i \(-0.424219\pi\)
−0.971794 + 0.235832i \(0.924219\pi\)
\(308\) −0.781213 2.91553i −0.0445137 0.166128i
\(309\) 28.5358 2.11002i 1.62335 0.120035i
\(310\) 0 0
\(311\) 8.39481i 0.476026i 0.971262 + 0.238013i \(0.0764960\pi\)
−0.971262 + 0.238013i \(0.923504\pi\)
\(312\) −16.6755 + 2.24875i −0.944067 + 0.127311i
\(313\) 0.445796 + 0.445796i 0.0251979 + 0.0251979i 0.719593 0.694396i \(-0.244328\pi\)
−0.694396 + 0.719593i \(0.744328\pi\)
\(314\) −9.76780 + 5.63944i −0.551229 + 0.318252i
\(315\) 0 0
\(316\) 0.176842 0.306299i 0.00994814 0.0172307i
\(317\) −12.5839 + 12.5839i −0.706781 + 0.706781i −0.965857 0.259076i \(-0.916582\pi\)
0.259076 + 0.965857i \(0.416582\pi\)
\(318\) 1.95269 10.2645i 0.109502 0.575606i
\(319\) −2.36919 + 4.10356i −0.132649 + 0.229755i
\(320\) 0 0
\(321\) −9.02336 13.2631i −0.503635 0.740272i
\(322\) 16.5299 + 4.42917i 0.921174 + 0.246828i
\(323\) −2.94307 + 10.9837i −0.163757 + 0.611148i
\(324\) −1.50429 0.349626i −0.0835719 0.0194237i
\(325\) 0 0
\(326\) 10.3276i 0.571995i
\(327\) 15.6291 18.1250i 0.864291 1.00231i
\(328\) −0.802257 + 2.99406i −0.0442972 + 0.165319i
\(329\) 8.95569 15.5117i 0.493743 0.855188i
\(330\) 0 0
\(331\) −12.2822 7.09113i −0.675091 0.389764i 0.122912 0.992418i \(-0.460777\pi\)
−0.798003 + 0.602654i \(0.794110\pi\)
\(332\) −0.390182 1.45618i −0.0214140 0.0799182i
\(333\) −2.94706 0.337972i −0.161498 0.0185208i
\(334\) −32.4946 18.7608i −1.77802 1.02654i
\(335\) 0 0
\(336\) −30.6473 + 2.26615i −1.67195 + 0.123629i
\(337\) 5.88105 5.88105i 0.320361 0.320361i −0.528544 0.848906i \(-0.677262\pi\)
0.848906 + 0.528544i \(0.177262\pi\)
\(338\) −18.9663 2.69843i −1.03163 0.146775i
\(339\) −2.24197 1.08241i −0.121767 0.0587886i
\(340\) 0 0
\(341\) −9.61657 + 5.55213i −0.520767 + 0.300665i
\(342\) −17.2305 12.7695i −0.931720 0.690498i
\(343\) −8.48328 + 8.48328i −0.458054 + 0.458054i
\(344\) −23.7840 13.7317i −1.28235 0.740365i
\(345\) 0 0
\(346\) 28.2246i 1.51736i
\(347\) −4.71314 + 1.26288i −0.253014 + 0.0677950i −0.383097 0.923708i \(-0.625142\pi\)
0.130082 + 0.991503i \(0.458476\pi\)
\(348\) −0.249396 0.215053i −0.0133690 0.0115281i
\(349\) 6.13414 + 10.6246i 0.328353 + 0.568724i 0.982185 0.187916i \(-0.0601731\pi\)
−0.653832 + 0.756640i \(0.726840\pi\)
\(350\) 0 0
\(351\) 16.4078 + 9.04340i 0.875785 + 0.482701i
\(352\) −2.92756 + 2.92756i −0.156039 + 0.156039i
\(353\) −2.79817 + 10.4429i −0.148932 + 0.555820i 0.850617 + 0.525785i \(0.176229\pi\)
−0.999549 + 0.0300349i \(0.990438\pi\)
\(354\) −22.1831 + 1.64028i −1.17902 + 0.0871801i
\(355\) 0 0
\(356\) 0.648882 0.0343907
\(357\) 3.12072 16.4044i 0.165166 0.868211i
\(358\) 2.30319 + 8.59563i 0.121727 + 0.454293i
\(359\) 37.2979i 1.96851i 0.176755 + 0.984255i \(0.443440\pi\)
−0.176755 + 0.984255i \(0.556560\pi\)
\(360\) 0 0
\(361\) −2.26687 3.92633i −0.119309 0.206649i
\(362\) −7.91865 2.12180i −0.416195 0.111519i
\(363\) −4.15811 11.9211i −0.218244 0.625695i
\(364\) −2.49324 0.509463i −0.130681 0.0267031i
\(365\) 0 0
\(366\) −0.618922 8.37027i −0.0323516 0.437521i
\(367\) −0.634359 0.169976i −0.0331133 0.00887268i 0.242224 0.970220i \(-0.422123\pi\)
−0.275338 + 0.961348i \(0.588790\pi\)
\(368\) −3.15230 11.7645i −0.164325 0.613269i
\(369\) 2.70256 2.14647i 0.140690 0.111741i
\(370\) 0 0
\(371\) −8.41857 + 14.5814i −0.437071 + 0.757028i
\(372\) −0.254165 0.728677i −0.0131778 0.0377801i
\(373\) −32.4088 + 8.68391i −1.67806 + 0.449636i −0.967267 0.253762i \(-0.918332\pi\)
−0.710796 + 0.703398i \(0.751665\pi\)
\(374\) −7.38613 12.7932i −0.381928 0.661518i
\(375\) 0 0
\(376\) −11.7336 −0.605113
\(377\) 2.20209 + 3.33315i 0.113413 + 0.171666i
\(378\) 26.6170 + 16.8352i 1.36903 + 0.865909i
\(379\) −8.79891 15.2402i −0.451969 0.782834i 0.546539 0.837434i \(-0.315945\pi\)
−0.998508 + 0.0545997i \(0.982612\pi\)
\(380\) 0 0
\(381\) 4.26380 2.90082i 0.218441 0.148614i
\(382\) 3.14806 + 3.14806i 0.161069 + 0.161069i
\(383\) 20.2110 5.41553i 1.03274 0.276721i 0.297635 0.954680i \(-0.403802\pi\)
0.735100 + 0.677959i \(0.237135\pi\)
\(384\) 12.2249 + 17.9689i 0.623851 + 0.916973i
\(385\) 0 0
\(386\) −4.46957 2.58051i −0.227495 0.131344i
\(387\) 12.1725 + 28.0512i 0.618762 + 1.42592i
\(388\) −0.843237 0.225945i −0.0428089 0.0114706i
\(389\) −9.74450 −0.494066 −0.247033 0.969007i \(-0.579456\pi\)
−0.247033 + 0.969007i \(0.579456\pi\)
\(390\) 0 0
\(391\) 6.61812 0.334693
\(392\) 25.8095 + 6.91564i 1.30358 + 0.349293i
\(393\) 3.43766 + 2.96428i 0.173407 + 0.149528i
\(394\) 5.92388 + 3.42015i 0.298441 + 0.172305i
\(395\) 0 0
\(396\) 2.17764 0.323812i 0.109430 0.0162722i
\(397\) −2.79246 + 0.748237i −0.140150 + 0.0375530i −0.328212 0.944604i \(-0.606446\pi\)
0.188062 + 0.982157i \(0.439779\pi\)
\(398\) 4.73125 + 4.73125i 0.237156 + 0.237156i
\(399\) 19.4397 + 28.5736i 0.973202 + 1.43047i
\(400\) 0 0
\(401\) −0.557130 0.964978i −0.0278218 0.0481887i 0.851779 0.523901i \(-0.175524\pi\)
−0.879601 + 0.475712i \(0.842190\pi\)
\(402\) 5.18353 + 14.8609i 0.258531 + 0.741194i
\(403\) 0.563582 + 9.34489i 0.0280740 + 0.465502i
\(404\) −3.36013 −0.167173
\(405\) 0 0
\(406\) 3.35778 + 5.81584i 0.166644 + 0.288635i
\(407\) 4.08458 1.09446i 0.202465 0.0542504i
\(408\) −10.3288 + 3.60271i −0.511351 + 0.178361i
\(409\) −6.17475 + 10.6950i −0.305322 + 0.528833i −0.977333 0.211708i \(-0.932097\pi\)
0.672011 + 0.740541i \(0.265431\pi\)
\(410\) 0 0
\(411\) −16.1862 7.81463i −0.798406 0.385467i
\(412\) −0.733710 2.73824i −0.0361473 0.134904i
\(413\) 34.6226 + 9.27711i 1.70367 + 0.456497i
\(414\) −4.58324 + 11.6102i −0.225254 + 0.570609i
\(415\) 0 0
\(416\) 1.10475 + 3.31111i 0.0541649 + 0.162340i
\(417\) 3.18308 1.11027i 0.155876 0.0543700i
\(418\) 29.5310 + 7.91280i 1.44441 + 0.387028i
\(419\) 9.48656 + 16.4312i 0.463449 + 0.802717i 0.999130 0.0417034i \(-0.0132785\pi\)
−0.535681 + 0.844420i \(0.679945\pi\)
\(420\) 0 0
\(421\) 30.3717i 1.48022i 0.672484 + 0.740112i \(0.265228\pi\)
−0.672484 + 0.740112i \(0.734772\pi\)
\(422\) 4.63051 + 17.2813i 0.225410 + 0.841241i
\(423\) 10.4962 + 7.77874i 0.510343 + 0.378215i
\(424\) 11.0299 0.535657
\(425\) 0 0
\(426\) −1.65174 22.3381i −0.0800272 1.08228i
\(427\) −3.50049 + 13.0640i −0.169401 + 0.632212i
\(428\) −1.12379 + 1.12379i −0.0543203 + 0.0543203i
\(429\) −26.4897 3.40272i −1.27894 0.164285i
\(430\) 0 0
\(431\) −13.0681 22.6347i −0.629469 1.09027i −0.987658 0.156624i \(-0.949939\pi\)
0.358189 0.933649i \(-0.383394\pi\)
\(432\) 0.904725 22.3966i 0.0435286 1.07756i
\(433\) 8.65818 2.31995i 0.416086 0.111490i −0.0447016 0.999000i \(-0.514234\pi\)
0.460787 + 0.887511i \(0.347567\pi\)
\(434\) 15.7377i 0.755433i
\(435\) 0 0
\(436\) −2.05343 1.18555i −0.0983414 0.0567774i
\(437\) −9.68515 + 9.68515i −0.463304 + 0.463304i
\(438\) −5.39809 + 28.3756i −0.257931 + 1.35584i
\(439\) −14.8493 + 8.57324i −0.708718 + 0.409179i −0.810586 0.585619i \(-0.800851\pi\)
0.101868 + 0.994798i \(0.467518\pi\)
\(440\) 0 0
\(441\) −18.5031 23.2967i −0.881099 1.10937i
\(442\) −12.4317 + 0.749747i −0.591317 + 0.0356618i
\(443\) −16.8516 + 16.8516i −0.800642 + 0.800642i −0.983196 0.182554i \(-0.941564\pi\)
0.182554 + 0.983196i \(0.441564\pi\)
\(444\) 0.0216717 + 0.293087i 0.00102849 + 0.0139093i
\(445\) 0 0
\(446\) −22.2903 12.8693i −1.05547 0.609378i
\(447\) −16.1672 + 5.63915i −0.764681 + 0.266723i
\(448\) −7.66552 28.6081i −0.362162 1.35161i
\(449\) 5.80271 + 3.35020i 0.273847 + 0.158105i 0.630634 0.776080i \(-0.282795\pi\)
−0.356788 + 0.934185i \(0.616128\pi\)
\(450\) 0 0
\(451\) −2.45994 + 4.26074i −0.115834 + 0.200630i
\(452\) −0.0638377 + 0.238245i −0.00300267 + 0.0112061i
\(453\) −26.2803 22.6614i −1.23476 1.06473i
\(454\) 14.1354i 0.663407i
\(455\) 0 0
\(456\) 9.84314 20.3878i 0.460947 0.954744i
\(457\) 9.62717 35.9291i 0.450340 1.68069i −0.251097 0.967962i \(-0.580791\pi\)
0.701438 0.712731i \(-0.252542\pi\)
\(458\) −7.97341 2.13647i −0.372573 0.0998306i
\(459\) 11.6280 + 3.62465i 0.542747 + 0.169184i
\(460\) 0 0
\(461\) 4.19385 7.26397i 0.195327 0.338317i −0.751681 0.659527i \(-0.770756\pi\)
0.947008 + 0.321211i \(0.104090\pi\)
\(462\) −44.1052 8.39044i −2.05196 0.390359i
\(463\) −7.19262 + 7.19262i −0.334269 + 0.334269i −0.854205 0.519936i \(-0.825956\pi\)
0.519936 + 0.854205i \(0.325956\pi\)
\(464\) 2.38977 4.13921i 0.110942 0.192158i
\(465\) 0 0
\(466\) 34.8048 20.0946i 1.61230 0.930863i
\(467\) 20.1687 + 20.1687i 0.933297 + 0.933297i 0.997910 0.0646132i \(-0.0205814\pi\)
−0.0646132 + 0.997910i \(0.520581\pi\)
\(468\) 0.576374 1.76437i 0.0266429 0.0815580i
\(469\) 25.3622i 1.17112i
\(470\) 0 0
\(471\) 0.977574 + 13.2207i 0.0450442 + 0.609175i
\(472\) −6.07734 22.6810i −0.279732 1.04398i
\(473\) −30.8232 30.8232i −1.41725 1.41725i
\(474\) −2.95920 4.34961i −0.135921 0.199784i
\(475\) 0 0
\(476\) −1.65437 −0.0758280
\(477\) −9.86670 7.31221i −0.451765 0.334803i
\(478\) −6.61480 + 24.6868i −0.302554 + 1.12915i
\(479\) −10.4307 + 6.02217i −0.476591 + 0.275160i −0.718995 0.695016i \(-0.755397\pi\)
0.242404 + 0.970175i \(0.422064\pi\)
\(480\) 0 0
\(481\) 0.713746 3.49297i 0.0325440 0.159266i
\(482\) 1.74212 + 1.74212i 0.0793515 + 0.0793515i
\(483\) 13.1352 15.2328i 0.597671 0.693115i
\(484\) −1.08326 + 0.625419i −0.0492390 + 0.0284281i
\(485\) 0 0
\(486\) −14.4115 + 17.8888i −0.653717 + 0.811452i
\(487\) −38.7327 + 10.3784i −1.75515 + 0.470290i −0.985713 0.168435i \(-0.946129\pi\)
−0.769434 + 0.638726i \(0.779462\pi\)
\(488\) 8.55811 2.29314i 0.387408 0.103806i
\(489\) 10.9314 + 5.27762i 0.494333 + 0.238662i
\(490\) 0 0
\(491\) 16.8964 9.75516i 0.762525 0.440244i −0.0676765 0.997707i \(-0.521559\pi\)
0.830202 + 0.557463i \(0.188225\pi\)
\(492\) −0.258948 0.223290i −0.0116743 0.0100667i
\(493\) 1.83643 + 1.83643i 0.0827088 + 0.0827088i
\(494\) 17.0958 19.2902i 0.769175 0.867906i
\(495\) 0 0
\(496\) 9.70011 5.60036i 0.435548 0.251464i
\(497\) −9.34191 + 34.8645i −0.419042 + 1.56389i
\(498\) −22.0286 4.19066i −0.987126 0.187788i
\(499\) −7.54758 −0.337876 −0.168938 0.985627i \(-0.554034\pi\)
−0.168938 + 0.985627i \(0.554034\pi\)
\(500\) 0 0
\(501\) −36.4628 + 24.8070i −1.62904 + 1.10830i
\(502\) 8.19769 + 8.19769i 0.365881 + 0.365881i
\(503\) −8.24963 30.7880i −0.367833 1.37277i −0.863540 0.504281i \(-0.831758\pi\)
0.495707 0.868490i \(-0.334909\pi\)
\(504\) −12.2075 + 30.9239i −0.543767 + 1.37746i
\(505\) 0 0
\(506\) 17.7936i 0.791023i
\(507\) −12.5483 + 18.6960i −0.557289 + 0.830319i
\(508\) −0.361274 0.361274i −0.0160290 0.0160290i
\(509\) 8.77183 5.06442i 0.388804 0.224476i −0.292838 0.956162i \(-0.594600\pi\)
0.681642 + 0.731686i \(0.261266\pi\)
\(510\) 0 0
\(511\) 23.2726 40.3093i 1.02952 1.78318i
\(512\) −13.4843 + 13.4843i −0.595930 + 0.595930i
\(513\) −22.3211 + 11.7123i −0.985502 + 0.517110i
\(514\) −7.01724 + 12.1542i −0.309517 + 0.536099i
\(515\) 0 0
\(516\) 2.50477 1.70409i 0.110266 0.0750183i
\(517\) −17.9892 4.82019i −0.791163 0.211992i
\(518\) 1.55114 5.78894i 0.0681533 0.254351i
\(519\) 29.8745 + 14.4233i 1.31135 + 0.633113i
\(520\) 0 0
\(521\) 27.9873i 1.22615i −0.790026 0.613074i \(-0.789933\pi\)
0.790026 0.613074i \(-0.210067\pi\)
\(522\) −4.49345 + 1.94988i −0.196673 + 0.0853437i
\(523\) −4.22208 + 15.7570i −0.184619 + 0.689007i 0.810093 + 0.586301i \(0.199417\pi\)
−0.994712 + 0.102705i \(0.967250\pi\)
\(524\) 0.224856 0.389462i 0.00982288 0.0170137i
\(525\) 0 0
\(526\) −30.0345 17.3404i −1.30956 0.756078i
\(527\) 1.57524 + 5.87886i 0.0686184 + 0.256087i
\(528\) 10.5236 + 30.1705i 0.457980 + 1.31300i
\(529\) −13.0149 7.51414i −0.565864 0.326702i
\(530\) 0 0
\(531\) −9.59983 + 24.3181i −0.416597 + 1.05532i
\(532\) 2.42106 2.42106i 0.104966 0.104966i
\(533\) 2.28643 + 3.46081i 0.0990364 + 0.149905i
\(534\) 4.19631 8.69168i 0.181592 0.376126i
\(535\) 0 0
\(536\) −14.3886 + 8.30725i −0.621492 + 0.358819i
\(537\) 10.2751 + 1.95470i 0.443402 + 0.0843516i
\(538\) 12.4053 12.4053i 0.534829 0.534829i
\(539\) 36.7286 + 21.2053i 1.58201 + 0.913376i
\(540\) 0 0
\(541\) 1.73534i 0.0746081i −0.999304 0.0373041i \(-0.988123\pi\)
0.999304 0.0373041i \(-0.0118770\pi\)
\(542\) 28.6667 7.68123i 1.23134 0.329937i
\(543\) −6.29241 + 7.29727i −0.270033 + 0.313156i
\(544\) 1.13462 + 1.96522i 0.0486464 + 0.0842580i
\(545\) 0 0
\(546\) −22.9479 + 30.1019i −0.982081 + 1.28824i
\(547\) 11.2029 11.2029i 0.479001 0.479001i −0.425811 0.904812i \(-0.640011\pi\)
0.904812 + 0.425811i \(0.140011\pi\)
\(548\) −0.460885 + 1.72005i −0.0196880 + 0.0734767i
\(549\) −9.17585 3.62226i −0.391616 0.154594i
\(550\) 0 0
\(551\) −5.37498 −0.228982
\(552\) −12.9443 2.46248i −0.550946 0.104810i
\(553\) 2.19410 + 8.18851i 0.0933028 + 0.348211i
\(554\) 6.48371i 0.275466i
\(555\) 0 0
\(556\) −0.166995 0.289243i −0.00708215 0.0122666i
\(557\) −40.6785 10.8998i −1.72360 0.461838i −0.744909 0.667166i \(-0.767507\pi\)
−0.978693 + 0.205328i \(0.934174\pi\)
\(558\) −11.4042 1.30785i −0.482778 0.0553655i
\(559\) −34.8615 + 11.6315i −1.47448 + 0.491961i
\(560\) 0 0
\(561\) −17.3154 + 1.28035i −0.731059 + 0.0540566i
\(562\) −32.7585 8.77762i −1.38184 0.370262i
\(563\) 0.695238 + 2.59466i 0.0293008 + 0.109352i 0.979028 0.203728i \(-0.0653058\pi\)
−0.949727 + 0.313080i \(0.898639\pi\)
\(564\) 0.562743 1.16559i 0.0236958 0.0490802i
\(565\) 0 0
\(566\) −10.0640 + 17.4314i −0.423022 + 0.732695i
\(567\) 31.4211 19.5699i 1.31956 0.821857i
\(568\) 22.8394 6.11980i 0.958320 0.256781i
\(569\) −5.33657 9.24321i −0.223721 0.387496i 0.732214 0.681074i \(-0.238487\pi\)
−0.955935 + 0.293579i \(0.905154\pi\)
\(570\) 0 0
\(571\) −22.6560 −0.948123 −0.474061 0.880492i \(-0.657213\pi\)
−0.474061 + 0.880492i \(0.657213\pi\)
\(572\) 0.159287 + 2.64117i 0.00666011 + 0.110433i
\(573\) 4.94080 1.72337i 0.206405 0.0719946i
\(574\) 3.48639 + 6.03860i 0.145519 + 0.252046i
\(575\) 0 0
\(576\) 21.3677 3.17735i 0.890320 0.132390i
\(577\) −6.87604 6.87604i −0.286253 0.286253i 0.549343 0.835597i \(-0.314878\pi\)
−0.835597 + 0.549343i \(0.814878\pi\)
\(578\) 16.3774 4.38831i 0.681209 0.182529i
\(579\) −5.01539 + 3.41216i −0.208432 + 0.141804i
\(580\) 0 0
\(581\) 31.2930 + 18.0670i 1.29825 + 0.749547i
\(582\) −8.47970 + 9.83386i −0.351495 + 0.407626i
\(583\) 16.9103 + 4.53110i 0.700352 + 0.187659i
\(584\) −30.4913 −1.26174
\(585\) 0 0
\(586\) 35.7517 1.47689
\(587\) −35.3085 9.46089i −1.45734 0.390493i −0.558769 0.829323i \(-0.688726\pi\)
−0.898570 + 0.438830i \(0.855393\pi\)
\(588\) −1.92481 + 2.23220i −0.0793780 + 0.0920542i
\(589\) −10.9086 6.29805i −0.449479 0.259507i
\(590\) 0 0
\(591\) 6.64730 4.52241i 0.273433 0.186027i
\(592\) −4.12007 + 1.10397i −0.169334 + 0.0453728i
\(593\) 28.7633 + 28.7633i 1.18117 + 1.18117i 0.979442 + 0.201727i \(0.0646553\pi\)
0.201727 + 0.979442i \(0.435345\pi\)
\(594\) 9.74533 31.2632i 0.399856 1.28275i
\(595\) 0 0
\(596\) 0.848182 + 1.46909i 0.0347429 + 0.0601764i
\(597\) 7.42559 2.59007i 0.303909 0.106004i
\(598\) −13.4197 6.70509i −0.548774 0.274192i
\(599\) −10.0471 −0.410513 −0.205256 0.978708i \(-0.565803\pi\)
−0.205256 + 0.978708i \(0.565803\pi\)
\(600\) 0 0
\(601\) −17.9309 31.0572i −0.731415 1.26685i −0.956279 0.292458i \(-0.905527\pi\)
0.224864 0.974390i \(-0.427806\pi\)
\(602\) −59.6743 + 15.9897i −2.43214 + 0.651691i
\(603\) 18.3785 + 2.10767i 0.748430 + 0.0858308i
\(604\) −1.71899 + 2.97737i −0.0699446 + 0.121148i
\(605\) 0 0
\(606\) −21.7299 + 45.0084i −0.882717 + 1.82834i
\(607\) 2.93149 + 10.9405i 0.118985 + 0.444060i 0.999554 0.0298588i \(-0.00950577\pi\)
−0.880569 + 0.473919i \(0.842839\pi\)
\(608\) −4.53639 1.21552i −0.183975 0.0492960i
\(609\) 7.87170 0.582056i 0.318977 0.0235861i
\(610\) 0 0
\(611\) −10.4141 + 11.7509i −0.421310 + 0.475389i
\(612\) 0.137483 1.19883i 0.00555741 0.0484597i
\(613\) 19.2626 + 5.16141i 0.778011 + 0.208467i 0.625908 0.779897i \(-0.284729\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(614\) 13.4369 + 23.2734i 0.542270 + 0.939239i
\(615\) 0 0
\(616\) 47.3936i 1.90954i
\(617\) −4.81611 17.9740i −0.193889 0.723605i −0.992552 0.121825i \(-0.961125\pi\)
0.798662 0.601780i \(-0.205541\pi\)
\(618\) −41.4233 7.88025i −1.66629 0.316990i
\(619\) 36.0310 1.44821 0.724104 0.689691i \(-0.242254\pi\)
0.724104 + 0.689691i \(0.242254\pi\)
\(620\) 0 0
\(621\) 9.94675 + 10.7842i 0.399149 + 0.432754i
\(622\) 3.20182 11.9493i 0.128381 0.479125i
\(623\) −10.9976 + 10.9976i −0.440608 + 0.440608i
\(624\) 26.7198 + 3.43228i 1.06965 + 0.137401i
\(625\) 0 0
\(626\) −0.464527 0.804584i −0.0185662 0.0321576i
\(627\) 23.4662 27.2137i 0.937151 1.08681i
\(628\) 1.26863 0.339928i 0.0506238 0.0135646i
\(629\) 2.31773i 0.0924141i
\(630\) 0 0
\(631\) 28.1867 + 16.2736i 1.12209 + 0.647841i 0.941935 0.335796i \(-0.109005\pi\)
0.180159 + 0.983637i \(0.442339\pi\)
\(632\) 3.92688 3.92688i 0.156203 0.156203i
\(633\) 20.6578 + 3.92988i 0.821073 + 0.156199i
\(634\) 22.7117 13.1126i 0.901998 0.520769i
\(635\) 0 0
\(636\) −0.528993 + 1.09568i −0.0209759 + 0.0434467i
\(637\) 29.8330 19.7096i 1.18203 0.780923i
\(638\) 4.93748 4.93748i 0.195477 0.195477i
\(639\) −24.4880 9.66689i −0.968729 0.382416i
\(640\) 0 0
\(641\) 5.53230 + 3.19407i 0.218513 + 0.126158i 0.605261 0.796027i \(-0.293069\pi\)
−0.386749 + 0.922185i \(0.626402\pi\)
\(642\) 7.78545 + 22.3205i 0.307267 + 0.880919i
\(643\) −8.33296 31.0990i −0.328620 1.22643i −0.910623 0.413239i \(-0.864398\pi\)
0.582003 0.813187i \(-0.302269\pi\)
\(644\) −1.72576 0.996370i −0.0680046 0.0392625i
\(645\) 0 0
\(646\) 8.37845 14.5119i 0.329646 0.570963i
\(647\) 4.45875 16.6403i 0.175291 0.654196i −0.821210 0.570625i \(-0.806701\pi\)
0.996502 0.0835709i \(-0.0266325\pi\)
\(648\) −21.3943 11.4160i −0.840448 0.448462i
\(649\) 37.2696i 1.46296i
\(650\) 0 0
\(651\) 16.6577 + 8.04226i 0.652865 + 0.315201i
\(652\) 0.311259 1.16163i 0.0121898 0.0454931i
\(653\) 22.6354 + 6.06514i 0.885791 + 0.237347i 0.672904 0.739730i \(-0.265047\pi\)
0.212887 + 0.977077i \(0.431713\pi\)
\(654\) −29.1597 + 19.8385i −1.14024 + 0.775745i
\(655\) 0 0
\(656\) 2.48131 4.29775i 0.0968789 0.167799i
\(657\) 27.2758 + 20.2141i 1.06413 + 0.788628i
\(658\) −18.6640 + 18.6640i −0.727597 + 0.727597i
\(659\) 6.20035 10.7393i 0.241532 0.418345i −0.719619 0.694369i \(-0.755684\pi\)
0.961151 + 0.276024i \(0.0890169\pi\)
\(660\) 0 0
\(661\) −19.8030 + 11.4332i −0.770246 + 0.444702i −0.832962 0.553330i \(-0.813357\pi\)
0.0627164 + 0.998031i \(0.480024\pi\)
\(662\) 14.7782 + 14.7782i 0.574370 + 0.574370i
\(663\) −5.55927 + 13.5416i −0.215904 + 0.525911i
\(664\) 23.6711i 0.918616i
\(665\) 0 0
\(666\) 4.06601 + 1.60510i 0.157555 + 0.0621964i
\(667\) 0.809663 + 3.02170i 0.0313503 + 0.117001i
\(668\) 3.08951 + 3.08951i 0.119537 + 0.119537i
\(669\) −25.0123 + 17.0168i −0.967032 + 0.657908i
\(670\) 0 0
\(671\) 14.0628 0.542888
\(672\) 6.77521 + 1.28890i 0.261359 + 0.0497203i
\(673\) −1.81967 + 6.79109i −0.0701431 + 0.261777i −0.992088 0.125543i \(-0.959933\pi\)
0.921945 + 0.387321i \(0.126599\pi\)
\(674\) −10.6143 + 6.12816i −0.408847 + 0.236048i
\(675\) 0 0
\(676\) 2.05196 + 0.875128i 0.0789217 + 0.0336588i
\(677\) 26.7622 + 26.7622i 1.02856 + 1.02856i 0.999580 + 0.0289760i \(0.00922463\pi\)
0.0289760 + 0.999580i \(0.490775\pi\)
\(678\) 2.77843 + 2.39583i 0.106705 + 0.0920112i
\(679\) 18.1210 10.4622i 0.695420 0.401501i
\(680\) 0 0
\(681\) 14.9617 + 7.22346i 0.573334 + 0.276804i
\(682\) 15.8060 4.23522i 0.605245 0.162175i
\(683\) 9.97129 2.67180i 0.381541 0.102234i −0.0629506 0.998017i \(-0.520051\pi\)
0.444491 + 0.895783i \(0.353384\pi\)
\(684\) 1.55320 + 1.95560i 0.0593883 + 0.0747741i
\(685\) 0 0
\(686\) 15.3108 8.83972i 0.584571 0.337502i
\(687\) −6.33592 + 7.34773i −0.241731 + 0.280333i
\(688\) 31.0909 + 31.0909i 1.18533 + 1.18533i
\(689\) 9.78953 11.0461i 0.372951 0.420823i
\(690\) 0 0
\(691\) −21.8645 + 12.6235i −0.831765 + 0.480220i −0.854457 0.519523i \(-0.826110\pi\)
0.0226915 + 0.999743i \(0.492776\pi\)
\(692\) 0.850645 3.17465i 0.0323367 0.120682i
\(693\) −31.4195 + 42.3957i −1.19353 + 1.61048i
\(694\) 7.19045 0.272946
\(695\) 0 0
\(696\) −2.90855 4.27516i −0.110248 0.162050i
\(697\) 1.90677 + 1.90677i 0.0722242 + 0.0722242i
\(698\) −4.67918 17.4629i −0.177110 0.660982i
\(699\) −3.48331 47.1081i −0.131751 1.78179i
\(700\) 0 0
\(701\) 5.83428i 0.220358i −0.993912 0.110179i \(-0.964858\pi\)
0.993912 0.110179i \(-0.0351424\pi\)
\(702\) −19.9061 19.1306i −0.751306 0.722038i
\(703\) 3.39184 + 3.39184i 0.127926 + 0.127926i
\(704\) −26.6695 + 15.3976i −1.00514 + 0.580320i
\(705\) 0 0
\(706\) 7.96595 13.7974i 0.299803 0.519273i
\(707\) 56.9490 56.9490i 2.14179 2.14179i
\(708\) 2.54455 + 0.484069i 0.0956302 + 0.0181924i
\(709\) −9.66759 + 16.7448i −0.363074 + 0.628863i −0.988465 0.151449i \(-0.951606\pi\)
0.625391 + 0.780311i \(0.284939\pi\)
\(710\) 0 0
\(711\) −6.11608 + 0.909454i −0.229371 + 0.0341072i
\(712\) 9.84138 + 2.63699i 0.368821 + 0.0988254i
\(713\) −1.89742 + 7.08126i −0.0710589 + 0.265195i
\(714\) −10.6988 + 22.1601i −0.400393 + 0.829320i
\(715\) 0 0
\(716\) 1.03624i 0.0387259i
\(717\) 22.7496 + 19.6169i 0.849598 + 0.732606i
\(718\) 14.2256 53.0907i 0.530895 1.98133i
\(719\) 19.2268 33.3018i 0.717038 1.24195i −0.245130 0.969490i \(-0.578831\pi\)
0.962168 0.272456i \(-0.0878359\pi\)
\(720\) 0 0
\(721\) 58.8443 + 33.9738i 2.19148 + 1.26525i
\(722\) 1.72919 + 6.45341i 0.0643537 + 0.240171i
\(723\) 2.73422 0.953703i 0.101687 0.0354686i
\(724\) 0.826728 + 0.477312i 0.0307251 + 0.0177391i
\(725\) 0 0
\(726\) 1.37199 + 18.5547i 0.0509192 + 0.688628i
\(727\) −24.8141 + 24.8141i −0.920304 + 0.920304i −0.997051 0.0767466i \(-0.975547\pi\)
0.0767466 + 0.997051i \(0.475547\pi\)
\(728\) −35.7437 17.8591i −1.32475 0.661904i
\(729\) 11.5700 + 24.3954i 0.428518 + 0.903533i
\(730\) 0 0
\(731\) −20.6911 + 11.9460i −0.765287 + 0.441838i
\(732\) −0.182652 + 0.960126i −0.00675100 + 0.0354873i
\(733\) −28.6087 + 28.6087i −1.05668 + 1.05668i −0.0583912 + 0.998294i \(0.518597\pi\)
−0.998294 + 0.0583912i \(0.981403\pi\)
\(734\) 0.838131 + 0.483895i 0.0309360 + 0.0178609i
\(735\) 0 0
\(736\) 2.73337i 0.100753i
\(737\) −25.4723 + 6.82529i −0.938285 + 0.251413i
\(738\) −4.66556 + 2.02456i −0.171742 + 0.0745251i
\(739\) 7.80807 + 13.5240i 0.287225 + 0.497488i 0.973146 0.230188i \(-0.0739340\pi\)
−0.685922 + 0.727675i \(0.740601\pi\)
\(740\) 0 0
\(741\) −11.6815 27.9528i −0.429132 1.02687i
\(742\) 17.5446 17.5446i 0.644082 0.644082i
\(743\) 2.10721 7.86421i 0.0773060 0.288510i −0.916440 0.400171i \(-0.868951\pi\)
0.993746 + 0.111661i \(0.0356172\pi\)
\(744\) −0.893564 12.0845i −0.0327596 0.443040i
\(745\) 0 0
\(746\) 49.4434 1.81025
\(747\) −15.6927 + 21.1748i −0.574165 + 0.774747i
\(748\) 0.445213 + 1.66156i 0.0162786 + 0.0607525i
\(749\) 38.0930i 1.39189i
\(750\) 0 0
\(751\) −5.93245 10.2753i −0.216478 0.374951i 0.737251 0.675619i \(-0.236124\pi\)
−0.953729 + 0.300668i \(0.902790\pi\)
\(752\) 18.1454 + 4.86206i 0.661696 + 0.177301i
\(753\) 12.8661 4.48772i 0.468866 0.163542i
\(754\) −1.86322 5.58436i −0.0678545 0.203370i
\(755\) 0 0
\(756\) −2.48645 2.69579i −0.0904313 0.0980449i
\(757\) 8.51775 + 2.28233i 0.309583 + 0.0829525i 0.410266 0.911966i \(-0.365436\pi\)
−0.100683 + 0.994919i \(0.532103\pi\)
\(758\) 6.71189 + 25.0491i 0.243787 + 0.909825i
\(759\) −18.8338 9.09288i −0.683623 0.330051i
\(760\) 0 0
\(761\) 6.00928 10.4084i 0.217836 0.377304i −0.736310 0.676645i \(-0.763433\pi\)
0.954146 + 0.299341i \(0.0967667\pi\)
\(762\) −7.17558 + 2.50286i −0.259944 + 0.0906691i
\(763\) 54.8957 14.7093i 1.98736 0.532511i
\(764\) −0.259210 0.448965i −0.00937790 0.0162430i
\(765\) 0 0
\(766\) −30.8343 −1.11409
\(767\) −28.1083 14.0441i −1.01493 0.507105i
\(768\) −2.33248 6.68711i −0.0841662 0.241300i
\(769\) −6.86300 11.8871i −0.247486 0.428658i 0.715342 0.698775i \(-0.246271\pi\)
−0.962828 + 0.270117i \(0.912938\pi\)
\(770\) 0 0
\(771\) 9.27876 + 13.6385i 0.334166 + 0.491178i
\(772\) 0.424956 + 0.424956i 0.0152945 + 0.0152945i
\(773\) 20.8420 5.58461i 0.749636 0.200864i 0.136279 0.990670i \(-0.456486\pi\)
0.613357 + 0.789806i \(0.289819\pi\)
\(774\) −6.62771 44.5713i −0.238228 1.60208i
\(775\) 0 0
\(776\) −11.8709 6.85366i −0.426140 0.246032i
\(777\) −5.33468 4.60007i −0.191381 0.165027i
\(778\) 13.8705 + 3.71660i 0.497283 + 0.133247i
\(779\) −5.58086 −0.199955
\(780\) 0 0
\(781\) 37.5300 1.34293
\(782\) −9.42037 2.52418i −0.336872 0.0902645i
\(783\) −0.232377 + 5.75254i −0.00830448 + 0.205579i
\(784\) −37.0477 21.3895i −1.32313 0.763910i
\(785\) 0 0
\(786\) −3.76265 5.53056i −0.134209 0.197269i
\(787\) −16.6307 + 4.45618i −0.592820 + 0.158846i −0.542742 0.839900i \(-0.682614\pi\)
−0.0500781 + 0.998745i \(0.515947\pi\)
\(788\) −0.563229 0.563229i −0.0200642 0.0200642i
\(789\) −33.7022 + 22.9289i −1.19983 + 0.816290i
\(790\) 0 0
\(791\) −2.95595 5.11985i −0.105101 0.182041i
\(792\) 34.3435 + 3.93854i 1.22034 + 0.139950i
\(793\) 5.29922 10.6060i 0.188181 0.376630i
\(794\) 4.26023 0.151190
\(795\) 0 0
\(796\) −0.389570 0.674755i −0.0138080 0.0239161i
\(797\) 44.6186 11.9555i 1.58047 0.423486i 0.641400 0.767207i \(-0.278354\pi\)
0.939072 + 0.343721i \(0.111687\pi\)
\(798\) −16.7728 48.0867i −0.593750 1.70225i
\(799\) −5.10384 + 8.84011i −0.180561 + 0.312741i
\(800\) 0 0
\(801\) −7.05537 8.88323i −0.249289 0.313873i
\(802\) 0.424984 + 1.58606i 0.0150067 + 0.0560058i
\(803\) −46.7473 12.5259i −1.64968 0.442030i
\(804\) −0.135149 1.82775i −0.00476635 0.0644598i
\(805\) 0 0
\(806\) 2.76197 13.5167i 0.0972863 0.476105i
\(807\) −6.79111 19.4698i −0.239058 0.685368i
\(808\) −50.9620 13.6552i −1.79284 0.480389i
\(809\) 6.99405 + 12.1140i 0.245898 + 0.425907i 0.962384 0.271694i \(-0.0875840\pi\)
−0.716486 + 0.697602i \(0.754251\pi\)
\(810\) 0 0
\(811\) 19.5998i 0.688243i 0.938925 + 0.344122i \(0.111823\pi\)
−0.938925 + 0.344122i \(0.888177\pi\)
\(812\) −0.202396 0.755353i −0.00710272 0.0265077i
\(813\) 6.51900 34.2677i 0.228631 1.20182i
\(814\) −6.23152 −0.218415
\(815\) 0 0
\(816\) 17.4659 1.29148i 0.611428 0.0452107i
\(817\) 12.7978 47.7621i 0.447738 1.67098i
\(818\) 12.8684 12.8684i 0.449933 0.449933i
\(819\) 20.1347 + 39.6720i 0.703563 + 1.38625i
\(820\) 0 0
\(821\) 4.61577 + 7.99475i 0.161091 + 0.279019i 0.935260 0.353960i \(-0.115165\pi\)
−0.774169 + 0.632979i \(0.781832\pi\)
\(822\) 20.0592 + 17.2970i 0.699646 + 0.603302i
\(823\) 44.5620 11.9403i 1.55333 0.416214i 0.622788 0.782391i \(-0.286000\pi\)
0.930545 + 0.366177i \(0.119333\pi\)
\(824\) 44.5118i 1.55064i
\(825\) 0 0
\(826\) −45.7443 26.4105i −1.59165 0.918938i
\(827\) 31.7914 31.7914i 1.10549 1.10549i 0.111759 0.993735i \(-0.464351\pi\)
0.993735 0.111759i \(-0.0356486\pi\)
\(828\) 0.865428 1.16776i 0.0300757 0.0405825i
\(829\) −21.8064 + 12.5900i −0.757369 + 0.437267i −0.828350 0.560210i \(-0.810720\pi\)
0.0709813 + 0.997478i \(0.477387\pi\)
\(830\) 0 0
\(831\) −6.86273 3.31330i −0.238065 0.114937i
\(832\) 1.56297 + 25.9160i 0.0541863 + 0.898477i
\(833\) 16.4368 16.4368i 0.569503 0.569503i
\(834\) −4.95432 + 0.366337i −0.171554 + 0.0126852i
\(835\) 0 0
\(836\) −3.08311 1.78003i −0.106632 0.0615638i
\(837\) −7.21206 + 11.4025i −0.249285 + 0.394129i
\(838\) −7.23644 27.0068i −0.249979 0.932933i
\(839\) 39.9358 + 23.0569i 1.37874 + 0.796014i 0.992008 0.126179i \(-0.0402713\pi\)
0.386730 + 0.922193i \(0.373605\pi\)
\(840\) 0 0
\(841\) 13.8862 24.0516i 0.478834 0.829365i
\(842\) 11.5839 43.2317i 0.399207 1.48986i
\(843\) −26.0310 + 30.1879i −0.896554 + 1.03973i
\(844\) 2.08333i 0.0717110i
\(845\) 0 0
\(846\) −11.9737 15.0757i −0.411663 0.518314i
\(847\) 7.75966 28.9595i 0.266625 0.995059i
\(848\) −17.0572 4.57046i −0.585746 0.156950i
\(849\) 13.3074 + 19.5601i 0.456710 + 0.671300i
\(850\) 0 0
\(851\) 1.39589 2.41775i 0.0478505 0.0828795i
\(852\) −0.487450 + 2.56233i −0.0166998 + 0.0877839i
\(853\) −29.1777 + 29.1777i −0.999026 + 0.999026i −1.00000 0.000973237i \(-0.999690\pi\)
0.000973237 1.00000i \(0.499690\pi\)
\(854\) 9.96536 17.2605i 0.341008 0.590642i
\(855\) 0 0
\(856\) −21.6111 + 12.4772i −0.738652 + 0.426461i
\(857\) −27.5270 27.5270i −0.940305 0.940305i 0.0580111 0.998316i \(-0.481524\pi\)
−0.998316 + 0.0580111i \(0.981524\pi\)
\(858\) 36.4082 + 14.9468i 1.24296 + 0.510275i
\(859\) 40.5927i 1.38500i 0.721416 + 0.692502i \(0.243492\pi\)
−0.721416 + 0.692502i \(0.756508\pi\)
\(860\) 0 0
\(861\) 8.17321 0.604351i 0.278542 0.0205962i
\(862\) 9.96849 + 37.2029i 0.339528 + 1.26714i
\(863\) 28.4894 + 28.4894i 0.969792 + 0.969792i 0.999557 0.0297651i \(-0.00947594\pi\)
−0.0297651 + 0.999557i \(0.509476\pi\)
\(864\) −1.49703 + 4.80249i −0.0509299 + 0.163384i
\(865\) 0 0
\(866\) −13.2091 −0.448863
\(867\) 3.72432 19.5773i 0.126485 0.664879i
\(868\) 0.474310 1.77015i 0.0160991 0.0600827i
\(869\) 7.63362 4.40727i 0.258953 0.149506i
\(870\) 0 0
\(871\) −4.45107 + 21.7829i −0.150819 + 0.738084i
\(872\) −26.3258 26.3258i −0.891503 0.891503i
\(873\) 6.07542 + 14.0007i 0.205622 + 0.473851i
\(874\) 17.4800 10.0921i 0.591270 0.341370i
\(875\) 0 0
\(876\) 1.46236 3.02895i 0.0494087 0.102339i
\(877\) 17.0059 4.55671i 0.574248 0.153869i 0.0400039 0.999200i \(-0.487263\pi\)
0.534244 + 0.845330i \(0.320596\pi\)
\(878\) 24.4067 6.53975i 0.823686 0.220706i
\(879\) 18.2698 37.8416i 0.616225 1.27637i
\(880\) 0 0
\(881\) −34.8199 + 20.1033i −1.17311 + 0.677297i −0.954411 0.298495i \(-0.903515\pi\)
−0.218701 + 0.975792i \(0.570182\pi\)
\(882\) 17.4522 + 40.2182i 0.587646 + 1.35422i
\(883\) 1.83119 + 1.83119i 0.0616243 + 0.0616243i 0.737247 0.675623i \(-0.236125\pi\)
−0.675623 + 0.737247i \(0.736125\pi\)
\(884\) 1.42089 + 0.290343i 0.0477899 + 0.00976528i
\(885\) 0 0
\(886\) 30.4142 17.5596i 1.02178 0.589927i
\(887\) −10.1790 + 37.9885i −0.341777 + 1.27553i 0.554557 + 0.832146i \(0.312888\pi\)
−0.896333 + 0.443381i \(0.853779\pi\)
\(888\) −0.862388 + 4.53323i −0.0289399 + 0.152125i
\(889\) 12.2461 0.410721
\(890\) 0 0
\(891\) −28.1107 26.2911i −0.941744 0.880785i
\(892\) 2.11931 + 2.11931i 0.0709597 + 0.0709597i
\(893\) −5.46777 20.4060i −0.182972 0.682861i
\(894\) 25.1635 1.86066i 0.841593 0.0622298i
\(895\) 0 0
\(896\) 51.6087i 1.72413i
\(897\) −13.9548 + 10.7778i −0.465937 + 0.359860i
\(898\) −6.98192 6.98192i −0.232990 0.232990i
\(899\) −2.49146 + 1.43844i −0.0830948 + 0.0479748i
\(900\) 0 0
\(901\) 4.79774 8.30993i 0.159836 0.276844i
\(902\) 5.12660 5.12660i 0.170697 0.170697i
\(903\) −13.5703 + 71.3337i −0.451592 + 2.37384i
\(904\) −1.93641 + 3.35396i −0.0644041 + 0.111551i
\(905\) 0 0
\(906\) 28.7648 + 42.2802i 0.955647 + 1.40467i
\(907\) 45.1184 + 12.0894i 1.49813 + 0.401423i 0.912474 0.409135i \(-0.134170\pi\)
0.585658 + 0.810559i \(0.300836\pi\)
\(908\) 0.426019 1.58993i 0.0141379 0.0527635i
\(909\) 36.5351 + 46.0003i 1.21179 + 1.52573i
\(910\) 0 0
\(911\) 17.5547i 0.581613i 0.956782 + 0.290807i \(0.0939236\pi\)
−0.956782 + 0.290807i \(0.906076\pi\)
\(912\) −23.6701 + 27.4501i −0.783795 + 0.908962i
\(913\) 9.72415 36.2910i 0.321822 1.20106i
\(914\) −27.4071 + 47.4704i −0.906545 + 1.57018i
\(915\) 0 0
\(916\) 0.832445 + 0.480612i 0.0275048 + 0.0158799i
\(917\) 2.78982 + 10.4118i 0.0921281 + 0.343827i
\(918\) −15.1690 9.59437i −0.500653 0.316661i
\(919\) 28.1500 + 16.2524i 0.928583 + 0.536118i 0.886363 0.462991i \(-0.153224\pi\)
0.0422199 + 0.999108i \(0.486557\pi\)
\(920\) 0 0
\(921\) 31.5004 2.32923i 1.03797 0.0767508i
\(922\) −8.74013 + 8.74013i −0.287841 + 0.287841i
\(923\) 14.1423 28.3047i 0.465498 0.931659i
\(924\) 4.70800 + 2.27300i 0.154882 + 0.0747763i
\(925\) 0 0
\(926\) 12.9814 7.49483i 0.426596 0.246295i
\(927\) −29.5090 + 39.8178i −0.969202 + 1.30779i
\(928\) −0.758470 + 0.758470i −0.0248980 + 0.0248980i
\(929\) 22.2780 + 12.8622i 0.730916 + 0.421995i 0.818757 0.574140i \(-0.194663\pi\)
−0.0878410 + 0.996135i \(0.527997\pi\)
\(930\) 0 0
\(931\) 48.1084i 1.57669i
\(932\) −4.52040 + 1.21124i −0.148071 + 0.0396754i
\(933\) −11.0117 9.49533i −0.360506 0.310863i
\(934\) −21.0162 36.4010i −0.687670 1.19108i
\(935\) 0 0
\(936\) 15.9119 24.4173i 0.520097 0.798104i
\(937\) −19.2546 + 19.2546i −0.629022 + 0.629022i −0.947822 0.318800i \(-0.896720\pi\)
0.318800 + 0.947822i \(0.396720\pi\)
\(938\) −9.67325 + 36.1010i −0.315843 + 1.17874i
\(939\) −1.08900 + 0.0805238i −0.0355381 + 0.00262779i
\(940\) 0 0
\(941\) 27.3108 0.890306 0.445153 0.895455i \(-0.353149\pi\)
0.445153 + 0.895455i \(0.353149\pi\)
\(942\) 3.65092 19.1914i 0.118953 0.625290i
\(943\) 0.840675 + 3.13744i 0.0273761 + 0.102169i
\(944\) 37.5934i 1.22356i
\(945\) 0 0
\(946\) 32.1183 + 55.6305i 1.04426 + 1.80870i
\(947\) −2.70642 0.725183i −0.0879469 0.0235653i 0.214577 0.976707i \(-0.431163\pi\)
−0.302524 + 0.953142i \(0.597829\pi\)
\(948\) 0.201755 + 0.578422i 0.00655271 + 0.0187863i
\(949\) −27.0625 + 30.5362i −0.878485 + 0.991247i
\(950\) 0 0
\(951\) −2.27302 30.7402i −0.0737077 0.996818i
\(952\) −25.0913 6.72320i −0.813215 0.217900i
\(953\) 0.742295 + 2.77028i 0.0240453 + 0.0897382i 0.976906 0.213671i \(-0.0685419\pi\)
−0.952860 + 0.303409i \(0.901875\pi\)
\(954\) 11.2556 + 14.1716i 0.364412 + 0.458821i
\(955\) 0 0
\(956\) 1.48804 2.57736i 0.0481267 0.0833579i
\(957\) −2.70296 7.74925i −0.0873743 0.250498i
\(958\) 17.1442 4.59377i 0.553903 0.148418i
\(959\) −21.3409 36.9634i −0.689132 1.19361i
\(960\) 0 0
\(961\) 24.2581 0.782519
\(962\) −2.34820 + 4.69974i −0.0757089 + 0.151526i
\(963\) 27.6038 + 3.16563i 0.889519 + 0.102011i
\(964\) −0.143446 0.248456i −0.00462008 0.00800222i
\(965\) 0 0
\(966\) −24.5067 + 16.6728i −0.788491 + 0.536440i
\(967\) 34.7663 + 34.7663i 1.11801 + 1.11801i 0.992033 + 0.125975i \(0.0402058\pi\)
0.125975 + 0.992033i \(0.459794\pi\)
\(968\) −18.9711 + 5.08328i −0.609753 + 0.163383i
\(969\) −11.0787 16.2841i −0.355898 0.523120i
\(970\) 0 0
\(971\) −43.8854 25.3373i −1.40835 0.813112i −0.413121 0.910676i \(-0.635561\pi\)
−0.995229 + 0.0975644i \(0.968895\pi\)
\(972\) 2.16011 1.57776i 0.0692857 0.0506067i
\(973\) 7.73254 + 2.07193i 0.247894 + 0.0664229i
\(974\) 59.0914 1.89341
\(975\) 0 0
\(976\) −14.1850 −0.454050
\(977\) −10.0876 2.70297i −0.322731 0.0864755i 0.0938164 0.995590i \(-0.470093\pi\)
−0.416547 + 0.909114i \(0.636760\pi\)
\(978\) −13.5470 11.6815i −0.433186 0.373535i
\(979\) 14.0049 + 8.08574i 0.447599 + 0.258421i
\(980\) 0 0
\(981\) 6.09697 + 41.0022i 0.194661 + 1.30910i
\(982\) −27.7714 + 7.44133i −0.886221 + 0.237462i
\(983\) −15.8387 15.8387i −0.505176 0.505176i 0.407866 0.913042i \(-0.366273\pi\)
−0.913042 + 0.407866i \(0.866273\pi\)
\(984\) −3.01996 4.43891i −0.0962727 0.141507i
\(985\) 0 0
\(986\) −1.91359 3.31444i −0.0609413 0.105553i
\(987\) 10.2174 + 29.2926i 0.325222 + 0.932395i
\(988\) −2.50428 + 1.65448i −0.0796717 + 0.0526361i
\(989\) −28.7786 −0.915107
\(990\) 0 0
\(991\) 12.4412 + 21.5489i 0.395209 + 0.684523i 0.993128 0.117034i \(-0.0373387\pi\)
−0.597919 + 0.801557i \(0.704005\pi\)
\(992\) −2.42804 + 0.650592i −0.0770905 + 0.0206563i
\(993\) 23.1940 8.09012i 0.736038 0.256732i
\(994\) 26.5950 46.0638i 0.843541 1.46106i
\(995\) 0 0
\(996\) 2.35144 + 1.13527i 0.0745082 + 0.0359723i
\(997\) 13.3731 + 49.9090i 0.423529 + 1.58063i 0.767114 + 0.641511i \(0.221692\pi\)
−0.343585 + 0.939122i \(0.611641\pi\)
\(998\) 10.7434 + 2.87868i 0.340076 + 0.0911231i
\(999\) 3.77674 3.48346i 0.119491 0.110212i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.7 96
3.2 odd 2 inner 975.2.bn.d.218.18 96
5.2 odd 4 inner 975.2.bn.d.257.18 96
5.3 odd 4 195.2.bf.a.62.7 yes 96
5.4 even 2 195.2.bf.a.23.18 yes 96
13.4 even 6 inner 975.2.bn.d.368.7 96
15.2 even 4 inner 975.2.bn.d.257.7 96
15.8 even 4 195.2.bf.a.62.18 yes 96
15.14 odd 2 195.2.bf.a.23.7 yes 96
39.17 odd 6 inner 975.2.bn.d.368.18 96
65.4 even 6 195.2.bf.a.173.18 yes 96
65.17 odd 12 inner 975.2.bn.d.407.18 96
65.43 odd 12 195.2.bf.a.17.7 96
195.17 even 12 inner 975.2.bn.d.407.7 96
195.134 odd 6 195.2.bf.a.173.7 yes 96
195.173 even 12 195.2.bf.a.17.18 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.7 96 65.43 odd 12
195.2.bf.a.17.18 yes 96 195.173 even 12
195.2.bf.a.23.7 yes 96 15.14 odd 2
195.2.bf.a.23.18 yes 96 5.4 even 2
195.2.bf.a.62.7 yes 96 5.3 odd 4
195.2.bf.a.62.18 yes 96 15.8 even 4
195.2.bf.a.173.7 yes 96 195.134 odd 6
195.2.bf.a.173.18 yes 96 65.4 even 6
975.2.bn.d.218.7 96 1.1 even 1 trivial
975.2.bn.d.218.18 96 3.2 odd 2 inner
975.2.bn.d.257.7 96 15.2 even 4 inner
975.2.bn.d.257.18 96 5.2 odd 4 inner
975.2.bn.d.368.7 96 13.4 even 6 inner
975.2.bn.d.368.18 96 39.17 odd 6 inner
975.2.bn.d.407.7 96 195.17 even 12 inner
975.2.bn.d.407.18 96 65.17 odd 12 inner