Properties

Label 975.2.bn.d.407.17
Level $975$
Weight $2$
Character 975.407
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.17
Character \(\chi\) \(=\) 975.407
Dual form 975.2.bn.d.218.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05989 - 0.283997i) q^{2} +(1.73203 + 0.00769600i) q^{3} +(-0.689337 + 0.397989i) q^{4} +(1.83795 - 0.483735i) q^{6} +(0.160495 + 0.0430045i) q^{7} +(-2.16938 + 2.16938i) q^{8} +(2.99988 + 0.0266595i) q^{9} +(2.43760 - 4.22205i) q^{11} +(-1.19702 + 0.684025i) q^{12} +(2.24451 + 2.82173i) q^{13} +0.182320 q^{14} +(-0.887232 + 1.53673i) q^{16} +(4.65999 + 1.24864i) q^{17} +(3.18712 - 0.823701i) q^{18} +(1.37389 + 2.37966i) q^{19} +(0.277652 + 0.0757204i) q^{21} +(1.38454 - 5.16719i) q^{22} +(-5.64603 + 1.51285i) q^{23} +(-3.77414 + 3.74075i) q^{24} +(3.18030 + 2.35330i) q^{26} +(5.19569 + 0.0692622i) q^{27} +(-0.127750 + 0.0342306i) q^{28} +(2.47205 - 4.28172i) q^{29} +2.41720i q^{31} +(1.08416 - 4.04612i) q^{32} +(4.25451 - 7.29398i) q^{33} +5.29369 q^{34} +(-2.07854 + 1.17554i) q^{36} +(1.20299 + 4.48963i) q^{37} +(2.13199 + 2.13199i) q^{38} +(3.86585 + 4.90461i) q^{39} +(2.16059 - 3.74226i) q^{41} +(0.315785 + 0.00140314i) q^{42} +(-1.27129 - 0.340642i) q^{43} +3.88056i q^{44} +(-5.55453 + 3.20691i) q^{46} +(3.58251 + 3.58251i) q^{47} +(-1.54854 + 2.65484i) q^{48} +(-6.03827 - 3.48620i) q^{49} +(8.06165 + 2.19855i) q^{51} +(-2.67024 - 1.05184i) q^{52} +(3.34661 + 3.34661i) q^{53} +(5.52653 - 1.40215i) q^{54} +(-0.441468 + 0.254882i) q^{56} +(2.36132 + 4.13222i) q^{57} +(1.40411 - 5.24021i) q^{58} +(-8.49452 + 4.90431i) q^{59} +(-7.20685 - 12.4826i) q^{61} +(0.686477 + 2.56197i) q^{62} +(0.480319 + 0.133287i) q^{63} -8.14527i q^{64} +(2.43784 - 8.93909i) q^{66} +(0.188179 + 0.702294i) q^{67} +(-3.70925 + 0.993890i) q^{68} +(-9.79075 + 2.57685i) q^{69} +(1.37489 + 2.38137i) q^{71} +(-6.56572 + 6.45005i) q^{72} +(-5.45193 - 5.45193i) q^{73} +(2.55008 + 4.41687i) q^{74} +(-1.89415 - 1.09359i) q^{76} +(0.572790 - 0.572790i) q^{77} +(5.49027 + 4.10047i) q^{78} -7.39276i q^{79} +(8.99858 + 0.159950i) q^{81} +(1.22720 - 4.57999i) q^{82} +(-1.60997 + 1.60997i) q^{83} +(-0.221531 + 0.0583054i) q^{84} -1.44417 q^{86} +(4.31463 - 7.39706i) q^{87} +(3.87115 + 14.4473i) q^{88} +(5.98500 + 3.45544i) q^{89} +(0.238885 + 0.549398i) q^{91} +(3.28992 - 3.28992i) q^{92} +(-0.0186028 + 4.18667i) q^{93} +(4.81449 + 2.77964i) q^{94} +(1.90893 - 6.99968i) q^{96} +(-16.2824 - 4.36286i) q^{97} +(-7.38997 - 1.98014i) q^{98} +(7.42508 - 12.6007i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05989 0.283997i 0.749456 0.200816i 0.136179 0.990684i \(-0.456518\pi\)
0.613277 + 0.789868i \(0.289851\pi\)
\(3\) 1.73203 + 0.00769600i 0.999990 + 0.00444329i
\(4\) −0.689337 + 0.397989i −0.344668 + 0.198994i
\(5\) 0 0
\(6\) 1.83795 0.483735i 0.750341 0.197484i
\(7\) 0.160495 + 0.0430045i 0.0606614 + 0.0162542i 0.289022 0.957322i \(-0.406670\pi\)
−0.228361 + 0.973577i \(0.573337\pi\)
\(8\) −2.16938 + 2.16938i −0.766992 + 0.766992i
\(9\) 2.99988 + 0.0266595i 0.999961 + 0.00888649i
\(10\) 0 0
\(11\) 2.43760 4.22205i 0.734965 1.27300i −0.219773 0.975551i \(-0.570532\pi\)
0.954739 0.297446i \(-0.0961350\pi\)
\(12\) −1.19702 + 0.684025i −0.345549 + 0.197461i
\(13\) 2.24451 + 2.82173i 0.622514 + 0.782608i
\(14\) 0.182320 0.0487271
\(15\) 0 0
\(16\) −0.887232 + 1.53673i −0.221808 + 0.384183i
\(17\) 4.65999 + 1.24864i 1.13021 + 0.302840i 0.775010 0.631949i \(-0.217745\pi\)
0.355204 + 0.934789i \(0.384412\pi\)
\(18\) 3.18712 0.823701i 0.751211 0.194148i
\(19\) 1.37389 + 2.37966i 0.315193 + 0.545930i 0.979479 0.201549i \(-0.0645974\pi\)
−0.664285 + 0.747479i \(0.731264\pi\)
\(20\) 0 0
\(21\) 0.277652 + 0.0757204i 0.0605886 + 0.0165235i
\(22\) 1.38454 5.16719i 0.295186 1.10165i
\(23\) −5.64603 + 1.51285i −1.17728 + 0.315451i −0.793846 0.608118i \(-0.791925\pi\)
−0.383432 + 0.923569i \(0.625258\pi\)
\(24\) −3.77414 + 3.74075i −0.770393 + 0.763577i
\(25\) 0 0
\(26\) 3.18030 + 2.35330i 0.623707 + 0.461520i
\(27\) 5.19569 + 0.0692622i 0.999911 + 0.0133295i
\(28\) −0.127750 + 0.0342306i −0.0241426 + 0.00646898i
\(29\) 2.47205 4.28172i 0.459049 0.795096i −0.539862 0.841754i \(-0.681524\pi\)
0.998911 + 0.0466574i \(0.0148569\pi\)
\(30\) 0 0
\(31\) 2.41720i 0.434142i 0.976156 + 0.217071i \(0.0696502\pi\)
−0.976156 + 0.217071i \(0.930350\pi\)
\(32\) 1.08416 4.04612i 0.191653 0.715260i
\(33\) 4.25451 7.29398i 0.740614 1.26972i
\(34\) 5.29369 0.907860
\(35\) 0 0
\(36\) −2.07854 + 1.17554i −0.346423 + 0.195924i
\(37\) 1.20299 + 4.48963i 0.197771 + 0.738090i 0.991532 + 0.129861i \(0.0414531\pi\)
−0.793762 + 0.608229i \(0.791880\pi\)
\(38\) 2.13199 + 2.13199i 0.345855 + 0.345855i
\(39\) 3.86585 + 4.90461i 0.619031 + 0.785367i
\(40\) 0 0
\(41\) 2.16059 3.74226i 0.337428 0.584443i −0.646520 0.762897i \(-0.723776\pi\)
0.983948 + 0.178454i \(0.0571097\pi\)
\(42\) 0.315785 + 0.00140314i 0.0487266 + 0.000216509i
\(43\) −1.27129 0.340642i −0.193871 0.0519475i 0.160577 0.987023i \(-0.448664\pi\)
−0.354448 + 0.935076i \(0.615331\pi\)
\(44\) 3.88056i 0.585016i
\(45\) 0 0
\(46\) −5.55453 + 3.20691i −0.818970 + 0.472833i
\(47\) 3.58251 + 3.58251i 0.522562 + 0.522562i 0.918344 0.395782i \(-0.129526\pi\)
−0.395782 + 0.918344i \(0.629526\pi\)
\(48\) −1.54854 + 2.65484i −0.223513 + 0.383193i
\(49\) −6.03827 3.48620i −0.862610 0.498028i
\(50\) 0 0
\(51\) 8.06165 + 2.19855i 1.12886 + 0.307859i
\(52\) −2.67024 1.05184i −0.370296 0.145864i
\(53\) 3.34661 + 3.34661i 0.459692 + 0.459692i 0.898554 0.438862i \(-0.144618\pi\)
−0.438862 + 0.898554i \(0.644618\pi\)
\(54\) 5.52653 1.40215i 0.752066 0.190808i
\(55\) 0 0
\(56\) −0.441468 + 0.254882i −0.0589936 + 0.0340600i
\(57\) 2.36132 + 4.13222i 0.312764 + 0.547326i
\(58\) 1.40411 5.24021i 0.184369 0.688074i
\(59\) −8.49452 + 4.90431i −1.10589 + 0.638487i −0.937762 0.347278i \(-0.887106\pi\)
−0.168130 + 0.985765i \(0.553773\pi\)
\(60\) 0 0
\(61\) −7.20685 12.4826i −0.922742 1.59824i −0.795153 0.606409i \(-0.792609\pi\)
−0.127590 0.991827i \(-0.540724\pi\)
\(62\) 0.686477 + 2.56197i 0.0871826 + 0.325370i
\(63\) 0.480319 + 0.133287i 0.0605145 + 0.0167926i
\(64\) 8.14527i 1.01816i
\(65\) 0 0
\(66\) 2.43784 8.93909i 0.300078 1.10033i
\(67\) 0.188179 + 0.702294i 0.0229897 + 0.0857989i 0.976468 0.215664i \(-0.0691917\pi\)
−0.953478 + 0.301463i \(0.902525\pi\)
\(68\) −3.70925 + 0.993890i −0.449812 + 0.120527i
\(69\) −9.79075 + 2.57685i −1.17867 + 0.310217i
\(70\) 0 0
\(71\) 1.37489 + 2.38137i 0.163169 + 0.282617i 0.936004 0.351990i \(-0.114495\pi\)
−0.772834 + 0.634608i \(0.781162\pi\)
\(72\) −6.56572 + 6.45005i −0.773778 + 0.760146i
\(73\) −5.45193 5.45193i −0.638101 0.638101i 0.311986 0.950087i \(-0.399006\pi\)
−0.950087 + 0.311986i \(0.899006\pi\)
\(74\) 2.55008 + 4.41687i 0.296441 + 0.513450i
\(75\) 0 0
\(76\) −1.89415 1.09359i −0.217274 0.125443i
\(77\) 0.572790 0.572790i 0.0652755 0.0652755i
\(78\) 5.49027 + 4.10047i 0.621651 + 0.464286i
\(79\) 7.39276i 0.831750i −0.909422 0.415875i \(-0.863475\pi\)
0.909422 0.415875i \(-0.136525\pi\)
\(80\) 0 0
\(81\) 8.99858 + 0.159950i 0.999842 + 0.0177723i
\(82\) 1.22720 4.57999i 0.135522 0.505775i
\(83\) −1.60997 + 1.60997i −0.176717 + 0.176717i −0.789923 0.613206i \(-0.789880\pi\)
0.613206 + 0.789923i \(0.289880\pi\)
\(84\) −0.221531 + 0.0583054i −0.0241711 + 0.00636164i
\(85\) 0 0
\(86\) −1.44417 −0.155729
\(87\) 4.31463 7.39706i 0.462577 0.793049i
\(88\) 3.87115 + 14.4473i 0.412666 + 1.54009i
\(89\) 5.98500 + 3.45544i 0.634408 + 0.366276i 0.782457 0.622704i \(-0.213966\pi\)
−0.148049 + 0.988980i \(0.547299\pi\)
\(90\) 0 0
\(91\) 0.238885 + 0.549398i 0.0250419 + 0.0575926i
\(92\) 3.28992 3.28992i 0.342998 0.342998i
\(93\) −0.0186028 + 4.18667i −0.00192902 + 0.434137i
\(94\) 4.81449 + 2.77964i 0.496576 + 0.286698i
\(95\) 0 0
\(96\) 1.90893 6.99968i 0.194830 0.714402i
\(97\) −16.2824 4.36286i −1.65323 0.442981i −0.692714 0.721212i \(-0.743585\pi\)
−0.960514 + 0.278231i \(0.910252\pi\)
\(98\) −7.38997 1.98014i −0.746500 0.200024i
\(99\) 7.42508 12.6007i 0.746249 1.26642i
\(100\) 0 0
\(101\) −13.1605 7.59820i −1.30952 0.756049i −0.327500 0.944851i \(-0.606206\pi\)
−0.982015 + 0.188802i \(0.939540\pi\)
\(102\) 9.16885 + 0.0407402i 0.907851 + 0.00403388i
\(103\) −12.4089 + 12.4089i −1.22268 + 1.22268i −0.256009 + 0.966674i \(0.582408\pi\)
−0.966674 + 0.256009i \(0.917592\pi\)
\(104\) −10.9906 1.25223i −1.07772 0.122791i
\(105\) 0 0
\(106\) 4.49746 + 2.59661i 0.436832 + 0.252205i
\(107\) −0.564899 2.10823i −0.0546109 0.203811i 0.933230 0.359280i \(-0.116978\pi\)
−0.987841 + 0.155469i \(0.950311\pi\)
\(108\) −3.60915 + 2.02008i −0.347290 + 0.194382i
\(109\) −10.3074 −0.987274 −0.493637 0.869668i \(-0.664333\pi\)
−0.493637 + 0.869668i \(0.664333\pi\)
\(110\) 0 0
\(111\) 2.04907 + 7.78544i 0.194489 + 0.738961i
\(112\) −0.208483 + 0.208483i −0.0196997 + 0.0196997i
\(113\) 3.86420 14.4214i 0.363513 1.35665i −0.505912 0.862585i \(-0.668844\pi\)
0.869425 0.494065i \(-0.164489\pi\)
\(114\) 3.67628 + 3.70909i 0.344315 + 0.347388i
\(115\) 0 0
\(116\) 3.93540i 0.365393i
\(117\) 6.65803 + 8.52471i 0.615535 + 0.788109i
\(118\) −7.61045 + 7.61045i −0.700599 + 0.700599i
\(119\) 0.694207 + 0.400801i 0.0636379 + 0.0367414i
\(120\) 0 0
\(121\) −6.38383 11.0571i −0.580348 1.00519i
\(122\) −11.1835 11.1835i −1.01251 1.01251i
\(123\) 3.77102 6.46509i 0.340022 0.582938i
\(124\) −0.962018 1.66626i −0.0863918 0.149635i
\(125\) 0 0
\(126\) 0.546939 + 0.00486056i 0.0487252 + 0.000433013i
\(127\) −1.36576 + 0.365954i −0.121192 + 0.0324732i −0.318905 0.947787i \(-0.603315\pi\)
0.197713 + 0.980260i \(0.436648\pi\)
\(128\) −0.144921 0.540851i −0.0128093 0.0478049i
\(129\) −2.19930 0.599788i −0.193638 0.0528084i
\(130\) 0 0
\(131\) 1.23865i 0.108221i 0.998535 + 0.0541107i \(0.0172324\pi\)
−0.998535 + 0.0541107i \(0.982768\pi\)
\(132\) −0.0298648 + 6.72126i −0.00259939 + 0.585010i
\(133\) 0.118167 + 0.441006i 0.0102464 + 0.0382401i
\(134\) 0.398899 + 0.690913i 0.0344596 + 0.0596858i
\(135\) 0 0
\(136\) −12.8181 + 7.40052i −1.09914 + 0.634589i
\(137\) −1.05050 + 3.92054i −0.0897507 + 0.334954i −0.996171 0.0874219i \(-0.972137\pi\)
0.906421 + 0.422376i \(0.138804\pi\)
\(138\) −9.64531 + 5.51172i −0.821063 + 0.469189i
\(139\) 6.39677 3.69318i 0.542567 0.313251i −0.203552 0.979064i \(-0.565248\pi\)
0.746119 + 0.665813i \(0.231915\pi\)
\(140\) 0 0
\(141\) 6.17745 + 6.23259i 0.520235 + 0.524879i
\(142\) 2.13353 + 2.13353i 0.179042 + 0.179042i
\(143\) 17.3847 2.59816i 1.45378 0.217269i
\(144\) −2.70256 + 4.58636i −0.225213 + 0.382196i
\(145\) 0 0
\(146\) −7.32679 4.23012i −0.606369 0.350087i
\(147\) −10.4317 6.08468i −0.860388 0.501856i
\(148\) −2.61609 2.61609i −0.215041 0.215041i
\(149\) 5.05279 2.91723i 0.413941 0.238989i −0.278541 0.960424i \(-0.589851\pi\)
0.692482 + 0.721435i \(0.256517\pi\)
\(150\) 0 0
\(151\) 16.4599i 1.33949i 0.742591 + 0.669745i \(0.233597\pi\)
−0.742591 + 0.669745i \(0.766403\pi\)
\(152\) −8.14288 2.18188i −0.660475 0.176974i
\(153\) 13.9461 + 3.87001i 1.12748 + 0.312871i
\(154\) 0.444425 0.769766i 0.0358127 0.0620295i
\(155\) 0 0
\(156\) −4.61685 1.84237i −0.369644 0.147507i
\(157\) 5.15467 + 5.15467i 0.411387 + 0.411387i 0.882222 0.470834i \(-0.156047\pi\)
−0.470834 + 0.882222i \(0.656047\pi\)
\(158\) −2.09952 7.83551i −0.167029 0.623360i
\(159\) 5.77068 + 5.82219i 0.457645 + 0.461730i
\(160\) 0 0
\(161\) −0.971218 −0.0765427
\(162\) 9.58293 2.38604i 0.752906 0.187465i
\(163\) 5.68770 21.2268i 0.445495 1.66261i −0.269131 0.963103i \(-0.586737\pi\)
0.714626 0.699506i \(-0.246597\pi\)
\(164\) 3.43957i 0.268585i
\(165\) 0 0
\(166\) −1.24917 + 2.16362i −0.0969541 + 0.167929i
\(167\) −13.6836 + 3.66650i −1.05887 + 0.283723i −0.745911 0.666045i \(-0.767986\pi\)
−0.312956 + 0.949768i \(0.601319\pi\)
\(168\) −0.766599 + 0.438066i −0.0591444 + 0.0337975i
\(169\) −2.92437 + 12.6668i −0.224952 + 0.974370i
\(170\) 0 0
\(171\) 4.05808 + 7.17531i 0.310329 + 0.548710i
\(172\) 1.01192 0.271144i 0.0771583 0.0206745i
\(173\) 0.246123 0.918542i 0.0187123 0.0698354i −0.955938 0.293568i \(-0.905157\pi\)
0.974651 + 0.223732i \(0.0718241\pi\)
\(174\) 2.47230 9.06542i 0.187424 0.687248i
\(175\) 0 0
\(176\) 4.32544 + 7.49188i 0.326042 + 0.564722i
\(177\) −14.7505 + 8.42906i −1.10872 + 0.633567i
\(178\) 7.32477 + 1.96267i 0.549015 + 0.147108i
\(179\) 8.16594 14.1438i 0.610351 1.05716i −0.380830 0.924645i \(-0.624362\pi\)
0.991181 0.132514i \(-0.0423048\pi\)
\(180\) 0 0
\(181\) −12.4459 −0.925096 −0.462548 0.886594i \(-0.653065\pi\)
−0.462548 + 0.886594i \(0.653065\pi\)
\(182\) 0.409219 + 0.514459i 0.0303333 + 0.0381343i
\(183\) −12.3864 21.6758i −0.915632 1.60232i
\(184\) 8.96644 15.5303i 0.661015 1.14491i
\(185\) 0 0
\(186\) 1.16928 + 4.44269i 0.0857360 + 0.325754i
\(187\) 16.6310 16.6310i 1.21618 1.21618i
\(188\) −3.89535 1.04376i −0.284098 0.0761238i
\(189\) 0.830903 + 0.234554i 0.0604393 + 0.0170613i
\(190\) 0 0
\(191\) 2.49022 1.43773i 0.180186 0.104030i −0.407194 0.913342i \(-0.633493\pi\)
0.587380 + 0.809311i \(0.300159\pi\)
\(192\) 0.0626860 14.1079i 0.00452397 1.01815i
\(193\) 10.1951 2.73177i 0.733861 0.196637i 0.127513 0.991837i \(-0.459301\pi\)
0.606348 + 0.795199i \(0.292634\pi\)
\(194\) −18.4966 −1.32798
\(195\) 0 0
\(196\) 5.54987 0.396419
\(197\) 19.0112 5.09403i 1.35449 0.362934i 0.492700 0.870199i \(-0.336010\pi\)
0.861790 + 0.507265i \(0.169344\pi\)
\(198\) 4.29122 15.4640i 0.304964 1.09898i
\(199\) −10.9231 + 6.30646i −0.774318 + 0.447053i −0.834413 0.551140i \(-0.814193\pi\)
0.0600946 + 0.998193i \(0.480860\pi\)
\(200\) 0 0
\(201\) 0.320528 + 1.21785i 0.0226083 + 0.0859002i
\(202\) −16.1065 4.31573i −1.13325 0.303654i
\(203\) 0.580885 0.580885i 0.0407702 0.0407702i
\(204\) −6.43219 + 1.69290i −0.450343 + 0.118527i
\(205\) 0 0
\(206\) −9.62798 + 16.6761i −0.670813 + 1.16188i
\(207\) −16.9777 + 4.38785i −1.18003 + 0.304976i
\(208\) −6.32765 + 0.945670i −0.438743 + 0.0655704i
\(209\) 13.3960 0.926624
\(210\) 0 0
\(211\) −2.40360 + 4.16317i −0.165471 + 0.286604i −0.936822 0.349805i \(-0.886248\pi\)
0.771351 + 0.636409i \(0.219581\pi\)
\(212\) −3.63885 0.975028i −0.249917 0.0669652i
\(213\) 2.36302 + 4.13520i 0.161912 + 0.283339i
\(214\) −1.19746 2.07407i −0.0818569 0.141780i
\(215\) 0 0
\(216\) −11.4217 + 11.1212i −0.777148 + 0.756700i
\(217\) −0.103950 + 0.387948i −0.00705661 + 0.0263356i
\(218\) −10.9248 + 2.92728i −0.739918 + 0.198260i
\(219\) −9.40098 9.48489i −0.635259 0.640930i
\(220\) 0 0
\(221\) 6.93605 + 15.9518i 0.466569 + 1.07304i
\(222\) 4.38283 + 7.66979i 0.294156 + 0.514762i
\(223\) −11.0162 + 2.95177i −0.737697 + 0.197665i −0.608054 0.793896i \(-0.708050\pi\)
−0.129643 + 0.991561i \(0.541383\pi\)
\(224\) 0.348003 0.602759i 0.0232519 0.0402735i
\(225\) 0 0
\(226\) 16.3825i 1.08975i
\(227\) −6.87249 + 25.6485i −0.456143 + 1.70235i 0.228561 + 0.973530i \(0.426598\pi\)
−0.684705 + 0.728821i \(0.740069\pi\)
\(228\) −3.27232 1.90871i −0.216715 0.126408i
\(229\) −6.38857 −0.422169 −0.211084 0.977468i \(-0.567699\pi\)
−0.211084 + 0.977468i \(0.567699\pi\)
\(230\) 0 0
\(231\) 0.996501 0.987684i 0.0655649 0.0649848i
\(232\) 3.92586 + 14.6515i 0.257746 + 0.961920i
\(233\) 12.9039 + 12.9039i 0.845365 + 0.845365i 0.989551 0.144186i \(-0.0460562\pi\)
−0.144186 + 0.989551i \(0.546056\pi\)
\(234\) 9.47777 + 7.14440i 0.619581 + 0.467044i
\(235\) 0 0
\(236\) 3.90372 6.76145i 0.254111 0.440133i
\(237\) 0.0568947 12.8045i 0.00369571 0.831742i
\(238\) 0.849610 + 0.227652i 0.0550720 + 0.0147565i
\(239\) 3.20751i 0.207477i −0.994605 0.103738i \(-0.966920\pi\)
0.994605 0.103738i \(-0.0330805\pi\)
\(240\) 0 0
\(241\) 5.19991 3.00217i 0.334956 0.193387i −0.323083 0.946370i \(-0.604719\pi\)
0.658039 + 0.752984i \(0.271386\pi\)
\(242\) −9.90635 9.90635i −0.636804 0.636804i
\(243\) 15.5846 + 0.346293i 0.999753 + 0.0222147i
\(244\) 9.93589 + 5.73649i 0.636080 + 0.367241i
\(245\) 0 0
\(246\) 2.16081 7.92325i 0.137768 0.505168i
\(247\) −3.63104 + 9.21792i −0.231038 + 0.586522i
\(248\) −5.24382 5.24382i −0.332983 0.332983i
\(249\) −2.80091 + 2.77613i −0.177501 + 0.175930i
\(250\) 0 0
\(251\) 21.2638 12.2767i 1.34216 0.774897i 0.355036 0.934852i \(-0.384468\pi\)
0.987124 + 0.159956i \(0.0511351\pi\)
\(252\) −0.384149 + 0.0992820i −0.0241991 + 0.00625418i
\(253\) −7.37545 + 27.5256i −0.463691 + 1.73052i
\(254\) −1.34363 + 0.775742i −0.0843066 + 0.0486744i
\(255\) 0 0
\(256\) 7.83807 + 13.5759i 0.489880 + 0.848496i
\(257\) −1.24454 4.64467i −0.0776320 0.289727i 0.916185 0.400755i \(-0.131252\pi\)
−0.993817 + 0.111028i \(0.964586\pi\)
\(258\) −2.50136 0.0111144i −0.155728 0.000691950i
\(259\) 0.772296i 0.0479881i
\(260\) 0 0
\(261\) 7.53002 12.7788i 0.466096 0.790985i
\(262\) 0.351773 + 1.31283i 0.0217326 + 0.0811072i
\(263\) 11.3760 3.04819i 0.701474 0.187959i 0.109583 0.993978i \(-0.465048\pi\)
0.591891 + 0.806018i \(0.298382\pi\)
\(264\) 6.59378 + 25.0531i 0.405819 + 1.54191i
\(265\) 0 0
\(266\) 0.250489 + 0.433859i 0.0153585 + 0.0266016i
\(267\) 10.3396 + 6.03100i 0.632775 + 0.369091i
\(268\) −0.409224 0.409224i −0.0249973 0.0249973i
\(269\) −0.648587 1.12339i −0.0395451 0.0684941i 0.845575 0.533856i \(-0.179258\pi\)
−0.885121 + 0.465362i \(0.845924\pi\)
\(270\) 0 0
\(271\) 5.30394 + 3.06223i 0.322191 + 0.186017i 0.652369 0.757902i \(-0.273775\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(272\) −6.05331 + 6.05331i −0.367036 + 0.367036i
\(273\) 0.409528 + 0.953414i 0.0247858 + 0.0577033i
\(274\) 4.45368i 0.269057i
\(275\) 0 0
\(276\) 5.72357 5.67293i 0.344518 0.341470i
\(277\) −2.69179 + 10.0459i −0.161734 + 0.603600i 0.836700 + 0.547661i \(0.184482\pi\)
−0.998434 + 0.0559386i \(0.982185\pi\)
\(278\) 5.73103 5.73103i 0.343724 0.343724i
\(279\) −0.0644412 + 7.25131i −0.00385799 + 0.434124i
\(280\) 0 0
\(281\) −21.9271 −1.30806 −0.654031 0.756468i \(-0.726923\pi\)
−0.654031 + 0.756468i \(0.726923\pi\)
\(282\) 8.31746 + 4.85149i 0.495297 + 0.288902i
\(283\) −1.43469 5.35432i −0.0852833 0.318281i 0.910084 0.414423i \(-0.136017\pi\)
−0.995368 + 0.0961414i \(0.969350\pi\)
\(284\) −1.89552 1.09438i −0.112479 0.0649395i
\(285\) 0 0
\(286\) 17.6881 7.69098i 1.04592 0.454777i
\(287\) 0.507698 0.507698i 0.0299685 0.0299685i
\(288\) 3.36021 12.1090i 0.198002 0.713529i
\(289\) 5.43396 + 3.13730i 0.319645 + 0.184547i
\(290\) 0 0
\(291\) −28.1681 7.68193i −1.65124 0.450323i
\(292\) 5.92803 + 1.58841i 0.346912 + 0.0929547i
\(293\) −4.73086 1.26763i −0.276380 0.0740557i 0.117967 0.993018i \(-0.462362\pi\)
−0.394347 + 0.918962i \(0.629029\pi\)
\(294\) −12.7844 3.48654i −0.745604 0.203339i
\(295\) 0 0
\(296\) −12.3495 7.12996i −0.717798 0.414421i
\(297\) 12.9575 21.7677i 0.751869 1.26309i
\(298\) 4.52692 4.52692i 0.262238 0.262238i
\(299\) −16.9414 12.5360i −0.979747 0.724975i
\(300\) 0 0
\(301\) −0.189387 0.109343i −0.0109161 0.00630241i
\(302\) 4.67457 + 17.4457i 0.268991 + 1.00389i
\(303\) −22.7359 13.2616i −1.30614 0.761860i
\(304\) −4.87585 −0.279649
\(305\) 0 0
\(306\) 15.8804 + 0.141127i 0.907824 + 0.00806769i
\(307\) −15.7142 + 15.7142i −0.896858 + 0.896858i −0.995157 0.0982987i \(-0.968660\pi\)
0.0982987 + 0.995157i \(0.468660\pi\)
\(308\) −0.166881 + 0.622810i −0.00950895 + 0.0354879i
\(309\) −21.5881 + 21.3971i −1.22810 + 1.21724i
\(310\) 0 0
\(311\) 27.3000i 1.54804i 0.633161 + 0.774020i \(0.281757\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(312\) −19.0265 2.25348i −1.07716 0.127578i
\(313\) 13.0107 13.0107i 0.735406 0.735406i −0.236280 0.971685i \(-0.575928\pi\)
0.971685 + 0.236280i \(0.0759281\pi\)
\(314\) 6.92729 + 3.99948i 0.390930 + 0.225703i
\(315\) 0 0
\(316\) 2.94224 + 5.09610i 0.165514 + 0.286678i
\(317\) −6.64936 6.64936i −0.373465 0.373465i 0.495272 0.868738i \(-0.335068\pi\)
−0.868738 + 0.495272i \(0.835068\pi\)
\(318\) 7.76978 + 4.53203i 0.435707 + 0.254144i
\(319\) −12.0518 20.8743i −0.674770 1.16874i
\(320\) 0 0
\(321\) −0.962200 3.65588i −0.0537048 0.204051i
\(322\) −1.02938 + 0.275823i −0.0573654 + 0.0153710i
\(323\) 3.43100 + 12.8047i 0.190906 + 0.712471i
\(324\) −6.26671 + 3.47107i −0.348151 + 0.192837i
\(325\) 0 0
\(326\) 24.1134i 1.33552i
\(327\) −17.8528 0.0793261i −0.987264 0.00438674i
\(328\) 3.43123 + 12.8055i 0.189458 + 0.707068i
\(329\) 0.420910 + 0.729038i 0.0232055 + 0.0401932i
\(330\) 0 0
\(331\) 5.50158 3.17634i 0.302394 0.174587i −0.341124 0.940018i \(-0.610807\pi\)
0.643518 + 0.765431i \(0.277474\pi\)
\(332\) 0.469062 1.75056i 0.0257431 0.0960746i
\(333\) 3.48914 + 13.5004i 0.191204 + 0.739818i
\(334\) −13.4618 + 7.77219i −0.736598 + 0.425275i
\(335\) 0 0
\(336\) −0.362703 + 0.359494i −0.0197871 + 0.0196120i
\(337\) −12.5904 12.5904i −0.685841 0.685841i 0.275469 0.961310i \(-0.411167\pi\)
−0.961310 + 0.275469i \(0.911167\pi\)
\(338\) 0.497817 + 14.2559i 0.0270777 + 0.775421i
\(339\) 6.80391 24.9486i 0.369538 1.35502i
\(340\) 0 0
\(341\) 10.2055 + 5.89217i 0.552661 + 0.319079i
\(342\) 6.33889 + 6.45256i 0.342768 + 0.348915i
\(343\) −1.64162 1.64162i −0.0886393 0.0886393i
\(344\) 3.49691 2.01894i 0.188541 0.108854i
\(345\) 0 0
\(346\) 1.04345i 0.0560963i
\(347\) −7.74058 2.07408i −0.415536 0.111343i 0.0449927 0.998987i \(-0.485674\pi\)
−0.460529 + 0.887645i \(0.652340\pi\)
\(348\) −0.0302868 + 6.81625i −0.00162355 + 0.365389i
\(349\) 9.47261 16.4070i 0.507057 0.878249i −0.492909 0.870081i \(-0.664067\pi\)
0.999967 0.00816849i \(-0.00260014\pi\)
\(350\) 0 0
\(351\) 11.4663 + 14.8163i 0.612027 + 0.790837i
\(352\) −14.4402 14.4402i −0.769666 0.769666i
\(353\) −0.589602 2.20043i −0.0313814 0.117117i 0.948458 0.316901i \(-0.102642\pi\)
−0.979840 + 0.199785i \(0.935976\pi\)
\(354\) −13.2401 + 13.1230i −0.703705 + 0.697479i
\(355\) 0 0
\(356\) −5.50091 −0.291547
\(357\) 1.19931 + 0.699543i 0.0634740 + 0.0370237i
\(358\) 4.63820 17.3100i 0.245136 0.914862i
\(359\) 9.83095i 0.518858i −0.965762 0.259429i \(-0.916466\pi\)
0.965762 0.259429i \(-0.0835343\pi\)
\(360\) 0 0
\(361\) 5.72483 9.91569i 0.301307 0.521878i
\(362\) −13.1913 + 3.53460i −0.693319 + 0.185774i
\(363\) −10.9719 19.2004i −0.575876 1.00776i
\(364\) −0.383326 0.283647i −0.0200918 0.0148671i
\(365\) 0 0
\(366\) −19.2841 19.4563i −1.00800 1.01699i
\(367\) 11.4217 3.06044i 0.596209 0.159754i 0.0519198 0.998651i \(-0.483466\pi\)
0.544289 + 0.838897i \(0.316799\pi\)
\(368\) 2.68449 10.0187i 0.139939 0.522259i
\(369\) 6.58129 11.1687i 0.342608 0.581421i
\(370\) 0 0
\(371\) 0.393194 + 0.681033i 0.0204136 + 0.0353575i
\(372\) −1.65342 2.89343i −0.0857260 0.150017i
\(373\) −23.7612 6.36680i −1.23031 0.329661i −0.415610 0.909543i \(-0.636432\pi\)
−0.814700 + 0.579882i \(0.803099\pi\)
\(374\) 12.9039 22.3502i 0.667246 1.15570i
\(375\) 0 0
\(376\) −15.5436 −0.801602
\(377\) 17.6304 2.63488i 0.908013 0.135703i
\(378\) 0.947279 + 0.0126279i 0.0487228 + 0.000649509i
\(379\) −7.85016 + 13.5969i −0.403236 + 0.698425i −0.994114 0.108336i \(-0.965448\pi\)
0.590879 + 0.806760i \(0.298781\pi\)
\(380\) 0 0
\(381\) −2.36836 + 0.623334i −0.121335 + 0.0319344i
\(382\) 2.23105 2.23105i 0.114150 0.114150i
\(383\) −2.30709 0.618182i −0.117887 0.0315876i 0.199393 0.979920i \(-0.436103\pi\)
−0.317280 + 0.948332i \(0.602769\pi\)
\(384\) −0.246845 0.937887i −0.0125968 0.0478614i
\(385\) 0 0
\(386\) 10.0299 5.79076i 0.510508 0.294742i
\(387\) −3.80465 1.05578i −0.193401 0.0536682i
\(388\) 12.9604 3.47274i 0.657966 0.176302i
\(389\) 14.0757 0.713666 0.356833 0.934168i \(-0.383857\pi\)
0.356833 + 0.934168i \(0.383857\pi\)
\(390\) 0 0
\(391\) −28.1994 −1.42611
\(392\) 20.6622 5.53642i 1.04360 0.279631i
\(393\) −0.00953266 + 2.14539i −0.000480859 + 0.108220i
\(394\) 18.7031 10.7982i 0.942247 0.544007i
\(395\) 0 0
\(396\) −0.103454 + 11.6412i −0.00519874 + 0.584993i
\(397\) 31.0598 + 8.32246i 1.55885 + 0.417692i 0.932299 0.361690i \(-0.117800\pi\)
0.626549 + 0.779382i \(0.284467\pi\)
\(398\) −9.78628 + 9.78628i −0.490542 + 0.490542i
\(399\) 0.201276 + 0.764747i 0.0100764 + 0.0382852i
\(400\) 0 0
\(401\) −0.597410 + 1.03474i −0.0298332 + 0.0516726i −0.880557 0.473941i \(-0.842831\pi\)
0.850723 + 0.525614i \(0.176164\pi\)
\(402\) 0.685589 + 1.19975i 0.0341941 + 0.0598383i
\(403\) −6.82069 + 5.42542i −0.339763 + 0.270259i
\(404\) 12.0960 0.601798
\(405\) 0 0
\(406\) 0.450705 0.780645i 0.0223681 0.0387427i
\(407\) 21.8879 + 5.86484i 1.08494 + 0.290709i
\(408\) −22.2583 + 12.7193i −1.10195 + 0.629699i
\(409\) 8.93012 + 15.4674i 0.441566 + 0.764815i 0.997806 0.0662068i \(-0.0210897\pi\)
−0.556240 + 0.831022i \(0.687756\pi\)
\(410\) 0 0
\(411\) −1.84968 + 6.78242i −0.0912381 + 0.334552i
\(412\) 3.61530 13.4925i 0.178113 0.664728i
\(413\) −1.57423 + 0.421815i −0.0774630 + 0.0207562i
\(414\) −16.7484 + 9.47226i −0.823140 + 0.465536i
\(415\) 0 0
\(416\) 13.8505 6.02235i 0.679076 0.295270i
\(417\) 11.1078 6.34748i 0.543954 0.310837i
\(418\) 14.1983 3.80444i 0.694464 0.186081i
\(419\) −5.31145 + 9.19969i −0.259481 + 0.449435i −0.966103 0.258157i \(-0.916885\pi\)
0.706622 + 0.707591i \(0.250218\pi\)
\(420\) 0 0
\(421\) 23.8749i 1.16359i 0.813335 + 0.581796i \(0.197650\pi\)
−0.813335 + 0.581796i \(0.802350\pi\)
\(422\) −1.36523 + 5.09512i −0.0664585 + 0.248026i
\(423\) 10.6516 + 10.8426i 0.517898 + 0.527185i
\(424\) −14.5201 −0.705160
\(425\) 0 0
\(426\) 3.67893 + 3.71177i 0.178245 + 0.179836i
\(427\) −0.619853 2.31332i −0.0299968 0.111950i
\(428\) 1.22846 + 1.22846i 0.0593798 + 0.0593798i
\(429\) 30.1310 4.36631i 1.45474 0.210807i
\(430\) 0 0
\(431\) 8.35107 14.4645i 0.402257 0.696729i −0.591741 0.806128i \(-0.701559\pi\)
0.993998 + 0.109399i \(0.0348926\pi\)
\(432\) −4.71622 + 7.92293i −0.226909 + 0.381192i
\(433\) −26.5522 7.11463i −1.27602 0.341907i −0.443683 0.896184i \(-0.646328\pi\)
−0.832333 + 0.554277i \(0.812995\pi\)
\(434\) 0.440704i 0.0211545i
\(435\) 0 0
\(436\) 7.10530 4.10225i 0.340282 0.196462i
\(437\) −11.3571 11.3571i −0.543284 0.543284i
\(438\) −12.6577 7.38310i −0.604808 0.352778i
\(439\) 16.5480 + 9.55397i 0.789791 + 0.455986i 0.839889 0.542758i \(-0.182620\pi\)
−0.0500980 + 0.998744i \(0.515953\pi\)
\(440\) 0 0
\(441\) −18.0212 10.6192i −0.858150 0.505674i
\(442\) 11.8817 + 14.9374i 0.565156 + 0.710499i
\(443\) −8.74698 8.74698i −0.415581 0.415581i 0.468096 0.883678i \(-0.344940\pi\)
−0.883678 + 0.468096i \(0.844940\pi\)
\(444\) −4.51102 4.55129i −0.214083 0.215994i
\(445\) 0 0
\(446\) −10.8376 + 6.25711i −0.513177 + 0.296283i
\(447\) 8.77406 5.01386i 0.414999 0.237147i
\(448\) 0.350283 1.30727i 0.0165493 0.0617629i
\(449\) −25.7950 + 14.8928i −1.21734 + 0.702834i −0.964349 0.264634i \(-0.914749\pi\)
−0.252994 + 0.967468i \(0.581415\pi\)
\(450\) 0 0
\(451\) −10.5333 18.2443i −0.495996 0.859090i
\(452\) 3.07582 + 11.4791i 0.144674 + 0.539932i
\(453\) −0.126676 + 28.5092i −0.00595174 + 1.33948i
\(454\) 29.1364i 1.36744i
\(455\) 0 0
\(456\) −14.0870 3.84176i −0.659682 0.179907i
\(457\) 0.904330 + 3.37500i 0.0423028 + 0.157876i 0.983846 0.179015i \(-0.0572912\pi\)
−0.941544 + 0.336891i \(0.890624\pi\)
\(458\) −6.77119 + 1.81433i −0.316397 + 0.0847783i
\(459\) 24.1254 + 6.81031i 1.12608 + 0.317878i
\(460\) 0 0
\(461\) −1.56492 2.71052i −0.0728856 0.126242i 0.827279 0.561791i \(-0.189887\pi\)
−0.900165 + 0.435549i \(0.856554\pi\)
\(462\) 0.775682 1.32984i 0.0360880 0.0618698i
\(463\) 27.4762 + 27.4762i 1.27693 + 1.27693i 0.942379 + 0.334548i \(0.108584\pi\)
0.334548 + 0.942379i \(0.391416\pi\)
\(464\) 4.38657 + 7.59776i 0.203641 + 0.352717i
\(465\) 0 0
\(466\) 17.3414 + 10.0121i 0.803327 + 0.463801i
\(467\) 20.4027 20.4027i 0.944124 0.944124i −0.0543954 0.998519i \(-0.517323\pi\)
0.998519 + 0.0543954i \(0.0173232\pi\)
\(468\) −7.98236 3.22657i −0.368985 0.149148i
\(469\) 0.120807i 0.00557836i
\(470\) 0 0
\(471\) 8.88839 + 8.96773i 0.409555 + 0.413211i
\(472\) 7.78853 29.0672i 0.358496 1.33793i
\(473\) −4.53712 + 4.53712i −0.208617 + 0.208617i
\(474\) −3.57614 13.5875i −0.164257 0.624096i
\(475\) 0 0
\(476\) −0.638057 −0.0292453
\(477\) 9.95021 + 10.1286i 0.455589 + 0.463759i
\(478\) −0.910923 3.39961i −0.0416647 0.155495i
\(479\) 0.117001 + 0.0675507i 0.00534593 + 0.00308647i 0.502671 0.864478i \(-0.332351\pi\)
−0.497325 + 0.867565i \(0.665684\pi\)
\(480\) 0 0
\(481\) −9.96841 + 13.4715i −0.454520 + 0.614248i
\(482\) 4.65873 4.65873i 0.212199 0.212199i
\(483\) −1.68218 0.00747449i −0.0765419 0.000340101i
\(484\) 8.80122 + 5.08139i 0.400056 + 0.230972i
\(485\) 0 0
\(486\) 16.6163 4.05895i 0.753732 0.184118i
\(487\) −9.42349 2.52502i −0.427019 0.114419i 0.0389075 0.999243i \(-0.487612\pi\)
−0.465927 + 0.884823i \(0.654279\pi\)
\(488\) 42.7140 + 11.4452i 1.93357 + 0.518099i
\(489\) 10.0146 36.7217i 0.452878 1.66061i
\(490\) 0 0
\(491\) 18.8733 + 10.8965i 0.851741 + 0.491753i 0.861238 0.508202i \(-0.169690\pi\)
−0.00949666 + 0.999955i \(0.503023\pi\)
\(492\) −0.0264709 + 5.95745i −0.00119340 + 0.268583i
\(493\) 16.8661 16.8661i 0.759610 0.759610i
\(494\) −1.23064 + 10.8012i −0.0553693 + 0.485969i
\(495\) 0 0
\(496\) −3.71458 2.14462i −0.166790 0.0962961i
\(497\) 0.118253 + 0.441325i 0.00530436 + 0.0197961i
\(498\) −2.18025 + 3.73785i −0.0976993 + 0.167497i
\(499\) 18.1795 0.813827 0.406913 0.913467i \(-0.366605\pi\)
0.406913 + 0.913467i \(0.366605\pi\)
\(500\) 0 0
\(501\) −23.7286 + 6.24520i −1.06012 + 0.279015i
\(502\) 19.0508 19.0508i 0.850278 0.850278i
\(503\) −1.95641 + 7.30144i −0.0872322 + 0.325555i −0.995728 0.0923400i \(-0.970565\pi\)
0.908495 + 0.417895i \(0.137232\pi\)
\(504\) −1.33115 + 0.752845i −0.0592940 + 0.0335344i
\(505\) 0 0
\(506\) 31.2687i 1.39006i
\(507\) −5.16260 + 21.9168i −0.229279 + 0.973361i
\(508\) 0.795823 0.795823i 0.0353089 0.0353089i
\(509\) 38.2650 + 22.0923i 1.69607 + 0.979224i 0.949423 + 0.313999i \(0.101669\pi\)
0.746643 + 0.665225i \(0.231664\pi\)
\(510\) 0 0
\(511\) −0.640550 1.10947i −0.0283363 0.0490799i
\(512\) 12.9549 + 12.9549i 0.572530 + 0.572530i
\(513\) 6.97351 + 12.4591i 0.307888 + 0.550083i
\(514\) −2.63814 4.56940i −0.116364 0.201548i
\(515\) 0 0
\(516\) 1.75477 0.461842i 0.0772494 0.0203315i
\(517\) 23.8583 6.39281i 1.04929 0.281155i
\(518\) 0.219330 + 0.818549i 0.00963679 + 0.0359650i
\(519\) 0.433362 1.58905i 0.0190225 0.0697516i
\(520\) 0 0
\(521\) 33.6427i 1.47391i −0.675940 0.736956i \(-0.736262\pi\)
0.675940 0.736956i \(-0.263738\pi\)
\(522\) 4.35187 15.6826i 0.190476 0.686408i
\(523\) 8.15764 + 30.4447i 0.356709 + 1.33125i 0.878321 + 0.478072i \(0.158664\pi\)
−0.521612 + 0.853183i \(0.674669\pi\)
\(524\) −0.492969 0.853848i −0.0215355 0.0373005i
\(525\) 0 0
\(526\) 11.1916 6.46150i 0.487979 0.281735i
\(527\) −3.01821 + 11.2641i −0.131475 + 0.490673i
\(528\) 7.43415 + 13.0095i 0.323530 + 0.566165i
\(529\) 9.67033 5.58317i 0.420449 0.242746i
\(530\) 0 0
\(531\) −25.6133 + 14.4859i −1.11152 + 0.628635i
\(532\) −0.256973 0.256973i −0.0111412 0.0111412i
\(533\) 15.4091 2.30290i 0.667444 0.0997498i
\(534\) 12.6717 + 3.45578i 0.548356 + 0.149546i
\(535\) 0 0
\(536\) −1.93178 1.11531i −0.0834400 0.0481741i
\(537\) 14.2525 24.4347i 0.615042 1.05444i
\(538\) −1.00647 1.00647i −0.0433920 0.0433920i
\(539\) −29.4378 + 16.9959i −1.26798 + 0.732067i
\(540\) 0 0
\(541\) 31.8172i 1.36793i −0.729516 0.683964i \(-0.760255\pi\)
0.729516 0.683964i \(-0.239745\pi\)
\(542\) 6.49126 + 1.73933i 0.278823 + 0.0747105i
\(543\) −21.5567 0.0957836i −0.925087 0.00411047i
\(544\) 10.1043 17.5012i 0.433218 0.750356i
\(545\) 0 0
\(546\) 0.704822 + 0.894210i 0.0301636 + 0.0382687i
\(547\) −3.86162 3.86162i −0.165111 0.165111i 0.619716 0.784826i \(-0.287248\pi\)
−0.784826 + 0.619716i \(0.787248\pi\)
\(548\) −0.836179 3.12066i −0.0357198 0.133308i
\(549\) −21.2869 37.6385i −0.908503 1.60637i
\(550\) 0 0
\(551\) 13.5854 0.578756
\(552\) 15.6497 26.8301i 0.666096 1.14196i
\(553\) 0.317922 1.18650i 0.0135194 0.0504551i
\(554\) 11.4120i 0.484850i
\(555\) 0 0
\(556\) −2.93969 + 5.09169i −0.124671 + 0.215936i
\(557\) −6.99288 + 1.87374i −0.296298 + 0.0793928i −0.403906 0.914801i \(-0.632348\pi\)
0.107608 + 0.994193i \(0.465681\pi\)
\(558\) 1.99105 + 7.70389i 0.0842878 + 0.326132i
\(559\) −1.89223 4.35183i −0.0800327 0.184063i
\(560\) 0 0
\(561\) 28.9335 28.6775i 1.22157 1.21077i
\(562\) −23.2403 + 6.22723i −0.980334 + 0.262680i
\(563\) −0.945024 + 3.52688i −0.0398280 + 0.148640i −0.982976 0.183732i \(-0.941182\pi\)
0.943148 + 0.332372i \(0.107849\pi\)
\(564\) −6.73885 1.83780i −0.283757 0.0773853i
\(565\) 0 0
\(566\) −3.04122 5.26755i −0.127832 0.221412i
\(567\) 1.43735 + 0.412650i 0.0603629 + 0.0173297i
\(568\) −8.14877 2.18346i −0.341915 0.0916158i
\(569\) 19.6847 34.0948i 0.825224 1.42933i −0.0765237 0.997068i \(-0.524382\pi\)
0.901748 0.432262i \(-0.142285\pi\)
\(570\) 0 0
\(571\) 40.5072 1.69517 0.847586 0.530658i \(-0.178055\pi\)
0.847586 + 0.530658i \(0.178055\pi\)
\(572\) −10.9499 + 8.70994i −0.457839 + 0.364181i
\(573\) 4.32420 2.47103i 0.180646 0.103229i
\(574\) 0.393920 0.682289i 0.0164419 0.0284782i
\(575\) 0 0
\(576\) 0.217149 24.4349i 0.00904786 1.01812i
\(577\) −24.8261 + 24.8261i −1.03352 + 1.03352i −0.0341041 + 0.999418i \(0.510858\pi\)
−0.999418 + 0.0341041i \(0.989142\pi\)
\(578\) 6.65039 + 1.78197i 0.276620 + 0.0741200i
\(579\) 17.6793 4.65306i 0.734727 0.193375i
\(580\) 0 0
\(581\) −0.327628 + 0.189156i −0.0135923 + 0.00784752i
\(582\) −32.0367 0.142350i −1.32797 0.00590059i
\(583\) 22.2873 5.97186i 0.923044 0.247329i
\(584\) 23.6547 0.978836
\(585\) 0 0
\(586\) −5.37420 −0.222006
\(587\) 0.0134708 0.00360950i 0.000556001 0.000148980i −0.258541 0.966000i \(-0.583242\pi\)
0.259097 + 0.965851i \(0.416575\pi\)
\(588\) 9.61256 + 0.0427118i 0.396415 + 0.00176140i
\(589\) −5.75210 + 3.32098i −0.237011 + 0.136838i
\(590\) 0 0
\(591\) 32.9672 8.67672i 1.35609 0.356912i
\(592\) −7.96668 2.13466i −0.327428 0.0877342i
\(593\) −25.7961 + 25.7961i −1.05932 + 1.05932i −0.0611927 + 0.998126i \(0.519490\pi\)
−0.998126 + 0.0611927i \(0.980510\pi\)
\(594\) 7.55155 26.7512i 0.309844 1.09762i
\(595\) 0 0
\(596\) −2.32205 + 4.02191i −0.0951150 + 0.164744i
\(597\) −18.9677 + 10.8389i −0.776297 + 0.443608i
\(598\) −21.5162 8.47547i −0.879864 0.346588i
\(599\) −28.2847 −1.15568 −0.577841 0.816149i \(-0.696105\pi\)
−0.577841 + 0.816149i \(0.696105\pi\)
\(600\) 0 0
\(601\) 8.59509 14.8871i 0.350601 0.607259i −0.635754 0.771892i \(-0.719311\pi\)
0.986355 + 0.164633i \(0.0526440\pi\)
\(602\) −0.231783 0.0621060i −0.00944675 0.00253125i
\(603\) 0.545792 + 2.11182i 0.0222264 + 0.0859998i
\(604\) −6.55087 11.3464i −0.266551 0.461680i
\(605\) 0 0
\(606\) −27.8638 7.59895i −1.13189 0.308686i
\(607\) −3.17469 + 11.8481i −0.128857 + 0.480900i −0.999948 0.0102219i \(-0.996746\pi\)
0.871091 + 0.491121i \(0.163413\pi\)
\(608\) 11.1179 2.97903i 0.450890 0.120816i
\(609\) 1.01058 1.00164i 0.0409509 0.0405886i
\(610\) 0 0
\(611\) −2.06792 + 18.1498i −0.0836591 + 0.734264i
\(612\) −11.1538 + 2.88267i −0.450866 + 0.116525i
\(613\) 10.3165 2.76430i 0.416680 0.111649i −0.0443871 0.999014i \(-0.514134\pi\)
0.461067 + 0.887365i \(0.347467\pi\)
\(614\) −12.1926 + 21.1181i −0.492052 + 0.852259i
\(615\) 0 0
\(616\) 2.48520i 0.100132i
\(617\) 1.17565 4.38758i 0.0473299 0.176637i −0.938215 0.346054i \(-0.887522\pi\)
0.985545 + 0.169416i \(0.0541882\pi\)
\(618\) −16.8043 + 28.8095i −0.675969 + 1.15889i
\(619\) −31.2573 −1.25634 −0.628168 0.778078i \(-0.716195\pi\)
−0.628168 + 0.778078i \(0.716195\pi\)
\(620\) 0 0
\(621\) −29.4398 + 7.46924i −1.18138 + 0.299730i
\(622\) 7.75311 + 28.9350i 0.310871 + 1.16019i
\(623\) 0.811962 + 0.811962i 0.0325306 + 0.0325306i
\(624\) −10.9670 + 1.58924i −0.439030 + 0.0636203i
\(625\) 0 0
\(626\) 10.0949 17.4849i 0.403473 0.698835i
\(627\) 23.2024 + 0.103096i 0.926615 + 0.00411726i
\(628\) −5.60480 1.50180i −0.223656 0.0599285i
\(629\) 22.4237i 0.894092i
\(630\) 0 0
\(631\) 31.2944 18.0678i 1.24581 0.719270i 0.275540 0.961289i \(-0.411143\pi\)
0.970271 + 0.242020i \(0.0778099\pi\)
\(632\) 16.0377 + 16.0377i 0.637946 + 0.637946i
\(633\) −4.19516 + 7.19224i −0.166743 + 0.285866i
\(634\) −8.93599 5.15920i −0.354893 0.204898i
\(635\) 0 0
\(636\) −6.29511 1.71679i −0.249617 0.0680750i
\(637\) −3.71582 24.8632i −0.147226 0.985115i
\(638\) −18.7018 18.7018i −0.740411 0.740411i
\(639\) 4.06101 + 7.18050i 0.160651 + 0.284056i
\(640\) 0 0
\(641\) 30.0234 17.3340i 1.18585 0.684653i 0.228492 0.973546i \(-0.426620\pi\)
0.957361 + 0.288893i \(0.0932871\pi\)
\(642\) −2.05808 3.60157i −0.0812261 0.142143i
\(643\) 7.35878 27.4633i 0.290202 1.08305i −0.654752 0.755844i \(-0.727227\pi\)
0.944954 0.327204i \(-0.106107\pi\)
\(644\) 0.669496 0.386534i 0.0263819 0.0152316i
\(645\) 0 0
\(646\) 7.27297 + 12.5972i 0.286151 + 0.495628i
\(647\) −0.778760 2.90637i −0.0306162 0.114261i 0.948927 0.315497i \(-0.102171\pi\)
−0.979543 + 0.201235i \(0.935504\pi\)
\(648\) −19.8683 + 19.1744i −0.780502 + 0.753240i
\(649\) 47.8191i 1.87706i
\(650\) 0 0
\(651\) −0.183031 + 0.671139i −0.00717356 + 0.0263040i
\(652\) 4.52728 + 16.8960i 0.177302 + 0.661700i
\(653\) 7.06400 1.89279i 0.276436 0.0740707i −0.117938 0.993021i \(-0.537628\pi\)
0.394373 + 0.918950i \(0.370962\pi\)
\(654\) −18.9446 + 4.98607i −0.740792 + 0.194971i
\(655\) 0 0
\(656\) 3.83390 + 6.64050i 0.149689 + 0.259268i
\(657\) −16.2098 16.5005i −0.632405 0.643746i
\(658\) 0.653163 + 0.653163i 0.0254630 + 0.0254630i
\(659\) 17.7103 + 30.6751i 0.689894 + 1.19493i 0.971872 + 0.235511i \(0.0756762\pi\)
−0.281978 + 0.959421i \(0.590990\pi\)
\(660\) 0 0
\(661\) 29.1120 + 16.8078i 1.13233 + 0.653748i 0.944519 0.328458i \(-0.106529\pi\)
0.187807 + 0.982206i \(0.439862\pi\)
\(662\) 4.92901 4.92901i 0.191571 0.191571i
\(663\) 11.8907 + 27.6825i 0.461797 + 1.07510i
\(664\) 6.98528i 0.271081i
\(665\) 0 0
\(666\) 7.53218 + 13.3181i 0.291866 + 0.516064i
\(667\) −7.47969 + 27.9146i −0.289615 + 1.08086i
\(668\) 7.97337 7.97337i 0.308499 0.308499i
\(669\) −19.1031 + 5.02779i −0.738568 + 0.194386i
\(670\) 0 0
\(671\) −70.2698 −2.71273
\(672\) 0.607392 1.04132i 0.0234306 0.0401698i
\(673\) −4.75245 17.7364i −0.183194 0.683688i −0.995010 0.0997751i \(-0.968188\pi\)
0.811816 0.583913i \(-0.198479\pi\)
\(674\) −16.9200 9.76878i −0.651735 0.376279i
\(675\) 0 0
\(676\) −3.02537 9.89557i −0.116360 0.380599i
\(677\) 30.5372 30.5372i 1.17364 1.17364i 0.192303 0.981336i \(-0.438404\pi\)
0.981336 0.192303i \(-0.0615955\pi\)
\(678\) 0.126080 28.3751i 0.00484207 1.08974i
\(679\) −2.42562 1.40043i −0.0930868 0.0537437i
\(680\) 0 0
\(681\) −12.1008 + 44.3712i −0.463703 + 1.70031i
\(682\) 12.4901 + 3.34672i 0.478271 + 0.128152i
\(683\) −23.5257 6.30369i −0.900186 0.241204i −0.221090 0.975253i \(-0.570961\pi\)
−0.679096 + 0.734049i \(0.737628\pi\)
\(684\) −5.65308 3.33114i −0.216151 0.127369i
\(685\) 0 0
\(686\) −2.20616 1.27372i −0.0842314 0.0486310i
\(687\) −11.0652 0.0491665i −0.422165 0.00187582i
\(688\) 1.65141 1.65141i 0.0629594 0.0629594i
\(689\) −1.93175 + 16.9547i −0.0735940 + 0.645924i
\(690\) 0 0
\(691\) 0.523687 + 0.302351i 0.0199220 + 0.0115020i 0.509928 0.860217i \(-0.329672\pi\)
−0.490006 + 0.871719i \(0.663005\pi\)
\(692\) 0.195908 + 0.731139i 0.00744731 + 0.0277937i
\(693\) 1.73357 1.70303i 0.0658530 0.0646929i
\(694\) −8.79320 −0.333785
\(695\) 0 0
\(696\) 6.68697 + 25.4071i 0.253469 + 0.963055i
\(697\) 14.7411 14.7411i 0.558358 0.558358i
\(698\) 5.38038 20.0799i 0.203651 0.760034i
\(699\) 22.2507 + 22.4494i 0.841601 + 0.849113i
\(700\) 0 0
\(701\) 35.7248i 1.34931i −0.738134 0.674654i \(-0.764293\pi\)
0.738134 0.674654i \(-0.235707\pi\)
\(702\) 16.3608 + 12.4473i 0.617500 + 0.469792i
\(703\) −9.03098 + 9.03098i −0.340610 + 0.340610i
\(704\) −34.3898 19.8550i −1.29611 0.748312i
\(705\) 0 0
\(706\) −1.24983 2.16477i −0.0470379 0.0814720i
\(707\) −1.78543 1.78543i −0.0671481 0.0671481i
\(708\) 6.81342 11.6810i 0.256064 0.438999i
\(709\) −2.01558 3.49108i −0.0756966 0.131110i 0.825692 0.564121i \(-0.190785\pi\)
−0.901389 + 0.433010i \(0.857451\pi\)
\(710\) 0 0
\(711\) 0.197087 22.1774i 0.00739134 0.831717i
\(712\) −20.4799 + 5.48757i −0.767517 + 0.205656i
\(713\) −3.65685 13.6476i −0.136950 0.511105i
\(714\) 1.46980 + 0.400840i 0.0550059 + 0.0150011i
\(715\) 0 0
\(716\) 12.9998i 0.485826i
\(717\) 0.0246850 5.55552i 0.000921879 0.207475i
\(718\) −2.79196 10.4197i −0.104195 0.388861i
\(719\) −18.2661 31.6378i −0.681211 1.17989i −0.974612 0.223903i \(-0.928120\pi\)
0.293400 0.955990i \(-0.405213\pi\)
\(720\) 0 0
\(721\) −2.52520 + 1.45793i −0.0940434 + 0.0542960i
\(722\) 3.25166 12.1354i 0.121014 0.451632i
\(723\) 9.02953 5.15984i 0.335812 0.191897i
\(724\) 8.57942 4.95333i 0.318852 0.184089i
\(725\) 0 0
\(726\) −17.0819 17.2344i −0.633969 0.639628i
\(727\) 6.38702 + 6.38702i 0.236881 + 0.236881i 0.815557 0.578676i \(-0.196430\pi\)
−0.578676 + 0.815557i \(0.696430\pi\)
\(728\) −1.71009 0.673622i −0.0633800 0.0249661i
\(729\) 26.9904 + 0.719730i 0.999645 + 0.0266567i
\(730\) 0 0
\(731\) −5.49888 3.17478i −0.203383 0.117423i
\(732\) 17.1652 + 10.0123i 0.634442 + 0.370064i
\(733\) −15.5660 15.5660i −0.574943 0.574943i 0.358562 0.933506i \(-0.383267\pi\)
−0.933506 + 0.358562i \(0.883267\pi\)
\(734\) 11.2366 6.48747i 0.414751 0.239457i
\(735\) 0 0
\(736\) 24.4847i 0.902518i
\(737\) 3.42383 + 0.917413i 0.126118 + 0.0337933i
\(738\) 3.80357 13.7067i 0.140011 0.504551i
\(739\) −24.9818 + 43.2698i −0.918972 + 1.59171i −0.117992 + 0.993015i \(0.537646\pi\)
−0.800980 + 0.598691i \(0.795688\pi\)
\(740\) 0 0
\(741\) −6.36003 + 15.9378i −0.233641 + 0.585490i
\(742\) 0.610154 + 0.610154i 0.0223995 + 0.0223995i
\(743\) −7.11227 26.5434i −0.260924 0.973781i −0.964698 0.263358i \(-0.915170\pi\)
0.703774 0.710424i \(-0.251497\pi\)
\(744\) −9.04212 9.12284i −0.331500 0.334459i
\(745\) 0 0
\(746\) −26.9925 −0.988264
\(747\) −4.87264 + 4.78680i −0.178281 + 0.175140i
\(748\) −4.84542 + 18.0834i −0.177166 + 0.661193i
\(749\) 0.362654i 0.0132511i
\(750\) 0 0
\(751\) −8.07976 + 13.9946i −0.294835 + 0.510669i −0.974946 0.222440i \(-0.928598\pi\)
0.680112 + 0.733108i \(0.261931\pi\)
\(752\) −8.68386 + 2.32683i −0.316668 + 0.0848509i
\(753\) 36.9241 21.1000i 1.34559 0.768926i
\(754\) 17.9380 7.79967i 0.653265 0.284047i
\(755\) 0 0
\(756\) −0.666122 + 0.169003i −0.0242266 + 0.00614659i
\(757\) −12.4869 + 3.34586i −0.453845 + 0.121607i −0.478498 0.878089i \(-0.658819\pi\)
0.0246532 + 0.999696i \(0.492152\pi\)
\(758\) −4.45884 + 16.6406i −0.161952 + 0.604415i
\(759\) −12.9864 + 47.6184i −0.471375 + 1.72844i
\(760\) 0 0
\(761\) 13.7581 + 23.8298i 0.498732 + 0.863828i 0.999999 0.00146412i \(-0.000466042\pi\)
−0.501267 + 0.865292i \(0.667133\pi\)
\(762\) −2.33317 + 1.33327i −0.0845220 + 0.0482993i
\(763\) −1.65429 0.443266i −0.0598894 0.0160473i
\(764\) −1.14440 + 1.98216i −0.0414029 + 0.0717119i
\(765\) 0 0
\(766\) −2.62082 −0.0946941
\(767\) −32.9047 12.9615i −1.18812 0.468013i
\(768\) 13.4713 + 23.5743i 0.486105 + 0.850665i
\(769\) −5.76778 + 9.99009i −0.207992 + 0.360252i −0.951082 0.308939i \(-0.900026\pi\)
0.743090 + 0.669191i \(0.233359\pi\)
\(770\) 0 0
\(771\) −2.11983 8.05431i −0.0763439 0.290069i
\(772\) −5.94066 + 5.94066i −0.213809 + 0.213809i
\(773\) −5.03736 1.34976i −0.181181 0.0485474i 0.167088 0.985942i \(-0.446564\pi\)
−0.348269 + 0.937395i \(0.613230\pi\)
\(774\) −4.33235 0.0385009i −0.155723 0.00138389i
\(775\) 0 0
\(776\) 44.7875 25.8581i 1.60778 0.928250i
\(777\) −0.00594359 + 1.33764i −0.000213225 + 0.0479877i
\(778\) 14.9187 3.99745i 0.534861 0.143316i
\(779\) 11.8737 0.425420
\(780\) 0 0
\(781\) 13.4057 0.479695
\(782\) −29.8883 + 8.00855i −1.06880 + 0.286385i
\(783\) 13.1406 22.0753i 0.469606 0.788907i
\(784\) 10.7147 6.18613i 0.382667 0.220933i
\(785\) 0 0
\(786\) 0.599179 + 2.27658i 0.0213720 + 0.0812030i
\(787\) 38.7052 + 10.3710i 1.37969 + 0.369687i 0.871009 0.491267i \(-0.163466\pi\)
0.508683 + 0.860954i \(0.330133\pi\)
\(788\) −11.0777 + 11.0777i −0.394628 + 0.394628i
\(789\) 19.7271 5.19202i 0.702303 0.184841i
\(790\) 0 0
\(791\) 1.24037 2.14838i 0.0441024 0.0763876i
\(792\) 11.2278 + 43.4435i 0.398964 + 1.54370i
\(793\) 19.0468 48.3532i 0.676373 1.71707i
\(794\) 35.2836 1.25217
\(795\) 0 0
\(796\) 5.01980 8.69455i 0.177922 0.308170i
\(797\) −33.4264 8.95658i −1.18402 0.317259i −0.387503 0.921868i \(-0.626662\pi\)
−0.796522 + 0.604610i \(0.793329\pi\)
\(798\) 0.430516 + 0.753387i 0.0152401 + 0.0266696i
\(799\) 12.2212 + 21.1677i 0.432354 + 0.748859i
\(800\) 0 0
\(801\) 17.8622 + 10.5255i 0.631128 + 0.371899i
\(802\) −0.339325 + 1.26638i −0.0119820 + 0.0447174i
\(803\) −36.3080 + 9.72871i −1.28128 + 0.343319i
\(804\) −0.705641 0.711939i −0.0248860 0.0251082i
\(805\) 0 0
\(806\) −5.68838 + 7.68740i −0.200365 + 0.270777i
\(807\) −1.11473 1.95073i −0.0392403 0.0686691i
\(808\) 45.0335 12.0667i 1.58427 0.424504i
\(809\) −0.776492 + 1.34492i −0.0273000 + 0.0472850i −0.879353 0.476171i \(-0.842024\pi\)
0.852053 + 0.523456i \(0.175358\pi\)
\(810\) 0 0
\(811\) 15.7167i 0.551889i −0.961174 0.275945i \(-0.911009\pi\)
0.961174 0.275945i \(-0.0889906\pi\)
\(812\) −0.169240 + 0.631612i −0.00593915 + 0.0221652i
\(813\) 9.16303 + 5.34470i 0.321361 + 0.187447i
\(814\) 24.8643 0.871494
\(815\) 0 0
\(816\) −10.5311 + 10.4380i −0.368663 + 0.365402i
\(817\) −0.936013 3.49325i −0.0327470 0.122213i
\(818\) 13.8577 + 13.8577i 0.484522 + 0.484522i
\(819\) 0.701979 + 1.65450i 0.0245291 + 0.0578128i
\(820\) 0 0
\(821\) −23.5322 + 40.7590i −0.821280 + 1.42250i 0.0834487 + 0.996512i \(0.473407\pi\)
−0.904729 + 0.425987i \(0.859927\pi\)
\(822\) −0.0342755 + 7.71393i −0.00119550 + 0.269054i
\(823\) 44.5459 + 11.9360i 1.55277 + 0.416064i 0.930366 0.366631i \(-0.119489\pi\)
0.622405 + 0.782695i \(0.286156\pi\)
\(824\) 53.8392i 1.87558i
\(825\) 0 0
\(826\) −1.54872 + 0.894155i −0.0538870 + 0.0311116i
\(827\) −25.7893 25.7893i −0.896781 0.896781i 0.0983687 0.995150i \(-0.468638\pi\)
−0.995150 + 0.0983687i \(0.968638\pi\)
\(828\) 9.95707 9.78166i 0.346032 0.339936i
\(829\) −35.8684 20.7086i −1.24576 0.719241i −0.275500 0.961301i \(-0.588843\pi\)
−0.970261 + 0.242060i \(0.922177\pi\)
\(830\) 0 0
\(831\) −4.73959 + 17.3791i −0.164414 + 0.602875i
\(832\) 22.9838 18.2821i 0.796820 0.633819i
\(833\) −23.7853 23.7853i −0.824110 0.824110i
\(834\) 9.97044 9.88223i 0.345248 0.342193i
\(835\) 0 0
\(836\) −9.23439 + 5.33148i −0.319378 + 0.184393i
\(837\) −0.167420 + 12.5590i −0.00578689 + 0.434103i
\(838\) −3.01687 + 11.2591i −0.104216 + 0.388939i
\(839\) −12.9769 + 7.49223i −0.448013 + 0.258660i −0.706991 0.707223i \(-0.749948\pi\)
0.258978 + 0.965883i \(0.416614\pi\)
\(840\) 0 0
\(841\) 2.27790 + 3.94543i 0.0785481 + 0.136049i
\(842\) 6.78040 + 25.3048i 0.233668 + 0.872061i
\(843\) −37.9785 0.168751i −1.30805 0.00581209i
\(844\) 3.82643i 0.131711i
\(845\) 0 0
\(846\) 14.3688 + 8.46696i 0.494009 + 0.291100i
\(847\) −0.549067 2.04915i −0.0188662 0.0704095i
\(848\) −8.11205 + 2.17362i −0.278569 + 0.0746424i
\(849\) −2.44372 9.28491i −0.0838682 0.318657i
\(850\) 0 0
\(851\) −13.5842 23.5286i −0.465662 0.806550i
\(852\) −3.27468 1.91009i −0.112189 0.0654386i
\(853\) −9.05692 9.05692i −0.310103 0.310103i 0.534846 0.844949i \(-0.320369\pi\)
−0.844949 + 0.534846i \(0.820369\pi\)
\(854\) −1.31395 2.27583i −0.0449626 0.0778775i
\(855\) 0 0
\(856\) 5.79905 + 3.34808i 0.198207 + 0.114435i
\(857\) 12.8809 12.8809i 0.440004 0.440004i −0.452009 0.892013i \(-0.649293\pi\)
0.892013 + 0.452009i \(0.149293\pi\)
\(858\) 30.6955 13.1849i 1.04793 0.450125i
\(859\) 10.9311i 0.372966i 0.982458 + 0.186483i \(0.0597089\pi\)
−0.982458 + 0.186483i \(0.940291\pi\)
\(860\) 0 0
\(861\) 0.883258 0.875443i 0.0301013 0.0298350i
\(862\) 4.74335 17.7024i 0.161559 0.602947i
\(863\) −21.3829 + 21.3829i −0.727881 + 0.727881i −0.970197 0.242316i \(-0.922093\pi\)
0.242316 + 0.970197i \(0.422093\pi\)
\(864\) 5.91318 20.9473i 0.201170 0.712642i
\(865\) 0 0
\(866\) −30.1629 −1.02498
\(867\) 9.38766 + 5.47573i 0.318822 + 0.185965i
\(868\) −0.0827422 0.308798i −0.00280845 0.0104813i
\(869\) −31.2126 18.0206i −1.05882 0.611308i
\(870\) 0 0
\(871\) −1.55932 + 2.10730i −0.0528355 + 0.0714030i
\(872\) 22.3608 22.3608i 0.757231 0.757231i
\(873\) −48.7290 13.5221i −1.64923 0.457655i
\(874\) −15.2627 8.81191i −0.516268 0.298067i
\(875\) 0 0
\(876\) 10.2553 + 2.79680i 0.346495 + 0.0944952i
\(877\) −14.7430 3.95038i −0.497836 0.133395i 0.00115930 0.999999i \(-0.499631\pi\)
−0.498996 + 0.866604i \(0.666298\pi\)
\(878\) 20.2523 + 5.42659i 0.683483 + 0.183139i
\(879\) −8.18425 2.23199i −0.276048 0.0752830i
\(880\) 0 0
\(881\) −15.6546 9.03820i −0.527417 0.304505i 0.212547 0.977151i \(-0.431824\pi\)
−0.739964 + 0.672646i \(0.765158\pi\)
\(882\) −22.1163 6.13719i −0.744693 0.206650i
\(883\) −21.5666 + 21.5666i −0.725775 + 0.725775i −0.969775 0.244000i \(-0.921540\pi\)
0.244000 + 0.969775i \(0.421540\pi\)
\(884\) −11.1299 8.23572i −0.374340 0.276997i
\(885\) 0 0
\(886\) −11.7550 6.78673i −0.394915 0.228005i
\(887\) 8.32639 + 31.0745i 0.279573 + 1.04338i 0.952715 + 0.303867i \(0.0982777\pi\)
−0.673142 + 0.739514i \(0.735056\pi\)
\(888\) −21.3348 12.4444i −0.715949 0.417606i
\(889\) −0.234935 −0.00787947
\(890\) 0 0
\(891\) 22.6103 37.6026i 0.757473 1.25973i
\(892\) 6.41908 6.41908i 0.214927 0.214927i
\(893\) −3.60314 + 13.4471i −0.120575 + 0.449991i
\(894\) 7.87562 7.80595i 0.263400 0.261070i
\(895\) 0 0
\(896\) 0.0930361i 0.00310812i
\(897\) −29.2466 21.8431i −0.976516 0.729321i
\(898\) −23.1104 + 23.1104i −0.771205 + 0.771205i
\(899\) 10.3498 + 5.97544i 0.345184 + 0.199292i
\(900\) 0 0
\(901\) 11.4164 + 19.7739i 0.380337 + 0.658763i
\(902\) −16.3455 16.3455i −0.544246 0.544246i
\(903\) −0.327183 0.190843i −0.0108880 0.00635085i
\(904\) 22.9026 + 39.6684i 0.761728 + 1.31935i
\(905\) 0 0
\(906\) 7.96225 + 30.2526i 0.264528 + 1.00507i
\(907\) −12.8475 + 3.44249i −0.426596 + 0.114306i −0.465728 0.884928i \(-0.654207\pi\)
0.0391321 + 0.999234i \(0.487541\pi\)
\(908\) −5.47035 20.4156i −0.181540 0.677517i
\(909\) −39.2773 23.1446i −1.30275 0.767656i
\(910\) 0 0
\(911\) 6.22499i 0.206243i −0.994669 0.103122i \(-0.967117\pi\)
0.994669 0.103122i \(-0.0328831\pi\)
\(912\) −8.44514 0.0375246i −0.279647 0.00124256i
\(913\) 2.87291 + 10.7219i 0.0950795 + 0.354841i
\(914\) 1.91698 + 3.32031i 0.0634081 + 0.109826i
\(915\) 0 0
\(916\) 4.40388 2.54258i 0.145508 0.0840092i
\(917\) −0.0532676 + 0.198797i −0.00175905 + 0.00656486i
\(918\) 27.5044 + 0.366652i 0.907779 + 0.0121013i
\(919\) −51.3893 + 29.6696i −1.69518 + 0.978711i −0.744968 + 0.667101i \(0.767535\pi\)
−0.950210 + 0.311611i \(0.899132\pi\)
\(920\) 0 0
\(921\) −27.3385 + 27.0966i −0.900834 + 0.892864i
\(922\) −2.42842 2.42842i −0.0799759 0.0799759i
\(923\) −3.63366 + 9.22458i −0.119603 + 0.303631i
\(924\) −0.293837 + 1.07744i −0.00966654 + 0.0354453i
\(925\) 0 0
\(926\) 36.9249 + 21.3186i 1.21343 + 0.700573i
\(927\) −37.5560 + 36.8944i −1.23350 + 1.21177i
\(928\) −14.6443 14.6443i −0.480722 0.480722i
\(929\) −9.30395 + 5.37164i −0.305253 + 0.176238i −0.644800 0.764351i \(-0.723059\pi\)
0.339548 + 0.940589i \(0.389726\pi\)
\(930\) 0 0
\(931\) 19.1587i 0.627900i
\(932\) −14.0308 3.75954i −0.459594 0.123148i
\(933\) −0.210101 + 47.2845i −0.00687839 + 1.54803i
\(934\) 15.8303 27.4189i 0.517984 0.897175i
\(935\) 0 0
\(936\) −32.9372 4.04954i −1.07658 0.132363i
\(937\) 7.07205 + 7.07205i 0.231034 + 0.231034i 0.813124 0.582090i \(-0.197765\pi\)
−0.582090 + 0.813124i \(0.697765\pi\)
\(938\) 0.0343089 + 0.128042i 0.00112022 + 0.00418073i
\(939\) 22.6350 22.4348i 0.738666 0.732131i
\(940\) 0 0
\(941\) 28.4220 0.926529 0.463265 0.886220i \(-0.346678\pi\)
0.463265 + 0.886220i \(0.346678\pi\)
\(942\) 11.9675 + 6.98054i 0.389923 + 0.227438i
\(943\) −6.53730 + 24.3975i −0.212884 + 0.794494i
\(944\) 17.4051i 0.566486i
\(945\) 0 0
\(946\) −3.52033 + 6.09738i −0.114456 + 0.198243i
\(947\) −15.0316 + 4.02771i −0.488461 + 0.130883i −0.494640 0.869098i \(-0.664700\pi\)
0.00617839 + 0.999981i \(0.498033\pi\)
\(948\) 5.05683 + 8.84926i 0.164238 + 0.287411i
\(949\) 3.14701 27.6208i 0.102156 0.896610i
\(950\) 0 0
\(951\) −11.4657 11.5681i −0.371802 0.375121i
\(952\) −2.37549 + 0.636511i −0.0769901 + 0.0206294i
\(953\) 10.2413 38.2209i 0.331747 1.23810i −0.575607 0.817727i \(-0.695234\pi\)
0.907353 0.420369i \(-0.138099\pi\)
\(954\) 13.4226 + 7.90943i 0.434574 + 0.256077i
\(955\) 0 0
\(956\) 1.27655 + 2.21106i 0.0412867 + 0.0715107i
\(957\) −20.7134 36.2477i −0.669571 1.17172i
\(958\) 0.143193 + 0.0383684i 0.00462635 + 0.00123963i
\(959\) −0.337201 + 0.584050i −0.0108888 + 0.0188600i
\(960\) 0 0
\(961\) 25.1572 0.811521
\(962\) −6.73955 + 17.1093i −0.217292 + 0.551627i
\(963\) −1.63843 6.33951i −0.0527976 0.204288i
\(964\) −2.38966 + 4.13901i −0.0769658 + 0.133309i
\(965\) 0 0
\(966\) −1.78505 + 0.469812i −0.0574331 + 0.0151160i
\(967\) −32.4327 + 32.4327i −1.04296 + 1.04296i −0.0439297 + 0.999035i \(0.513988\pi\)
−0.999035 + 0.0439297i \(0.986012\pi\)
\(968\) 37.8361 + 10.1381i 1.21610 + 0.325852i
\(969\) 5.84406 + 22.2045i 0.187738 + 0.713312i
\(970\) 0 0
\(971\) −29.2025 + 16.8601i −0.937154 + 0.541066i −0.889067 0.457777i \(-0.848646\pi\)
−0.0480872 + 0.998843i \(0.515313\pi\)
\(972\) −10.8809 + 5.96379i −0.349004 + 0.191289i
\(973\) 1.18547 0.317646i 0.0380045 0.0101833i
\(974\) −10.7050 −0.343009
\(975\) 0 0
\(976\) 25.5766 0.818686
\(977\) −2.30444 + 0.617472i −0.0737254 + 0.0197547i −0.295493 0.955345i \(-0.595484\pi\)
0.221768 + 0.975100i \(0.428817\pi\)
\(978\) 0.185576 41.7651i 0.00593408 1.33550i
\(979\) 29.1781 16.8460i 0.932536 0.538400i
\(980\) 0 0
\(981\) −30.9211 0.274791i −0.987235 0.00877340i
\(982\) 23.0982 + 6.18915i 0.737094 + 0.197504i
\(983\) 2.74521 2.74521i 0.0875586 0.0875586i −0.661971 0.749530i \(-0.730280\pi\)
0.749530 + 0.661971i \(0.230280\pi\)
\(984\) 5.84446 + 22.2060i 0.186315 + 0.707903i
\(985\) 0 0
\(986\) 13.0863 22.6661i 0.416752 0.721836i
\(987\) 0.723420 + 1.26596i 0.0230267 + 0.0402959i
\(988\) −1.16562 7.79937i −0.0370833 0.248131i
\(989\) 7.69310 0.244626
\(990\) 0 0
\(991\) −8.53170 + 14.7773i −0.271019 + 0.469418i −0.969123 0.246578i \(-0.920694\pi\)
0.698104 + 0.715996i \(0.254027\pi\)
\(992\) 9.78028 + 2.62062i 0.310524 + 0.0832047i
\(993\) 9.55337 5.45919i 0.303167 0.173242i
\(994\) 0.250670 + 0.434173i 0.00795076 + 0.0137711i
\(995\) 0 0
\(996\) 0.825903 3.02842i 0.0261697 0.0959592i
\(997\) −1.53450 + 5.72683i −0.0485981 + 0.181371i −0.985958 0.166991i \(-0.946595\pi\)
0.937360 + 0.348361i \(0.113262\pi\)
\(998\) 19.2683 5.16292i 0.609927 0.163429i
\(999\) 5.93941 + 23.4100i 0.187915 + 0.740660i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.407.17 96
3.2 odd 2 inner 975.2.bn.d.407.8 96
5.2 odd 4 195.2.bf.a.173.17 yes 96
5.3 odd 4 inner 975.2.bn.d.368.8 96
5.4 even 2 195.2.bf.a.17.8 96
13.10 even 6 inner 975.2.bn.d.257.17 96
15.2 even 4 195.2.bf.a.173.8 yes 96
15.8 even 4 inner 975.2.bn.d.368.17 96
15.14 odd 2 195.2.bf.a.17.17 yes 96
39.23 odd 6 inner 975.2.bn.d.257.8 96
65.23 odd 12 inner 975.2.bn.d.218.8 96
65.49 even 6 195.2.bf.a.62.8 yes 96
65.62 odd 12 195.2.bf.a.23.17 yes 96
195.23 even 12 inner 975.2.bn.d.218.17 96
195.62 even 12 195.2.bf.a.23.8 yes 96
195.179 odd 6 195.2.bf.a.62.17 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.8 96 5.4 even 2
195.2.bf.a.17.17 yes 96 15.14 odd 2
195.2.bf.a.23.8 yes 96 195.62 even 12
195.2.bf.a.23.17 yes 96 65.62 odd 12
195.2.bf.a.62.8 yes 96 65.49 even 6
195.2.bf.a.62.17 yes 96 195.179 odd 6
195.2.bf.a.173.8 yes 96 15.2 even 4
195.2.bf.a.173.17 yes 96 5.2 odd 4
975.2.bn.d.218.8 96 65.23 odd 12 inner
975.2.bn.d.218.17 96 195.23 even 12 inner
975.2.bn.d.257.8 96 39.23 odd 6 inner
975.2.bn.d.257.17 96 13.10 even 6 inner
975.2.bn.d.368.8 96 5.3 odd 4 inner
975.2.bn.d.368.17 96 15.8 even 4 inner
975.2.bn.d.407.8 96 3.2 odd 2 inner
975.2.bn.d.407.17 96 1.1 even 1 trivial