Properties

Label 975.2.bn.d.257.17
Level $975$
Weight $2$
Character 975.257
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 257.17
Character \(\chi\) \(=\) 975.257
Dual form 975.2.bn.d.368.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.283997 - 1.05989i) q^{2} +(-0.872682 + 1.49614i) q^{3} +(0.689337 + 0.397989i) q^{4} +(1.33790 + 1.34985i) q^{6} +(0.0430045 + 0.160495i) q^{7} +(2.16938 - 2.16938i) q^{8} +(-1.47685 - 2.61130i) q^{9} +(-2.43760 - 4.22205i) q^{11} +(-1.19702 + 0.684025i) q^{12} +(-2.82173 - 2.24451i) q^{13} +0.182320 q^{14} +(-0.887232 - 1.53673i) q^{16} +(-1.24864 - 4.65999i) q^{17} +(-3.18712 + 0.823701i) q^{18} +(-1.37389 + 2.37966i) q^{19} +(-0.277652 - 0.0757204i) q^{21} +(-5.16719 + 1.38454i) q^{22} +(1.51285 - 5.64603i) q^{23} +(1.35251 + 5.13887i) q^{24} +(-3.18030 + 2.35330i) q^{26} +(5.19569 + 0.0692622i) q^{27} +(-0.0342306 + 0.127750i) q^{28} +(2.47205 + 4.28172i) q^{29} -2.41720i q^{31} +(4.04612 - 1.08416i) q^{32} +(8.44403 + 0.0375196i) q^{33} -5.29369 q^{34} +(0.0212203 - 2.38784i) q^{36} +(4.48963 + 1.20299i) q^{37} +(2.13199 + 2.13199i) q^{38} +(5.82057 - 2.26296i) q^{39} +(-2.16059 - 3.74226i) q^{41} +(-0.159108 + 0.272776i) q^{42} +(0.340642 + 1.27129i) q^{43} -3.88056i q^{44} +(-5.55453 - 3.20691i) q^{46} +(-3.58251 - 3.58251i) q^{47} +(3.07343 + 0.0136563i) q^{48} +(6.03827 - 3.48620i) q^{49} +(8.06165 + 2.19855i) q^{51} +(-1.05184 - 2.67024i) q^{52} +(3.34661 + 3.34661i) q^{53} +(1.54897 - 5.48719i) q^{54} +(0.441468 + 0.254882i) q^{56} +(-2.36132 - 4.13222i) q^{57} +(5.24021 - 1.40411i) q^{58} +(-8.49452 - 4.90431i) q^{59} +(-7.20685 + 12.4826i) q^{61} +(-2.56197 - 0.686477i) q^{62} +(0.355590 - 0.349325i) q^{63} -8.14527i q^{64} +(2.43784 - 8.93909i) q^{66} +(0.702294 + 0.188179i) q^{67} +(0.993890 - 3.70925i) q^{68} +(7.12700 + 7.19061i) q^{69} +(-1.37489 + 2.38137i) q^{71} +(-8.86877 - 2.46106i) q^{72} +(5.45193 + 5.45193i) q^{73} +(2.55008 - 4.41687i) q^{74} +(-1.89415 + 1.09359i) q^{76} +(0.572790 - 0.572790i) q^{77} +(-0.745469 - 6.81184i) q^{78} -7.39276i q^{79} +(-4.63781 + 7.71302i) q^{81} +(-4.57999 + 1.22720i) q^{82} +(1.60997 - 1.60997i) q^{83} +(-0.161260 - 0.162699i) q^{84} +1.44417 q^{86} +(-8.56336 - 0.0380499i) q^{87} +(-14.4473 - 3.87115i) q^{88} +(5.98500 - 3.45544i) q^{89} +(0.238885 - 0.549398i) q^{91} +(3.28992 - 3.28992i) q^{92} +(3.61646 + 2.10944i) q^{93} +(-4.81449 + 2.77964i) q^{94} +(-1.90893 + 6.99968i) q^{96} +(-4.36286 - 16.2824i) q^{97} +(-1.98014 - 7.38997i) q^{98} +(-7.42508 + 12.6007i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.283997 1.05989i 0.200816 0.749456i −0.789868 0.613277i \(-0.789851\pi\)
0.990684 0.136179i \(-0.0434823\pi\)
\(3\) −0.872682 + 1.49614i −0.503843 + 0.863795i
\(4\) 0.689337 + 0.397989i 0.344668 + 0.198994i
\(5\) 0 0
\(6\) 1.33790 + 1.34985i 0.546197 + 0.551072i
\(7\) 0.0430045 + 0.160495i 0.0162542 + 0.0606614i 0.973577 0.228361i \(-0.0733366\pi\)
−0.957322 + 0.289022i \(0.906670\pi\)
\(8\) 2.16938 2.16938i 0.766992 0.766992i
\(9\) −1.47685 2.61130i −0.492284 0.870434i
\(10\) 0 0
\(11\) −2.43760 4.22205i −0.734965 1.27300i −0.954739 0.297446i \(-0.903865\pi\)
0.219773 0.975551i \(-0.429468\pi\)
\(12\) −1.19702 + 0.684025i −0.345549 + 0.197461i
\(13\) −2.82173 2.24451i −0.782608 0.622514i
\(14\) 0.182320 0.0487271
\(15\) 0 0
\(16\) −0.887232 1.53673i −0.221808 0.384183i
\(17\) −1.24864 4.65999i −0.302840 1.13021i −0.934789 0.355204i \(-0.884412\pi\)
0.631949 0.775010i \(-0.282255\pi\)
\(18\) −3.18712 + 0.823701i −0.751211 + 0.194148i
\(19\) −1.37389 + 2.37966i −0.315193 + 0.545930i −0.979479 0.201549i \(-0.935403\pi\)
0.664285 + 0.747479i \(0.268736\pi\)
\(20\) 0 0
\(21\) −0.277652 0.0757204i −0.0605886 0.0165235i
\(22\) −5.16719 + 1.38454i −1.10165 + 0.295186i
\(23\) 1.51285 5.64603i 0.315451 1.17728i −0.608118 0.793846i \(-0.708075\pi\)
0.923569 0.383432i \(-0.125258\pi\)
\(24\) 1.35251 + 5.13887i 0.276081 + 1.04897i
\(25\) 0 0
\(26\) −3.18030 + 2.35330i −0.623707 + 0.461520i
\(27\) 5.19569 + 0.0692622i 0.999911 + 0.0133295i
\(28\) −0.0342306 + 0.127750i −0.00646898 + 0.0241426i
\(29\) 2.47205 + 4.28172i 0.459049 + 0.795096i 0.998911 0.0466574i \(-0.0148569\pi\)
−0.539862 + 0.841754i \(0.681524\pi\)
\(30\) 0 0
\(31\) 2.41720i 0.434142i −0.976156 0.217071i \(-0.930350\pi\)
0.976156 0.217071i \(-0.0696502\pi\)
\(32\) 4.04612 1.08416i 0.715260 0.191653i
\(33\) 8.44403 + 0.0375196i 1.46992 + 0.00653133i
\(34\) −5.29369 −0.907860
\(35\) 0 0
\(36\) 0.0212203 2.38784i 0.00353672 0.397973i
\(37\) 4.48963 + 1.20299i 0.738090 + 0.197771i 0.608229 0.793762i \(-0.291880\pi\)
0.129861 + 0.991532i \(0.458547\pi\)
\(38\) 2.13199 + 2.13199i 0.345855 + 0.345855i
\(39\) 5.82057 2.26296i 0.932037 0.362364i
\(40\) 0 0
\(41\) −2.16059 3.74226i −0.337428 0.584443i 0.646520 0.762897i \(-0.276224\pi\)
−0.983948 + 0.178454i \(0.942890\pi\)
\(42\) −0.159108 + 0.272776i −0.0245508 + 0.0420903i
\(43\) 0.340642 + 1.27129i 0.0519475 + 0.193871i 0.987023 0.160577i \(-0.0513355\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(44\) 3.88056i 0.585016i
\(45\) 0 0
\(46\) −5.55453 3.20691i −0.818970 0.472833i
\(47\) −3.58251 3.58251i −0.522562 0.522562i 0.395782 0.918344i \(-0.370474\pi\)
−0.918344 + 0.395782i \(0.870474\pi\)
\(48\) 3.07343 + 0.0136563i 0.443612 + 0.00197111i
\(49\) 6.03827 3.48620i 0.862610 0.498028i
\(50\) 0 0
\(51\) 8.06165 + 2.19855i 1.12886 + 0.307859i
\(52\) −1.05184 2.67024i −0.145864 0.370296i
\(53\) 3.34661 + 3.34661i 0.459692 + 0.459692i 0.898554 0.438862i \(-0.144618\pi\)
−0.438862 + 0.898554i \(0.644618\pi\)
\(54\) 1.54897 5.48719i 0.210788 0.746712i
\(55\) 0 0
\(56\) 0.441468 + 0.254882i 0.0589936 + 0.0340600i
\(57\) −2.36132 4.13222i −0.312764 0.547326i
\(58\) 5.24021 1.40411i 0.688074 0.184369i
\(59\) −8.49452 4.90431i −1.10589 0.638487i −0.168130 0.985765i \(-0.553773\pi\)
−0.937762 + 0.347278i \(0.887106\pi\)
\(60\) 0 0
\(61\) −7.20685 + 12.4826i −0.922742 + 1.59824i −0.127590 + 0.991827i \(0.540724\pi\)
−0.795153 + 0.606409i \(0.792609\pi\)
\(62\) −2.56197 0.686477i −0.325370 0.0871826i
\(63\) 0.355590 0.349325i 0.0448001 0.0440108i
\(64\) 8.14527i 1.01816i
\(65\) 0 0
\(66\) 2.43784 8.93909i 0.300078 1.10033i
\(67\) 0.702294 + 0.188179i 0.0857989 + 0.0229897i 0.301463 0.953478i \(-0.402525\pi\)
−0.215664 + 0.976468i \(0.569192\pi\)
\(68\) 0.993890 3.70925i 0.120527 0.449812i
\(69\) 7.12700 + 7.19061i 0.857990 + 0.865648i
\(70\) 0 0
\(71\) −1.37489 + 2.38137i −0.163169 + 0.282617i −0.936004 0.351990i \(-0.885505\pi\)
0.772834 + 0.634608i \(0.218838\pi\)
\(72\) −8.86877 2.46106i −1.04519 0.290038i
\(73\) 5.45193 + 5.45193i 0.638101 + 0.638101i 0.950087 0.311986i \(-0.100994\pi\)
−0.311986 + 0.950087i \(0.600994\pi\)
\(74\) 2.55008 4.41687i 0.296441 0.513450i
\(75\) 0 0
\(76\) −1.89415 + 1.09359i −0.217274 + 0.125443i
\(77\) 0.572790 0.572790i 0.0652755 0.0652755i
\(78\) −0.745469 6.81184i −0.0844077 0.771289i
\(79\) 7.39276i 0.831750i −0.909422 0.415875i \(-0.863475\pi\)
0.909422 0.415875i \(-0.136525\pi\)
\(80\) 0 0
\(81\) −4.63781 + 7.71302i −0.515312 + 0.857002i
\(82\) −4.57999 + 1.22720i −0.505775 + 0.135522i
\(83\) 1.60997 1.60997i 0.176717 0.176717i −0.613206 0.789923i \(-0.710120\pi\)
0.789923 + 0.613206i \(0.210120\pi\)
\(84\) −0.161260 0.162699i −0.0175949 0.0177519i
\(85\) 0 0
\(86\) 1.44417 0.155729
\(87\) −8.56336 0.0380499i −0.918089 0.00407937i
\(88\) −14.4473 3.87115i −1.54009 0.412666i
\(89\) 5.98500 3.45544i 0.634408 0.366276i −0.148049 0.988980i \(-0.547299\pi\)
0.782457 + 0.622704i \(0.213966\pi\)
\(90\) 0 0
\(91\) 0.238885 0.549398i 0.0250419 0.0575926i
\(92\) 3.28992 3.28992i 0.342998 0.342998i
\(93\) 3.61646 + 2.10944i 0.375009 + 0.218739i
\(94\) −4.81449 + 2.77964i −0.496576 + 0.286698i
\(95\) 0 0
\(96\) −1.90893 + 6.99968i −0.194830 + 0.714402i
\(97\) −4.36286 16.2824i −0.442981 1.65323i −0.721212 0.692714i \(-0.756415\pi\)
0.278231 0.960514i \(-0.410252\pi\)
\(98\) −1.98014 7.38997i −0.200024 0.746500i
\(99\) −7.42508 + 12.6007i −0.746249 + 1.26642i
\(100\) 0 0
\(101\) 13.1605 7.59820i 1.30952 0.756049i 0.327500 0.944851i \(-0.393794\pi\)
0.982015 + 0.188802i \(0.0604604\pi\)
\(102\) 4.61971 7.92008i 0.457419 0.784205i
\(103\) −12.4089 + 12.4089i −1.22268 + 1.22268i −0.256009 + 0.966674i \(0.582408\pi\)
−0.966674 + 0.256009i \(0.917592\pi\)
\(104\) −10.9906 + 1.25223i −1.07772 + 0.122791i
\(105\) 0 0
\(106\) 4.49746 2.59661i 0.436832 0.252205i
\(107\) 2.10823 + 0.564899i 0.203811 + 0.0546109i 0.359280 0.933230i \(-0.383022\pi\)
−0.155469 + 0.987841i \(0.549689\pi\)
\(108\) 3.55402 + 2.11557i 0.341985 + 0.203571i
\(109\) 10.3074 0.987274 0.493637 0.869668i \(-0.335667\pi\)
0.493637 + 0.869668i \(0.335667\pi\)
\(110\) 0 0
\(111\) −5.71785 + 5.66727i −0.542715 + 0.537913i
\(112\) 0.208483 0.208483i 0.0196997 0.0196997i
\(113\) −14.4214 + 3.86420i −1.35665 + 0.363513i −0.862585 0.505912i \(-0.831156\pi\)
−0.494065 + 0.869425i \(0.664489\pi\)
\(114\) −5.05031 + 1.32920i −0.473004 + 0.124491i
\(115\) 0 0
\(116\) 3.93540i 0.365393i
\(117\) −1.69380 + 10.6832i −0.156592 + 0.987663i
\(118\) −7.61045 + 7.61045i −0.700599 + 0.700599i
\(119\) 0.694207 0.400801i 0.0636379 0.0367414i
\(120\) 0 0
\(121\) −6.38383 + 11.0571i −0.580348 + 1.00519i
\(122\) 11.1835 + 11.1835i 1.01251 + 1.01251i
\(123\) 7.48444 + 0.0332559i 0.674850 + 0.00299858i
\(124\) 0.962018 1.66626i 0.0863918 0.149635i
\(125\) 0 0
\(126\) −0.269260 0.476093i −0.0239876 0.0424138i
\(127\) 0.365954 1.36576i 0.0324732 0.121192i −0.947787 0.318905i \(-0.896685\pi\)
0.980260 + 0.197713i \(0.0633516\pi\)
\(128\) −0.540851 0.144921i −0.0478049 0.0128093i
\(129\) −2.19930 0.599788i −0.193638 0.0528084i
\(130\) 0 0
\(131\) 1.23865i 0.108221i 0.998535 + 0.0541107i \(0.0172324\pi\)
−0.998535 + 0.0541107i \(0.982768\pi\)
\(132\) 5.80585 + 3.38649i 0.505334 + 0.294756i
\(133\) −0.441006 0.118167i −0.0382401 0.0102464i
\(134\) 0.398899 0.690913i 0.0344596 0.0596858i
\(135\) 0 0
\(136\) −12.8181 7.40052i −1.09914 0.634589i
\(137\) −3.92054 + 1.05050i −0.334954 + 0.0897507i −0.422376 0.906421i \(-0.638804\pi\)
0.0874219 + 0.996171i \(0.472137\pi\)
\(138\) 9.64531 5.51172i 0.821063 0.469189i
\(139\) −6.39677 3.69318i −0.542567 0.313251i 0.203552 0.979064i \(-0.434752\pi\)
−0.746119 + 0.665813i \(0.768085\pi\)
\(140\) 0 0
\(141\) 8.48631 2.23353i 0.714676 0.188097i
\(142\) 2.13353 + 2.13353i 0.179042 + 0.179042i
\(143\) −2.59816 + 17.3847i −0.217269 + 1.45378i
\(144\) −2.70256 + 4.58636i −0.225213 + 0.382196i
\(145\) 0 0
\(146\) 7.32679 4.23012i 0.606369 0.350087i
\(147\) −0.0536595 + 12.0764i −0.00442576 + 0.996046i
\(148\) 2.61609 + 2.61609i 0.215041 + 0.215041i
\(149\) 5.05279 + 2.91723i 0.413941 + 0.238989i 0.692482 0.721435i \(-0.256517\pi\)
−0.278541 + 0.960424i \(0.589851\pi\)
\(150\) 0 0
\(151\) 16.4599i 1.33949i −0.742591 0.669745i \(-0.766403\pi\)
0.742591 0.669745i \(-0.233597\pi\)
\(152\) 2.18188 + 8.14288i 0.176974 + 0.660475i
\(153\) −10.3246 + 10.1427i −0.834693 + 0.819988i
\(154\) −0.444425 0.769766i −0.0358127 0.0620295i
\(155\) 0 0
\(156\) 4.91297 + 0.756578i 0.393352 + 0.0605747i
\(157\) 5.15467 + 5.15467i 0.411387 + 0.411387i 0.882222 0.470834i \(-0.156047\pi\)
−0.470834 + 0.882222i \(0.656047\pi\)
\(158\) −7.83551 2.09952i −0.623360 0.167029i
\(159\) −7.92751 + 2.08646i −0.628692 + 0.165467i
\(160\) 0 0
\(161\) 0.971218 0.0765427
\(162\) 6.85784 + 7.10605i 0.538803 + 0.558304i
\(163\) 21.2268 5.68770i 1.66261 0.445495i 0.699506 0.714626i \(-0.253403\pi\)
0.963103 + 0.269131i \(0.0867366\pi\)
\(164\) 3.43957i 0.268585i
\(165\) 0 0
\(166\) −1.24917 2.16362i −0.0969541 0.167929i
\(167\) −3.66650 + 13.6836i −0.283723 + 1.05887i 0.666045 + 0.745911i \(0.267986\pi\)
−0.949768 + 0.312956i \(0.898681\pi\)
\(168\) −0.766599 + 0.438066i −0.0591444 + 0.0337975i
\(169\) 2.92437 + 12.6668i 0.224952 + 0.974370i
\(170\) 0 0
\(171\) 8.24304 + 0.0732546i 0.630361 + 0.00560192i
\(172\) −0.271144 + 1.01192i −0.0206745 + 0.0771583i
\(173\) −0.918542 + 0.246123i −0.0698354 + 0.0187123i −0.293568 0.955938i \(-0.594843\pi\)
0.223732 + 0.974651i \(0.428176\pi\)
\(174\) −2.47230 + 9.06542i −0.187424 + 0.687248i
\(175\) 0 0
\(176\) −4.32544 + 7.49188i −0.326042 + 0.564722i
\(177\) 14.7505 8.42906i 1.10872 0.633567i
\(178\) −1.96267 7.32477i −0.147108 0.549015i
\(179\) 8.16594 + 14.1438i 0.610351 + 1.05716i 0.991181 + 0.132514i \(0.0423048\pi\)
−0.380830 + 0.924645i \(0.624362\pi\)
\(180\) 0 0
\(181\) −12.4459 −0.925096 −0.462548 0.886594i \(-0.653065\pi\)
−0.462548 + 0.886594i \(0.653065\pi\)
\(182\) −0.514459 0.409219i −0.0381343 0.0303333i
\(183\) −12.3864 21.6758i −0.915632 1.60232i
\(184\) −8.96644 15.5303i −0.661015 1.14491i
\(185\) 0 0
\(186\) 3.26284 3.23398i 0.239243 0.237127i
\(187\) −16.6310 + 16.6310i −1.21618 + 1.21618i
\(188\) −1.04376 3.89535i −0.0761238 0.284098i
\(189\) 0.212322 + 0.836861i 0.0154441 + 0.0608726i
\(190\) 0 0
\(191\) −2.49022 1.43773i −0.180186 0.104030i 0.407194 0.913342i \(-0.366507\pi\)
−0.587380 + 0.809311i \(0.699841\pi\)
\(192\) 12.1864 + 7.10823i 0.879481 + 0.512992i
\(193\) 2.73177 10.1951i 0.196637 0.733861i −0.795199 0.606348i \(-0.792634\pi\)
0.991837 0.127513i \(-0.0406994\pi\)
\(194\) −18.4966 −1.32798
\(195\) 0 0
\(196\) 5.54987 0.396419
\(197\) 5.09403 19.0112i 0.362934 1.35449i −0.507265 0.861790i \(-0.669344\pi\)
0.870199 0.492700i \(-0.163990\pi\)
\(198\) 11.2466 + 11.4483i 0.799264 + 0.813597i
\(199\) 10.9231 + 6.30646i 0.774318 + 0.447053i 0.834413 0.551140i \(-0.185807\pi\)
−0.0600946 + 0.998193i \(0.519140\pi\)
\(200\) 0 0
\(201\) −0.894421 + 0.886508i −0.0630876 + 0.0625295i
\(202\) −4.31573 16.1065i −0.303654 1.13325i
\(203\) −0.580885 + 0.580885i −0.0407702 + 0.0407702i
\(204\) 4.68219 + 4.72399i 0.327819 + 0.330745i
\(205\) 0 0
\(206\) 9.62798 + 16.6761i 0.670813 + 1.16188i
\(207\) −16.9777 + 4.38785i −1.18003 + 0.304976i
\(208\) −0.945670 + 6.32765i −0.0655704 + 0.438743i
\(209\) 13.3960 0.926624
\(210\) 0 0
\(211\) −2.40360 4.16317i −0.165471 0.286604i 0.771351 0.636409i \(-0.219581\pi\)
−0.936822 + 0.349805i \(0.886248\pi\)
\(212\) 0.975028 + 3.63885i 0.0669652 + 0.249917i
\(213\) −2.36302 4.13520i −0.161912 0.283339i
\(214\) 1.19746 2.07407i 0.0818569 0.141780i
\(215\) 0 0
\(216\) 11.4217 11.1212i 0.777148 0.756700i
\(217\) 0.387948 0.103950i 0.0263356 0.00705661i
\(218\) 2.92728 10.9248i 0.198260 0.739918i
\(219\) −12.9146 + 3.39904i −0.872691 + 0.229686i
\(220\) 0 0
\(221\) −6.93605 + 15.9518i −0.466569 + 1.07304i
\(222\) 4.38283 + 7.66979i 0.294156 + 0.514762i
\(223\) −2.95177 + 11.0162i −0.197665 + 0.737697i 0.793896 + 0.608054i \(0.208050\pi\)
−0.991561 + 0.129643i \(0.958617\pi\)
\(224\) 0.348003 + 0.602759i 0.0232519 + 0.0402735i
\(225\) 0 0
\(226\) 16.3825i 1.08975i
\(227\) −25.6485 + 6.87249i −1.70235 + 0.456143i −0.973530 0.228561i \(-0.926598\pi\)
−0.728821 + 0.684705i \(0.759931\pi\)
\(228\) 0.0168325 3.78827i 0.00111476 0.250884i
\(229\) 6.38857 0.422169 0.211084 0.977468i \(-0.432301\pi\)
0.211084 + 0.977468i \(0.432301\pi\)
\(230\) 0 0
\(231\) 0.357109 + 1.35684i 0.0234961 + 0.0892733i
\(232\) 14.6515 + 3.92586i 0.961920 + 0.257746i
\(233\) 12.9039 + 12.9039i 0.845365 + 0.845365i 0.989551 0.144186i \(-0.0460562\pi\)
−0.144186 + 0.989551i \(0.546056\pi\)
\(234\) 10.8420 + 4.82924i 0.708764 + 0.315698i
\(235\) 0 0
\(236\) −3.90372 6.76145i −0.254111 0.440133i
\(237\) 11.0606 + 6.45152i 0.718462 + 0.419072i
\(238\) −0.227652 0.849610i −0.0147565 0.0550720i
\(239\) 3.20751i 0.207477i 0.994605 + 0.103738i \(0.0330805\pi\)
−0.994605 + 0.103738i \(0.966920\pi\)
\(240\) 0 0
\(241\) 5.19991 + 3.00217i 0.334956 + 0.193387i 0.658039 0.752984i \(-0.271386\pi\)
−0.323083 + 0.946370i \(0.604719\pi\)
\(242\) 9.90635 + 9.90635i 0.636804 + 0.636804i
\(243\) −7.49241 13.6698i −0.480638 0.876919i
\(244\) −9.93589 + 5.73649i −0.636080 + 0.367241i
\(245\) 0 0
\(246\) 2.16081 7.92325i 0.137768 0.505168i
\(247\) 9.21792 3.63104i 0.586522 0.231038i
\(248\) −5.24382 5.24382i −0.332983 0.332983i
\(249\) 1.00374 + 3.81373i 0.0636097 + 0.241685i
\(250\) 0 0
\(251\) −21.2638 12.2767i −1.34216 0.774897i −0.355036 0.934852i \(-0.615532\pi\)
−0.987124 + 0.159956i \(0.948865\pi\)
\(252\) 0.384149 0.0992820i 0.0241991 0.00625418i
\(253\) −27.5256 + 7.37545i −1.73052 + 0.463691i
\(254\) −1.34363 0.775742i −0.0843066 0.0486744i
\(255\) 0 0
\(256\) 7.83807 13.5759i 0.489880 0.848496i
\(257\) 4.64467 + 1.24454i 0.289727 + 0.0776320i 0.400755 0.916185i \(-0.368748\pi\)
−0.111028 + 0.993817i \(0.535414\pi\)
\(258\) −1.26030 + 2.16068i −0.0784631 + 0.134518i
\(259\) 0.772296i 0.0479881i
\(260\) 0 0
\(261\) 7.53002 12.7788i 0.466096 0.790985i
\(262\) 1.31283 + 0.351773i 0.0811072 + 0.0217326i
\(263\) −3.04819 + 11.3760i −0.187959 + 0.701474i 0.806018 + 0.591891i \(0.201618\pi\)
−0.993978 + 0.109583i \(0.965048\pi\)
\(264\) 18.3997 18.2369i 1.13242 1.12240i
\(265\) 0 0
\(266\) −0.250489 + 0.433859i −0.0153585 + 0.0266016i
\(267\) −0.0531861 + 11.9699i −0.00325494 + 0.732544i
\(268\) 0.409224 + 0.409224i 0.0249973 + 0.0249973i
\(269\) −0.648587 + 1.12339i −0.0395451 + 0.0684941i −0.885121 0.465362i \(-0.845924\pi\)
0.845575 + 0.533856i \(0.179258\pi\)
\(270\) 0 0
\(271\) 5.30394 3.06223i 0.322191 0.186017i −0.330178 0.943919i \(-0.607109\pi\)
0.652369 + 0.757902i \(0.273775\pi\)
\(272\) −6.05331 + 6.05331i −0.367036 + 0.367036i
\(273\) 0.613504 + 0.836854i 0.0371310 + 0.0506487i
\(274\) 4.45368i 0.269057i
\(275\) 0 0
\(276\) 2.05112 + 7.79322i 0.123463 + 0.469097i
\(277\) 10.0459 2.69179i 0.603600 0.161734i 0.0559386 0.998434i \(-0.482185\pi\)
0.547661 + 0.836700i \(0.315518\pi\)
\(278\) −5.73103 + 5.73103i −0.343724 + 0.343724i
\(279\) −6.31204 + 3.56985i −0.377892 + 0.213721i
\(280\) 0 0
\(281\) 21.9271 1.30806 0.654031 0.756468i \(-0.273077\pi\)
0.654031 + 0.756468i \(0.273077\pi\)
\(282\) 0.0427843 9.62888i 0.00254777 0.573391i
\(283\) 5.35432 + 1.43469i 0.318281 + 0.0852833i 0.414423 0.910084i \(-0.363983\pi\)
−0.0961414 + 0.995368i \(0.530650\pi\)
\(284\) −1.89552 + 1.09438i −0.112479 + 0.0649395i
\(285\) 0 0
\(286\) 17.6881 + 7.69098i 1.04592 + 0.454777i
\(287\) 0.507698 0.507698i 0.0299685 0.0299685i
\(288\) −8.80659 8.96452i −0.518933 0.528239i
\(289\) −5.43396 + 3.13730i −0.319645 + 0.184547i
\(290\) 0 0
\(291\) 28.1681 + 7.68193i 1.65124 + 0.450323i
\(292\) 1.58841 + 5.92803i 0.0929547 + 0.346912i
\(293\) −1.26763 4.73086i −0.0740557 0.276380i 0.918962 0.394347i \(-0.129029\pi\)
−0.993018 + 0.117967i \(0.962362\pi\)
\(294\) 12.7844 + 3.48654i 0.745604 + 0.203339i
\(295\) 0 0
\(296\) 12.3495 7.12996i 0.717798 0.414421i
\(297\) −12.3726 22.1053i −0.717932 1.28268i
\(298\) 4.52692 4.52692i 0.262238 0.262238i
\(299\) −16.9414 + 12.5360i −0.979747 + 0.724975i
\(300\) 0 0
\(301\) −0.189387 + 0.109343i −0.0109161 + 0.00630241i
\(302\) −17.4457 4.67457i −1.00389 0.268991i
\(303\) −0.116952 + 26.3207i −0.00671869 + 1.51208i
\(304\) 4.87585 0.279649
\(305\) 0 0
\(306\) 7.81800 + 13.8234i 0.446925 + 0.790233i
\(307\) 15.7142 15.7142i 0.896858 0.896858i −0.0982987 0.995157i \(-0.531340\pi\)
0.995157 + 0.0982987i \(0.0313401\pi\)
\(308\) 0.622810 0.166881i 0.0354879 0.00950895i
\(309\) −7.73639 29.3944i −0.440108 1.67219i
\(310\) 0 0
\(311\) 27.3000i 1.54804i 0.633161 + 0.774020i \(0.281757\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(312\) 7.71780 17.5363i 0.436935 0.992795i
\(313\) 13.0107 13.0107i 0.735406 0.735406i −0.236280 0.971685i \(-0.575928\pi\)
0.971685 + 0.236280i \(0.0759281\pi\)
\(314\) 6.92729 3.99948i 0.390930 0.225703i
\(315\) 0 0
\(316\) 2.94224 5.09610i 0.165514 0.286678i
\(317\) 6.64936 + 6.64936i 0.373465 + 0.373465i 0.868738 0.495272i \(-0.164932\pi\)
−0.495272 + 0.868738i \(0.664932\pi\)
\(318\) −0.0399671 + 8.99484i −0.00224124 + 0.504406i
\(319\) 12.0518 20.8743i 0.674770 1.16874i
\(320\) 0 0
\(321\) −2.68498 + 2.66123i −0.149861 + 0.148535i
\(322\) 0.275823 1.02938i 0.0153710 0.0573654i
\(323\) 12.8047 + 3.43100i 0.712471 + 0.190906i
\(324\) −6.26671 + 3.47107i −0.348151 + 0.192837i
\(325\) 0 0
\(326\) 24.1134i 1.33552i
\(327\) −8.99512 + 15.4213i −0.497431 + 0.852802i
\(328\) −12.8055 3.43123i −0.707068 0.189458i
\(329\) 0.420910 0.729038i 0.0232055 0.0401932i
\(330\) 0 0
\(331\) 5.50158 + 3.17634i 0.302394 + 0.174587i 0.643518 0.765431i \(-0.277474\pi\)
−0.341124 + 0.940018i \(0.610807\pi\)
\(332\) 1.75056 0.469062i 0.0960746 0.0257431i
\(333\) −3.48914 13.5004i −0.191204 0.739818i
\(334\) 13.4618 + 7.77219i 0.736598 + 0.425275i
\(335\) 0 0
\(336\) 0.129980 + 0.493857i 0.00709097 + 0.0269421i
\(337\) −12.5904 12.5904i −0.685841 0.685841i 0.275469 0.961310i \(-0.411167\pi\)
−0.961310 + 0.275469i \(0.911167\pi\)
\(338\) 14.2559 + 0.497817i 0.775421 + 0.0270777i
\(339\) 6.80391 24.9486i 0.369538 1.35502i
\(340\) 0 0
\(341\) −10.2055 + 5.89217i −0.552661 + 0.319079i
\(342\) 2.41864 8.71592i 0.130785 0.471303i
\(343\) 1.64162 + 1.64162i 0.0886393 + 0.0886393i
\(344\) 3.49691 + 2.01894i 0.188541 + 0.108854i
\(345\) 0 0
\(346\) 1.04345i 0.0560963i
\(347\) 2.07408 + 7.74058i 0.111343 + 0.415536i 0.998987 0.0449927i \(-0.0143265\pi\)
−0.887645 + 0.460529i \(0.847660\pi\)
\(348\) −5.88790 3.43435i −0.315625 0.184101i
\(349\) −9.47261 16.4070i −0.507057 0.878249i −0.999967 0.00816849i \(-0.997400\pi\)
0.492909 0.870081i \(-0.335933\pi\)
\(350\) 0 0
\(351\) −14.5054 11.8572i −0.774241 0.632891i
\(352\) −14.4402 14.4402i −0.769666 0.769666i
\(353\) −2.20043 0.589602i −0.117117 0.0313814i 0.199785 0.979840i \(-0.435976\pi\)
−0.316901 + 0.948458i \(0.602642\pi\)
\(354\) −4.74478 18.0278i −0.252182 0.958166i
\(355\) 0 0
\(356\) 5.50091 0.291547
\(357\) −0.00616913 + 1.38840i −0.000326505 + 0.0734820i
\(358\) 17.3100 4.63820i 0.914862 0.245136i
\(359\) 9.83095i 0.518858i 0.965762 + 0.259429i \(0.0835343\pi\)
−0.965762 + 0.259429i \(0.916466\pi\)
\(360\) 0 0
\(361\) 5.72483 + 9.91569i 0.301307 + 0.521878i
\(362\) −3.53460 + 13.1913i −0.185774 + 0.693319i
\(363\) −10.9719 19.2004i −0.575876 1.00776i
\(364\) 0.383326 0.283647i 0.0200918 0.0148671i
\(365\) 0 0
\(366\) −26.4917 + 6.97241i −1.38474 + 0.364454i
\(367\) −3.06044 + 11.4217i −0.159754 + 0.596209i 0.838897 + 0.544289i \(0.183201\pi\)
−0.998651 + 0.0519198i \(0.983466\pi\)
\(368\) −10.0187 + 2.68449i −0.522259 + 0.139939i
\(369\) −6.58129 + 11.1687i −0.342608 + 0.581421i
\(370\) 0 0
\(371\) −0.393194 + 0.681033i −0.0204136 + 0.0353575i
\(372\) 1.65342 + 2.89343i 0.0857260 + 0.150017i
\(373\) 6.36680 + 23.7612i 0.329661 + 1.23031i 0.909543 + 0.415610i \(0.136432\pi\)
−0.579882 + 0.814700i \(0.696901\pi\)
\(374\) 12.9039 + 22.3502i 0.667246 + 1.15570i
\(375\) 0 0
\(376\) −15.5436 −0.801602
\(377\) 2.63488 17.6304i 0.135703 0.908013i
\(378\) 0.947279 + 0.0126279i 0.0487228 + 0.000649509i
\(379\) 7.85016 + 13.5969i 0.403236 + 0.698425i 0.994114 0.108336i \(-0.0345522\pi\)
−0.590879 + 0.806760i \(0.701219\pi\)
\(380\) 0 0
\(381\) 1.72400 + 1.73939i 0.0883233 + 0.0891117i
\(382\) −2.23105 + 2.23105i −0.114150 + 0.114150i
\(383\) −0.618182 2.30709i −0.0315876 0.117887i 0.948332 0.317280i \(-0.102769\pi\)
−0.979920 + 0.199393i \(0.936103\pi\)
\(384\) 0.688812 0.682718i 0.0351508 0.0348398i
\(385\) 0 0
\(386\) −10.0299 5.79076i −0.510508 0.294742i
\(387\) 2.81666 2.76704i 0.143179 0.140656i
\(388\) 3.47274 12.9604i 0.176302 0.657966i
\(389\) 14.0757 0.713666 0.356833 0.934168i \(-0.383857\pi\)
0.356833 + 0.934168i \(0.383857\pi\)
\(390\) 0 0
\(391\) −28.1994 −1.42611
\(392\) 5.53642 20.6622i 0.279631 1.04360i
\(393\) −1.85319 1.08095i −0.0934812 0.0545266i
\(394\) −18.7031 10.7982i −0.942247 0.544007i
\(395\) 0 0
\(396\) −10.1333 + 5.73101i −0.509218 + 0.287994i
\(397\) 8.32246 + 31.0598i 0.417692 + 1.55885i 0.779382 + 0.626549i \(0.215533\pi\)
−0.361690 + 0.932299i \(0.617800\pi\)
\(398\) 9.78628 9.78628i 0.490542 0.490542i
\(399\) 0.561653 0.556683i 0.0281178 0.0278690i
\(400\) 0 0
\(401\) 0.597410 + 1.03474i 0.0298332 + 0.0516726i 0.880557 0.473941i \(-0.157169\pi\)
−0.850723 + 0.525614i \(0.823836\pi\)
\(402\) 0.685589 + 1.19975i 0.0341941 + 0.0598383i
\(403\) −5.42542 + 6.82069i −0.270259 + 0.339763i
\(404\) 12.0960 0.601798
\(405\) 0 0
\(406\) 0.450705 + 0.780645i 0.0223681 + 0.0387427i
\(407\) −5.86484 21.8879i −0.290709 1.08494i
\(408\) 22.2583 12.7193i 1.10195 0.629699i
\(409\) −8.93012 + 15.4674i −0.441566 + 0.764815i −0.997806 0.0662068i \(-0.978910\pi\)
0.556240 + 0.831022i \(0.312244\pi\)
\(410\) 0 0
\(411\) 1.84968 6.78242i 0.0912381 0.334552i
\(412\) −13.4925 + 3.61530i −0.664728 + 0.178113i
\(413\) 0.421815 1.57423i 0.0207562 0.0774630i
\(414\) −0.170989 + 19.2407i −0.00840364 + 0.945628i
\(415\) 0 0
\(416\) −13.8505 6.02235i −0.679076 0.295270i
\(417\) 11.1078 6.34748i 0.543954 0.310837i
\(418\) 3.80444 14.1983i 0.186081 0.694464i
\(419\) −5.31145 9.19969i −0.259481 0.449435i 0.706622 0.707591i \(-0.250218\pi\)
−0.966103 + 0.258157i \(0.916885\pi\)
\(420\) 0 0
\(421\) 23.8749i 1.16359i −0.813335 0.581796i \(-0.802350\pi\)
0.813335 0.581796i \(-0.197650\pi\)
\(422\) −5.09512 + 1.36523i −0.248026 + 0.0664585i
\(423\) −4.06418 + 14.6458i −0.197607 + 0.712105i
\(424\) 14.5201 0.705160
\(425\) 0 0
\(426\) −5.05395 + 1.33016i −0.244865 + 0.0644466i
\(427\) −2.31332 0.619853i −0.111950 0.0299968i
\(428\) 1.22846 + 1.22846i 0.0593798 + 0.0593798i
\(429\) −23.7426 19.0585i −1.14630 0.920155i
\(430\) 0 0
\(431\) −8.35107 14.4645i −0.402257 0.696729i 0.591741 0.806128i \(-0.298441\pi\)
−0.993998 + 0.109399i \(0.965107\pi\)
\(432\) −4.50335 8.04583i −0.216667 0.387105i
\(433\) 7.11463 + 26.5522i 0.341907 + 1.27602i 0.896184 + 0.443683i \(0.146328\pi\)
−0.554277 + 0.832333i \(0.687005\pi\)
\(434\) 0.440704i 0.0211545i
\(435\) 0 0
\(436\) 7.10530 + 4.10225i 0.340282 + 0.196462i
\(437\) 11.3571 + 11.3571i 0.543284 + 0.543284i
\(438\) −0.0651100 + 14.6534i −0.00311108 + 0.700168i
\(439\) −16.5480 + 9.55397i −0.789791 + 0.455986i −0.839889 0.542758i \(-0.817380\pi\)
0.0500980 + 0.998744i \(0.484047\pi\)
\(440\) 0 0
\(441\) −18.0212 10.6192i −0.858150 0.505674i
\(442\) 14.9374 + 11.8817i 0.710499 + 0.565156i
\(443\) −8.74698 8.74698i −0.415581 0.415581i 0.468096 0.883678i \(-0.344940\pi\)
−0.883678 + 0.468096i \(0.844940\pi\)
\(444\) −6.19704 + 1.63101i −0.294098 + 0.0774045i
\(445\) 0 0
\(446\) 10.8376 + 6.25711i 0.513177 + 0.296283i
\(447\) −8.77406 + 5.01386i −0.414999 + 0.237147i
\(448\) 1.30727 0.350283i 0.0617629 0.0165493i
\(449\) −25.7950 14.8928i −1.21734 0.702834i −0.252994 0.967468i \(-0.581415\pi\)
−0.964349 + 0.264634i \(0.914749\pi\)
\(450\) 0 0
\(451\) −10.5333 + 18.2443i −0.495996 + 0.859090i
\(452\) −11.4791 3.07582i −0.539932 0.144674i
\(453\) 24.6263 + 14.3643i 1.15705 + 0.674893i
\(454\) 29.1364i 1.36744i
\(455\) 0 0
\(456\) −14.0870 3.84176i −0.659682 0.179907i
\(457\) 3.37500 + 0.904330i 0.157876 + 0.0423028i 0.336891 0.941544i \(-0.390624\pi\)
−0.179015 + 0.983846i \(0.557291\pi\)
\(458\) 1.81433 6.77119i 0.0847783 0.316397i
\(459\) −6.16479 24.2983i −0.287748 1.13415i
\(460\) 0 0
\(461\) 1.56492 2.71052i 0.0728856 0.126242i −0.827279 0.561791i \(-0.810113\pi\)
0.900165 + 0.435549i \(0.143446\pi\)
\(462\) 1.53952 + 0.00684058i 0.0716248 + 0.000318253i
\(463\) −27.4762 27.4762i −1.27693 1.27693i −0.942379 0.334548i \(-0.891416\pi\)
−0.334548 0.942379i \(-0.608584\pi\)
\(464\) 4.38657 7.59776i 0.203641 0.352717i
\(465\) 0 0
\(466\) 17.3414 10.0121i 0.803327 0.463801i
\(467\) 20.4027 20.4027i 0.944124 0.944124i −0.0543954 0.998519i \(-0.517323\pi\)
0.998519 + 0.0543954i \(0.0173232\pi\)
\(468\) −5.41940 + 6.69022i −0.250512 + 0.309255i
\(469\) 0.120807i 0.00557836i
\(470\) 0 0
\(471\) −12.2105 + 3.21371i −0.562629 + 0.148080i
\(472\) −29.0672 + 7.78853i −1.33793 + 0.358496i
\(473\) 4.53712 4.53712i 0.208617 0.208617i
\(474\) 9.97908 9.89079i 0.458354 0.454299i
\(475\) 0 0
\(476\) 0.638057 0.0292453
\(477\) 3.79656 13.6815i 0.173833 0.626431i
\(478\) 3.39961 + 0.910923i 0.155495 + 0.0416647i
\(479\) 0.117001 0.0675507i 0.00534593 0.00308647i −0.497325 0.867565i \(-0.665684\pi\)
0.502671 + 0.864478i \(0.332351\pi\)
\(480\) 0 0
\(481\) −9.96841 13.4715i −0.454520 0.614248i
\(482\) 4.65873 4.65873i 0.212199 0.212199i
\(483\) −0.847564 + 1.45308i −0.0385655 + 0.0661172i
\(484\) −8.80122 + 5.08139i −0.400056 + 0.230972i
\(485\) 0 0
\(486\) −16.6163 + 4.05895i −0.753732 + 0.184118i
\(487\) −2.52502 9.42349i −0.114419 0.427019i 0.884823 0.465927i \(-0.154279\pi\)
−0.999243 + 0.0389075i \(0.987612\pi\)
\(488\) 11.4452 + 42.7140i 0.518099 + 1.93357i
\(489\) −10.0146 + 36.7217i −0.452878 + 1.66061i
\(490\) 0 0
\(491\) −18.8733 + 10.8965i −0.851741 + 0.491753i −0.861238 0.508202i \(-0.830310\pi\)
0.00949666 + 0.999955i \(0.496977\pi\)
\(492\) 5.14607 + 3.00165i 0.232003 + 0.135325i
\(493\) 16.8661 16.8661i 0.759610 0.759610i
\(494\) −1.23064 10.8012i −0.0553693 0.485969i
\(495\) 0 0
\(496\) −3.71458 + 2.14462i −0.166790 + 0.0962961i
\(497\) −0.441325 0.118253i −0.0197961 0.00530436i
\(498\) 4.32719 + 0.0192272i 0.193906 + 0.000861589i
\(499\) −18.1795 −0.813827 −0.406913 0.913467i \(-0.633395\pi\)
−0.406913 + 0.913467i \(0.633395\pi\)
\(500\) 0 0
\(501\) −17.2728 17.4270i −0.771693 0.778581i
\(502\) −19.0508 + 19.0508i −0.850278 + 0.850278i
\(503\) 7.30144 1.95641i 0.325555 0.0872322i −0.0923400 0.995728i \(-0.529435\pi\)
0.417895 + 0.908495i \(0.362768\pi\)
\(504\) 0.0135900 1.52923i 0.000605347 0.0681173i
\(505\) 0 0
\(506\) 31.2687i 1.39006i
\(507\) −21.5033 6.67883i −0.954996 0.296617i
\(508\) 0.795823 0.795823i 0.0353089 0.0353089i
\(509\) 38.2650 22.0923i 1.69607 0.979224i 0.746643 0.665225i \(-0.231664\pi\)
0.949423 0.313999i \(-0.101669\pi\)
\(510\) 0 0
\(511\) −0.640550 + 1.10947i −0.0283363 + 0.0490799i
\(512\) −12.9549 12.9549i −0.572530 0.572530i
\(513\) −7.30315 + 12.2688i −0.322442 + 0.541681i
\(514\) 2.63814 4.56940i 0.116364 0.201548i
\(515\) 0 0
\(516\) −1.27735 1.28875i −0.0562323 0.0567342i
\(517\) −6.39281 + 23.8583i −0.281155 + 1.04929i
\(518\) 0.818549 + 0.219330i 0.0359650 + 0.00963679i
\(519\) 0.433362 1.58905i 0.0190225 0.0697516i
\(520\) 0 0
\(521\) 33.6427i 1.47391i −0.675940 0.736956i \(-0.736262\pi\)
0.675940 0.736956i \(-0.263738\pi\)
\(522\) −11.4056 11.6101i −0.499209 0.508161i
\(523\) −30.4447 8.15764i −1.33125 0.356709i −0.478072 0.878321i \(-0.658664\pi\)
−0.853183 + 0.521612i \(0.825331\pi\)
\(524\) −0.492969 + 0.853848i −0.0215355 + 0.0373005i
\(525\) 0 0
\(526\) 11.1916 + 6.46150i 0.487979 + 0.281735i
\(527\) −11.2641 + 3.01821i −0.490673 + 0.131475i
\(528\) −7.43415 13.0095i −0.323530 0.566165i
\(529\) −9.67033 5.58317i −0.420449 0.242746i
\(530\) 0 0
\(531\) −0.261493 + 29.4247i −0.0113478 + 1.27692i
\(532\) −0.256973 0.256973i −0.0111412 0.0111412i
\(533\) −2.30290 + 15.4091i −0.0997498 + 0.667444i
\(534\) 12.6717 + 3.45578i 0.548356 + 0.149546i
\(535\) 0 0
\(536\) 1.93178 1.11531i 0.0834400 0.0481741i
\(537\) −28.2874 0.125690i −1.22069 0.00542393i
\(538\) 1.00647 + 1.00647i 0.0433920 + 0.0433920i
\(539\) −29.4378 16.9959i −1.26798 0.732067i
\(540\) 0 0
\(541\) 31.8172i 1.36793i 0.729516 + 0.683964i \(0.239745\pi\)
−0.729516 + 0.683964i \(0.760255\pi\)
\(542\) −1.73933 6.49126i −0.0747105 0.278823i
\(543\) 10.8613 18.6208i 0.466103 0.799094i
\(544\) −10.1043 17.5012i −0.433218 0.750356i
\(545\) 0 0
\(546\) 1.06121 0.412584i 0.0454155 0.0176569i
\(547\) −3.86162 3.86162i −0.165111 0.165111i 0.619716 0.784826i \(-0.287248\pi\)
−0.784826 + 0.619716i \(0.787248\pi\)
\(548\) −3.12066 0.836179i −0.133308 0.0357198i
\(549\) 43.2394 + 0.384261i 1.84541 + 0.0163999i
\(550\) 0 0
\(551\) −13.5854 −0.578756
\(552\) 31.0604 + 0.138011i 1.32202 + 0.00587416i
\(553\) 1.18650 0.317922i 0.0504551 0.0135194i
\(554\) 11.4120i 0.484850i
\(555\) 0 0
\(556\) −2.93969 5.09169i −0.124671 0.215936i
\(557\) −1.87374 + 6.99288i −0.0793928 + 0.296298i −0.994193 0.107608i \(-0.965681\pi\)
0.914801 + 0.403906i \(0.132348\pi\)
\(558\) 1.99105 + 7.70389i 0.0842878 + 0.326132i
\(559\) 1.89223 4.35183i 0.0800327 0.184063i
\(560\) 0 0
\(561\) −10.3687 39.3959i −0.437767 1.66330i
\(562\) 6.22723 23.2403i 0.262680 0.980334i
\(563\) 3.52688 0.945024i 0.148640 0.0398280i −0.183732 0.982976i \(-0.558818\pi\)
0.332372 + 0.943148i \(0.392151\pi\)
\(564\) 6.73885 + 1.83780i 0.283757 + 0.0773853i
\(565\) 0 0
\(566\) 3.04122 5.26755i 0.127832 0.221412i
\(567\) −1.43735 0.412650i −0.0603629 0.0173297i
\(568\) 2.18346 + 8.14877i 0.0916158 + 0.341915i
\(569\) 19.6847 + 34.0948i 0.825224 + 1.42933i 0.901748 + 0.432262i \(0.142285\pi\)
−0.0765237 + 0.997068i \(0.524382\pi\)
\(570\) 0 0
\(571\) 40.5072 1.69517 0.847586 0.530658i \(-0.178055\pi\)
0.847586 + 0.530658i \(0.178055\pi\)
\(572\) −8.70994 + 10.9499i −0.364181 + 0.457839i
\(573\) 4.32420 2.47103i 0.180646 0.103229i
\(574\) −0.393920 0.682289i −0.0164419 0.0284782i
\(575\) 0 0
\(576\) −21.2698 + 12.0294i −0.886241 + 0.501224i
\(577\) 24.8261 24.8261i 1.03352 1.03352i 0.0341041 0.999418i \(-0.489142\pi\)
0.999418 0.0341041i \(-0.0108578\pi\)
\(578\) 1.78197 + 6.65039i 0.0741200 + 0.276620i
\(579\) 12.8693 + 12.9842i 0.534831 + 0.539605i
\(580\) 0 0
\(581\) 0.327628 + 0.189156i 0.0135923 + 0.00784752i
\(582\) 16.1417 27.6735i 0.669093 1.14710i
\(583\) 5.97186 22.2873i 0.247329 0.923044i
\(584\) 23.6547 0.978836
\(585\) 0 0
\(586\) −5.37420 −0.222006
\(587\) 0.00360950 0.0134708i 0.000148980 0.000556001i −0.965851 0.259097i \(-0.916575\pi\)
0.966000 + 0.258541i \(0.0832417\pi\)
\(588\) −4.84327 + 8.30337i −0.199733 + 0.342425i
\(589\) 5.75210 + 3.32098i 0.237011 + 0.136838i
\(590\) 0 0
\(591\) 23.9979 + 24.2121i 0.987140 + 0.995951i
\(592\) −2.13466 7.96668i −0.0877342 0.327428i
\(593\) 25.7961 25.7961i 1.05932 1.05932i 0.0611927 0.998126i \(-0.480510\pi\)
0.998126 0.0611927i \(-0.0194904\pi\)
\(594\) −26.9430 + 6.83577i −1.10549 + 0.280475i
\(595\) 0 0
\(596\) 2.32205 + 4.02191i 0.0951150 + 0.164744i
\(597\) −18.9677 + 10.8389i −0.776297 + 0.443608i
\(598\) 8.47547 + 21.5162i 0.346588 + 0.879864i
\(599\) −28.2847 −1.15568 −0.577841 0.816149i \(-0.696105\pi\)
−0.577841 + 0.816149i \(0.696105\pi\)
\(600\) 0 0
\(601\) 8.59509 + 14.8871i 0.350601 + 0.607259i 0.986355 0.164633i \(-0.0526440\pi\)
−0.635754 + 0.771892i \(0.719311\pi\)
\(602\) 0.0621060 + 0.231783i 0.00253125 + 0.00944675i
\(603\) −0.545792 2.11182i −0.0222264 0.0859998i
\(604\) 6.55087 11.3464i 0.266551 0.461680i
\(605\) 0 0
\(606\) 27.8638 + 7.59895i 1.13189 + 0.308686i
\(607\) 11.8481 3.17469i 0.480900 0.128857i −0.0102219 0.999948i \(-0.503254\pi\)
0.491121 + 0.871091i \(0.336587\pi\)
\(608\) −2.97903 + 11.1179i −0.120816 + 0.450890i
\(609\) −0.362156 1.37601i −0.0146753 0.0557588i
\(610\) 0 0
\(611\) 2.06792 + 18.1498i 0.0836591 + 0.734264i
\(612\) −11.1538 + 2.88267i −0.450866 + 0.116525i
\(613\) 2.76430 10.3165i 0.111649 0.416680i −0.887365 0.461067i \(-0.847467\pi\)
0.999014 + 0.0443871i \(0.0141335\pi\)
\(614\) −12.1926 21.1181i −0.492052 0.852259i
\(615\) 0 0
\(616\) 2.48520i 0.100132i
\(617\) 4.38758 1.17565i 0.176637 0.0473299i −0.169416 0.985545i \(-0.554188\pi\)
0.346054 + 0.938215i \(0.387522\pi\)
\(618\) −33.3520 0.148194i −1.34161 0.00596123i
\(619\) 31.2573 1.25634 0.628168 0.778078i \(-0.283805\pi\)
0.628168 + 0.778078i \(0.283805\pi\)
\(620\) 0 0
\(621\) 8.25135 29.2302i 0.331115 1.17297i
\(622\) 28.9350 + 7.75311i 1.16019 + 0.310871i
\(623\) 0.811962 + 0.811962i 0.0325306 + 0.0325306i
\(624\) −8.64176 6.93687i −0.345947 0.277697i
\(625\) 0 0
\(626\) −10.0949 17.4849i −0.403473 0.698835i
\(627\) −11.6905 + 20.0423i −0.466873 + 0.800413i
\(628\) 1.50180 + 5.60480i 0.0599285 + 0.223656i
\(629\) 22.4237i 0.894092i
\(630\) 0 0
\(631\) 31.2944 + 18.0678i 1.24581 + 0.719270i 0.970271 0.242020i \(-0.0778099\pi\)
0.275540 + 0.961289i \(0.411143\pi\)
\(632\) −16.0377 16.0377i −0.637946 0.637946i
\(633\) 8.32625 + 0.0369963i 0.330939 + 0.00147047i
\(634\) 8.93599 5.15920i 0.354893 0.204898i
\(635\) 0 0
\(636\) −6.29511 1.71679i −0.249617 0.0680750i
\(637\) −24.8632 3.71582i −0.985115 0.147226i
\(638\) −18.7018 18.7018i −0.740411 0.740411i
\(639\) 8.24900 + 0.0733075i 0.326325 + 0.00290000i
\(640\) 0 0
\(641\) −30.0234 17.3340i −1.18585 0.684653i −0.228492 0.973546i \(-0.573380\pi\)
−0.957361 + 0.288893i \(0.906713\pi\)
\(642\) 2.05808 + 3.60157i 0.0812261 + 0.142143i
\(643\) 27.4633 7.35878i 1.08305 0.290202i 0.327204 0.944954i \(-0.393893\pi\)
0.755844 + 0.654752i \(0.227227\pi\)
\(644\) 0.669496 + 0.386534i 0.0263819 + 0.0152316i
\(645\) 0 0
\(646\) 7.27297 12.5972i 0.286151 0.495628i
\(647\) 2.90637 + 0.778760i 0.114261 + 0.0306162i 0.315497 0.948927i \(-0.397829\pi\)
−0.201235 + 0.979543i \(0.564496\pi\)
\(648\) 6.67131 + 26.7937i 0.262074 + 1.05255i
\(649\) 47.8191i 1.87706i
\(650\) 0 0
\(651\) −0.183031 + 0.671139i −0.00717356 + 0.0263040i
\(652\) 16.8960 + 4.52728i 0.661700 + 0.177302i
\(653\) −1.89279 + 7.06400i −0.0740707 + 0.276436i −0.993021 0.117938i \(-0.962372\pi\)
0.918950 + 0.394373i \(0.129038\pi\)
\(654\) 13.7904 + 13.9135i 0.539246 + 0.544059i
\(655\) 0 0
\(656\) −3.83390 + 6.64050i −0.149689 + 0.259268i
\(657\) 6.18495 22.2884i 0.241298 0.869552i
\(658\) −0.653163 0.653163i −0.0254630 0.0254630i
\(659\) 17.7103 30.6751i 0.689894 1.19493i −0.281978 0.959421i \(-0.590990\pi\)
0.971872 0.235511i \(-0.0756762\pi\)
\(660\) 0 0
\(661\) 29.1120 16.8078i 1.13233 0.653748i 0.187807 0.982206i \(-0.439862\pi\)
0.944519 + 0.328458i \(0.106529\pi\)
\(662\) 4.92901 4.92901i 0.191571 0.191571i
\(663\) −17.8132 24.2982i −0.691806 0.943662i
\(664\) 6.98528i 0.271081i
\(665\) 0 0
\(666\) −15.2999 0.135967i −0.592858 0.00526863i
\(667\) 27.9146 7.47969i 1.08086 0.289615i
\(668\) −7.97337 + 7.97337i −0.308499 + 0.308499i
\(669\) −13.9057 14.0299i −0.537627 0.542426i
\(670\) 0 0
\(671\) 70.2698 2.71273
\(672\) −1.20551 0.00535646i −0.0465034 0.000206630i
\(673\) 17.7364 + 4.75245i 0.683688 + 0.183194i 0.583913 0.811816i \(-0.301521\pi\)
0.0997751 + 0.995010i \(0.468188\pi\)
\(674\) −16.9200 + 9.76878i −0.651735 + 0.376279i
\(675\) 0 0
\(676\) −3.02537 + 9.89557i −0.116360 + 0.380599i
\(677\) 30.5372 30.5372i 1.17364 1.17364i 0.192303 0.981336i \(-0.438404\pi\)
0.981336 0.192303i \(-0.0615955\pi\)
\(678\) −24.5105 14.2967i −0.941319 0.549062i
\(679\) 2.42562 1.40043i 0.0930868 0.0537437i
\(680\) 0 0
\(681\) 12.1008 44.3712i 0.463703 1.70031i
\(682\) 3.34672 + 12.4901i 0.128152 + 0.478271i
\(683\) −6.30369 23.5257i −0.241204 0.900186i −0.975253 0.221090i \(-0.929039\pi\)
0.734049 0.679096i \(-0.237628\pi\)
\(684\) 5.65308 + 3.33114i 0.216151 + 0.127369i
\(685\) 0 0
\(686\) 2.20616 1.27372i 0.0842314 0.0486310i
\(687\) −5.57519 + 9.55818i −0.212707 + 0.364667i
\(688\) 1.65141 1.65141i 0.0629594 0.0629594i
\(689\) −1.93175 16.9547i −0.0735940 0.645924i
\(690\) 0 0
\(691\) 0.523687 0.302351i 0.0199220 0.0115020i −0.490006 0.871719i \(-0.663005\pi\)
0.509928 + 0.860217i \(0.329672\pi\)
\(692\) −0.731139 0.195908i −0.0277937 0.00744731i
\(693\) −2.34166 0.649802i −0.0889522 0.0246839i
\(694\) 8.79320 0.333785
\(695\) 0 0
\(696\) −18.6597 + 18.4947i −0.707296 + 0.701038i
\(697\) −14.7411 + 14.7411i −0.558358 + 0.558358i
\(698\) −20.0799 + 5.38038i −0.760034 + 0.203651i
\(699\) −30.5671 + 8.04503i −1.15615 + 0.304291i
\(700\) 0 0
\(701\) 35.7248i 1.34931i −0.738134 0.674654i \(-0.764293\pi\)
0.738134 0.674654i \(-0.235707\pi\)
\(702\) −16.6868 + 12.0067i −0.629804 + 0.453165i
\(703\) −9.03098 + 9.03098i −0.340610 + 0.340610i
\(704\) −34.3898 + 19.8550i −1.29611 + 0.748312i
\(705\) 0 0
\(706\) −1.24983 + 2.16477i −0.0470379 + 0.0814720i
\(707\) 1.78543 + 1.78543i 0.0671481 + 0.0671481i
\(708\) 13.5228 + 0.0600861i 0.508217 + 0.00225817i
\(709\) 2.01558 3.49108i 0.0756966 0.131110i −0.825692 0.564121i \(-0.809215\pi\)
0.901389 + 0.433010i \(0.142549\pi\)
\(710\) 0 0
\(711\) −19.3047 + 10.9180i −0.723984 + 0.409458i
\(712\) 5.48757 20.4799i 0.205656 0.767517i
\(713\) −13.6476 3.65685i −0.511105 0.136950i
\(714\) 1.46980 + 0.400840i 0.0550059 + 0.0150011i
\(715\) 0 0
\(716\) 12.9998i 0.485826i
\(717\) −4.79888 2.79914i −0.179217 0.104536i
\(718\) 10.4197 + 2.79196i 0.388861 + 0.104195i
\(719\) −18.2661 + 31.6378i −0.681211 + 1.17989i 0.293400 + 0.955990i \(0.405213\pi\)
−0.974612 + 0.223903i \(0.928120\pi\)
\(720\) 0 0
\(721\) −2.52520 1.45793i −0.0940434 0.0542960i
\(722\) 12.1354 3.25166i 0.451632 0.121014i
\(723\) −9.02953 + 5.15984i −0.335812 + 0.191897i
\(724\) −8.57942 4.95333i −0.318852 0.184089i
\(725\) 0 0
\(726\) −23.4663 + 6.17617i −0.870918 + 0.229219i
\(727\) 6.38702 + 6.38702i 0.236881 + 0.236881i 0.815557 0.578676i \(-0.196430\pi\)
−0.578676 + 0.815557i \(0.696430\pi\)
\(728\) −0.673622 1.71009i −0.0249661 0.0633800i
\(729\) 26.9904 + 0.719730i 0.999645 + 0.0266567i
\(730\) 0 0
\(731\) 5.49888 3.17478i 0.203383 0.117423i
\(732\) 0.0882961 19.8716i 0.00326352 0.734475i
\(733\) 15.5660 + 15.5660i 0.574943 + 0.574943i 0.933506 0.358562i \(-0.116733\pi\)
−0.358562 + 0.933506i \(0.616733\pi\)
\(734\) 11.2366 + 6.48747i 0.414751 + 0.239457i
\(735\) 0 0
\(736\) 24.4847i 0.902518i
\(737\) −0.917413 3.42383i −0.0337933 0.126118i
\(738\) 9.96857 + 10.1473i 0.366948 + 0.373529i
\(739\) 24.9818 + 43.2698i 0.918972 + 1.59171i 0.800980 + 0.598691i \(0.204312\pi\)
0.117992 + 0.993015i \(0.462354\pi\)
\(740\) 0 0
\(741\) −2.61178 + 16.9600i −0.0959461 + 0.623042i
\(742\) 0.610154 + 0.610154i 0.0223995 + 0.0223995i
\(743\) −26.5434 7.11227i −0.973781 0.260924i −0.263358 0.964698i \(-0.584830\pi\)
−0.710424 + 0.703774i \(0.751497\pi\)
\(744\) 12.4217 3.26929i 0.455401 0.119858i
\(745\) 0 0
\(746\) 26.9925 0.988264
\(747\) −6.58181 1.82643i −0.240816 0.0668256i
\(748\) −18.0834 + 4.84542i −0.661193 + 0.177166i
\(749\) 0.362654i 0.0132511i
\(750\) 0 0
\(751\) −8.07976 13.9946i −0.294835 0.510669i 0.680112 0.733108i \(-0.261931\pi\)
−0.974946 + 0.222440i \(0.928598\pi\)
\(752\) −2.32683 + 8.68386i −0.0848509 + 0.316668i
\(753\) 36.9241 21.1000i 1.34559 0.768926i
\(754\) −17.9380 7.79967i −0.653265 0.284047i
\(755\) 0 0
\(756\) −0.186700 + 0.661381i −0.00679021 + 0.0240542i
\(757\) 3.34586 12.4869i 0.121607 0.453845i −0.878089 0.478498i \(-0.841181\pi\)
0.999696 + 0.0246532i \(0.00784815\pi\)
\(758\) 16.6406 4.45884i 0.604415 0.161952i
\(759\) 12.9864 47.6184i 0.471375 1.72844i
\(760\) 0 0
\(761\) −13.7581 + 23.8298i −0.498732 + 0.863828i −0.999999 0.00146412i \(-0.999534\pi\)
0.501267 + 0.865292i \(0.332867\pi\)
\(762\) 2.33317 1.33327i 0.0845220 0.0482993i
\(763\) 0.443266 + 1.65429i 0.0160473 + 0.0598894i
\(764\) −1.14440 1.98216i −0.0414029 0.0717119i
\(765\) 0 0
\(766\) −2.62082 −0.0946941
\(767\) 12.9615 + 32.9047i 0.468013 + 1.18812i
\(768\) 13.4713 + 23.5743i 0.486105 + 0.850665i
\(769\) 5.76778 + 9.99009i 0.207992 + 0.360252i 0.951082 0.308939i \(-0.0999740\pi\)
−0.743090 + 0.669191i \(0.766641\pi\)
\(770\) 0 0
\(771\) −5.91532 + 5.86298i −0.213035 + 0.211150i
\(772\) 5.94066 5.94066i 0.213809 0.213809i
\(773\) −1.34976 5.03736i −0.0485474 0.181181i 0.937395 0.348269i \(-0.113230\pi\)
−0.985942 + 0.167088i \(0.946564\pi\)
\(774\) −2.13283 3.77118i −0.0766631 0.135552i
\(775\) 0 0
\(776\) −44.7875 25.8581i −1.60778 0.928250i
\(777\) −1.15546 0.673969i −0.0414519 0.0241785i
\(778\) 3.99745 14.9187i 0.143316 0.534861i
\(779\) 11.8737 0.425420
\(780\) 0 0
\(781\) 13.4057 0.479695
\(782\) −8.00855 + 29.8883i −0.286385 + 1.06880i
\(783\) 12.5475 + 22.4177i 0.448410 + 0.801144i
\(784\) −10.7147 6.18613i −0.382667 0.220933i
\(785\) 0 0
\(786\) −1.67199 + 1.65720i −0.0596378 + 0.0591102i
\(787\) 10.3710 + 38.7052i 0.369687 + 1.37969i 0.860954 + 0.508683i \(0.169867\pi\)
−0.491267 + 0.871009i \(0.663466\pi\)
\(788\) 11.0777 11.0777i 0.394628 0.394628i
\(789\) −14.3600 14.4881i −0.511228 0.515791i
\(790\) 0 0
\(791\) −1.24037 2.14838i −0.0441024 0.0763876i
\(792\) 11.2278 + 43.4435i 0.398964 + 1.54370i
\(793\) 48.3532 19.0468i 1.71707 0.676373i
\(794\) 35.2836 1.25217
\(795\) 0 0
\(796\) 5.01980 + 8.69455i 0.177922 + 0.308170i
\(797\) 8.95658 + 33.4264i 0.317259 + 1.18402i 0.921868 + 0.387503i \(0.126662\pi\)
−0.604610 + 0.796522i \(0.706671\pi\)
\(798\) −0.430516 0.753387i −0.0152401 0.0266696i
\(799\) −12.2212 + 21.1677i −0.432354 + 0.748859i
\(800\) 0 0
\(801\) −17.8622 10.5255i −0.631128 0.371899i
\(802\) 1.26638 0.339325i 0.0447174 0.0119820i
\(803\) 9.72871 36.3080i 0.343319 1.28128i
\(804\) −0.969378 + 0.255133i −0.0341873 + 0.00899785i
\(805\) 0 0
\(806\) 5.68838 + 7.68740i 0.200365 + 0.270777i
\(807\) −1.11473 1.95073i −0.0392403 0.0686691i
\(808\) 12.0667 45.0335i 0.424504 1.58427i
\(809\) −0.776492 1.34492i −0.0273000 0.0472850i 0.852053 0.523456i \(-0.175358\pi\)
−0.879353 + 0.476171i \(0.842024\pi\)
\(810\) 0 0
\(811\) 15.7167i 0.551889i 0.961174 + 0.275945i \(0.0889906\pi\)
−0.961174 + 0.275945i \(0.911009\pi\)
\(812\) −0.631612 + 0.169240i −0.0221652 + 0.00593915i
\(813\) −0.0471338 + 10.6078i −0.00165306 + 0.372031i
\(814\) −24.8643 −0.871494
\(815\) 0 0
\(816\) −3.77397 14.3392i −0.132115 0.501973i
\(817\) −3.49325 0.936013i −0.122213 0.0327470i
\(818\) 13.8577 + 13.8577i 0.484522 + 0.484522i
\(819\) −1.78744 + 0.187579i −0.0624583 + 0.00655456i
\(820\) 0 0
\(821\) 23.5322 + 40.7590i 0.821280 + 1.42250i 0.904729 + 0.425987i \(0.140073\pi\)
−0.0834487 + 0.996512i \(0.526593\pi\)
\(822\) −6.66332 3.88665i −0.232410 0.135562i
\(823\) −11.9360 44.5459i −0.416064 1.55277i −0.782695 0.622405i \(-0.786156\pi\)
0.366631 0.930366i \(-0.380511\pi\)
\(824\) 53.8392i 1.87558i
\(825\) 0 0
\(826\) −1.54872 0.894155i −0.0538870 0.0311116i
\(827\) 25.7893 + 25.7893i 0.896781 + 0.896781i 0.995150 0.0983687i \(-0.0313625\pi\)
−0.0983687 + 0.995150i \(0.531362\pi\)
\(828\) −13.4497 3.73225i −0.467409 0.129705i
\(829\) 35.8684 20.7086i 1.24576 0.719241i 0.275500 0.961301i \(-0.411157\pi\)
0.970261 + 0.242060i \(0.0778232\pi\)
\(830\) 0 0
\(831\) −4.73959 + 17.3791i −0.164414 + 0.602875i
\(832\) −18.2821 + 22.9838i −0.633819 + 0.796820i
\(833\) −23.7853 23.7853i −0.824110 0.824110i
\(834\) −3.57304 13.5758i −0.123724 0.470090i
\(835\) 0 0
\(836\) 9.23439 + 5.33148i 0.319378 + 0.184393i
\(837\) 0.167420 12.5590i 0.00578689 0.434103i
\(838\) −11.2591 + 3.01687i −0.388939 + 0.104216i
\(839\) −12.9769 7.49223i −0.448013 0.258660i 0.258978 0.965883i \(-0.416614\pi\)
−0.706991 + 0.707223i \(0.749948\pi\)
\(840\) 0 0
\(841\) 2.27790 3.94543i 0.0785481 0.136049i
\(842\) −25.3048 6.78040i −0.872061 0.233668i
\(843\) −19.1354 + 32.8060i −0.659058 + 1.12990i
\(844\) 3.82643i 0.131711i
\(845\) 0 0
\(846\) 14.3688 + 8.46696i 0.494009 + 0.291100i
\(847\) −2.04915 0.549067i −0.0704095 0.0188662i
\(848\) 2.17362 8.11205i 0.0746424 0.278569i
\(849\) −6.81911 + 6.75878i −0.234031 + 0.231961i
\(850\) 0 0
\(851\) 13.5842 23.5286i 0.465662 0.806550i
\(852\) 0.0168447 3.79101i 0.000577090 0.129878i
\(853\) 9.05692 + 9.05692i 0.310103 + 0.310103i 0.844949 0.534846i \(-0.179631\pi\)
−0.534846 + 0.844949i \(0.679631\pi\)
\(854\) −1.31395 + 2.27583i −0.0449626 + 0.0778775i
\(855\) 0 0
\(856\) 5.79905 3.34808i 0.198207 0.114435i
\(857\) 12.8809 12.8809i 0.440004 0.440004i −0.452009 0.892013i \(-0.649293\pi\)
0.892013 + 0.452009i \(0.149293\pi\)
\(858\) −26.9428 + 19.7520i −0.919812 + 0.674321i
\(859\) 10.9311i 0.372966i 0.982458 + 0.186483i \(0.0597089\pi\)
−0.982458 + 0.186483i \(0.940291\pi\)
\(860\) 0 0
\(861\) 0.316527 + 1.20265i 0.0107872 + 0.0409860i
\(862\) −17.7024 + 4.74335i −0.602947 + 0.161559i
\(863\) 21.3829 21.3829i 0.727881 0.727881i −0.242316 0.970197i \(-0.577907\pi\)
0.970197 + 0.242316i \(0.0779072\pi\)
\(864\) 21.0975 5.35269i 0.717751 0.182102i
\(865\) 0 0
\(866\) 30.1629 1.02498
\(867\) 0.0482893 10.8678i 0.00163999 0.369090i
\(868\) 0.308798 + 0.0827422i 0.0104813 + 0.00280845i
\(869\) −31.2126 + 18.0206i −1.05882 + 0.611308i
\(870\) 0 0
\(871\) −1.55932 2.10730i −0.0528355 0.0714030i
\(872\) 22.3608 22.3608i 0.757231 0.757231i
\(873\) −36.0750 + 35.4395i −1.22095 + 1.19944i
\(874\) 15.2627 8.81191i 0.516268 0.298067i
\(875\) 0 0
\(876\) −10.2553 2.79680i −0.346495 0.0944952i
\(877\) −3.95038 14.7430i −0.133395 0.497836i 0.866604 0.498996i \(-0.166298\pi\)
−0.999999 + 0.00115930i \(0.999631\pi\)
\(878\) 5.42659 + 20.2523i 0.183139 + 0.683483i
\(879\) 8.18425 + 2.23199i 0.276048 + 0.0752830i
\(880\) 0 0
\(881\) 15.6546 9.03820i 0.527417 0.304505i −0.212547 0.977151i \(-0.568176\pi\)
0.739964 + 0.672646i \(0.234842\pi\)
\(882\) −16.3731 + 16.0846i −0.551311 + 0.541598i
\(883\) −21.5666 + 21.5666i −0.725775 + 0.725775i −0.969775 0.244000i \(-0.921540\pi\)
0.244000 + 0.969775i \(0.421540\pi\)
\(884\) −11.1299 + 8.23572i −0.374340 + 0.276997i
\(885\) 0 0
\(886\) −11.7550 + 6.78673i −0.394915 + 0.228005i
\(887\) −31.0745 8.32639i −1.04338 0.279573i −0.303867 0.952715i \(-0.598278\pi\)
−0.739514 + 0.673142i \(0.764944\pi\)
\(888\) −0.109744 + 24.6987i −0.00368278 + 0.828833i
\(889\) 0.234935 0.00787947
\(890\) 0 0
\(891\) 43.8700 + 0.779792i 1.46970 + 0.0261240i
\(892\) −6.41908 + 6.41908i −0.214927 + 0.214927i
\(893\) 13.4471 3.60314i 0.449991 0.120575i
\(894\) 2.82234 + 10.7235i 0.0943930 + 0.358646i
\(895\) 0 0
\(896\) 0.0930361i 0.00310812i
\(897\) −3.97111 36.2866i −0.132591 1.21157i
\(898\) −23.1104 + 23.1104i −0.771205 + 0.771205i
\(899\) 10.3498 5.97544i 0.345184 0.199292i
\(900\) 0 0
\(901\) 11.4164 19.7739i 0.380337 0.658763i
\(902\) 16.3455 + 16.3455i 0.544246 + 0.544246i
\(903\) 0.00168300 0.378771i 5.60068e−5 0.0126047i
\(904\) −22.9026 + 39.6684i −0.761728 + 1.31935i
\(905\) 0 0
\(906\) 22.2184 22.0218i 0.738156 0.731625i
\(907\) 3.44249 12.8475i 0.114306 0.426596i −0.884928 0.465728i \(-0.845793\pi\)
0.999234 + 0.0391321i \(0.0124593\pi\)
\(908\) −20.4156 5.47035i −0.677517 0.181540i
\(909\) −39.2773 23.1446i −1.30275 0.767656i
\(910\) 0 0
\(911\) 6.22499i 0.206243i −0.994669 0.103122i \(-0.967117\pi\)
0.994669 0.103122i \(-0.0328831\pi\)
\(912\) −4.25507 + 7.29495i −0.140899 + 0.241560i
\(913\) −10.7219 2.87291i −0.354841 0.0950795i
\(914\) 1.91698 3.32031i 0.0634081 0.109826i
\(915\) 0 0
\(916\) 4.40388 + 2.54258i 0.145508 + 0.0840092i
\(917\) −0.198797 + 0.0532676i −0.00656486 + 0.00175905i
\(918\) −27.5044 0.366652i −0.907779 0.0121013i
\(919\) 51.3893 + 29.6696i 1.69518 + 0.978711i 0.950210 + 0.311611i \(0.100868\pi\)
0.744968 + 0.667101i \(0.232465\pi\)
\(920\) 0 0
\(921\) 9.79712 + 37.2242i 0.322826 + 1.22658i
\(922\) −2.42842 2.42842i −0.0799759 0.0799759i
\(923\) 9.22458 3.63366i 0.303631 0.119603i
\(924\) −0.293837 + 1.07744i −0.00966654 + 0.0354453i
\(925\) 0 0
\(926\) −36.9249 + 21.3186i −1.21343 + 0.700573i
\(927\) 50.7295 + 14.0773i 1.66617 + 0.462358i
\(928\) 14.6443 + 14.6443i 0.480722 + 0.480722i
\(929\) −9.30395 5.37164i −0.305253 0.176238i 0.339548 0.940589i \(-0.389726\pi\)
−0.644800 + 0.764351i \(0.723059\pi\)
\(930\) 0 0
\(931\) 19.1587i 0.627900i
\(932\) 3.75954 + 14.0308i 0.123148 + 0.459594i
\(933\) −40.8445 23.8242i −1.33719 0.779969i
\(934\) −15.8303 27.4189i −0.517984 0.897175i
\(935\) 0 0
\(936\) 19.5015 + 26.8505i 0.637425 + 0.877635i
\(937\) 7.07205 + 7.07205i 0.231034 + 0.231034i 0.813124 0.582090i \(-0.197765\pi\)
−0.582090 + 0.813124i \(0.697765\pi\)
\(938\) 0.128042 + 0.0343089i 0.00418073 + 0.00112022i
\(939\) 8.11156 + 30.8199i 0.264711 + 1.00577i
\(940\) 0 0
\(941\) −28.4220 −0.926529 −0.463265 0.886220i \(-0.653322\pi\)
−0.463265 + 0.886220i \(0.653322\pi\)
\(942\) −0.0615599 + 13.8545i −0.00200573 + 0.451402i
\(943\) −24.3975 + 6.53730i −0.794494 + 0.212884i
\(944\) 17.4051i 0.566486i
\(945\) 0 0
\(946\) −3.52033 6.09738i −0.114456 0.198243i
\(947\) −4.02771 + 15.0316i −0.130883 + 0.488461i −0.999981 0.00617839i \(-0.998033\pi\)
0.869098 + 0.494640i \(0.164700\pi\)
\(948\) 5.05683 + 8.84926i 0.164238 + 0.287411i
\(949\) −3.14701 27.6208i −0.102156 0.896610i
\(950\) 0 0
\(951\) −15.7511 + 4.14558i −0.510765 + 0.134430i
\(952\) 0.636511 2.37549i 0.0206294 0.0769901i
\(953\) −38.2209 + 10.2413i −1.23810 + 0.331747i −0.817727 0.575607i \(-0.804766\pi\)
−0.420369 + 0.907353i \(0.638099\pi\)
\(954\) −13.4226 7.90943i −0.434574 0.256077i
\(955\) 0 0
\(956\) −1.27655 + 2.21106i −0.0412867 + 0.0715107i
\(957\) 20.7134 + 36.2477i 0.669571 + 1.17172i
\(958\) −0.0383684 0.143193i −0.00123963 0.00462635i
\(959\) −0.337201 0.584050i −0.0108888 0.0188600i
\(960\) 0 0
\(961\) 25.1572 0.811521
\(962\) −17.1093 + 6.73955i −0.551627 + 0.217292i
\(963\) −1.63843 6.33951i −0.0527976 0.204288i
\(964\) 2.38966 + 4.13901i 0.0769658 + 0.133309i
\(965\) 0 0
\(966\) 1.29940 + 1.31099i 0.0418074 + 0.0421805i
\(967\) 32.4327 32.4327i 1.04296 1.04296i 0.0439297 0.999035i \(-0.486012\pi\)
0.999035 0.0439297i \(-0.0139877\pi\)
\(968\) 10.1381 + 37.8361i 0.325852 + 1.21610i
\(969\) −16.3076 + 16.1634i −0.523877 + 0.519242i
\(970\) 0 0
\(971\) 29.2025 + 16.8601i 0.937154 + 0.541066i 0.889067 0.457777i \(-0.151354\pi\)
0.0480872 + 0.998843i \(0.484687\pi\)
\(972\) 0.275641 12.4050i 0.00884120 0.397891i
\(973\) 0.317646 1.18547i 0.0101833 0.0380045i
\(974\) −10.7050 −0.343009
\(975\) 0 0
\(976\) 25.5766 0.818686
\(977\) −0.617472 + 2.30444i −0.0197547 + 0.0737254i −0.975100 0.221768i \(-0.928817\pi\)
0.955345 + 0.295493i \(0.0954840\pi\)
\(978\) 36.0769 + 21.0433i 1.15361 + 0.672890i
\(979\) −29.1781 16.8460i −0.932536 0.538400i
\(980\) 0 0
\(981\) −15.2226 26.9159i −0.486019 0.859357i
\(982\) 6.18915 + 23.0982i 0.197504 + 0.737094i
\(983\) −2.74521 + 2.74521i −0.0875586 + 0.0875586i −0.749530 0.661971i \(-0.769720\pi\)
0.661971 + 0.749530i \(0.269720\pi\)
\(984\) 16.3088 16.1645i 0.519904 0.515305i
\(985\) 0 0
\(986\) −13.0863 22.6661i −0.416752 0.721836i
\(987\) 0.723420 + 1.26596i 0.0230267 + 0.0402959i
\(988\) 7.79937 + 1.16562i 0.248131 + 0.0370833i
\(989\) 7.69310 0.244626
\(990\) 0 0
\(991\) −8.53170 14.7773i −0.271019 0.469418i 0.698104 0.715996i \(-0.254027\pi\)
−0.969123 + 0.246578i \(0.920694\pi\)
\(992\) −2.62062 9.78028i −0.0832047 0.310524i
\(993\) −9.55337 + 5.45919i −0.303167 + 0.173242i
\(994\) −0.250670 + 0.434173i −0.00795076 + 0.0137711i
\(995\) 0 0
\(996\) −0.825903 + 3.02842i −0.0261697 + 0.0959592i
\(997\) 5.72683 1.53450i 0.181371 0.0485981i −0.166991 0.985958i \(-0.553405\pi\)
0.348361 + 0.937360i \(0.386738\pi\)
\(998\) −5.16292 + 19.2683i −0.163429 + 0.609927i
\(999\) 23.2434 + 6.56133i 0.735388 + 0.207591i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.257.17 96
3.2 odd 2 inner 975.2.bn.d.257.8 96
5.2 odd 4 195.2.bf.a.23.17 yes 96
5.3 odd 4 inner 975.2.bn.d.218.8 96
5.4 even 2 195.2.bf.a.62.8 yes 96
13.4 even 6 inner 975.2.bn.d.407.17 96
15.2 even 4 195.2.bf.a.23.8 yes 96
15.8 even 4 inner 975.2.bn.d.218.17 96
15.14 odd 2 195.2.bf.a.62.17 yes 96
39.17 odd 6 inner 975.2.bn.d.407.8 96
65.4 even 6 195.2.bf.a.17.8 96
65.17 odd 12 195.2.bf.a.173.17 yes 96
65.43 odd 12 inner 975.2.bn.d.368.8 96
195.17 even 12 195.2.bf.a.173.8 yes 96
195.134 odd 6 195.2.bf.a.17.17 yes 96
195.173 even 12 inner 975.2.bn.d.368.17 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.8 96 65.4 even 6
195.2.bf.a.17.17 yes 96 195.134 odd 6
195.2.bf.a.23.8 yes 96 15.2 even 4
195.2.bf.a.23.17 yes 96 5.2 odd 4
195.2.bf.a.62.8 yes 96 5.4 even 2
195.2.bf.a.62.17 yes 96 15.14 odd 2
195.2.bf.a.173.8 yes 96 195.17 even 12
195.2.bf.a.173.17 yes 96 65.17 odd 12
975.2.bn.d.218.8 96 5.3 odd 4 inner
975.2.bn.d.218.17 96 15.8 even 4 inner
975.2.bn.d.257.8 96 3.2 odd 2 inner
975.2.bn.d.257.17 96 1.1 even 1 trivial
975.2.bn.d.368.8 96 65.43 odd 12 inner
975.2.bn.d.368.17 96 195.173 even 12 inner
975.2.bn.d.407.8 96 39.17 odd 6 inner
975.2.bn.d.407.17 96 13.4 even 6 inner