Properties

Label 975.2.bn.d.218.8
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.8
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05989 - 0.283997i) q^{2} +(-1.49614 - 0.872682i) q^{3} +(-0.689337 - 0.397989i) q^{4} +(1.33790 + 1.34985i) q^{6} +(0.160495 - 0.0430045i) q^{7} +(2.16938 + 2.16938i) q^{8} +(1.47685 + 2.61130i) q^{9} +(-2.43760 - 4.22205i) q^{11} +(0.684025 + 1.19702i) q^{12} +(2.24451 - 2.82173i) q^{13} -0.182320 q^{14} +(-0.887232 - 1.53673i) q^{16} +(-4.65999 + 1.24864i) q^{17} +(-0.823701 - 3.18712i) q^{18} +(1.37389 - 2.37966i) q^{19} +(-0.277652 - 0.0757204i) q^{21} +(1.38454 + 5.16719i) q^{22} +(5.64603 + 1.51285i) q^{23} +(-1.35251 - 5.13887i) q^{24} +(-3.18030 + 2.35330i) q^{26} +(0.0692622 - 5.19569i) q^{27} +(-0.127750 - 0.0342306i) q^{28} +(-2.47205 - 4.28172i) q^{29} -2.41720i q^{31} +(-1.08416 - 4.04612i) q^{32} +(-0.0375196 + 8.44403i) q^{33} +5.29369 q^{34} +(0.0212203 - 2.38784i) q^{36} +(1.20299 - 4.48963i) q^{37} +(-2.13199 + 2.13199i) q^{38} +(-5.82057 + 2.26296i) q^{39} +(-2.16059 - 3.74226i) q^{41} +(0.272776 + 0.159108i) q^{42} +(-1.27129 + 0.340642i) q^{43} +3.88056i q^{44} +(-5.55453 - 3.20691i) q^{46} +(-3.58251 + 3.58251i) q^{47} +(-0.0136563 + 3.07343i) q^{48} +(-6.03827 + 3.48620i) q^{49} +(8.06165 + 2.19855i) q^{51} +(-2.67024 + 1.05184i) q^{52} +(-3.34661 + 3.34661i) q^{53} +(-1.54897 + 5.48719i) q^{54} +(0.441468 + 0.254882i) q^{56} +(-4.13222 + 2.36132i) q^{57} +(1.40411 + 5.24021i) q^{58} +(8.49452 + 4.90431i) q^{59} +(-7.20685 + 12.4826i) q^{61} +(-0.686477 + 2.56197i) q^{62} +(0.349325 + 0.355590i) q^{63} +8.14527i q^{64} +(2.43784 - 8.93909i) q^{66} +(0.188179 - 0.702294i) q^{67} +(3.70925 + 0.993890i) q^{68} +(-7.12700 - 7.19061i) q^{69} +(-1.37489 + 2.38137i) q^{71} +(-2.46106 + 8.86877i) q^{72} +(-5.45193 + 5.45193i) q^{73} +(-2.55008 + 4.41687i) q^{74} +(-1.89415 + 1.09359i) q^{76} +(-0.572790 - 0.572790i) q^{77} +(6.81184 - 0.745469i) q^{78} +7.39276i q^{79} +(-4.63781 + 7.71302i) q^{81} +(1.22720 + 4.57999i) q^{82} +(1.60997 + 1.60997i) q^{83} +(0.161260 + 0.162699i) q^{84} +1.44417 q^{86} +(-0.0380499 + 8.56336i) q^{87} +(3.87115 - 14.4473i) q^{88} +(-5.98500 + 3.45544i) q^{89} +(0.238885 - 0.549398i) q^{91} +(-3.28992 - 3.28992i) q^{92} +(-2.10944 + 3.61646i) q^{93} +(4.81449 - 2.77964i) q^{94} +(-1.90893 + 6.99968i) q^{96} +(-16.2824 + 4.36286i) q^{97} +(7.38997 - 1.98014i) q^{98} +(7.42508 - 12.6007i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05989 0.283997i −0.749456 0.200816i −0.136179 0.990684i \(-0.543482\pi\)
−0.613277 + 0.789868i \(0.710149\pi\)
\(3\) −1.49614 0.872682i −0.863795 0.503843i
\(4\) −0.689337 0.397989i −0.344668 0.198994i
\(5\) 0 0
\(6\) 1.33790 + 1.34985i 0.546197 + 0.551072i
\(7\) 0.160495 0.0430045i 0.0606614 0.0162542i −0.228361 0.973577i \(-0.573337\pi\)
0.289022 + 0.957322i \(0.406670\pi\)
\(8\) 2.16938 + 2.16938i 0.766992 + 0.766992i
\(9\) 1.47685 + 2.61130i 0.492284 + 0.870434i
\(10\) 0 0
\(11\) −2.43760 4.22205i −0.734965 1.27300i −0.954739 0.297446i \(-0.903865\pi\)
0.219773 0.975551i \(-0.429468\pi\)
\(12\) 0.684025 + 1.19702i 0.197461 + 0.345549i
\(13\) 2.24451 2.82173i 0.622514 0.782608i
\(14\) −0.182320 −0.0487271
\(15\) 0 0
\(16\) −0.887232 1.53673i −0.221808 0.384183i
\(17\) −4.65999 + 1.24864i −1.13021 + 0.302840i −0.775010 0.631949i \(-0.782255\pi\)
−0.355204 + 0.934789i \(0.615588\pi\)
\(18\) −0.823701 3.18712i −0.194148 0.751211i
\(19\) 1.37389 2.37966i 0.315193 0.545930i −0.664285 0.747479i \(-0.731264\pi\)
0.979479 + 0.201549i \(0.0645974\pi\)
\(20\) 0 0
\(21\) −0.277652 0.0757204i −0.0605886 0.0165235i
\(22\) 1.38454 + 5.16719i 0.295186 + 1.10165i
\(23\) 5.64603 + 1.51285i 1.17728 + 0.315451i 0.793846 0.608118i \(-0.208075\pi\)
0.383432 + 0.923569i \(0.374742\pi\)
\(24\) −1.35251 5.13887i −0.276081 1.04897i
\(25\) 0 0
\(26\) −3.18030 + 2.35330i −0.623707 + 0.461520i
\(27\) 0.0692622 5.19569i 0.0133295 0.999911i
\(28\) −0.127750 0.0342306i −0.0241426 0.00646898i
\(29\) −2.47205 4.28172i −0.459049 0.795096i 0.539862 0.841754i \(-0.318476\pi\)
−0.998911 + 0.0466574i \(0.985143\pi\)
\(30\) 0 0
\(31\) 2.41720i 0.434142i −0.976156 0.217071i \(-0.930350\pi\)
0.976156 0.217071i \(-0.0696502\pi\)
\(32\) −1.08416 4.04612i −0.191653 0.715260i
\(33\) −0.0375196 + 8.44403i −0.00653133 + 1.46992i
\(34\) 5.29369 0.907860
\(35\) 0 0
\(36\) 0.0212203 2.38784i 0.00353672 0.397973i
\(37\) 1.20299 4.48963i 0.197771 0.738090i −0.793762 0.608229i \(-0.791880\pi\)
0.991532 0.129861i \(-0.0414531\pi\)
\(38\) −2.13199 + 2.13199i −0.345855 + 0.345855i
\(39\) −5.82057 + 2.26296i −0.932037 + 0.362364i
\(40\) 0 0
\(41\) −2.16059 3.74226i −0.337428 0.584443i 0.646520 0.762897i \(-0.276224\pi\)
−0.983948 + 0.178454i \(0.942890\pi\)
\(42\) 0.272776 + 0.159108i 0.0420903 + 0.0245508i
\(43\) −1.27129 + 0.340642i −0.193871 + 0.0519475i −0.354448 0.935076i \(-0.615331\pi\)
0.160577 + 0.987023i \(0.448664\pi\)
\(44\) 3.88056i 0.585016i
\(45\) 0 0
\(46\) −5.55453 3.20691i −0.818970 0.472833i
\(47\) −3.58251 + 3.58251i −0.522562 + 0.522562i −0.918344 0.395782i \(-0.870474\pi\)
0.395782 + 0.918344i \(0.370474\pi\)
\(48\) −0.0136563 + 3.07343i −0.00197111 + 0.443612i
\(49\) −6.03827 + 3.48620i −0.862610 + 0.498028i
\(50\) 0 0
\(51\) 8.06165 + 2.19855i 1.12886 + 0.307859i
\(52\) −2.67024 + 1.05184i −0.370296 + 0.145864i
\(53\) −3.34661 + 3.34661i −0.459692 + 0.459692i −0.898554 0.438862i \(-0.855382\pi\)
0.438862 + 0.898554i \(0.355382\pi\)
\(54\) −1.54897 + 5.48719i −0.210788 + 0.746712i
\(55\) 0 0
\(56\) 0.441468 + 0.254882i 0.0589936 + 0.0340600i
\(57\) −4.13222 + 2.36132i −0.547326 + 0.312764i
\(58\) 1.40411 + 5.24021i 0.184369 + 0.688074i
\(59\) 8.49452 + 4.90431i 1.10589 + 0.638487i 0.937762 0.347278i \(-0.112894\pi\)
0.168130 + 0.985765i \(0.446227\pi\)
\(60\) 0 0
\(61\) −7.20685 + 12.4826i −0.922742 + 1.59824i −0.127590 + 0.991827i \(0.540724\pi\)
−0.795153 + 0.606409i \(0.792609\pi\)
\(62\) −0.686477 + 2.56197i −0.0871826 + 0.325370i
\(63\) 0.349325 + 0.355590i 0.0440108 + 0.0448001i
\(64\) 8.14527i 1.01816i
\(65\) 0 0
\(66\) 2.43784 8.93909i 0.300078 1.10033i
\(67\) 0.188179 0.702294i 0.0229897 0.0857989i −0.953478 0.301463i \(-0.902525\pi\)
0.976468 + 0.215664i \(0.0691917\pi\)
\(68\) 3.70925 + 0.993890i 0.449812 + 0.120527i
\(69\) −7.12700 7.19061i −0.857990 0.865648i
\(70\) 0 0
\(71\) −1.37489 + 2.38137i −0.163169 + 0.282617i −0.936004 0.351990i \(-0.885505\pi\)
0.772834 + 0.634608i \(0.218838\pi\)
\(72\) −2.46106 + 8.86877i −0.290038 + 1.04519i
\(73\) −5.45193 + 5.45193i −0.638101 + 0.638101i −0.950087 0.311986i \(-0.899006\pi\)
0.311986 + 0.950087i \(0.399006\pi\)
\(74\) −2.55008 + 4.41687i −0.296441 + 0.513450i
\(75\) 0 0
\(76\) −1.89415 + 1.09359i −0.217274 + 0.125443i
\(77\) −0.572790 0.572790i −0.0652755 0.0652755i
\(78\) 6.81184 0.745469i 0.771289 0.0844077i
\(79\) 7.39276i 0.831750i 0.909422 + 0.415875i \(0.136525\pi\)
−0.909422 + 0.415875i \(0.863475\pi\)
\(80\) 0 0
\(81\) −4.63781 + 7.71302i −0.515312 + 0.857002i
\(82\) 1.22720 + 4.57999i 0.135522 + 0.505775i
\(83\) 1.60997 + 1.60997i 0.176717 + 0.176717i 0.789923 0.613206i \(-0.210120\pi\)
−0.613206 + 0.789923i \(0.710120\pi\)
\(84\) 0.161260 + 0.162699i 0.0175949 + 0.0177519i
\(85\) 0 0
\(86\) 1.44417 0.155729
\(87\) −0.0380499 + 8.56336i −0.00407937 + 0.918089i
\(88\) 3.87115 14.4473i 0.412666 1.54009i
\(89\) −5.98500 + 3.45544i −0.634408 + 0.366276i −0.782457 0.622704i \(-0.786034\pi\)
0.148049 + 0.988980i \(0.452701\pi\)
\(90\) 0 0
\(91\) 0.238885 0.549398i 0.0250419 0.0575926i
\(92\) −3.28992 3.28992i −0.342998 0.342998i
\(93\) −2.10944 + 3.61646i −0.218739 + 0.375009i
\(94\) 4.81449 2.77964i 0.496576 0.286698i
\(95\) 0 0
\(96\) −1.90893 + 6.99968i −0.194830 + 0.714402i
\(97\) −16.2824 + 4.36286i −1.65323 + 0.442981i −0.960514 0.278231i \(-0.910252\pi\)
−0.692714 + 0.721212i \(0.743585\pi\)
\(98\) 7.38997 1.98014i 0.746500 0.200024i
\(99\) 7.42508 12.6007i 0.746249 1.26642i
\(100\) 0 0
\(101\) 13.1605 7.59820i 1.30952 0.756049i 0.327500 0.944851i \(-0.393794\pi\)
0.982015 + 0.188802i \(0.0604604\pi\)
\(102\) −7.92008 4.61971i −0.784205 0.457419i
\(103\) −12.4089 12.4089i −1.22268 1.22268i −0.966674 0.256009i \(-0.917592\pi\)
−0.256009 0.966674i \(-0.582408\pi\)
\(104\) 10.9906 1.25223i 1.07772 0.122791i
\(105\) 0 0
\(106\) 4.49746 2.59661i 0.436832 0.252205i
\(107\) 0.564899 2.10823i 0.0546109 0.203811i −0.933230 0.359280i \(-0.883022\pi\)
0.987841 + 0.155469i \(0.0496890\pi\)
\(108\) −2.11557 + 3.55402i −0.203571 + 0.341985i
\(109\) −10.3074 −0.987274 −0.493637 0.869668i \(-0.664333\pi\)
−0.493637 + 0.869668i \(0.664333\pi\)
\(110\) 0 0
\(111\) −5.71785 + 5.66727i −0.542715 + 0.537913i
\(112\) −0.208483 0.208483i −0.0196997 0.0196997i
\(113\) −3.86420 14.4214i −0.363513 1.35665i −0.869425 0.494065i \(-0.835511\pi\)
0.505912 0.862585i \(-0.331156\pi\)
\(114\) 5.05031 1.32920i 0.473004 0.124491i
\(115\) 0 0
\(116\) 3.93540i 0.365393i
\(117\) 10.6832 + 1.69380i 0.987663 + 0.156592i
\(118\) −7.61045 7.61045i −0.700599 0.700599i
\(119\) −0.694207 + 0.400801i −0.0636379 + 0.0367414i
\(120\) 0 0
\(121\) −6.38383 + 11.0571i −0.580348 + 1.00519i
\(122\) 11.1835 11.1835i 1.01251 1.01251i
\(123\) −0.0332559 + 7.48444i −0.00299858 + 0.674850i
\(124\) −0.962018 + 1.66626i −0.0863918 + 0.149635i
\(125\) 0 0
\(126\) −0.269260 0.476093i −0.0239876 0.0424138i
\(127\) −1.36576 0.365954i −0.121192 0.0324732i 0.197713 0.980260i \(-0.436648\pi\)
−0.318905 + 0.947787i \(0.603315\pi\)
\(128\) 0.144921 0.540851i 0.0128093 0.0478049i
\(129\) 2.19930 + 0.599788i 0.193638 + 0.0528084i
\(130\) 0 0
\(131\) 1.23865i 0.108221i 0.998535 + 0.0541107i \(0.0172324\pi\)
−0.998535 + 0.0541107i \(0.982768\pi\)
\(132\) 3.38649 5.80585i 0.294756 0.505334i
\(133\) 0.118167 0.441006i 0.0102464 0.0382401i
\(134\) −0.398899 + 0.690913i −0.0344596 + 0.0596858i
\(135\) 0 0
\(136\) −12.8181 7.40052i −1.09914 0.634589i
\(137\) 1.05050 + 3.92054i 0.0897507 + 0.334954i 0.996171 0.0874219i \(-0.0278628\pi\)
−0.906421 + 0.422376i \(0.861196\pi\)
\(138\) 5.51172 + 9.64531i 0.469189 + 0.821063i
\(139\) 6.39677 + 3.69318i 0.542567 + 0.313251i 0.746119 0.665813i \(-0.231915\pi\)
−0.203552 + 0.979064i \(0.565248\pi\)
\(140\) 0 0
\(141\) 8.48631 2.23353i 0.714676 0.188097i
\(142\) 2.13353 2.13353i 0.179042 0.179042i
\(143\) −17.3847 2.59816i −1.45378 0.217269i
\(144\) 2.70256 4.58636i 0.225213 0.382196i
\(145\) 0 0
\(146\) 7.32679 4.23012i 0.606369 0.350087i
\(147\) 12.0764 + 0.0536595i 0.996046 + 0.00442576i
\(148\) −2.61609 + 2.61609i −0.215041 + 0.215041i
\(149\) −5.05279 2.91723i −0.413941 0.238989i 0.278541 0.960424i \(-0.410149\pi\)
−0.692482 + 0.721435i \(0.743483\pi\)
\(150\) 0 0
\(151\) 16.4599i 1.33949i −0.742591 0.669745i \(-0.766403\pi\)
0.742591 0.669745i \(-0.233597\pi\)
\(152\) 8.14288 2.18188i 0.660475 0.176974i
\(153\) −10.1427 10.3246i −0.819988 0.834693i
\(154\) 0.444425 + 0.769766i 0.0358127 + 0.0620295i
\(155\) 0 0
\(156\) 4.91297 + 0.756578i 0.393352 + 0.0605747i
\(157\) 5.15467 5.15467i 0.411387 0.411387i −0.470834 0.882222i \(-0.656047\pi\)
0.882222 + 0.470834i \(0.156047\pi\)
\(158\) 2.09952 7.83551i 0.167029 0.623360i
\(159\) 7.92751 2.08646i 0.628692 0.165467i
\(160\) 0 0
\(161\) 0.971218 0.0765427
\(162\) 7.10605 6.85784i 0.558304 0.538803i
\(163\) 5.68770 + 21.2268i 0.445495 + 1.66261i 0.714626 + 0.699506i \(0.246597\pi\)
−0.269131 + 0.963103i \(0.586737\pi\)
\(164\) 3.43957i 0.268585i
\(165\) 0 0
\(166\) −1.24917 2.16362i −0.0969541 0.167929i
\(167\) 13.6836 + 3.66650i 1.05887 + 0.283723i 0.745911 0.666045i \(-0.232014\pi\)
0.312956 + 0.949768i \(0.398681\pi\)
\(168\) −0.438066 0.766599i −0.0337975 0.0591444i
\(169\) −2.92437 12.6668i −0.224952 0.974370i
\(170\) 0 0
\(171\) 8.24304 + 0.0732546i 0.630361 + 0.00560192i
\(172\) 1.01192 + 0.271144i 0.0771583 + 0.0206745i
\(173\) −0.246123 0.918542i −0.0187123 0.0698354i 0.955938 0.293568i \(-0.0948426\pi\)
−0.974651 + 0.223732i \(0.928176\pi\)
\(174\) 2.47230 9.06542i 0.187424 0.687248i
\(175\) 0 0
\(176\) −4.32544 + 7.49188i −0.326042 + 0.564722i
\(177\) −8.42906 14.7505i −0.633567 1.10872i
\(178\) 7.32477 1.96267i 0.549015 0.147108i
\(179\) −8.16594 14.1438i −0.610351 1.05716i −0.991181 0.132514i \(-0.957695\pi\)
0.380830 0.924645i \(-0.375638\pi\)
\(180\) 0 0
\(181\) −12.4459 −0.925096 −0.462548 0.886594i \(-0.653065\pi\)
−0.462548 + 0.886594i \(0.653065\pi\)
\(182\) −0.409219 + 0.514459i −0.0303333 + 0.0381343i
\(183\) 21.6758 12.3864i 1.60232 0.915632i
\(184\) 8.96644 + 15.5303i 0.661015 + 1.14491i
\(185\) 0 0
\(186\) 3.26284 3.23398i 0.239243 0.237127i
\(187\) 16.6310 + 16.6310i 1.21618 + 1.21618i
\(188\) 3.89535 1.04376i 0.284098 0.0761238i
\(189\) −0.212322 0.836861i −0.0154441 0.0608726i
\(190\) 0 0
\(191\) −2.49022 1.43773i −0.180186 0.104030i 0.407194 0.913342i \(-0.366507\pi\)
−0.587380 + 0.809311i \(0.699841\pi\)
\(192\) 7.10823 12.1864i 0.512992 0.879481i
\(193\) 10.1951 + 2.73177i 0.733861 + 0.196637i 0.606348 0.795199i \(-0.292634\pi\)
0.127513 + 0.991837i \(0.459301\pi\)
\(194\) 18.4966 1.32798
\(195\) 0 0
\(196\) 5.54987 0.396419
\(197\) −19.0112 5.09403i −1.35449 0.362934i −0.492700 0.870199i \(-0.663990\pi\)
−0.861790 + 0.507265i \(0.830656\pi\)
\(198\) −11.4483 + 11.2466i −0.813597 + 0.799264i
\(199\) −10.9231 6.30646i −0.774318 0.447053i 0.0600946 0.998193i \(-0.480860\pi\)
−0.834413 + 0.551140i \(0.814193\pi\)
\(200\) 0 0
\(201\) −0.894421 + 0.886508i −0.0630876 + 0.0625295i
\(202\) −16.1065 + 4.31573i −1.13325 + 0.303654i
\(203\) −0.580885 0.580885i −0.0407702 0.0407702i
\(204\) −4.68219 4.72399i −0.327819 0.330745i
\(205\) 0 0
\(206\) 9.62798 + 16.6761i 0.670813 + 1.16188i
\(207\) 4.38785 + 16.9777i 0.304976 + 1.18003i
\(208\) −6.32765 0.945670i −0.438743 0.0655704i
\(209\) −13.3960 −0.926624
\(210\) 0 0
\(211\) −2.40360 4.16317i −0.165471 0.286604i 0.771351 0.636409i \(-0.219581\pi\)
−0.936822 + 0.349805i \(0.886248\pi\)
\(212\) 3.63885 0.975028i 0.249917 0.0669652i
\(213\) 4.13520 2.36302i 0.283339 0.161912i
\(214\) −1.19746 + 2.07407i −0.0818569 + 0.141780i
\(215\) 0 0
\(216\) 11.4217 11.1212i 0.777148 0.756700i
\(217\) −0.103950 0.387948i −0.00705661 0.0263356i
\(218\) 10.9248 + 2.92728i 0.739918 + 0.198260i
\(219\) 12.9146 3.39904i 0.872691 0.229686i
\(220\) 0 0
\(221\) −6.93605 + 15.9518i −0.466569 + 1.07304i
\(222\) 7.66979 4.38283i 0.514762 0.294156i
\(223\) −11.0162 2.95177i −0.737697 0.197665i −0.129643 0.991561i \(-0.541383\pi\)
−0.608054 + 0.793896i \(0.708050\pi\)
\(224\) −0.348003 0.602759i −0.0232519 0.0402735i
\(225\) 0 0
\(226\) 16.3825i 1.08975i
\(227\) 6.87249 + 25.6485i 0.456143 + 1.70235i 0.684705 + 0.728821i \(0.259931\pi\)
−0.228561 + 0.973530i \(0.573402\pi\)
\(228\) 3.78827 + 0.0168325i 0.250884 + 0.00111476i
\(229\) −6.38857 −0.422169 −0.211084 0.977468i \(-0.567699\pi\)
−0.211084 + 0.977468i \(0.567699\pi\)
\(230\) 0 0
\(231\) 0.357109 + 1.35684i 0.0234961 + 0.0892733i
\(232\) 3.92586 14.6515i 0.257746 0.961920i
\(233\) −12.9039 + 12.9039i −0.845365 + 0.845365i −0.989551 0.144186i \(-0.953944\pi\)
0.144186 + 0.989551i \(0.453944\pi\)
\(234\) −10.8420 4.82924i −0.708764 0.315698i
\(235\) 0 0
\(236\) −3.90372 6.76145i −0.254111 0.440133i
\(237\) 6.45152 11.0606i 0.419072 0.718462i
\(238\) 0.849610 0.227652i 0.0550720 0.0147565i
\(239\) 3.20751i 0.207477i −0.994605 0.103738i \(-0.966920\pi\)
0.994605 0.103738i \(-0.0330805\pi\)
\(240\) 0 0
\(241\) 5.19991 + 3.00217i 0.334956 + 0.193387i 0.658039 0.752984i \(-0.271386\pi\)
−0.323083 + 0.946370i \(0.604719\pi\)
\(242\) 9.90635 9.90635i 0.636804 0.636804i
\(243\) 13.6698 7.49241i 0.876919 0.480638i
\(244\) 9.93589 5.73649i 0.636080 0.367241i
\(245\) 0 0
\(246\) 2.16081 7.92325i 0.137768 0.505168i
\(247\) −3.63104 9.21792i −0.231038 0.586522i
\(248\) 5.24382 5.24382i 0.332983 0.332983i
\(249\) −1.00374 3.81373i −0.0636097 0.241685i
\(250\) 0 0
\(251\) −21.2638 12.2767i −1.34216 0.774897i −0.355036 0.934852i \(-0.615532\pi\)
−0.987124 + 0.159956i \(0.948865\pi\)
\(252\) −0.0992820 0.384149i −0.00625418 0.0241991i
\(253\) −7.37545 27.5256i −0.463691 1.73052i
\(254\) 1.34363 + 0.775742i 0.0843066 + 0.0486744i
\(255\) 0 0
\(256\) 7.83807 13.5759i 0.489880 0.848496i
\(257\) 1.24454 4.64467i 0.0776320 0.289727i −0.916185 0.400755i \(-0.868748\pi\)
0.993817 + 0.111028i \(0.0354145\pi\)
\(258\) −2.16068 1.26030i −0.134518 0.0784631i
\(259\) 0.772296i 0.0479881i
\(260\) 0 0
\(261\) 7.53002 12.7788i 0.466096 0.790985i
\(262\) 0.351773 1.31283i 0.0217326 0.0811072i
\(263\) −11.3760 3.04819i −0.701474 0.187959i −0.109583 0.993978i \(-0.534952\pi\)
−0.591891 + 0.806018i \(0.701618\pi\)
\(264\) −18.3997 + 18.2369i −1.13242 + 1.12240i
\(265\) 0 0
\(266\) −0.250489 + 0.433859i −0.0153585 + 0.0266016i
\(267\) 11.9699 + 0.0531861i 0.732544 + 0.00325494i
\(268\) −0.409224 + 0.409224i −0.0249973 + 0.0249973i
\(269\) 0.648587 1.12339i 0.0395451 0.0684941i −0.845575 0.533856i \(-0.820742\pi\)
0.885121 + 0.465362i \(0.154076\pi\)
\(270\) 0 0
\(271\) 5.30394 3.06223i 0.322191 0.186017i −0.330178 0.943919i \(-0.607109\pi\)
0.652369 + 0.757902i \(0.273775\pi\)
\(272\) 6.05331 + 6.05331i 0.367036 + 0.367036i
\(273\) −0.836854 + 0.613504i −0.0506487 + 0.0371310i
\(274\) 4.45368i 0.269057i
\(275\) 0 0
\(276\) 2.05112 + 7.79322i 0.123463 + 0.469097i
\(277\) −2.69179 10.0459i −0.161734 0.603600i −0.998434 0.0559386i \(-0.982185\pi\)
0.836700 0.547661i \(-0.184482\pi\)
\(278\) −5.73103 5.73103i −0.343724 0.343724i
\(279\) 6.31204 3.56985i 0.377892 0.213721i
\(280\) 0 0
\(281\) 21.9271 1.30806 0.654031 0.756468i \(-0.273077\pi\)
0.654031 + 0.756468i \(0.273077\pi\)
\(282\) −9.62888 0.0427843i −0.573391 0.00254777i
\(283\) −1.43469 + 5.35432i −0.0852833 + 0.318281i −0.995368 0.0961414i \(-0.969350\pi\)
0.910084 + 0.414423i \(0.136017\pi\)
\(284\) 1.89552 1.09438i 0.112479 0.0649395i
\(285\) 0 0
\(286\) 17.6881 + 7.69098i 1.04592 + 0.454777i
\(287\) −0.507698 0.507698i −0.0299685 0.0299685i
\(288\) 8.96452 8.80659i 0.528239 0.518933i
\(289\) 5.43396 3.13730i 0.319645 0.184547i
\(290\) 0 0
\(291\) 28.1681 + 7.68193i 1.65124 + 0.450323i
\(292\) 5.92803 1.58841i 0.346912 0.0929547i
\(293\) 4.73086 1.26763i 0.276380 0.0740557i −0.117967 0.993018i \(-0.537638\pi\)
0.394347 + 0.918962i \(0.370971\pi\)
\(294\) −12.7844 3.48654i −0.745604 0.203339i
\(295\) 0 0
\(296\) 12.3495 7.12996i 0.717798 0.414421i
\(297\) −22.1053 + 12.3726i −1.28268 + 0.717932i
\(298\) 4.52692 + 4.52692i 0.262238 + 0.262238i
\(299\) 16.9414 12.5360i 0.979747 0.724975i
\(300\) 0 0
\(301\) −0.189387 + 0.109343i −0.0109161 + 0.00630241i
\(302\) −4.67457 + 17.4457i −0.268991 + 1.00389i
\(303\) −26.3207 0.116952i −1.51208 0.00671869i
\(304\) −4.87585 −0.279649
\(305\) 0 0
\(306\) 7.81800 + 13.8234i 0.446925 + 0.790233i
\(307\) −15.7142 15.7142i −0.896858 0.896858i 0.0982987 0.995157i \(-0.468660\pi\)
−0.995157 + 0.0982987i \(0.968660\pi\)
\(308\) 0.166881 + 0.622810i 0.00950895 + 0.0354879i
\(309\) 7.73639 + 29.3944i 0.440108 + 1.67219i
\(310\) 0 0
\(311\) 27.3000i 1.54804i 0.633161 + 0.774020i \(0.281757\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(312\) −17.5363 7.71780i −0.992795 0.436935i
\(313\) 13.0107 + 13.0107i 0.735406 + 0.735406i 0.971685 0.236280i \(-0.0759281\pi\)
−0.236280 + 0.971685i \(0.575928\pi\)
\(314\) −6.92729 + 3.99948i −0.390930 + 0.225703i
\(315\) 0 0
\(316\) 2.94224 5.09610i 0.165514 0.286678i
\(317\) 6.64936 6.64936i 0.373465 0.373465i −0.495272 0.868738i \(-0.664932\pi\)
0.868738 + 0.495272i \(0.164932\pi\)
\(318\) −8.99484 0.0399671i −0.504406 0.00224124i
\(319\) −12.0518 + 20.8743i −0.674770 + 1.16874i
\(320\) 0 0
\(321\) −2.68498 + 2.66123i −0.149861 + 0.148535i
\(322\) −1.02938 0.275823i −0.0573654 0.0153710i
\(323\) −3.43100 + 12.8047i −0.190906 + 0.712471i
\(324\) 6.26671 3.47107i 0.348151 0.192837i
\(325\) 0 0
\(326\) 24.1134i 1.33552i
\(327\) 15.4213 + 8.99512i 0.852802 + 0.497431i
\(328\) 3.43123 12.8055i 0.189458 0.707068i
\(329\) −0.420910 + 0.729038i −0.0232055 + 0.0401932i
\(330\) 0 0
\(331\) 5.50158 + 3.17634i 0.302394 + 0.174587i 0.643518 0.765431i \(-0.277474\pi\)
−0.341124 + 0.940018i \(0.610807\pi\)
\(332\) −0.469062 1.75056i −0.0257431 0.0960746i
\(333\) 13.5004 3.48914i 0.739818 0.191204i
\(334\) −13.4618 7.77219i −0.736598 0.425275i
\(335\) 0 0
\(336\) 0.129980 + 0.493857i 0.00709097 + 0.0269421i
\(337\) −12.5904 + 12.5904i −0.685841 + 0.685841i −0.961310 0.275469i \(-0.911167\pi\)
0.275469 + 0.961310i \(0.411167\pi\)
\(338\) −0.497817 + 14.2559i −0.0270777 + 0.775421i
\(339\) −6.80391 + 24.9486i −0.369538 + 1.35502i
\(340\) 0 0
\(341\) −10.2055 + 5.89217i −0.552661 + 0.319079i
\(342\) −8.71592 2.41864i −0.471303 0.130785i
\(343\) −1.64162 + 1.64162i −0.0886393 + 0.0886393i
\(344\) −3.49691 2.01894i −0.188541 0.108854i
\(345\) 0 0
\(346\) 1.04345i 0.0560963i
\(347\) 7.74058 2.07408i 0.415536 0.111343i −0.0449927 0.998987i \(-0.514326\pi\)
0.460529 + 0.887645i \(0.347660\pi\)
\(348\) 3.43435 5.88790i 0.184101 0.315625i
\(349\) 9.47261 + 16.4070i 0.507057 + 0.878249i 0.999967 + 0.00816849i \(0.00260014\pi\)
−0.492909 + 0.870081i \(0.664067\pi\)
\(350\) 0 0
\(351\) −14.5054 11.8572i −0.774241 0.632891i
\(352\) −14.4402 + 14.4402i −0.769666 + 0.769666i
\(353\) 0.589602 2.20043i 0.0313814 0.117117i −0.948458 0.316901i \(-0.897358\pi\)
0.979840 + 0.199785i \(0.0640242\pi\)
\(354\) 4.74478 + 18.0278i 0.252182 + 0.958166i
\(355\) 0 0
\(356\) 5.50091 0.291547
\(357\) 1.38840 + 0.00616913i 0.0734820 + 0.000326505i
\(358\) 4.63820 + 17.3100i 0.245136 + 0.914862i
\(359\) 9.83095i 0.518858i −0.965762 0.259429i \(-0.916466\pi\)
0.965762 0.259429i \(-0.0835343\pi\)
\(360\) 0 0
\(361\) 5.72483 + 9.91569i 0.301307 + 0.521878i
\(362\) 13.1913 + 3.53460i 0.693319 + 0.185774i
\(363\) 19.2004 10.9719i 1.00776 0.575876i
\(364\) −0.383326 + 0.283647i −0.0200918 + 0.0148671i
\(365\) 0 0
\(366\) −26.4917 + 6.97241i −1.38474 + 0.364454i
\(367\) 11.4217 + 3.06044i 0.596209 + 0.159754i 0.544289 0.838897i \(-0.316799\pi\)
0.0519198 + 0.998651i \(0.483466\pi\)
\(368\) −2.68449 10.0187i −0.139939 0.522259i
\(369\) 6.58129 11.1687i 0.342608 0.581421i
\(370\) 0 0
\(371\) −0.393194 + 0.681033i −0.0204136 + 0.0353575i
\(372\) 2.89343 1.65342i 0.150017 0.0857260i
\(373\) −23.7612 + 6.36680i −1.23031 + 0.329661i −0.814700 0.579882i \(-0.803099\pi\)
−0.415610 + 0.909543i \(0.636432\pi\)
\(374\) −12.9039 22.3502i −0.667246 1.15570i
\(375\) 0 0
\(376\) −15.5436 −0.801602
\(377\) −17.6304 2.63488i −0.908013 0.135703i
\(378\) −0.0126279 + 0.947279i −0.000649509 + 0.0487228i
\(379\) −7.85016 13.5969i −0.403236 0.698425i 0.590879 0.806760i \(-0.298781\pi\)
−0.994114 + 0.108336i \(0.965448\pi\)
\(380\) 0 0
\(381\) 1.72400 + 1.73939i 0.0883233 + 0.0891117i
\(382\) 2.23105 + 2.23105i 0.114150 + 0.114150i
\(383\) 2.30709 0.618182i 0.117887 0.0315876i −0.199393 0.979920i \(-0.563897\pi\)
0.317280 + 0.948332i \(0.397231\pi\)
\(384\) −0.688812 + 0.682718i −0.0351508 + 0.0348398i
\(385\) 0 0
\(386\) −10.0299 5.79076i −0.510508 0.294742i
\(387\) −2.76704 2.81666i −0.140656 0.143179i
\(388\) 12.9604 + 3.47274i 0.657966 + 0.176302i
\(389\) −14.0757 −0.713666 −0.356833 0.934168i \(-0.616143\pi\)
−0.356833 + 0.934168i \(0.616143\pi\)
\(390\) 0 0
\(391\) −28.1994 −1.42611
\(392\) −20.6622 5.53642i −1.04360 0.279631i
\(393\) 1.08095 1.85319i 0.0545266 0.0934812i
\(394\) 18.7031 + 10.7982i 0.942247 + 0.544007i
\(395\) 0 0
\(396\) −10.1333 + 5.73101i −0.509218 + 0.287994i
\(397\) 31.0598 8.32246i 1.55885 0.417692i 0.626549 0.779382i \(-0.284467\pi\)
0.932299 + 0.361690i \(0.117800\pi\)
\(398\) 9.78628 + 9.78628i 0.490542 + 0.490542i
\(399\) −0.561653 + 0.556683i −0.0281178 + 0.0278690i
\(400\) 0 0
\(401\) 0.597410 + 1.03474i 0.0298332 + 0.0516726i 0.880557 0.473941i \(-0.157169\pi\)
−0.850723 + 0.525614i \(0.823836\pi\)
\(402\) 1.19975 0.685589i 0.0598383 0.0341941i
\(403\) −6.82069 5.42542i −0.339763 0.270259i
\(404\) −12.0960 −0.601798
\(405\) 0 0
\(406\) 0.450705 + 0.780645i 0.0223681 + 0.0387427i
\(407\) −21.8879 + 5.86484i −1.08494 + 0.290709i
\(408\) 12.7193 + 22.2583i 0.629699 + 1.10195i
\(409\) 8.93012 15.4674i 0.441566 0.764815i −0.556240 0.831022i \(-0.687756\pi\)
0.997806 + 0.0662068i \(0.0210897\pi\)
\(410\) 0 0
\(411\) 1.84968 6.78242i 0.0912381 0.334552i
\(412\) 3.61530 + 13.4925i 0.178113 + 0.664728i
\(413\) 1.57423 + 0.421815i 0.0774630 + 0.0207562i
\(414\) 0.170989 19.2407i 0.00840364 0.945628i
\(415\) 0 0
\(416\) −13.8505 6.02235i −0.679076 0.295270i
\(417\) −6.34748 11.1078i −0.310837 0.543954i
\(418\) 14.1983 + 3.80444i 0.694464 + 0.186081i
\(419\) 5.31145 + 9.19969i 0.259481 + 0.449435i 0.966103 0.258157i \(-0.0831151\pi\)
−0.706622 + 0.707591i \(0.749782\pi\)
\(420\) 0 0
\(421\) 23.8749i 1.16359i −0.813335 0.581796i \(-0.802350\pi\)
0.813335 0.581796i \(-0.197650\pi\)
\(422\) 1.36523 + 5.09512i 0.0664585 + 0.248026i
\(423\) −14.6458 4.06418i −0.712105 0.197607i
\(424\) −14.5201 −0.705160
\(425\) 0 0
\(426\) −5.05395 + 1.33016i −0.244865 + 0.0644466i
\(427\) −0.619853 + 2.31332i −0.0299968 + 0.111950i
\(428\) −1.22846 + 1.22846i −0.0593798 + 0.0593798i
\(429\) 23.7426 + 19.0585i 1.14630 + 0.920155i
\(430\) 0 0
\(431\) −8.35107 14.4645i −0.402257 0.696729i 0.591741 0.806128i \(-0.298441\pi\)
−0.993998 + 0.109399i \(0.965107\pi\)
\(432\) −8.04583 + 4.50335i −0.387105 + 0.216667i
\(433\) −26.5522 + 7.11463i −1.27602 + 0.341907i −0.832333 0.554277i \(-0.812995\pi\)
−0.443683 + 0.896184i \(0.646328\pi\)
\(434\) 0.440704i 0.0211545i
\(435\) 0 0
\(436\) 7.10530 + 4.10225i 0.340282 + 0.196462i
\(437\) 11.3571 11.3571i 0.543284 0.543284i
\(438\) −14.6534 0.0651100i −0.700168 0.00311108i
\(439\) 16.5480 9.55397i 0.789791 0.455986i −0.0500980 0.998744i \(-0.515953\pi\)
0.839889 + 0.542758i \(0.182620\pi\)
\(440\) 0 0
\(441\) −18.0212 10.6192i −0.858150 0.505674i
\(442\) 11.8817 14.9374i 0.565156 0.710499i
\(443\) 8.74698 8.74698i 0.415581 0.415581i −0.468096 0.883678i \(-0.655060\pi\)
0.883678 + 0.468096i \(0.155060\pi\)
\(444\) 6.19704 1.63101i 0.294098 0.0774045i
\(445\) 0 0
\(446\) 10.8376 + 6.25711i 0.513177 + 0.296283i
\(447\) 5.01386 + 8.77406i 0.237147 + 0.414999i
\(448\) 0.350283 + 1.30727i 0.0165493 + 0.0617629i
\(449\) 25.7950 + 14.8928i 1.21734 + 0.702834i 0.964349 0.264634i \(-0.0852512\pi\)
0.252994 + 0.967468i \(0.418585\pi\)
\(450\) 0 0
\(451\) −10.5333 + 18.2443i −0.495996 + 0.859090i
\(452\) −3.07582 + 11.4791i −0.144674 + 0.539932i
\(453\) −14.3643 + 24.6263i −0.674893 + 1.15705i
\(454\) 29.1364i 1.36744i
\(455\) 0 0
\(456\) −14.0870 3.84176i −0.659682 0.179907i
\(457\) 0.904330 3.37500i 0.0423028 0.157876i −0.941544 0.336891i \(-0.890624\pi\)
0.983846 + 0.179015i \(0.0572912\pi\)
\(458\) 6.77119 + 1.81433i 0.316397 + 0.0847783i
\(459\) 6.16479 + 24.2983i 0.287748 + 1.13415i
\(460\) 0 0
\(461\) 1.56492 2.71052i 0.0728856 0.126242i −0.827279 0.561791i \(-0.810113\pi\)
0.900165 + 0.435549i \(0.143446\pi\)
\(462\) 0.00684058 1.53952i 0.000318253 0.0716248i
\(463\) 27.4762 27.4762i 1.27693 1.27693i 0.334548 0.942379i \(-0.391416\pi\)
0.942379 0.334548i \(-0.108584\pi\)
\(464\) −4.38657 + 7.59776i −0.203641 + 0.352717i
\(465\) 0 0
\(466\) 17.3414 10.0121i 0.803327 0.463801i
\(467\) −20.4027 20.4027i −0.944124 0.944124i 0.0543954 0.998519i \(-0.482677\pi\)
−0.998519 + 0.0543954i \(0.982677\pi\)
\(468\) −6.69022 5.41940i −0.309255 0.250512i
\(469\) 0.120807i 0.00557836i
\(470\) 0 0
\(471\) −12.2105 + 3.21371i −0.562629 + 0.148080i
\(472\) 7.78853 + 29.0672i 0.358496 + 1.33793i
\(473\) 4.53712 + 4.53712i 0.208617 + 0.208617i
\(474\) −9.97908 + 9.89079i −0.458354 + 0.454299i
\(475\) 0 0
\(476\) 0.638057 0.0292453
\(477\) −13.6815 3.79656i −0.626431 0.173833i
\(478\) −0.910923 + 3.39961i −0.0416647 + 0.155495i
\(479\) −0.117001 + 0.0675507i −0.00534593 + 0.00308647i −0.502671 0.864478i \(-0.667649\pi\)
0.497325 + 0.867565i \(0.334316\pi\)
\(480\) 0 0
\(481\) −9.96841 13.4715i −0.454520 0.614248i
\(482\) −4.65873 4.65873i −0.212199 0.212199i
\(483\) −1.45308 0.847564i −0.0661172 0.0385655i
\(484\) 8.80122 5.08139i 0.400056 0.230972i
\(485\) 0 0
\(486\) −16.6163 + 4.05895i −0.753732 + 0.184118i
\(487\) −9.42349 + 2.52502i −0.427019 + 0.114419i −0.465927 0.884823i \(-0.654279\pi\)
0.0389075 + 0.999243i \(0.487612\pi\)
\(488\) −42.7140 + 11.4452i −1.93357 + 0.518099i
\(489\) 10.0146 36.7217i 0.452878 1.66061i
\(490\) 0 0
\(491\) −18.8733 + 10.8965i −0.851741 + 0.491753i −0.861238 0.508202i \(-0.830310\pi\)
0.00949666 + 0.999955i \(0.496977\pi\)
\(492\) 3.00165 5.14607i 0.135325 0.232003i
\(493\) 16.8661 + 16.8661i 0.759610 + 0.759610i
\(494\) 1.23064 + 10.8012i 0.0553693 + 0.485969i
\(495\) 0 0
\(496\) −3.71458 + 2.14462i −0.166790 + 0.0962961i
\(497\) −0.118253 + 0.441325i −0.00530436 + 0.0197961i
\(498\) −0.0192272 + 4.32719i −0.000861589 + 0.193906i
\(499\) 18.1795 0.813827 0.406913 0.913467i \(-0.366605\pi\)
0.406913 + 0.913467i \(0.366605\pi\)
\(500\) 0 0
\(501\) −17.2728 17.4270i −0.771693 0.778581i
\(502\) 19.0508 + 19.0508i 0.850278 + 0.850278i
\(503\) 1.95641 + 7.30144i 0.0872322 + 0.325555i 0.995728 0.0923400i \(-0.0294347\pi\)
−0.908495 + 0.417895i \(0.862768\pi\)
\(504\) −0.0135900 + 1.52923i −0.000605347 + 0.0681173i
\(505\) 0 0
\(506\) 31.2687i 1.39006i
\(507\) −6.67883 + 21.5033i −0.296617 + 0.954996i
\(508\) 0.795823 + 0.795823i 0.0353089 + 0.0353089i
\(509\) −38.2650 + 22.0923i −1.69607 + 0.979224i −0.746643 + 0.665225i \(0.768336\pi\)
−0.949423 + 0.313999i \(0.898331\pi\)
\(510\) 0 0
\(511\) −0.640550 + 1.10947i −0.0283363 + 0.0490799i
\(512\) −12.9549 + 12.9549i −0.572530 + 0.572530i
\(513\) −12.2688 7.30315i −0.541681 0.322442i
\(514\) −2.63814 + 4.56940i −0.116364 + 0.201548i
\(515\) 0 0
\(516\) −1.27735 1.28875i −0.0562323 0.0567342i
\(517\) 23.8583 + 6.39281i 1.04929 + 0.281155i
\(518\) −0.219330 + 0.818549i −0.00963679 + 0.0359650i
\(519\) −0.433362 + 1.58905i −0.0190225 + 0.0697516i
\(520\) 0 0
\(521\) 33.6427i 1.47391i −0.675940 0.736956i \(-0.736262\pi\)
0.675940 0.736956i \(-0.263738\pi\)
\(522\) −11.6101 + 11.4056i −0.508161 + 0.499209i
\(523\) 8.15764 30.4447i 0.356709 1.33125i −0.521612 0.853183i \(-0.674669\pi\)
0.878321 0.478072i \(-0.158664\pi\)
\(524\) 0.492969 0.853848i 0.0215355 0.0373005i
\(525\) 0 0
\(526\) 11.1916 + 6.46150i 0.487979 + 0.281735i
\(527\) 3.01821 + 11.2641i 0.131475 + 0.490673i
\(528\) 13.0095 7.43415i 0.566165 0.323530i
\(529\) 9.67033 + 5.58317i 0.420449 + 0.242746i
\(530\) 0 0
\(531\) −0.261493 + 29.4247i −0.0113478 + 1.27692i
\(532\) −0.256973 + 0.256973i −0.0111412 + 0.0111412i
\(533\) −15.4091 2.30290i −0.667444 0.0997498i
\(534\) −12.6717 3.45578i −0.548356 0.149546i
\(535\) 0 0
\(536\) 1.93178 1.11531i 0.0834400 0.0481741i
\(537\) −0.125690 + 28.2874i −0.00542393 + 1.22069i
\(538\) −1.00647 + 1.00647i −0.0433920 + 0.0433920i
\(539\) 29.4378 + 16.9959i 1.26798 + 0.732067i
\(540\) 0 0
\(541\) 31.8172i 1.36793i 0.729516 + 0.683964i \(0.239745\pi\)
−0.729516 + 0.683964i \(0.760255\pi\)
\(542\) −6.49126 + 1.73933i −0.278823 + 0.0747105i
\(543\) 18.6208 + 10.8613i 0.799094 + 0.466103i
\(544\) 10.1043 + 17.5012i 0.433218 + 0.750356i
\(545\) 0 0
\(546\) 1.06121 0.412584i 0.0454155 0.0176569i
\(547\) −3.86162 + 3.86162i −0.165111 + 0.165111i −0.784826 0.619716i \(-0.787248\pi\)
0.619716 + 0.784826i \(0.287248\pi\)
\(548\) 0.836179 3.12066i 0.0357198 0.133308i
\(549\) −43.2394 0.384261i −1.84541 0.0163999i
\(550\) 0 0
\(551\) −13.5854 −0.578756
\(552\) 0.138011 31.0604i 0.00587416 1.32202i
\(553\) 0.317922 + 1.18650i 0.0135194 + 0.0504551i
\(554\) 11.4120i 0.484850i
\(555\) 0 0
\(556\) −2.93969 5.09169i −0.124671 0.215936i
\(557\) 6.99288 + 1.87374i 0.296298 + 0.0793928i 0.403906 0.914801i \(-0.367652\pi\)
−0.107608 + 0.994193i \(0.534319\pi\)
\(558\) −7.70389 + 1.99105i −0.326132 + 0.0842878i
\(559\) −1.89223 + 4.35183i −0.0800327 + 0.184063i
\(560\) 0 0
\(561\) −10.3687 39.3959i −0.437767 1.66330i
\(562\) −23.2403 6.22723i −0.980334 0.262680i
\(563\) 0.945024 + 3.52688i 0.0398280 + 0.148640i 0.982976 0.183732i \(-0.0588178\pi\)
−0.943148 + 0.332372i \(0.892151\pi\)
\(564\) −6.73885 1.83780i −0.283757 0.0773853i
\(565\) 0 0
\(566\) 3.04122 5.26755i 0.127832 0.221412i
\(567\) −0.412650 + 1.43735i −0.0173297 + 0.0603629i
\(568\) −8.14877 + 2.18346i −0.341915 + 0.0916158i
\(569\) −19.6847 34.0948i −0.825224 1.42933i −0.901748 0.432262i \(-0.857715\pi\)
0.0765237 0.997068i \(-0.475618\pi\)
\(570\) 0 0
\(571\) 40.5072 1.69517 0.847586 0.530658i \(-0.178055\pi\)
0.847586 + 0.530658i \(0.178055\pi\)
\(572\) 10.9499 + 8.70994i 0.457839 + 0.364181i
\(573\) 2.47103 + 4.32420i 0.103229 + 0.180646i
\(574\) 0.393920 + 0.682289i 0.0164419 + 0.0284782i
\(575\) 0 0
\(576\) −21.2698 + 12.0294i −0.886241 + 0.501224i
\(577\) −24.8261 24.8261i −1.03352 1.03352i −0.999418 0.0341041i \(-0.989142\pi\)
−0.0341041 0.999418i \(-0.510858\pi\)
\(578\) −6.65039 + 1.78197i −0.276620 + 0.0741200i
\(579\) −12.8693 12.9842i −0.534831 0.539605i
\(580\) 0 0
\(581\) 0.327628 + 0.189156i 0.0135923 + 0.00784752i
\(582\) −27.6735 16.1417i −1.14710 0.669093i
\(583\) 22.2873 + 5.97186i 0.923044 + 0.247329i
\(584\) −23.6547 −0.978836
\(585\) 0 0
\(586\) −5.37420 −0.222006
\(587\) −0.0134708 0.00360950i −0.000556001 0.000148980i 0.258541 0.966000i \(-0.416758\pi\)
−0.259097 + 0.965851i \(0.583425\pi\)
\(588\) −8.30337 4.84327i −0.342425 0.199733i
\(589\) −5.75210 3.32098i −0.237011 0.136838i
\(590\) 0 0
\(591\) 23.9979 + 24.2121i 0.987140 + 0.995951i
\(592\) −7.96668 + 2.13466i −0.327428 + 0.0877342i
\(593\) 25.7961 + 25.7961i 1.05932 + 1.05932i 0.998126 + 0.0611927i \(0.0194904\pi\)
0.0611927 + 0.998126i \(0.480510\pi\)
\(594\) 26.9430 6.83577i 1.10549 0.280475i
\(595\) 0 0
\(596\) 2.32205 + 4.02191i 0.0951150 + 0.164744i
\(597\) 10.8389 + 18.9677i 0.443608 + 0.776297i
\(598\) −21.5162 + 8.47547i −0.879864 + 0.346588i
\(599\) 28.2847 1.15568 0.577841 0.816149i \(-0.303895\pi\)
0.577841 + 0.816149i \(0.303895\pi\)
\(600\) 0 0
\(601\) 8.59509 + 14.8871i 0.350601 + 0.607259i 0.986355 0.164633i \(-0.0526440\pi\)
−0.635754 + 0.771892i \(0.719311\pi\)
\(602\) 0.231783 0.0621060i 0.00944675 0.00253125i
\(603\) 2.11182 0.545792i 0.0859998 0.0222264i
\(604\) −6.55087 + 11.3464i −0.266551 + 0.461680i
\(605\) 0 0
\(606\) 27.8638 + 7.59895i 1.13189 + 0.308686i
\(607\) −3.17469 11.8481i −0.128857 0.480900i 0.871091 0.491121i \(-0.163413\pi\)
−0.999948 + 0.0102219i \(0.996746\pi\)
\(608\) −11.1179 2.97903i −0.450890 0.120816i
\(609\) 0.362156 + 1.37601i 0.0146753 + 0.0557588i
\(610\) 0 0
\(611\) 2.06792 + 18.1498i 0.0836591 + 0.734264i
\(612\) 2.88267 + 11.1538i 0.116525 + 0.450866i
\(613\) 10.3165 + 2.76430i 0.416680 + 0.111649i 0.461067 0.887365i \(-0.347467\pi\)
−0.0443871 + 0.999014i \(0.514134\pi\)
\(614\) 12.1926 + 21.1181i 0.492052 + 0.852259i
\(615\) 0 0
\(616\) 2.48520i 0.100132i
\(617\) −1.17565 4.38758i −0.0473299 0.176637i 0.938215 0.346054i \(-0.112478\pi\)
−0.985545 + 0.169416i \(0.945812\pi\)
\(618\) 0.148194 33.3520i 0.00596123 1.34161i
\(619\) −31.2573 −1.25634 −0.628168 0.778078i \(-0.716195\pi\)
−0.628168 + 0.778078i \(0.716195\pi\)
\(620\) 0 0
\(621\) 8.25135 29.2302i 0.331115 1.17297i
\(622\) 7.75311 28.9350i 0.310871 1.16019i
\(623\) −0.811962 + 0.811962i −0.0325306 + 0.0325306i
\(624\) 8.64176 + 6.93687i 0.345947 + 0.277697i
\(625\) 0 0
\(626\) −10.0949 17.4849i −0.403473 0.698835i
\(627\) 20.0423 + 11.6905i 0.800413 + 0.466873i
\(628\) −5.60480 + 1.50180i −0.223656 + 0.0599285i
\(629\) 22.4237i 0.894092i
\(630\) 0 0
\(631\) 31.2944 + 18.0678i 1.24581 + 0.719270i 0.970271 0.242020i \(-0.0778099\pi\)
0.275540 + 0.961289i \(0.411143\pi\)
\(632\) −16.0377 + 16.0377i −0.637946 + 0.637946i
\(633\) −0.0369963 + 8.32625i −0.00147047 + 0.330939i
\(634\) −8.93599 + 5.15920i −0.354893 + 0.204898i
\(635\) 0 0
\(636\) −6.29511 1.71679i −0.249617 0.0680750i
\(637\) −3.71582 + 24.8632i −0.147226 + 0.985115i
\(638\) 18.7018 18.7018i 0.740411 0.740411i
\(639\) −8.24900 0.0733075i −0.326325 0.00290000i
\(640\) 0 0
\(641\) −30.0234 17.3340i −1.18585 0.684653i −0.228492 0.973546i \(-0.573380\pi\)
−0.957361 + 0.288893i \(0.906713\pi\)
\(642\) 3.60157 2.05808i 0.142143 0.0812261i
\(643\) 7.35878 + 27.4633i 0.290202 + 1.08305i 0.944954 + 0.327204i \(0.106107\pi\)
−0.654752 + 0.755844i \(0.727227\pi\)
\(644\) −0.669496 0.386534i −0.0263819 0.0152316i
\(645\) 0 0
\(646\) 7.27297 12.5972i 0.286151 0.495628i
\(647\) 0.778760 2.90637i 0.0306162 0.114261i −0.948927 0.315497i \(-0.897829\pi\)
0.979543 + 0.201235i \(0.0644956\pi\)
\(648\) −26.7937 + 6.67131i −1.05255 + 0.262074i
\(649\) 47.8191i 1.87706i
\(650\) 0 0
\(651\) −0.183031 + 0.671139i −0.00717356 + 0.0263040i
\(652\) 4.52728 16.8960i 0.177302 0.661700i
\(653\) −7.06400 1.89279i −0.276436 0.0740707i 0.117938 0.993021i \(-0.462372\pi\)
−0.394373 + 0.918950i \(0.629038\pi\)
\(654\) −13.7904 13.9135i −0.539246 0.544059i
\(655\) 0 0
\(656\) −3.83390 + 6.64050i −0.149689 + 0.259268i
\(657\) −22.2884 6.18495i −0.869552 0.241298i
\(658\) 0.653163 0.653163i 0.0254630 0.0254630i
\(659\) −17.7103 + 30.6751i −0.689894 + 1.19493i 0.281978 + 0.959421i \(0.409010\pi\)
−0.971872 + 0.235511i \(0.924324\pi\)
\(660\) 0 0
\(661\) 29.1120 16.8078i 1.13233 0.653748i 0.187807 0.982206i \(-0.439862\pi\)
0.944519 + 0.328458i \(0.106529\pi\)
\(662\) −4.92901 4.92901i −0.191571 0.191571i
\(663\) 24.2982 17.8132i 0.943662 0.691806i
\(664\) 6.98528i 0.271081i
\(665\) 0 0
\(666\) −15.2999 0.135967i −0.592858 0.00526863i
\(667\) −7.47969 27.9146i −0.289615 1.08086i
\(668\) −7.97337 7.97337i −0.308499 0.308499i
\(669\) 13.9057 + 14.0299i 0.537627 + 0.542426i
\(670\) 0 0
\(671\) 70.2698 2.71273
\(672\) −0.00535646 + 1.20551i −0.000206630 + 0.0465034i
\(673\) −4.75245 + 17.7364i −0.183194 + 0.683688i 0.811816 + 0.583913i \(0.198479\pi\)
−0.995010 + 0.0997751i \(0.968188\pi\)
\(674\) 16.9200 9.76878i 0.651735 0.376279i
\(675\) 0 0
\(676\) −3.02537 + 9.89557i −0.116360 + 0.380599i
\(677\) −30.5372 30.5372i −1.17364 1.17364i −0.981336 0.192303i \(-0.938404\pi\)
−0.192303 0.981336i \(-0.561596\pi\)
\(678\) 14.2967 24.5105i 0.549062 0.941319i
\(679\) −2.42562 + 1.40043i −0.0930868 + 0.0537437i
\(680\) 0 0
\(681\) 12.1008 44.3712i 0.463703 1.70031i
\(682\) 12.4901 3.34672i 0.478271 0.128152i
\(683\) 23.5257 6.30369i 0.900186 0.241204i 0.221090 0.975253i \(-0.429039\pi\)
0.679096 + 0.734049i \(0.262372\pi\)
\(684\) −5.65308 3.33114i −0.216151 0.127369i
\(685\) 0 0
\(686\) 2.20616 1.27372i 0.0842314 0.0486310i
\(687\) 9.55818 + 5.57519i 0.364667 + 0.212707i
\(688\) 1.65141 + 1.65141i 0.0629594 + 0.0629594i
\(689\) 1.93175 + 16.9547i 0.0735940 + 0.645924i
\(690\) 0 0
\(691\) 0.523687 0.302351i 0.0199220 0.0115020i −0.490006 0.871719i \(-0.663005\pi\)
0.509928 + 0.860217i \(0.329672\pi\)
\(692\) −0.195908 + 0.731139i −0.00744731 + 0.0277937i
\(693\) 0.649802 2.34166i 0.0246839 0.0889522i
\(694\) −8.79320 −0.333785
\(695\) 0 0
\(696\) −18.6597 + 18.4947i −0.707296 + 0.701038i
\(697\) 14.7411 + 14.7411i 0.558358 + 0.558358i
\(698\) −5.38038 20.0799i −0.203651 0.760034i
\(699\) 30.5671 8.04503i 1.15615 0.304291i
\(700\) 0 0
\(701\) 35.7248i 1.34931i −0.738134 0.674654i \(-0.764293\pi\)
0.738134 0.674654i \(-0.235707\pi\)
\(702\) 12.0067 + 16.6868i 0.453165 + 0.629804i
\(703\) −9.03098 9.03098i −0.340610 0.340610i
\(704\) 34.3898 19.8550i 1.29611 0.748312i
\(705\) 0 0
\(706\) −1.24983 + 2.16477i −0.0470379 + 0.0814720i
\(707\) 1.78543 1.78543i 0.0671481 0.0671481i
\(708\) −0.0600861 + 13.5228i −0.00225817 + 0.508217i
\(709\) −2.01558 + 3.49108i −0.0756966 + 0.131110i −0.901389 0.433010i \(-0.857451\pi\)
0.825692 + 0.564121i \(0.190785\pi\)
\(710\) 0 0
\(711\) −19.3047 + 10.9180i −0.723984 + 0.409458i
\(712\) −20.4799 5.48757i −0.767517 0.205656i
\(713\) 3.65685 13.6476i 0.136950 0.511105i
\(714\) −1.46980 0.400840i −0.0550059 0.0150011i
\(715\) 0 0
\(716\) 12.9998i 0.485826i
\(717\) −2.79914 + 4.79888i −0.104536 + 0.179217i
\(718\) −2.79196 + 10.4197i −0.104195 + 0.388861i
\(719\) 18.2661 31.6378i 0.681211 1.17989i −0.293400 0.955990i \(-0.594787\pi\)
0.974612 0.223903i \(-0.0718797\pi\)
\(720\) 0 0
\(721\) −2.52520 1.45793i −0.0940434 0.0542960i
\(722\) −3.25166 12.1354i −0.121014 0.451632i
\(723\) −5.15984 9.02953i −0.191897 0.335812i
\(724\) 8.57942 + 4.95333i 0.318852 + 0.184089i
\(725\) 0 0
\(726\) −23.4663 + 6.17617i −0.870918 + 0.229219i
\(727\) 6.38702 6.38702i 0.236881 0.236881i −0.578676 0.815557i \(-0.696430\pi\)
0.815557 + 0.578676i \(0.196430\pi\)
\(728\) 1.71009 0.673622i 0.0633800 0.0249661i
\(729\) −26.9904 0.719730i −0.999645 0.0266567i
\(730\) 0 0
\(731\) 5.49888 3.17478i 0.203383 0.117423i
\(732\) −19.8716 0.0882961i −0.734475 0.00326352i
\(733\) −15.5660 + 15.5660i −0.574943 + 0.574943i −0.933506 0.358562i \(-0.883267\pi\)
0.358562 + 0.933506i \(0.383267\pi\)
\(734\) −11.2366 6.48747i −0.414751 0.239457i
\(735\) 0 0
\(736\) 24.4847i 0.902518i
\(737\) −3.42383 + 0.917413i −0.126118 + 0.0337933i
\(738\) −10.1473 + 9.96857i −0.373529 + 0.366948i
\(739\) −24.9818 43.2698i −0.918972 1.59171i −0.800980 0.598691i \(-0.795688\pi\)
−0.117992 0.993015i \(-0.537646\pi\)
\(740\) 0 0
\(741\) −2.61178 + 16.9600i −0.0959461 + 0.623042i
\(742\) 0.610154 0.610154i 0.0223995 0.0223995i
\(743\) 7.11227 26.5434i 0.260924 0.973781i −0.703774 0.710424i \(-0.748503\pi\)
0.964698 0.263358i \(-0.0848299\pi\)
\(744\) −12.4217 + 3.26929i −0.455401 + 0.119858i
\(745\) 0 0
\(746\) 26.9925 0.988264
\(747\) −1.82643 + 6.58181i −0.0668256 + 0.240816i
\(748\) −4.84542 18.0834i −0.177166 0.661193i
\(749\) 0.362654i 0.0132511i
\(750\) 0 0
\(751\) −8.07976 13.9946i −0.294835 0.510669i 0.680112 0.733108i \(-0.261931\pi\)
−0.974946 + 0.222440i \(0.928598\pi\)
\(752\) 8.68386 + 2.32683i 0.316668 + 0.0848509i
\(753\) 21.1000 + 36.9241i 0.768926 + 1.34559i
\(754\) 17.9380 + 7.79967i 0.653265 + 0.284047i
\(755\) 0 0
\(756\) −0.186700 + 0.661381i −0.00679021 + 0.0240542i
\(757\) −12.4869 3.34586i −0.453845 0.121607i 0.0246532 0.999696i \(-0.492152\pi\)
−0.478498 + 0.878089i \(0.658819\pi\)
\(758\) 4.45884 + 16.6406i 0.161952 + 0.604415i
\(759\) −12.9864 + 47.6184i −0.471375 + 1.72844i
\(760\) 0 0
\(761\) −13.7581 + 23.8298i −0.498732 + 0.863828i −0.999999 0.00146412i \(-0.999534\pi\)
0.501267 + 0.865292i \(0.332867\pi\)
\(762\) −1.33327 2.33317i −0.0482993 0.0845220i
\(763\) −1.65429 + 0.443266i −0.0598894 + 0.0160473i
\(764\) 1.14440 + 1.98216i 0.0414029 + 0.0717119i
\(765\) 0 0
\(766\) −2.62082 −0.0946941
\(767\) 32.9047 12.9615i 1.18812 0.468013i
\(768\) −23.5743 + 13.4713i −0.850665 + 0.486105i
\(769\) −5.76778 9.99009i −0.207992 0.360252i 0.743090 0.669191i \(-0.233359\pi\)
−0.951082 + 0.308939i \(0.900026\pi\)
\(770\) 0 0
\(771\) −5.91532 + 5.86298i −0.213035 + 0.211150i
\(772\) −5.94066 5.94066i −0.213809 0.213809i
\(773\) 5.03736 1.34976i 0.181181 0.0485474i −0.167088 0.985942i \(-0.553436\pi\)
0.348269 + 0.937395i \(0.386770\pi\)
\(774\) 2.13283 + 3.77118i 0.0766631 + 0.135552i
\(775\) 0 0
\(776\) −44.7875 25.8581i −1.60778 0.928250i
\(777\) −0.673969 + 1.15546i −0.0241785 + 0.0414519i
\(778\) 14.9187 + 3.99745i 0.534861 + 0.143316i
\(779\) −11.8737 −0.425420
\(780\) 0 0
\(781\) 13.4057 0.479695
\(782\) 29.8883 + 8.00855i 1.06880 + 0.286385i
\(783\) −22.4177 + 12.5475i −0.801144 + 0.448410i
\(784\) 10.7147 + 6.18613i 0.382667 + 0.220933i
\(785\) 0 0
\(786\) −1.67199 + 1.65720i −0.0596378 + 0.0591102i
\(787\) 38.7052 10.3710i 1.37969 0.369687i 0.508683 0.860954i \(-0.330133\pi\)
0.871009 + 0.491267i \(0.163466\pi\)
\(788\) 11.0777 + 11.0777i 0.394628 + 0.394628i
\(789\) 14.3600 + 14.4881i 0.511228 + 0.515791i
\(790\) 0 0
\(791\) −1.24037 2.14838i −0.0441024 0.0763876i
\(792\) 43.4435 11.2278i 1.54370 0.398964i
\(793\) 19.0468 + 48.3532i 0.676373 + 1.71707i
\(794\) −35.2836 −1.25217
\(795\) 0 0
\(796\) 5.01980 + 8.69455i 0.177922 + 0.308170i
\(797\) 33.4264 8.95658i 1.18402 0.317259i 0.387503 0.921868i \(-0.373338\pi\)
0.796522 + 0.604610i \(0.206671\pi\)
\(798\) 0.753387 0.430516i 0.0266696 0.0152401i
\(799\) 12.2212 21.1677i 0.432354 0.748859i
\(800\) 0 0
\(801\) −17.8622 10.5255i −0.631128 0.371899i
\(802\) −0.339325 1.26638i −0.0119820 0.0447174i
\(803\) 36.3080 + 9.72871i 1.28128 + 0.343319i
\(804\) 0.969378 0.255133i 0.0341873 0.00899785i
\(805\) 0 0
\(806\) 5.68838 + 7.68740i 0.200365 + 0.270777i
\(807\) −1.95073 + 1.11473i −0.0686691 + 0.0392403i
\(808\) 45.0335 + 12.0667i 1.58427 + 0.424504i
\(809\) 0.776492 + 1.34492i 0.0273000 + 0.0472850i 0.879353 0.476171i \(-0.157976\pi\)
−0.852053 + 0.523456i \(0.824642\pi\)
\(810\) 0 0
\(811\) 15.7167i 0.551889i 0.961174 + 0.275945i \(0.0889906\pi\)
−0.961174 + 0.275945i \(0.911009\pi\)
\(812\) 0.169240 + 0.631612i 0.00593915 + 0.0221652i
\(813\) −10.6078 0.0471338i −0.372031 0.00165306i
\(814\) 24.8643 0.871494
\(815\) 0 0
\(816\) −3.77397 14.3392i −0.132115 0.501973i
\(817\) −0.936013 + 3.49325i −0.0327470 + 0.122213i
\(818\) −13.8577 + 13.8577i −0.484522 + 0.484522i
\(819\) 1.78744 0.187579i 0.0624583 0.00655456i
\(820\) 0 0
\(821\) 23.5322 + 40.7590i 0.821280 + 1.42250i 0.904729 + 0.425987i \(0.140073\pi\)
−0.0834487 + 0.996512i \(0.526593\pi\)
\(822\) −3.88665 + 6.66332i −0.135562 + 0.232410i
\(823\) 44.5459 11.9360i 1.55277 0.416064i 0.622405 0.782695i \(-0.286156\pi\)
0.930366 + 0.366631i \(0.119489\pi\)
\(824\) 53.8392i 1.87558i
\(825\) 0 0
\(826\) −1.54872 0.894155i −0.0538870 0.0311116i
\(827\) 25.7893 25.7893i 0.896781 0.896781i −0.0983687 0.995150i \(-0.531362\pi\)
0.995150 + 0.0983687i \(0.0313625\pi\)
\(828\) 3.73225 13.4497i 0.129705 0.467409i
\(829\) −35.8684 + 20.7086i −1.24576 + 0.719241i −0.970261 0.242060i \(-0.922177\pi\)
−0.275500 + 0.961301i \(0.588843\pi\)
\(830\) 0 0
\(831\) −4.73959 + 17.3791i −0.164414 + 0.602875i
\(832\) 22.9838 + 18.2821i 0.796820 + 0.633819i
\(833\) 23.7853 23.7853i 0.824110 0.824110i
\(834\) 3.57304 + 13.5758i 0.123724 + 0.470090i
\(835\) 0 0
\(836\) 9.23439 + 5.33148i 0.319378 + 0.184393i
\(837\) −12.5590 0.167420i −0.434103 0.00578689i
\(838\) −3.01687 11.2591i −0.104216 0.388939i
\(839\) 12.9769 + 7.49223i 0.448013 + 0.258660i 0.706991 0.707223i \(-0.250052\pi\)
−0.258978 + 0.965883i \(0.583386\pi\)
\(840\) 0 0
\(841\) 2.27790 3.94543i 0.0785481 0.136049i
\(842\) −6.78040 + 25.3048i −0.233668 + 0.872061i
\(843\) −32.8060 19.1354i −1.12990 0.659058i
\(844\) 3.82643i 0.131711i
\(845\) 0 0
\(846\) 14.3688 + 8.46696i 0.494009 + 0.291100i
\(847\) −0.549067 + 2.04915i −0.0188662 + 0.0704095i
\(848\) 8.11205 + 2.17362i 0.278569 + 0.0746424i
\(849\) 6.81911 6.75878i 0.234031 0.231961i
\(850\) 0 0
\(851\) 13.5842 23.5286i 0.465662 0.806550i
\(852\) −3.79101 0.0168447i −0.129878 0.000577090i
\(853\) −9.05692 + 9.05692i −0.310103 + 0.310103i −0.844949 0.534846i \(-0.820369\pi\)
0.534846 + 0.844949i \(0.320369\pi\)
\(854\) 1.31395 2.27583i 0.0449626 0.0778775i
\(855\) 0 0
\(856\) 5.79905 3.34808i 0.198207 0.114435i
\(857\) −12.8809 12.8809i −0.440004 0.440004i 0.452009 0.892013i \(-0.350707\pi\)
−0.892013 + 0.452009i \(0.850707\pi\)
\(858\) −19.7520 26.9428i −0.674321 0.919812i
\(859\) 10.9311i 0.372966i −0.982458 0.186483i \(-0.940291\pi\)
0.982458 0.186483i \(-0.0597089\pi\)
\(860\) 0 0
\(861\) 0.316527 + 1.20265i 0.0107872 + 0.0409860i
\(862\) 4.74335 + 17.7024i 0.161559 + 0.602947i
\(863\) 21.3829 + 21.3829i 0.727881 + 0.727881i 0.970197 0.242316i \(-0.0779072\pi\)
−0.242316 + 0.970197i \(0.577907\pi\)
\(864\) −21.0975 + 5.35269i −0.717751 + 0.182102i
\(865\) 0 0
\(866\) 30.1629 1.02498
\(867\) −10.8678 0.0482893i −0.369090 0.00163999i
\(868\) −0.0827422 + 0.308798i −0.00280845 + 0.0104813i
\(869\) 31.2126 18.0206i 1.05882 0.611308i
\(870\) 0 0
\(871\) −1.55932 2.10730i −0.0528355 0.0714030i
\(872\) −22.3608 22.3608i −0.757231 0.757231i
\(873\) −35.4395 36.0750i −1.19944 1.22095i
\(874\) −15.2627 + 8.81191i −0.516268 + 0.298067i
\(875\) 0 0
\(876\) −10.2553 2.79680i −0.346495 0.0944952i
\(877\) −14.7430 + 3.95038i −0.497836 + 0.133395i −0.498996 0.866604i \(-0.666298\pi\)
0.00115930 + 0.999999i \(0.499631\pi\)
\(878\) −20.2523 + 5.42659i −0.683483 + 0.183139i
\(879\) −8.18425 2.23199i −0.276048 0.0752830i
\(880\) 0 0
\(881\) 15.6546 9.03820i 0.527417 0.304505i −0.212547 0.977151i \(-0.568176\pi\)
0.739964 + 0.672646i \(0.234842\pi\)
\(882\) 16.0846 + 16.3731i 0.541598 + 0.551311i
\(883\) −21.5666 21.5666i −0.725775 0.725775i 0.244000 0.969775i \(-0.421540\pi\)
−0.969775 + 0.244000i \(0.921540\pi\)
\(884\) 11.1299 8.23572i 0.374340 0.276997i
\(885\) 0 0
\(886\) −11.7550 + 6.78673i −0.394915 + 0.228005i
\(887\) −8.32639 + 31.0745i −0.279573 + 1.04338i 0.673142 + 0.739514i \(0.264944\pi\)
−0.952715 + 0.303867i \(0.901722\pi\)
\(888\) −24.6987 0.109744i −0.828833 0.00368278i
\(889\) −0.234935 −0.00787947
\(890\) 0 0
\(891\) 43.8700 + 0.779792i 1.46970 + 0.0261240i
\(892\) 6.41908 + 6.41908i 0.214927 + 0.214927i
\(893\) 3.60314 + 13.4471i 0.120575 + 0.449991i
\(894\) −2.82234 10.7235i −0.0943930 0.358646i
\(895\) 0 0
\(896\) 0.0930361i 0.00310812i
\(897\) −36.2866 + 3.97111i −1.21157 + 0.132591i
\(898\) −23.1104 23.1104i −0.771205 0.771205i
\(899\) −10.3498 + 5.97544i −0.345184 + 0.199292i
\(900\) 0 0
\(901\) 11.4164 19.7739i 0.380337 0.658763i
\(902\) 16.3455 16.3455i 0.544246 0.544246i
\(903\) 0.378771 + 0.00168300i 0.0126047 + 5.60068e-5i
\(904\) 22.9026 39.6684i 0.761728 1.31935i
\(905\) 0 0
\(906\) 22.2184 22.0218i 0.738156 0.731625i
\(907\) −12.8475 3.44249i −0.426596 0.114306i 0.0391321 0.999234i \(-0.487541\pi\)
−0.465728 + 0.884928i \(0.654207\pi\)
\(908\) 5.47035 20.4156i 0.181540 0.677517i
\(909\) 39.2773 + 23.1446i 1.30275 + 0.767656i
\(910\) 0 0
\(911\) 6.22499i 0.206243i −0.994669 0.103122i \(-0.967117\pi\)
0.994669 0.103122i \(-0.0328831\pi\)
\(912\) 7.29495 + 4.25507i 0.241560 + 0.140899i
\(913\) 2.87291 10.7219i 0.0950795 0.354841i
\(914\) −1.91698 + 3.32031i −0.0634081 + 0.109826i
\(915\) 0 0
\(916\) 4.40388 + 2.54258i 0.145508 + 0.0840092i
\(917\) 0.0532676 + 0.198797i 0.00175905 + 0.00656486i
\(918\) 0.366652 27.5044i 0.0121013 0.907779i
\(919\) −51.3893 29.6696i −1.69518 0.978711i −0.950210 0.311611i \(-0.899132\pi\)
−0.744968 0.667101i \(-0.767535\pi\)
\(920\) 0 0
\(921\) 9.79712 + 37.2242i 0.322826 + 1.22658i
\(922\) −2.42842 + 2.42842i −0.0799759 + 0.0799759i
\(923\) 3.63366 + 9.22458i 0.119603 + 0.303631i
\(924\) 0.293837 1.07744i 0.00966654 0.0354453i
\(925\) 0 0
\(926\) −36.9249 + 21.3186i −1.21343 + 0.700573i
\(927\) 14.0773 50.7295i 0.462358 1.66617i
\(928\) −14.6443 + 14.6443i −0.480722 + 0.480722i
\(929\) 9.30395 + 5.37164i 0.305253 + 0.176238i 0.644800 0.764351i \(-0.276941\pi\)
−0.339548 + 0.940589i \(0.610274\pi\)
\(930\) 0 0
\(931\) 19.1587i 0.627900i
\(932\) 14.0308 3.75954i 0.459594 0.123148i
\(933\) 23.8242 40.8445i 0.779969 1.33719i
\(934\) 15.8303 + 27.4189i 0.517984 + 0.897175i
\(935\) 0 0
\(936\) 19.5015 + 26.8505i 0.637425 + 0.877635i
\(937\) 7.07205 7.07205i 0.231034 0.231034i −0.582090 0.813124i \(-0.697765\pi\)
0.813124 + 0.582090i \(0.197765\pi\)
\(938\) −0.0343089 + 0.128042i −0.00112022 + 0.00418073i
\(939\) −8.11156 30.8199i −0.264711 1.00577i
\(940\) 0 0
\(941\) −28.4220 −0.926529 −0.463265 0.886220i \(-0.653322\pi\)
−0.463265 + 0.886220i \(0.653322\pi\)
\(942\) 13.8545 + 0.0615599i 0.451402 + 0.00200573i
\(943\) −6.53730 24.3975i −0.212884 0.794494i
\(944\) 17.4051i 0.566486i
\(945\) 0 0
\(946\) −3.52033 6.09738i −0.114456 0.198243i
\(947\) 15.0316 + 4.02771i 0.488461 + 0.130883i 0.494640 0.869098i \(-0.335300\pi\)
−0.00617839 + 0.999981i \(0.501967\pi\)
\(948\) −8.84926 + 5.05683i −0.287411 + 0.164238i
\(949\) 3.14701 + 27.6208i 0.102156 + 0.896610i
\(950\) 0 0
\(951\) −15.7511 + 4.14558i −0.510765 + 0.134430i
\(952\) −2.37549 0.636511i −0.0769901 0.0206294i
\(953\) −10.2413 38.2209i −0.331747 1.23810i −0.907353 0.420369i \(-0.861901\pi\)
0.575607 0.817727i \(-0.304766\pi\)
\(954\) 13.4226 + 7.90943i 0.434574 + 0.256077i
\(955\) 0 0
\(956\) −1.27655 + 2.21106i −0.0412867 + 0.0715107i
\(957\) 36.2477 20.7134i 1.17172 0.669571i
\(958\) 0.143193 0.0383684i 0.00462635 0.00123963i
\(959\) 0.337201 + 0.584050i 0.0108888 + 0.0188600i
\(960\) 0 0
\(961\) 25.1572 0.811521
\(962\) 6.73955 + 17.1093i 0.217292 + 0.551627i
\(963\) 6.33951 1.63843i 0.204288 0.0527976i
\(964\) −2.38966 4.13901i −0.0769658 0.133309i
\(965\) 0 0
\(966\) 1.29940 + 1.31099i 0.0418074 + 0.0421805i
\(967\) −32.4327 32.4327i −1.04296 1.04296i −0.999035 0.0439297i \(-0.986012\pi\)
−0.0439297 0.999035i \(-0.513988\pi\)
\(968\) −37.8361 + 10.1381i −1.21610 + 0.325852i
\(969\) 16.3076 16.1634i 0.523877 0.519242i
\(970\) 0 0
\(971\) 29.2025 + 16.8601i 0.937154 + 0.541066i 0.889067 0.457777i \(-0.151354\pi\)
0.0480872 + 0.998843i \(0.484687\pi\)
\(972\) −12.4050 0.275641i −0.397891 0.00884120i
\(973\) 1.18547 + 0.317646i 0.0380045 + 0.0101833i
\(974\) 10.7050 0.343009
\(975\) 0 0
\(976\) 25.5766 0.818686
\(977\) 2.30444 + 0.617472i 0.0737254 + 0.0197547i 0.295493 0.955345i \(-0.404516\pi\)
−0.221768 + 0.975100i \(0.571183\pi\)
\(978\) −21.0433 + 36.0769i −0.672890 + 1.15361i
\(979\) 29.1781 + 16.8460i 0.932536 + 0.538400i
\(980\) 0 0
\(981\) −15.2226 26.9159i −0.486019 0.859357i
\(982\) 23.0982 6.18915i 0.737094 0.197504i
\(983\) −2.74521 2.74521i −0.0875586 0.0875586i 0.661971 0.749530i \(-0.269720\pi\)
−0.749530 + 0.661971i \(0.769720\pi\)
\(984\) −16.3088 + 16.1645i −0.519904 + 0.515305i
\(985\) 0 0
\(986\) −13.0863 22.6661i −0.416752 0.721836i
\(987\) 1.26596 0.723420i 0.0402959 0.0230267i
\(988\) −1.16562 + 7.79937i −0.0370833 + 0.248131i
\(989\) −7.69310 −0.244626
\(990\) 0 0
\(991\) −8.53170 14.7773i −0.271019 0.469418i 0.698104 0.715996i \(-0.254027\pi\)
−0.969123 + 0.246578i \(0.920694\pi\)
\(992\) −9.78028 + 2.62062i −0.310524 + 0.0832047i
\(993\) −5.45919 9.55337i −0.173242 0.303167i
\(994\) 0.250670 0.434173i 0.00795076 0.0137711i
\(995\) 0 0
\(996\) −0.825903 + 3.02842i −0.0261697 + 0.0959592i
\(997\) −1.53450 5.72683i −0.0485981 0.181371i 0.937360 0.348361i \(-0.113262\pi\)
−0.985958 + 0.166991i \(0.946595\pi\)
\(998\) −19.2683 5.16292i −0.609927 0.163429i
\(999\) −23.2434 6.56133i −0.735388 0.207591i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.8 96
3.2 odd 2 inner 975.2.bn.d.218.17 96
5.2 odd 4 inner 975.2.bn.d.257.17 96
5.3 odd 4 195.2.bf.a.62.8 yes 96
5.4 even 2 195.2.bf.a.23.17 yes 96
13.4 even 6 inner 975.2.bn.d.368.8 96
15.2 even 4 inner 975.2.bn.d.257.8 96
15.8 even 4 195.2.bf.a.62.17 yes 96
15.14 odd 2 195.2.bf.a.23.8 yes 96
39.17 odd 6 inner 975.2.bn.d.368.17 96
65.4 even 6 195.2.bf.a.173.17 yes 96
65.17 odd 12 inner 975.2.bn.d.407.17 96
65.43 odd 12 195.2.bf.a.17.8 96
195.17 even 12 inner 975.2.bn.d.407.8 96
195.134 odd 6 195.2.bf.a.173.8 yes 96
195.173 even 12 195.2.bf.a.17.17 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.8 96 65.43 odd 12
195.2.bf.a.17.17 yes 96 195.173 even 12
195.2.bf.a.23.8 yes 96 15.14 odd 2
195.2.bf.a.23.17 yes 96 5.4 even 2
195.2.bf.a.62.8 yes 96 5.3 odd 4
195.2.bf.a.62.17 yes 96 15.8 even 4
195.2.bf.a.173.8 yes 96 195.134 odd 6
195.2.bf.a.173.17 yes 96 65.4 even 6
975.2.bn.d.218.8 96 1.1 even 1 trivial
975.2.bn.d.218.17 96 3.2 odd 2 inner
975.2.bn.d.257.8 96 15.2 even 4 inner
975.2.bn.d.257.17 96 5.2 odd 4 inner
975.2.bn.d.368.8 96 13.4 even 6 inner
975.2.bn.d.368.17 96 39.17 odd 6 inner
975.2.bn.d.407.8 96 195.17 even 12 inner
975.2.bn.d.407.17 96 65.17 odd 12 inner