Properties

Label 975.2.bn.d.407.13
Level $975$
Weight $2$
Character 975.407
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.13
Character \(\chi\) \(=\) 975.407
Dual form 975.2.bn.d.218.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.107570 - 0.0288234i) q^{2} +(-0.836177 + 1.51684i) q^{3} +(-1.72131 + 0.993799i) q^{4} +(-0.0462274 + 0.187269i) q^{6} +(3.86093 + 1.03453i) q^{7} +(-0.314011 + 0.314011i) q^{8} +(-1.60161 - 2.53670i) q^{9} +(2.60494 - 4.51189i) q^{11} +(-0.0681144 - 3.44195i) q^{12} +(1.36091 - 3.33885i) q^{13} +0.445140 q^{14} +(1.96287 - 3.39979i) q^{16} +(-3.27708 - 0.878092i) q^{17} +(-0.245402 - 0.226709i) q^{18} +(-0.210416 - 0.364452i) q^{19} +(-4.79764 + 4.99136i) q^{21} +(0.150166 - 0.560429i) q^{22} +(2.63136 - 0.705071i) q^{23} +(-0.213736 - 0.738874i) q^{24} +(0.0501565 - 0.398387i) q^{26} +(5.18700 - 0.308267i) q^{27} +(-7.67398 + 2.05624i) q^{28} +(2.52506 - 4.37354i) q^{29} -4.23553i q^{31} +(0.343025 - 1.28019i) q^{32} +(4.66563 + 7.72402i) q^{33} -0.377826 q^{34} +(5.27784 + 2.77476i) q^{36} +(1.53863 + 5.74223i) q^{37} +(-0.0331393 - 0.0331393i) q^{38} +(3.92655 + 4.85615i) q^{39} +(-0.973131 + 1.68551i) q^{41} +(-0.372216 + 0.675207i) q^{42} +(-0.905224 - 0.242554i) q^{43} +10.3551i q^{44} +(0.262734 - 0.151689i) q^{46} +(1.29449 + 1.29449i) q^{47} +(3.51564 + 5.82019i) q^{48} +(7.77434 + 4.48852i) q^{49} +(4.07215 - 4.23657i) q^{51} +(0.975600 + 7.09967i) q^{52} +(2.45762 + 2.45762i) q^{53} +(0.549082 - 0.182667i) q^{54} +(-1.53723 + 0.887520i) q^{56} +(0.728761 - 0.0144218i) q^{57} +(0.145562 - 0.543244i) q^{58} +(7.83433 - 4.52315i) q^{59} +(2.65934 + 4.60611i) q^{61} +(-0.122082 - 0.455618i) q^{62} +(-3.55942 - 11.4509i) q^{63} +7.70388i q^{64} +(0.724516 + 0.696396i) q^{66} +(-1.98691 - 7.41523i) q^{67} +(6.51352 - 1.74529i) q^{68} +(-1.13080 + 4.58092i) q^{69} +(-6.09876 - 10.5634i) q^{71} +(1.29948 + 0.293626i) q^{72} +(1.29733 + 1.29733i) q^{73} +(0.331021 + 0.573345i) q^{74} +(0.724384 + 0.418223i) q^{76} +(14.7252 - 14.7252i) q^{77} +(0.562351 + 0.409202i) q^{78} -2.49102i q^{79} +(-3.86966 + 8.12562i) q^{81} +(-0.0560979 + 0.209360i) q^{82} +(-9.55183 + 9.55183i) q^{83} +(3.29782 - 13.3596i) q^{84} -0.104367 q^{86} +(4.52256 + 7.48717i) q^{87} +(0.598803 + 2.23476i) q^{88} +(-3.74597 - 2.16273i) q^{89} +(8.70853 - 11.4832i) q^{91} +(-3.82869 + 3.82869i) q^{92} +(6.42463 + 3.54166i) q^{93} +(0.176560 + 0.101937i) q^{94} +(1.65501 + 1.59078i) q^{96} +(2.76392 + 0.740590i) q^{97} +(0.965663 + 0.258749i) q^{98} +(-15.6174 + 0.618364i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.107570 0.0288234i 0.0760637 0.0203812i −0.220586 0.975367i \(-0.570797\pi\)
0.296650 + 0.954986i \(0.404130\pi\)
\(3\) −0.836177 + 1.51684i −0.482767 + 0.875749i
\(4\) −1.72131 + 0.993799i −0.860655 + 0.496899i
\(5\) 0 0
\(6\) −0.0462274 + 0.187269i −0.0188723 + 0.0764521i
\(7\) 3.86093 + 1.03453i 1.45929 + 0.391017i 0.899246 0.437443i \(-0.144116\pi\)
0.560048 + 0.828460i \(0.310783\pi\)
\(8\) −0.314011 + 0.314011i −0.111020 + 0.111020i
\(9\) −1.60161 2.53670i −0.533872 0.845566i
\(10\) 0 0
\(11\) 2.60494 4.51189i 0.785419 1.36039i −0.143329 0.989675i \(-0.545781\pi\)
0.928748 0.370711i \(-0.120886\pi\)
\(12\) −0.0681144 3.44195i −0.0196629 0.993604i
\(13\) 1.36091 3.33885i 0.377448 0.926031i
\(14\) 0.445140 0.118969
\(15\) 0 0
\(16\) 1.96287 3.39979i 0.490718 0.849948i
\(17\) −3.27708 0.878092i −0.794809 0.212969i −0.161506 0.986872i \(-0.551635\pi\)
−0.633304 + 0.773903i \(0.718302\pi\)
\(18\) −0.245402 0.226709i −0.0578419 0.0534359i
\(19\) −0.210416 0.364452i −0.0482728 0.0836110i 0.840879 0.541223i \(-0.182038\pi\)
−0.889152 + 0.457612i \(0.848705\pi\)
\(20\) 0 0
\(21\) −4.79764 + 4.99136i −1.04693 + 1.08920i
\(22\) 0.150166 0.560429i 0.0320156 0.119484i
\(23\) 2.63136 0.705071i 0.548676 0.147017i 0.0261774 0.999657i \(-0.491667\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(24\) −0.213736 0.738874i −0.0436287 0.150822i
\(25\) 0 0
\(26\) 0.0501565 0.398387i 0.00983649 0.0781302i
\(27\) 5.18700 0.308267i 0.998239 0.0593259i
\(28\) −7.67398 + 2.05624i −1.45024 + 0.388592i
\(29\) 2.52506 4.37354i 0.468892 0.812146i −0.530475 0.847700i \(-0.677987\pi\)
0.999368 + 0.0355548i \(0.0113198\pi\)
\(30\) 0 0
\(31\) 4.23553i 0.760724i −0.924838 0.380362i \(-0.875799\pi\)
0.924838 0.380362i \(-0.124201\pi\)
\(32\) 0.343025 1.28019i 0.0606389 0.226307i
\(33\) 4.66563 + 7.72402i 0.812181 + 1.34458i
\(34\) −0.377826 −0.0647967
\(35\) 0 0
\(36\) 5.27784 + 2.77476i 0.879640 + 0.462460i
\(37\) 1.53863 + 5.74223i 0.252949 + 0.944017i 0.969220 + 0.246195i \(0.0791805\pi\)
−0.716272 + 0.697822i \(0.754153\pi\)
\(38\) −0.0331393 0.0331393i −0.00537590 0.00537590i
\(39\) 3.92655 + 4.85615i 0.628751 + 0.777607i
\(40\) 0 0
\(41\) −0.973131 + 1.68551i −0.151978 + 0.263233i −0.931954 0.362576i \(-0.881897\pi\)
0.779977 + 0.625808i \(0.215231\pi\)
\(42\) −0.372216 + 0.675207i −0.0574342 + 0.104187i
\(43\) −0.905224 0.242554i −0.138045 0.0369892i 0.189135 0.981951i \(-0.439432\pi\)
−0.327180 + 0.944962i \(0.606098\pi\)
\(44\) 10.3551i 1.56110i
\(45\) 0 0
\(46\) 0.262734 0.151689i 0.0387380 0.0223654i
\(47\) 1.29449 + 1.29449i 0.188821 + 0.188821i 0.795186 0.606365i \(-0.207373\pi\)
−0.606365 + 0.795186i \(0.707373\pi\)
\(48\) 3.51564 + 5.82019i 0.507438 + 0.840072i
\(49\) 7.77434 + 4.48852i 1.11062 + 0.641217i
\(50\) 0 0
\(51\) 4.07215 4.23657i 0.570215 0.593239i
\(52\) 0.975600 + 7.09967i 0.135291 + 0.984547i
\(53\) 2.45762 + 2.45762i 0.337580 + 0.337580i 0.855456 0.517876i \(-0.173277\pi\)
−0.517876 + 0.855456i \(0.673277\pi\)
\(54\) 0.549082 0.182667i 0.0747206 0.0248579i
\(55\) 0 0
\(56\) −1.53723 + 0.887520i −0.205421 + 0.118600i
\(57\) 0.728761 0.0144218i 0.0965268 0.00191022i
\(58\) 0.145562 0.543244i 0.0191132 0.0713314i
\(59\) 7.83433 4.52315i 1.01994 0.588865i 0.105856 0.994381i \(-0.466242\pi\)
0.914088 + 0.405517i \(0.132908\pi\)
\(60\) 0 0
\(61\) 2.65934 + 4.60611i 0.340493 + 0.589752i 0.984524 0.175248i \(-0.0560726\pi\)
−0.644031 + 0.764999i \(0.722739\pi\)
\(62\) −0.122082 0.455618i −0.0155045 0.0578635i
\(63\) −3.55942 11.4509i −0.448445 1.44268i
\(64\) 7.70388i 0.962986i
\(65\) 0 0
\(66\) 0.724516 + 0.696396i 0.0891817 + 0.0857205i
\(67\) −1.98691 7.41523i −0.242739 0.905915i −0.974506 0.224360i \(-0.927971\pi\)
0.731767 0.681555i \(-0.238696\pi\)
\(68\) 6.51352 1.74529i 0.789881 0.211648i
\(69\) −1.13080 + 4.58092i −0.136133 + 0.551478i
\(70\) 0 0
\(71\) −6.09876 10.5634i −0.723789 1.25364i −0.959470 0.281809i \(-0.909065\pi\)
0.235681 0.971830i \(-0.424268\pi\)
\(72\) 1.29948 + 0.293626i 0.153145 + 0.0346042i
\(73\) 1.29733 + 1.29733i 0.151841 + 0.151841i 0.778940 0.627099i \(-0.215758\pi\)
−0.627099 + 0.778940i \(0.715758\pi\)
\(74\) 0.331021 + 0.573345i 0.0384804 + 0.0666500i
\(75\) 0 0
\(76\) 0.724384 + 0.418223i 0.0830925 + 0.0479735i
\(77\) 14.7252 14.7252i 1.67809 1.67809i
\(78\) 0.562351 + 0.409202i 0.0636737 + 0.0463330i
\(79\) 2.49102i 0.280262i −0.990133 0.140131i \(-0.955248\pi\)
0.990133 0.140131i \(-0.0447523\pi\)
\(80\) 0 0
\(81\) −3.86966 + 8.12562i −0.429962 + 0.902847i
\(82\) −0.0560979 + 0.209360i −0.00619497 + 0.0231200i
\(83\) −9.55183 + 9.55183i −1.04845 + 1.04845i −0.0496844 + 0.998765i \(0.515822\pi\)
−0.998765 + 0.0496844i \(0.984178\pi\)
\(84\) 3.29782 13.3596i 0.359822 1.45765i
\(85\) 0 0
\(86\) −0.104367 −0.0112541
\(87\) 4.52256 + 7.48717i 0.484870 + 0.802709i
\(88\) 0.598803 + 2.23476i 0.0638326 + 0.238227i
\(89\) −3.74597 2.16273i −0.397072 0.229249i 0.288148 0.957586i \(-0.406960\pi\)
−0.685220 + 0.728336i \(0.740294\pi\)
\(90\) 0 0
\(91\) 8.70853 11.4832i 0.912901 1.20376i
\(92\) −3.82869 + 3.82869i −0.399168 + 0.399168i
\(93\) 6.42463 + 3.54166i 0.666203 + 0.367253i
\(94\) 0.176560 + 0.101937i 0.0182108 + 0.0105140i
\(95\) 0 0
\(96\) 1.65501 + 1.59078i 0.168914 + 0.162358i
\(97\) 2.76392 + 0.740590i 0.280633 + 0.0751955i 0.396390 0.918082i \(-0.370263\pi\)
−0.115757 + 0.993278i \(0.536929\pi\)
\(98\) 0.965663 + 0.258749i 0.0975467 + 0.0261376i
\(99\) −15.6174 + 0.618364i −1.56961 + 0.0621479i
\(100\) 0 0
\(101\) 2.39453 + 1.38248i 0.238265 + 0.137562i 0.614379 0.789011i \(-0.289407\pi\)
−0.376114 + 0.926573i \(0.622740\pi\)
\(102\) 0.315930 0.573103i 0.0312817 0.0567456i
\(103\) −0.0455864 + 0.0455864i −0.00449176 + 0.00449176i −0.709349 0.704857i \(-0.751011\pi\)
0.704857 + 0.709349i \(0.251011\pi\)
\(104\) 0.621096 + 1.47578i 0.0609035 + 0.144712i
\(105\) 0 0
\(106\) 0.335204 + 0.193530i 0.0325579 + 0.0187973i
\(107\) 4.39639 + 16.4075i 0.425015 + 1.58618i 0.763890 + 0.645346i \(0.223287\pi\)
−0.338875 + 0.940831i \(0.610046\pi\)
\(108\) −8.62208 + 5.68546i −0.829660 + 0.547083i
\(109\) −4.73152 −0.453198 −0.226599 0.973988i \(-0.572761\pi\)
−0.226599 + 0.973988i \(0.572761\pi\)
\(110\) 0 0
\(111\) −9.99662 2.46767i −0.948837 0.234221i
\(112\) 11.0957 11.0957i 1.04845 1.04845i
\(113\) 0.729762 2.72351i 0.0686502 0.256206i −0.923068 0.384636i \(-0.874327\pi\)
0.991719 + 0.128430i \(0.0409937\pi\)
\(114\) 0.0779774 0.0225567i 0.00730325 0.00211263i
\(115\) 0 0
\(116\) 10.0376i 0.931970i
\(117\) −10.6493 + 1.89534i −0.984529 + 0.175224i
\(118\) 0.712369 0.712369i 0.0655789 0.0655789i
\(119\) −11.7442 6.78050i −1.07659 0.621567i
\(120\) 0 0
\(121\) −8.07143 13.9801i −0.733766 1.27092i
\(122\) 0.418829 + 0.418829i 0.0379190 + 0.0379190i
\(123\) −1.74294 2.88547i −0.157156 0.260174i
\(124\) 4.20927 + 7.29067i 0.378003 + 0.654721i
\(125\) 0 0
\(126\) −0.712943 1.12919i −0.0635140 0.100596i
\(127\) 1.74999 0.468909i 0.155287 0.0416089i −0.180338 0.983605i \(-0.557719\pi\)
0.335625 + 0.941996i \(0.391053\pi\)
\(128\) 0.908103 + 3.38909i 0.0802657 + 0.299556i
\(129\) 1.12484 1.17026i 0.0990370 0.103036i
\(130\) 0 0
\(131\) 20.2873i 1.77251i 0.463200 + 0.886254i \(0.346701\pi\)
−0.463200 + 0.886254i \(0.653299\pi\)
\(132\) −15.7071 8.65874i −1.36713 0.753647i
\(133\) −0.435365 1.62481i −0.0377510 0.140889i
\(134\) −0.427464 0.740390i −0.0369273 0.0639599i
\(135\) 0 0
\(136\) 1.30477 0.753310i 0.111883 0.0645958i
\(137\) 3.45972 12.9118i 0.295584 1.10313i −0.645169 0.764040i \(-0.723213\pi\)
0.940753 0.339093i \(-0.110120\pi\)
\(138\) 0.0103967 + 0.525365i 0.000885026 + 0.0447220i
\(139\) 17.9438 10.3598i 1.52197 0.878710i 0.522307 0.852758i \(-0.325072\pi\)
0.999663 0.0259523i \(-0.00826180\pi\)
\(140\) 0 0
\(141\) −3.04596 + 0.881112i −0.256516 + 0.0742030i
\(142\) −0.960517 0.960517i −0.0806048 0.0806048i
\(143\) −11.5194 14.8378i −0.963304 1.24080i
\(144\) −11.7680 + 0.465948i −0.980667 + 0.0388290i
\(145\) 0 0
\(146\) 0.176948 + 0.102161i 0.0146443 + 0.00845490i
\(147\) −13.3091 + 8.03924i −1.09772 + 0.663066i
\(148\) −8.35507 8.35507i −0.686783 0.686783i
\(149\) −7.82540 + 4.51800i −0.641082 + 0.370129i −0.785031 0.619456i \(-0.787353\pi\)
0.143949 + 0.989585i \(0.454020\pi\)
\(150\) 0 0
\(151\) 11.7129i 0.953180i 0.879126 + 0.476590i \(0.158127\pi\)
−0.879126 + 0.476590i \(0.841873\pi\)
\(152\) 0.180515 + 0.0483689i 0.0146417 + 0.00392323i
\(153\) 3.02117 + 9.71933i 0.244247 + 0.785761i
\(154\) 1.15956 2.00842i 0.0934403 0.161843i
\(155\) 0 0
\(156\) −11.5848 4.45675i −0.927530 0.356826i
\(157\) −11.2708 11.2708i −0.899508 0.899508i 0.0958846 0.995392i \(-0.469432\pi\)
−0.995392 + 0.0958846i \(0.969432\pi\)
\(158\) −0.0717997 0.267960i −0.00571207 0.0213177i
\(159\) −5.78282 + 1.67281i −0.458608 + 0.132663i
\(160\) 0 0
\(161\) 10.8889 0.858167
\(162\) −0.182053 + 0.985613i −0.0143034 + 0.0774370i
\(163\) 3.31744 12.3808i 0.259842 0.969742i −0.705491 0.708719i \(-0.749273\pi\)
0.965333 0.261023i \(-0.0840599\pi\)
\(164\) 3.86839i 0.302070i
\(165\) 0 0
\(166\) −0.752177 + 1.30281i −0.0583803 + 0.101118i
\(167\) −21.7842 + 5.83706i −1.68571 + 0.451685i −0.969278 0.245968i \(-0.920894\pi\)
−0.716435 + 0.697654i \(0.754227\pi\)
\(168\) −0.0608301 3.07386i −0.00469315 0.237153i
\(169\) −9.29585 9.08774i −0.715066 0.699057i
\(170\) 0 0
\(171\) −0.587498 + 1.11747i −0.0449271 + 0.0854554i
\(172\) 1.79922 0.482100i 0.137189 0.0367598i
\(173\) 0.936524 3.49516i 0.0712026 0.265732i −0.921143 0.389225i \(-0.872743\pi\)
0.992345 + 0.123493i \(0.0394096\pi\)
\(174\) 0.702299 + 0.675042i 0.0532412 + 0.0511748i
\(175\) 0 0
\(176\) −10.2263 17.7125i −0.770838 1.33513i
\(177\) 0.310014 + 15.6656i 0.0233021 + 1.17750i
\(178\) −0.465292 0.124675i −0.0348751 0.00934476i
\(179\) −2.91155 + 5.04296i −0.217620 + 0.376928i −0.954080 0.299553i \(-0.903163\pi\)
0.736460 + 0.676481i \(0.236496\pi\)
\(180\) 0 0
\(181\) 9.95426 0.739894 0.369947 0.929053i \(-0.379376\pi\)
0.369947 + 0.929053i \(0.379376\pi\)
\(182\) 0.605795 1.48626i 0.0449045 0.110169i
\(183\) −9.21041 + 0.182270i −0.680853 + 0.0134738i
\(184\) −0.604876 + 1.04768i −0.0445921 + 0.0772357i
\(185\) 0 0
\(186\) 0.793182 + 0.195798i 0.0581590 + 0.0143566i
\(187\) −12.4985 + 12.4985i −0.913978 + 0.913978i
\(188\) −3.51468 0.941755i −0.256334 0.0686846i
\(189\) 20.3456 + 4.17593i 1.47992 + 0.303754i
\(190\) 0 0
\(191\) 19.8105 11.4376i 1.43343 0.827594i 0.436053 0.899921i \(-0.356376\pi\)
0.997381 + 0.0723271i \(0.0230425\pi\)
\(192\) −11.6856 6.44181i −0.843333 0.464898i
\(193\) 16.5328 4.42994i 1.19005 0.318874i 0.391147 0.920328i \(-0.372078\pi\)
0.798908 + 0.601454i \(0.205412\pi\)
\(194\) 0.318662 0.0228786
\(195\) 0 0
\(196\) −17.8427 −1.27448
\(197\) 1.42911 0.382929i 0.101820 0.0272826i −0.207549 0.978225i \(-0.566549\pi\)
0.309369 + 0.950942i \(0.399882\pi\)
\(198\) −1.66215 + 0.516664i −0.118124 + 0.0367177i
\(199\) 20.6928 11.9470i 1.46687 0.846899i 0.467558 0.883962i \(-0.345134\pi\)
0.999313 + 0.0370636i \(0.0118004\pi\)
\(200\) 0 0
\(201\) 12.9091 + 3.18663i 0.910540 + 0.224768i
\(202\) 0.297429 + 0.0796957i 0.0209270 + 0.00560737i
\(203\) 14.2737 14.2737i 1.00181 1.00181i
\(204\) −2.79913 + 11.3394i −0.195978 + 0.793914i
\(205\) 0 0
\(206\) −0.00358979 + 0.00621770i −0.000250113 + 0.000433208i
\(207\) −6.00297 5.54571i −0.417236 0.385453i
\(208\) −8.68011 11.1805i −0.601857 0.775231i
\(209\) −2.19249 −0.151658
\(210\) 0 0
\(211\) 1.53923 2.66603i 0.105965 0.183537i −0.808167 0.588953i \(-0.799540\pi\)
0.914132 + 0.405416i \(0.132873\pi\)
\(212\) −6.67270 1.78795i −0.458283 0.122797i
\(213\) 21.1226 0.418005i 1.44730 0.0286413i
\(214\) 0.945842 + 1.63825i 0.0646565 + 0.111988i
\(215\) 0 0
\(216\) −1.53198 + 1.72558i −0.104238 + 0.117411i
\(217\) 4.38180 16.3531i 0.297456 1.11012i
\(218\) −0.508972 + 0.136379i −0.0344719 + 0.00923672i
\(219\) −3.05264 + 0.883046i −0.206279 + 0.0596707i
\(220\) 0 0
\(221\) −7.39163 + 9.74669i −0.497215 + 0.655633i
\(222\) −1.14647 + 0.0226880i −0.0769458 + 0.00152272i
\(223\) 5.58375 1.49616i 0.373916 0.100190i −0.0669668 0.997755i \(-0.521332\pi\)
0.440883 + 0.897565i \(0.354666\pi\)
\(224\) 2.64879 4.58784i 0.176980 0.306538i
\(225\) 0 0
\(226\) 0.314003i 0.0208872i
\(227\) −3.79984 + 14.1812i −0.252204 + 0.941238i 0.717421 + 0.696640i \(0.245323\pi\)
−0.969625 + 0.244598i \(0.921344\pi\)
\(228\) −1.24009 + 0.749066i −0.0821271 + 0.0496081i
\(229\) −3.60574 −0.238274 −0.119137 0.992878i \(-0.538013\pi\)
−0.119137 + 0.992878i \(0.538013\pi\)
\(230\) 0 0
\(231\) 10.0229 + 34.6486i 0.659459 + 2.27971i
\(232\) 0.580442 + 2.16624i 0.0381079 + 0.142220i
\(233\) 7.88221 + 7.88221i 0.516381 + 0.516381i 0.916474 0.400093i \(-0.131022\pi\)
−0.400093 + 0.916474i \(0.631022\pi\)
\(234\) −1.09092 + 0.510831i −0.0713156 + 0.0333941i
\(235\) 0 0
\(236\) −8.99021 + 15.5715i −0.585213 + 1.01362i
\(237\) 3.77848 + 2.08294i 0.245439 + 0.135301i
\(238\) −1.45876 0.390874i −0.0945575 0.0253366i
\(239\) 0.0947772i 0.00613063i −0.999995 0.00306532i \(-0.999024\pi\)
0.999995 0.00306532i \(-0.000975722\pi\)
\(240\) 0 0
\(241\) 9.34499 5.39533i 0.601964 0.347544i −0.167850 0.985813i \(-0.553682\pi\)
0.769814 + 0.638269i \(0.220349\pi\)
\(242\) −1.27120 1.27120i −0.0817159 0.0817159i
\(243\) −9.08955 12.6641i −0.583095 0.812404i
\(244\) −9.15509 5.28569i −0.586095 0.338382i
\(245\) 0 0
\(246\) −0.270658 0.260154i −0.0172565 0.0165868i
\(247\) −1.50321 + 0.206563i −0.0956468 + 0.0131433i
\(248\) 1.33000 + 1.33000i 0.0844554 + 0.0844554i
\(249\) −6.50158 22.4756i −0.412021 1.42434i
\(250\) 0 0
\(251\) −18.5242 + 10.6949i −1.16923 + 0.675058i −0.953500 0.301394i \(-0.902548\pi\)
−0.215735 + 0.976452i \(0.569215\pi\)
\(252\) 17.5068 + 16.1733i 1.10282 + 1.01882i
\(253\) 3.67333 13.7091i 0.230941 0.861882i
\(254\) 0.174732 0.100881i 0.0109636 0.00632986i
\(255\) 0 0
\(256\) −7.50851 13.0051i −0.469282 0.812821i
\(257\) 4.19954 + 15.6729i 0.261960 + 0.977648i 0.964085 + 0.265594i \(0.0855681\pi\)
−0.702125 + 0.712054i \(0.747765\pi\)
\(258\) 0.0872689 0.158307i 0.00543313 0.00985579i
\(259\) 23.7621i 1.47651i
\(260\) 0 0
\(261\) −15.1385 + 0.599402i −0.937051 + 0.0371021i
\(262\) 0.584748 + 2.18231i 0.0361259 + 0.134824i
\(263\) −22.1701 + 5.94046i −1.36707 + 0.366304i −0.866406 0.499340i \(-0.833576\pi\)
−0.500660 + 0.865644i \(0.666909\pi\)
\(264\) −3.89049 0.960370i −0.239443 0.0591067i
\(265\) 0 0
\(266\) −0.0936648 0.162232i −0.00574296 0.00994709i
\(267\) 6.41282 3.87361i 0.392458 0.237061i
\(268\) 10.7893 + 10.7893i 0.659063 + 0.659063i
\(269\) −1.73455 3.00433i −0.105758 0.183177i 0.808290 0.588785i \(-0.200393\pi\)
−0.914047 + 0.405607i \(0.867060\pi\)
\(270\) 0 0
\(271\) 10.2881 + 5.93984i 0.624958 + 0.360819i 0.778797 0.627277i \(-0.215830\pi\)
−0.153839 + 0.988096i \(0.549164\pi\)
\(272\) −9.41782 + 9.41782i −0.571039 + 0.571039i
\(273\) 10.1363 + 22.8114i 0.613475 + 1.38061i
\(274\) 1.48865i 0.0899328i
\(275\) 0 0
\(276\) −2.60605 9.00897i −0.156866 0.542276i
\(277\) 4.44872 16.6029i 0.267298 0.997570i −0.693531 0.720427i \(-0.743946\pi\)
0.960829 0.277143i \(-0.0893875\pi\)
\(278\) 1.63161 1.63161i 0.0978575 0.0978575i
\(279\) −10.7443 + 6.78369i −0.643242 + 0.406129i
\(280\) 0 0
\(281\) 22.1387 1.32068 0.660341 0.750966i \(-0.270412\pi\)
0.660341 + 0.750966i \(0.270412\pi\)
\(282\) −0.302258 + 0.182576i −0.0179992 + 0.0108723i
\(283\) 0.732387 + 2.73331i 0.0435359 + 0.162478i 0.984271 0.176663i \(-0.0565303\pi\)
−0.940736 + 0.339141i \(0.889864\pi\)
\(284\) 20.9957 + 12.1219i 1.24587 + 0.719301i
\(285\) 0 0
\(286\) −1.66682 1.26408i −0.0985614 0.0747464i
\(287\) −5.50091 + 5.50091i −0.324708 + 0.324708i
\(288\) −3.79684 + 1.18022i −0.223731 + 0.0695449i
\(289\) −4.75421 2.74484i −0.279659 0.161461i
\(290\) 0 0
\(291\) −3.43448 + 3.57316i −0.201333 + 0.209462i
\(292\) −3.52240 0.943823i −0.206133 0.0552331i
\(293\) −7.63862 2.04676i −0.446253 0.119573i 0.0286927 0.999588i \(-0.490866\pi\)
−0.474946 + 0.880015i \(0.657532\pi\)
\(294\) −1.19995 + 1.24840i −0.0699823 + 0.0728080i
\(295\) 0 0
\(296\) −2.28627 1.31998i −0.132887 0.0767222i
\(297\) 12.1210 24.2062i 0.703329 1.40459i
\(298\) −0.711557 + 0.711557i −0.0412194 + 0.0412194i
\(299\) 1.22691 9.74525i 0.0709543 0.563583i
\(300\) 0 0
\(301\) −3.24408 1.87297i −0.186985 0.107956i
\(302\) 0.337605 + 1.25996i 0.0194270 + 0.0725024i
\(303\) −4.09926 + 2.47612i −0.235496 + 0.142250i
\(304\) −1.65208 −0.0947533
\(305\) 0 0
\(306\) 0.605132 + 0.958431i 0.0345931 + 0.0547899i
\(307\) −10.6962 + 10.6962i −0.610465 + 0.610465i −0.943067 0.332602i \(-0.892073\pi\)
0.332602 + 0.943067i \(0.392073\pi\)
\(308\) −10.7127 + 39.9805i −0.610415 + 2.27810i
\(309\) −0.0310290 0.107266i −0.00176518 0.00610213i
\(310\) 0 0
\(311\) 12.0194i 0.681560i −0.940143 0.340780i \(-0.889309\pi\)
0.940143 0.340780i \(-0.110691\pi\)
\(312\) −2.75787 0.291908i −0.156133 0.0165260i
\(313\) −16.5079 + 16.5079i −0.933082 + 0.933082i −0.997897 0.0648148i \(-0.979354\pi\)
0.0648148 + 0.997897i \(0.479354\pi\)
\(314\) −1.53727 0.887541i −0.0867530 0.0500869i
\(315\) 0 0
\(316\) 2.47557 + 4.28782i 0.139262 + 0.241209i
\(317\) 0.778692 + 0.778692i 0.0437357 + 0.0437357i 0.728636 0.684901i \(-0.240154\pi\)
−0.684901 + 0.728636i \(0.740154\pi\)
\(318\) −0.573844 + 0.346626i −0.0321796 + 0.0194378i
\(319\) −13.1553 22.7856i −0.736554 1.27575i
\(320\) 0 0
\(321\) −28.5638 7.05100i −1.59428 0.393548i
\(322\) 1.17132 0.313855i 0.0652753 0.0174905i
\(323\) 0.369530 + 1.37910i 0.0205612 + 0.0767354i
\(324\) −1.41435 17.8324i −0.0785748 0.990688i
\(325\) 0 0
\(326\) 1.42743i 0.0790581i
\(327\) 3.95639 7.17697i 0.218789 0.396887i
\(328\) −0.223696 0.834844i −0.0123515 0.0460965i
\(329\) 3.65874 + 6.33712i 0.201713 + 0.349377i
\(330\) 0 0
\(331\) −24.3850 + 14.0787i −1.34032 + 0.773834i −0.986854 0.161614i \(-0.948330\pi\)
−0.353466 + 0.935448i \(0.614997\pi\)
\(332\) 6.94906 25.9343i 0.381379 1.42333i
\(333\) 12.1020 13.0999i 0.663186 0.717868i
\(334\) −2.17509 + 1.25579i −0.119016 + 0.0687138i
\(335\) 0 0
\(336\) 7.55244 + 26.1084i 0.412019 + 1.42433i
\(337\) 17.9435 + 17.9435i 0.977446 + 0.977446i 0.999751 0.0223051i \(-0.00710052\pi\)
−0.0223051 + 0.999751i \(0.507101\pi\)
\(338\) −1.26190 0.709634i −0.0686382 0.0385990i
\(339\) 3.52092 + 3.38427i 0.191230 + 0.183808i
\(340\) 0 0
\(341\) −19.1103 11.0333i −1.03488 0.597487i
\(342\) −0.0309880 + 0.137141i −0.00167564 + 0.00741572i
\(343\) 5.58789 + 5.58789i 0.301717 + 0.301717i
\(344\) 0.360415 0.208086i 0.0194323 0.0112192i
\(345\) 0 0
\(346\) 0.402969i 0.0216637i
\(347\) −0.484424 0.129801i −0.0260052 0.00696808i 0.245793 0.969322i \(-0.420952\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(348\) −15.2255 8.39323i −0.816171 0.449924i
\(349\) −4.63210 + 8.02304i −0.247951 + 0.429463i −0.962957 0.269655i \(-0.913090\pi\)
0.715006 + 0.699118i \(0.246424\pi\)
\(350\) 0 0
\(351\) 6.02978 17.7381i 0.321846 0.946792i
\(352\) −4.88250 4.88250i −0.260238 0.260238i
\(353\) −5.48087 20.4549i −0.291717 1.08870i −0.943790 0.330547i \(-0.892767\pi\)
0.652072 0.758157i \(-0.273900\pi\)
\(354\) 0.484884 + 1.67622i 0.0257713 + 0.0890900i
\(355\) 0 0
\(356\) 8.59729 0.455656
\(357\) 20.1052 12.1443i 1.06408 0.642747i
\(358\) −0.167842 + 0.626394i −0.00887071 + 0.0331059i
\(359\) 17.7610i 0.937391i 0.883360 + 0.468695i \(0.155276\pi\)
−0.883360 + 0.468695i \(0.844724\pi\)
\(360\) 0 0
\(361\) 9.41145 16.3011i 0.495339 0.857953i
\(362\) 1.07078 0.286915i 0.0562791 0.0150799i
\(363\) 27.9548 0.553211i 1.46724 0.0290361i
\(364\) −3.57812 + 28.4206i −0.187544 + 1.48964i
\(365\) 0 0
\(366\) −0.985514 + 0.285082i −0.0515136 + 0.0149015i
\(367\) −1.08991 + 0.292041i −0.0568929 + 0.0152444i −0.287153 0.957885i \(-0.592709\pi\)
0.230260 + 0.973129i \(0.426042\pi\)
\(368\) 2.76792 10.3300i 0.144288 0.538490i
\(369\) 5.83421 0.231003i 0.303717 0.0120255i
\(370\) 0 0
\(371\) 6.94621 + 12.0312i 0.360629 + 0.624628i
\(372\) −14.5785 + 0.288501i −0.755859 + 0.0149581i
\(373\) −17.2256 4.61559i −0.891908 0.238986i −0.216370 0.976311i \(-0.569422\pi\)
−0.675538 + 0.737325i \(0.736088\pi\)
\(374\) −0.984215 + 1.70471i −0.0508926 + 0.0881485i
\(375\) 0 0
\(376\) −0.812968 −0.0419256
\(377\) −11.1662 14.3828i −0.575089 0.740752i
\(378\) 2.30894 0.137222i 0.118759 0.00705793i
\(379\) 5.17481 8.96303i 0.265812 0.460400i −0.701964 0.712212i \(-0.747693\pi\)
0.967776 + 0.251813i \(0.0810267\pi\)
\(380\) 0 0
\(381\) −0.752043 + 3.04655i −0.0385283 + 0.156079i
\(382\) 1.80135 1.80135i 0.0921650 0.0921650i
\(383\) 16.0474 + 4.29989i 0.819985 + 0.219714i 0.644340 0.764739i \(-0.277132\pi\)
0.175645 + 0.984454i \(0.443799\pi\)
\(384\) −5.90004 1.45643i −0.301085 0.0743231i
\(385\) 0 0
\(386\) 1.65075 0.953061i 0.0840210 0.0485095i
\(387\) 0.834534 + 2.68476i 0.0424218 + 0.136474i
\(388\) −5.49356 + 1.47199i −0.278893 + 0.0747292i
\(389\) 24.1762 1.22578 0.612891 0.790167i \(-0.290006\pi\)
0.612891 + 0.790167i \(0.290006\pi\)
\(390\) 0 0
\(391\) −9.24230 −0.467403
\(392\) −3.85068 + 1.03179i −0.194488 + 0.0521130i
\(393\) −30.7726 16.9638i −1.55227 0.855709i
\(394\) 0.142693 0.0823836i 0.00718875 0.00415043i
\(395\) 0 0
\(396\) 26.2679 16.5850i 1.32001 0.833425i
\(397\) −8.25936 2.21309i −0.414525 0.111072i 0.0455279 0.998963i \(-0.485503\pi\)
−0.460053 + 0.887891i \(0.652170\pi\)
\(398\) 1.88158 1.88158i 0.0943149 0.0943149i
\(399\) 2.82861 + 0.698246i 0.141608 + 0.0349560i
\(400\) 0 0
\(401\) 13.7400 23.7983i 0.686142 1.18843i −0.286935 0.957950i \(-0.592636\pi\)
0.973076 0.230482i \(-0.0740304\pi\)
\(402\) 1.48049 0.0292982i 0.0738401 0.00146126i
\(403\) −14.1418 5.76418i −0.704454 0.287134i
\(404\) −5.49564 −0.273418
\(405\) 0 0
\(406\) 1.12401 1.94684i 0.0557835 0.0966199i
\(407\) 29.9163 + 8.01606i 1.48290 + 0.397341i
\(408\) 0.0516315 + 2.60903i 0.00255614 + 0.129166i
\(409\) 18.6648 + 32.3284i 0.922916 + 1.59854i 0.794878 + 0.606769i \(0.207535\pi\)
0.128038 + 0.991769i \(0.459132\pi\)
\(410\) 0 0
\(411\) 16.6923 + 16.0444i 0.823369 + 0.791414i
\(412\) 0.0331646 0.123772i 0.00163390 0.00609781i
\(413\) 34.9272 9.35870i 1.71865 0.460512i
\(414\) −0.805588 0.423528i −0.0395925 0.0208153i
\(415\) 0 0
\(416\) −3.80753 2.88753i −0.186680 0.141573i
\(417\) 0.710057 + 35.8805i 0.0347717 + 1.75708i
\(418\) −0.235847 + 0.0631949i −0.0115356 + 0.00309097i
\(419\) −14.8413 + 25.7059i −0.725046 + 1.25582i 0.233909 + 0.972259i \(0.424848\pi\)
−0.958955 + 0.283558i \(0.908485\pi\)
\(420\) 0 0
\(421\) 21.3437i 1.04023i 0.854097 + 0.520114i \(0.174111\pi\)
−0.854097 + 0.520114i \(0.825889\pi\)
\(422\) 0.0887317 0.331151i 0.00431939 0.0161202i
\(423\) 1.21045 5.35700i 0.0588543 0.260466i
\(424\) −1.54344 −0.0749561
\(425\) 0 0
\(426\) 2.26011 0.653789i 0.109503 0.0316762i
\(427\) 5.50234 + 20.5350i 0.266277 + 0.993760i
\(428\) −23.8734 23.8734i −1.15396 1.15396i
\(429\) 32.1388 5.06614i 1.55168 0.244596i
\(430\) 0 0
\(431\) 1.45407 2.51852i 0.0700400 0.121313i −0.828879 0.559429i \(-0.811021\pi\)
0.898919 + 0.438116i \(0.144354\pi\)
\(432\) 9.13337 18.2398i 0.439429 0.877563i
\(433\) 25.5439 + 6.84446i 1.22756 + 0.328924i 0.813629 0.581384i \(-0.197489\pi\)
0.413932 + 0.910308i \(0.364155\pi\)
\(434\) 1.88541i 0.0905024i
\(435\) 0 0
\(436\) 8.14442 4.70218i 0.390047 0.225194i
\(437\) −0.810645 0.810645i −0.0387784 0.0387784i
\(438\) −0.302922 + 0.182977i −0.0144742 + 0.00874299i
\(439\) −23.2175 13.4046i −1.10811 0.639768i −0.169771 0.985484i \(-0.554303\pi\)
−0.938339 + 0.345716i \(0.887636\pi\)
\(440\) 0 0
\(441\) −1.06549 26.9100i −0.0507376 1.28143i
\(442\) −0.514187 + 1.26151i −0.0244574 + 0.0600037i
\(443\) 19.3624 + 19.3624i 0.919937 + 0.919937i 0.997024 0.0770872i \(-0.0245620\pi\)
−0.0770872 + 0.997024i \(0.524562\pi\)
\(444\) 19.6596 5.68700i 0.933006 0.269893i
\(445\) 0 0
\(446\) 0.557522 0.321885i 0.0263994 0.0152417i
\(447\) −0.309661 15.6477i −0.0146465 0.740113i
\(448\) −7.96992 + 29.7442i −0.376543 + 1.40528i
\(449\) 3.02917 1.74889i 0.142956 0.0825354i −0.426816 0.904338i \(-0.640365\pi\)
0.569772 + 0.821803i \(0.307032\pi\)
\(450\) 0 0
\(451\) 5.06990 + 8.78132i 0.238732 + 0.413496i
\(452\) 1.45047 + 5.41324i 0.0682245 + 0.254617i
\(453\) −17.7666 9.79404i −0.834746 0.460164i
\(454\) 1.63500i 0.0767343i
\(455\) 0 0
\(456\) −0.224311 + 0.233368i −0.0105043 + 0.0109284i
\(457\) 9.02853 + 33.6949i 0.422337 + 1.57618i 0.769671 + 0.638441i \(0.220420\pi\)
−0.347334 + 0.937742i \(0.612913\pi\)
\(458\) −0.387870 + 0.103930i −0.0181240 + 0.00485631i
\(459\) −17.2689 3.54445i −0.806044 0.165441i
\(460\) 0 0
\(461\) −5.43399 9.41194i −0.253086 0.438358i 0.711288 0.702901i \(-0.248112\pi\)
−0.964374 + 0.264543i \(0.914779\pi\)
\(462\) 2.07686 + 3.43827i 0.0966242 + 0.159963i
\(463\) 6.69797 + 6.69797i 0.311281 + 0.311281i 0.845406 0.534125i \(-0.179359\pi\)
−0.534125 + 0.845406i \(0.679359\pi\)
\(464\) −9.91274 17.1694i −0.460188 0.797068i
\(465\) 0 0
\(466\) 1.07508 + 0.620700i 0.0498023 + 0.0287534i
\(467\) 4.56632 4.56632i 0.211304 0.211304i −0.593517 0.804821i \(-0.702261\pi\)
0.804821 + 0.593517i \(0.202261\pi\)
\(468\) 16.4472 13.8457i 0.760271 0.640019i
\(469\) 30.6852i 1.41691i
\(470\) 0 0
\(471\) 26.5204 7.67163i 1.22200 0.353490i
\(472\) −1.03975 + 3.88039i −0.0478582 + 0.178609i
\(473\) −3.45243 + 3.45243i −0.158743 + 0.158743i
\(474\) 0.466490 + 0.115153i 0.0214266 + 0.00528917i
\(475\) 0 0
\(476\) 26.9538 1.23543
\(477\) 2.29808 10.1704i 0.105222 0.465670i
\(478\) −0.00273180 0.0101952i −0.000124950 0.000466319i
\(479\) −13.8170 7.97728i −0.631317 0.364491i 0.149945 0.988694i \(-0.452090\pi\)
−0.781262 + 0.624203i \(0.785424\pi\)
\(480\) 0 0
\(481\) 21.2664 + 2.67741i 0.969664 + 0.122079i
\(482\) 0.849732 0.849732i 0.0387042 0.0387042i
\(483\) −9.10506 + 16.5168i −0.414295 + 0.751538i
\(484\) 27.7869 + 16.0427i 1.26304 + 0.729216i
\(485\) 0 0
\(486\) −1.34279 1.10029i −0.0609102 0.0499103i
\(487\) −31.7115 8.49708i −1.43699 0.385040i −0.545510 0.838104i \(-0.683664\pi\)
−0.891478 + 0.453065i \(0.850331\pi\)
\(488\) −2.28143 0.611308i −0.103276 0.0276726i
\(489\) 16.0058 + 15.3846i 0.723807 + 0.695716i
\(490\) 0 0
\(491\) −25.2561 14.5816i −1.13979 0.658058i −0.193412 0.981118i \(-0.561955\pi\)
−0.946379 + 0.323059i \(0.895289\pi\)
\(492\) 5.86773 + 3.23466i 0.264538 + 0.145830i
\(493\) −12.1152 + 12.1152i −0.545642 + 0.545642i
\(494\) −0.155747 + 0.0655476i −0.00700738 + 0.00294913i
\(495\) 0 0
\(496\) −14.3999 8.31380i −0.646576 0.373301i
\(497\) −12.6187 47.0937i −0.566027 2.11244i
\(498\) −1.34720 2.23031i −0.0603695 0.0999427i
\(499\) −16.7557 −0.750087 −0.375044 0.927007i \(-0.622372\pi\)
−0.375044 + 0.927007i \(0.622372\pi\)
\(500\) 0 0
\(501\) 9.36157 37.9240i 0.418244 1.69432i
\(502\) −1.68439 + 1.68439i −0.0751778 + 0.0751778i
\(503\) 2.38495 8.90077i 0.106340 0.396866i −0.892154 0.451732i \(-0.850806\pi\)
0.998494 + 0.0548660i \(0.0174732\pi\)
\(504\) 4.71342 + 2.47802i 0.209952 + 0.110380i
\(505\) 0 0
\(506\) 1.58057i 0.0702648i
\(507\) 21.5576 6.50137i 0.957409 0.288736i
\(508\) −2.54628 + 2.54628i −0.112973 + 0.112973i
\(509\) 0.476859 + 0.275315i 0.0211364 + 0.0122031i 0.510531 0.859859i \(-0.329449\pi\)
−0.489395 + 0.872062i \(0.662782\pi\)
\(510\) 0 0
\(511\) 3.66677 + 6.35104i 0.162208 + 0.280953i
\(512\) −6.14451 6.14451i −0.271552 0.271552i
\(513\) −1.20378 1.82555i −0.0531481 0.0805999i
\(514\) 0.903491 + 1.56489i 0.0398513 + 0.0690245i
\(515\) 0 0
\(516\) −0.773199 + 3.13225i −0.0340382 + 0.137890i
\(517\) 9.21266 2.46852i 0.405172 0.108566i
\(518\) 0.684904 + 2.55610i 0.0300930 + 0.112308i
\(519\) 4.51850 + 4.34313i 0.198340 + 0.190642i
\(520\) 0 0
\(521\) 32.2002i 1.41072i 0.708852 + 0.705358i \(0.249214\pi\)
−0.708852 + 0.705358i \(0.750786\pi\)
\(522\) −1.61118 + 0.500821i −0.0705194 + 0.0219204i
\(523\) 3.65245 + 13.6311i 0.159711 + 0.596048i 0.998656 + 0.0518323i \(0.0165061\pi\)
−0.838945 + 0.544216i \(0.816827\pi\)
\(524\) −20.1615 34.9207i −0.880758 1.52552i
\(525\) 0 0
\(526\) −2.21362 + 1.27803i −0.0965184 + 0.0557249i
\(527\) −3.71919 + 13.8802i −0.162010 + 0.604631i
\(528\) 35.4181 0.700906i 1.54137 0.0305030i
\(529\) −13.4917 + 7.78941i −0.586594 + 0.338670i
\(530\) 0 0
\(531\) −24.0215 12.6290i −1.04244 0.548051i
\(532\) 2.36413 + 2.36413i 0.102498 + 0.102498i
\(533\) 4.30333 + 5.54297i 0.186398 + 0.240093i
\(534\) 0.578179 0.601524i 0.0250202 0.0260305i
\(535\) 0 0
\(536\) 2.95238 + 1.70456i 0.127523 + 0.0736256i
\(537\) −5.21479 8.63317i −0.225035 0.372549i
\(538\) −0.273182 0.273182i −0.0117777 0.0117777i
\(539\) 40.5034 23.3846i 1.74460 1.00725i
\(540\) 0 0
\(541\) 22.8149i 0.980890i 0.871472 + 0.490445i \(0.163166\pi\)
−0.871472 + 0.490445i \(0.836834\pi\)
\(542\) 1.27790 + 0.342412i 0.0548905 + 0.0147079i
\(543\) −8.32353 + 15.0990i −0.357197 + 0.647961i
\(544\) −2.24824 + 3.89407i −0.0963927 + 0.166957i
\(545\) 0 0
\(546\) 1.74786 + 2.16167i 0.0748017 + 0.0925109i
\(547\) −10.0470 10.0470i −0.429577 0.429577i 0.458907 0.888484i \(-0.348241\pi\)
−0.888484 + 0.458907i \(0.848241\pi\)
\(548\) 6.87653 + 25.6636i 0.293751 + 1.09629i
\(549\) 7.42506 14.1231i 0.316894 0.602761i
\(550\) 0 0
\(551\) −2.12526 −0.0905391
\(552\) −1.08337 1.79354i −0.0461115 0.0763383i
\(553\) 2.57704 9.61765i 0.109587 0.408984i
\(554\) 1.91420i 0.0813267i
\(555\) 0 0
\(556\) −20.5912 + 35.6650i −0.873261 + 1.51253i
\(557\) 25.4378 6.81604i 1.07783 0.288805i 0.324126 0.946014i \(-0.394930\pi\)
0.753708 + 0.657209i \(0.228263\pi\)
\(558\) −0.960235 + 1.03941i −0.0406500 + 0.0440017i
\(559\) −2.04178 + 2.69231i −0.0863581 + 0.113873i
\(560\) 0 0
\(561\) −8.50725 29.4091i −0.359176 1.24165i
\(562\) 2.38146 0.638111i 0.100456 0.0269171i
\(563\) −5.06546 + 18.9045i −0.213484 + 0.796732i 0.773211 + 0.634149i \(0.218649\pi\)
−0.986695 + 0.162583i \(0.948017\pi\)
\(564\) 4.36739 4.54374i 0.183900 0.191326i
\(565\) 0 0
\(566\) 0.157566 + 0.272913i 0.00662300 + 0.0114714i
\(567\) −23.3467 + 27.3692i −0.980470 + 1.14940i
\(568\) 5.23209 + 1.40193i 0.219534 + 0.0588239i
\(569\) 2.45559 4.25321i 0.102944 0.178304i −0.809952 0.586495i \(-0.800507\pi\)
0.912896 + 0.408192i \(0.133841\pi\)
\(570\) 0 0
\(571\) −17.2440 −0.721639 −0.360819 0.932636i \(-0.617503\pi\)
−0.360819 + 0.932636i \(0.617503\pi\)
\(572\) 34.5743 + 14.0924i 1.44562 + 0.589233i
\(573\) 0.783925 + 39.6132i 0.0327489 + 1.65486i
\(574\) −0.433180 + 0.750289i −0.0180806 + 0.0313165i
\(575\) 0 0
\(576\) 19.5424 12.3387i 0.814267 0.514111i
\(577\) 16.3463 16.3463i 0.680507 0.680507i −0.279607 0.960114i \(-0.590204\pi\)
0.960114 + 0.279607i \(0.0902043\pi\)
\(578\) −0.590527 0.158231i −0.0245627 0.00658156i
\(579\) −7.10481 + 28.7818i −0.295266 + 1.19613i
\(580\) 0 0
\(581\) −46.7606 + 26.9973i −1.93996 + 1.12003i
\(582\) −0.266458 + 0.483360i −0.0110450 + 0.0200359i
\(583\) 17.4905 4.68655i 0.724381 0.194097i
\(584\) −0.814753 −0.0337147
\(585\) 0 0
\(586\) −0.880683 −0.0363807
\(587\) −1.29527 + 0.347066i −0.0534615 + 0.0143250i −0.285451 0.958393i \(-0.592143\pi\)
0.231989 + 0.972718i \(0.425477\pi\)
\(588\) 14.9197 27.0646i 0.615278 1.11613i
\(589\) −1.54365 + 0.891226i −0.0636049 + 0.0367223i
\(590\) 0 0
\(591\) −0.614148 + 2.48793i −0.0252627 + 0.102340i
\(592\) 22.5425 + 6.04025i 0.926491 + 0.248253i
\(593\) −16.7430 + 16.7430i −0.687552 + 0.687552i −0.961690 0.274138i \(-0.911607\pi\)
0.274138 + 0.961690i \(0.411607\pi\)
\(594\) 0.606152 2.95323i 0.0248707 0.121173i
\(595\) 0 0
\(596\) 8.97996 15.5537i 0.367834 0.637106i
\(597\) 0.818839 + 41.3774i 0.0335129 + 1.69347i
\(598\) −0.148912 1.08366i −0.00608945 0.0443143i
\(599\) −29.1006 −1.18902 −0.594509 0.804089i \(-0.702653\pi\)
−0.594509 + 0.804089i \(0.702653\pi\)
\(600\) 0 0
\(601\) 15.9418 27.6120i 0.650280 1.12632i −0.332775 0.943006i \(-0.607985\pi\)
0.983055 0.183311i \(-0.0586816\pi\)
\(602\) −0.402952 0.107971i −0.0164231 0.00440055i
\(603\) −15.6279 + 16.9165i −0.636419 + 0.688894i
\(604\) −11.6402 20.1615i −0.473635 0.820359i
\(605\) 0 0
\(606\) −0.369589 + 0.384512i −0.0150135 + 0.0156197i
\(607\) −3.79661 + 14.1691i −0.154100 + 0.575107i 0.845081 + 0.534638i \(0.179552\pi\)
−0.999181 + 0.0404693i \(0.987115\pi\)
\(608\) −0.538745 + 0.144356i −0.0218490 + 0.00585442i
\(609\) 9.71556 + 33.5862i 0.393695 + 1.36098i
\(610\) 0 0
\(611\) 6.08379 2.56042i 0.246124 0.103584i
\(612\) −14.8594 13.7275i −0.600657 0.554903i
\(613\) −20.0772 + 5.37967i −0.810911 + 0.217283i −0.640369 0.768067i \(-0.721219\pi\)
−0.170542 + 0.985350i \(0.554552\pi\)
\(614\) −0.842294 + 1.45890i −0.0339922 + 0.0588762i
\(615\) 0 0
\(616\) 9.24775i 0.372602i
\(617\) 10.5157 39.2451i 0.423345 1.57995i −0.344164 0.938909i \(-0.611838\pi\)
0.767510 0.641037i \(-0.221496\pi\)
\(618\) −0.00642956 0.0106442i −0.000258635 0.000428174i
\(619\) −21.9052 −0.880445 −0.440222 0.897889i \(-0.645100\pi\)
−0.440222 + 0.897889i \(0.645100\pi\)
\(620\) 0 0
\(621\) 13.4315 4.46836i 0.538988 0.179309i
\(622\) −0.346441 1.29293i −0.0138910 0.0518420i
\(623\) −12.2255 12.2255i −0.489804 0.489804i
\(624\) 24.2172 3.81743i 0.969464 0.152820i
\(625\) 0 0
\(626\) −1.29995 + 2.25158i −0.0519564 + 0.0899911i
\(627\) 1.83331 3.32566i 0.0732153 0.132814i
\(628\) 30.6015 + 8.19964i 1.22113 + 0.327201i
\(629\) 20.1688i 0.804183i
\(630\) 0 0
\(631\) 16.2845 9.40185i 0.648275 0.374282i −0.139520 0.990219i \(-0.544556\pi\)
0.787795 + 0.615937i \(0.211223\pi\)
\(632\) 0.782208 + 0.782208i 0.0311146 + 0.0311146i
\(633\) 2.75687 + 4.56404i 0.109576 + 0.181404i
\(634\) 0.106209 + 0.0613196i 0.00421809 + 0.00243531i
\(635\) 0 0
\(636\) 8.29159 8.62639i 0.328783 0.342059i
\(637\) 25.5667 19.8489i 1.01299 0.786442i
\(638\) −2.07188 2.07188i −0.0820264 0.0820264i
\(639\) −17.0282 + 32.3891i −0.673624 + 1.28129i
\(640\) 0 0
\(641\) −18.6204 + 10.7505i −0.735461 + 0.424619i −0.820417 0.571766i \(-0.806258\pi\)
0.0849557 + 0.996385i \(0.472925\pi\)
\(642\) −3.27585 + 0.0648275i −0.129288 + 0.00255854i
\(643\) −0.707671 + 2.64106i −0.0279078 + 0.104153i −0.978475 0.206366i \(-0.933836\pi\)
0.950567 + 0.310519i \(0.100503\pi\)
\(644\) −18.7432 + 10.8214i −0.738585 + 0.426422i
\(645\) 0 0
\(646\) 0.0795009 + 0.137700i 0.00312792 + 0.00541772i
\(647\) 10.6764 + 39.8449i 0.419733 + 1.56647i 0.775162 + 0.631762i \(0.217668\pi\)
−0.355429 + 0.934703i \(0.615665\pi\)
\(648\) −1.33642 3.76665i −0.0524995 0.147968i
\(649\) 47.1302i 1.85002i
\(650\) 0 0
\(651\) 21.1411 + 20.3206i 0.828585 + 0.796426i
\(652\) 6.59373 + 24.6081i 0.258230 + 0.963729i
\(653\) 16.7866 4.49795i 0.656909 0.176018i 0.0850584 0.996376i \(-0.472892\pi\)
0.571851 + 0.820358i \(0.306226\pi\)
\(654\) 0.218726 0.886066i 0.00855286 0.0346479i
\(655\) 0 0
\(656\) 3.82026 + 6.61688i 0.149156 + 0.258346i
\(657\) 1.21311 5.36876i 0.0473280 0.209455i
\(658\) 0.576229 + 0.576229i 0.0224638 + 0.0224638i
\(659\) 9.34358 + 16.1835i 0.363974 + 0.630422i 0.988611 0.150494i \(-0.0480863\pi\)
−0.624637 + 0.780915i \(0.714753\pi\)
\(660\) 0 0
\(661\) 36.7989 + 21.2459i 1.43131 + 0.826368i 0.997221 0.0745005i \(-0.0237362\pi\)
0.434091 + 0.900869i \(0.357070\pi\)
\(662\) −2.21731 + 2.21731i −0.0861780 + 0.0861780i
\(663\) −8.60347 19.3619i −0.334131 0.751953i
\(664\) 5.99876i 0.232797i
\(665\) 0 0
\(666\) 0.924235 1.75798i 0.0358134 0.0681203i
\(667\) 3.56070 13.2887i 0.137871 0.514540i
\(668\) 31.6965 31.6965i 1.22638 1.22638i
\(669\) −2.39957 + 9.72072i −0.0927727 + 0.375825i
\(670\) 0 0
\(671\) 27.7097 1.06972
\(672\) 4.74417 + 7.85405i 0.183010 + 0.302977i
\(673\) −0.262737 0.980547i −0.0101278 0.0377973i 0.960677 0.277668i \(-0.0895616\pi\)
−0.970805 + 0.239871i \(0.922895\pi\)
\(674\) 2.44738 + 1.41300i 0.0942697 + 0.0544267i
\(675\) 0 0
\(676\) 25.0324 + 6.40462i 0.962786 + 0.246331i
\(677\) 2.15255 2.15255i 0.0827291 0.0827291i −0.664531 0.747260i \(-0.731369\pi\)
0.747260 + 0.664531i \(0.231369\pi\)
\(678\) 0.476293 + 0.262562i 0.0182919 + 0.0100836i
\(679\) 9.90513 + 5.71873i 0.380124 + 0.219465i
\(680\) 0 0
\(681\) −18.3333 17.6217i −0.702532 0.675266i
\(682\) −2.37371 0.636035i −0.0908942 0.0243550i
\(683\) −31.0697 8.32509i −1.18885 0.318551i −0.390418 0.920638i \(-0.627669\pi\)
−0.798430 + 0.602087i \(0.794336\pi\)
\(684\) −0.0992783 2.50737i −0.00379600 0.0958718i
\(685\) 0 0
\(686\) 0.762153 + 0.440029i 0.0290991 + 0.0168004i
\(687\) 3.01504 5.46933i 0.115031 0.208668i
\(688\) −2.60147 + 2.60147i −0.0991802 + 0.0991802i
\(689\) 11.5502 4.86103i 0.440028 0.185190i
\(690\) 0 0
\(691\) −15.5777 8.99379i −0.592603 0.342140i 0.173523 0.984830i \(-0.444485\pi\)
−0.766126 + 0.642690i \(0.777818\pi\)
\(692\) 1.86143 + 6.94696i 0.0707611 + 0.264084i
\(693\) −60.9374 13.7693i −2.31482 0.523051i
\(694\) −0.0558510 −0.00212007
\(695\) 0 0
\(696\) −3.77119 0.930921i −0.142947 0.0352865i
\(697\) 4.66906 4.66906i 0.176853 0.176853i
\(698\) −0.267026 + 0.996554i −0.0101071 + 0.0377201i
\(699\) −18.5470 + 5.36514i −0.701512 + 0.202928i
\(700\) 0 0
\(701\) 36.5117i 1.37903i −0.724272 0.689515i \(-0.757824\pi\)
0.724272 0.689515i \(-0.242176\pi\)
\(702\) 0.137352 2.08190i 0.00518402 0.0785761i
\(703\) 1.76901 1.76901i 0.0667196 0.0667196i
\(704\) 34.7591 + 20.0682i 1.31003 + 0.756347i
\(705\) 0 0
\(706\) −1.17916 2.04236i −0.0443782 0.0768653i
\(707\) 7.81490 + 7.81490i 0.293909 + 0.293909i
\(708\) −16.1021 26.6573i −0.605153 1.00184i
\(709\) 17.1761 + 29.7499i 0.645063 + 1.11728i 0.984287 + 0.176577i \(0.0565023\pi\)
−0.339224 + 0.940706i \(0.610164\pi\)
\(710\) 0 0
\(711\) −6.31896 + 3.98965i −0.236980 + 0.149624i
\(712\) 1.85540 0.497153i 0.0695340 0.0186316i
\(713\) −2.98635 11.1452i −0.111840 0.417391i
\(714\) 1.81268 1.88587i 0.0678377 0.0705769i
\(715\) 0 0
\(716\) 11.5740i 0.432540i
\(717\) 0.143762 + 0.0792506i 0.00536889 + 0.00295967i
\(718\) 0.511933 + 1.91056i 0.0191052 + 0.0713014i
\(719\) 5.50044 + 9.52704i 0.205132 + 0.355299i 0.950175 0.311718i \(-0.100904\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(720\) 0 0
\(721\) −0.223167 + 0.128845i −0.00831116 + 0.00479845i
\(722\) 0.542540 2.02479i 0.0201912 0.0753547i
\(723\) 0.369793 + 18.6863i 0.0137528 + 0.694952i
\(724\) −17.1344 + 9.89253i −0.636794 + 0.367653i
\(725\) 0 0
\(726\) 2.99116 0.865260i 0.111012 0.0321128i
\(727\) −13.9424 13.9424i −0.517094 0.517094i 0.399597 0.916691i \(-0.369150\pi\)
−0.916691 + 0.399597i \(0.869150\pi\)
\(728\) 0.871268 + 6.34042i 0.0322913 + 0.234991i
\(729\) 26.8099 3.19796i 0.992961 0.118443i
\(730\) 0 0
\(731\) 2.75351 + 1.58974i 0.101842 + 0.0587986i
\(732\) 15.6728 9.46704i 0.579285 0.349912i
\(733\) 10.0007 + 10.0007i 0.369383 + 0.369383i 0.867252 0.497869i \(-0.165884\pi\)
−0.497869 + 0.867252i \(0.665884\pi\)
\(734\) −0.108825 + 0.0628299i −0.00401679 + 0.00231909i
\(735\) 0 0
\(736\) 3.61049i 0.133084i
\(737\) −38.6325 10.3515i −1.42305 0.381304i
\(738\) 0.620930 0.193011i 0.0228568 0.00710483i
\(739\) 5.27257 9.13236i 0.193955 0.335939i −0.752603 0.658475i \(-0.771202\pi\)
0.946557 + 0.322536i \(0.104535\pi\)
\(740\) 0 0
\(741\) 0.943625 2.45285i 0.0346649 0.0901077i
\(742\) 1.09399 + 1.09399i 0.0401615 + 0.0401615i
\(743\) 8.87832 + 33.1343i 0.325714 + 1.21558i 0.913592 + 0.406632i \(0.133297\pi\)
−0.587878 + 0.808949i \(0.700037\pi\)
\(744\) −3.12953 + 0.905286i −0.114734 + 0.0331894i
\(745\) 0 0
\(746\) −1.98600 −0.0727127
\(747\) 39.5284 + 8.93174i 1.44627 + 0.326795i
\(748\) 9.09277 33.9347i 0.332465 1.24077i
\(749\) 67.8966i 2.48089i
\(750\) 0 0
\(751\) −7.98474 + 13.8300i −0.291367 + 0.504663i −0.974133 0.225974i \(-0.927444\pi\)
0.682766 + 0.730637i \(0.260777\pi\)
\(752\) 6.94191 1.86008i 0.253145 0.0678301i
\(753\) −0.733024 37.0411i −0.0267129 1.34985i
\(754\) −1.61571 1.22531i −0.0588408 0.0446233i
\(755\) 0 0
\(756\) −39.1710 + 13.0313i −1.42464 + 0.473945i
\(757\) −40.7211 + 10.9112i −1.48003 + 0.396574i −0.906358 0.422510i \(-0.861149\pi\)
−0.573675 + 0.819083i \(0.694483\pi\)
\(758\) 0.298311 1.11331i 0.0108351 0.0404373i
\(759\) 17.7229 + 17.0351i 0.643301 + 0.618334i
\(760\) 0 0
\(761\) 2.02411 + 3.50585i 0.0733738 + 0.127087i 0.900378 0.435109i \(-0.143290\pi\)
−0.827004 + 0.562196i \(0.809957\pi\)
\(762\) 0.00691435 + 0.349395i 0.000250480 + 0.0126572i
\(763\) −18.2681 4.89492i −0.661349 0.177208i
\(764\) −22.7333 + 39.3752i −0.822462 + 1.42455i
\(765\) 0 0
\(766\) 1.85016 0.0668492
\(767\) −4.44032 32.3133i −0.160331 1.16676i
\(768\) 26.0052 0.514629i 0.938381 0.0185701i
\(769\) 9.59863 16.6253i 0.346135 0.599524i −0.639424 0.768854i \(-0.720827\pi\)
0.985559 + 0.169330i \(0.0541605\pi\)
\(770\) 0 0
\(771\) −27.2848 6.73528i −0.982640 0.242565i
\(772\) −24.0556 + 24.0556i −0.865778 + 0.865778i
\(773\) −3.32613 0.891235i −0.119633 0.0320555i 0.198506 0.980100i \(-0.436391\pi\)
−0.318139 + 0.948044i \(0.603058\pi\)
\(774\) 0.167155 + 0.264746i 0.00600826 + 0.00951611i
\(775\) 0 0
\(776\) −1.10045 + 0.635348i −0.0395040 + 0.0228077i
\(777\) −36.0433 19.8693i −1.29305 0.712808i
\(778\) 2.60064 0.696840i 0.0932375 0.0249829i
\(779\) 0.819051 0.0293455
\(780\) 0 0
\(781\) −63.5476 −2.27391
\(782\) −0.994197 + 0.266394i −0.0355524 + 0.00952624i
\(783\) 11.7493 23.4639i 0.419885 0.838533i
\(784\) 30.5200 17.6208i 1.09000 0.629313i
\(785\) 0 0
\(786\) −3.79917 0.937828i −0.135512 0.0334512i
\(787\) −33.5033 8.97719i −1.19426 0.320002i −0.393694 0.919241i \(-0.628803\pi\)
−0.800570 + 0.599239i \(0.795470\pi\)
\(788\) −2.07939 + 2.07939i −0.0740752 + 0.0740752i
\(789\) 9.52740 38.5958i 0.339184 1.37405i
\(790\) 0 0
\(791\) 5.63512 9.76031i 0.200362 0.347037i
\(792\) 4.70987 5.09821i 0.167358 0.181157i
\(793\) 18.9982 2.61064i 0.674647 0.0927065i
\(794\) −0.952251 −0.0337941
\(795\) 0 0
\(796\) −23.7458 + 41.1289i −0.841647 + 1.45778i
\(797\) −29.7594 7.97400i −1.05413 0.282454i −0.310173 0.950680i \(-0.600387\pi\)
−0.743958 + 0.668226i \(0.767054\pi\)
\(798\) 0.324401 0.00641973i 0.0114837 0.000227256i
\(799\) −3.10547 5.37883i −0.109864 0.190289i
\(800\) 0 0
\(801\) 0.513392 + 12.9662i 0.0181398 + 0.458140i
\(802\) 0.792066 2.95603i 0.0279688 0.104381i
\(803\) 9.23288 2.47394i 0.325821 0.0873036i
\(804\) −25.3875 + 7.34391i −0.895348 + 0.259000i
\(805\) 0 0
\(806\) −1.68738 0.212439i −0.0594355 0.00748286i
\(807\) 6.00749 0.118885i 0.211474 0.00418496i
\(808\) −1.18603 + 0.317795i −0.0417242 + 0.0111800i
\(809\) 18.8982 32.7327i 0.664427 1.15082i −0.315013 0.949087i \(-0.602009\pi\)
0.979440 0.201734i \(-0.0646576\pi\)
\(810\) 0 0
\(811\) 11.6051i 0.407512i 0.979022 + 0.203756i \(0.0653148\pi\)
−0.979022 + 0.203756i \(0.934685\pi\)
\(812\) −10.3842 + 38.7545i −0.364416 + 1.36002i
\(813\) −17.6125 + 10.6387i −0.617696 + 0.373114i
\(814\) 3.44916 0.120893
\(815\) 0 0
\(816\) −6.41037 22.1603i −0.224408 0.775766i
\(817\) 0.102075 + 0.380948i 0.00357114 + 0.0133277i
\(818\) 2.93960 + 2.93960i 0.102781 + 0.102781i
\(819\) −43.0770 3.69928i −1.50523 0.129263i
\(820\) 0 0
\(821\) −21.9513 + 38.0208i −0.766107 + 1.32694i 0.173553 + 0.984825i \(0.444475\pi\)
−0.939659 + 0.342111i \(0.888858\pi\)
\(822\) 2.25805 + 1.24478i 0.0787585 + 0.0434166i
\(823\) −42.7695 11.4601i −1.49085 0.399472i −0.580827 0.814027i \(-0.697271\pi\)
−0.910025 + 0.414554i \(0.863937\pi\)
\(824\) 0.0286293i 0.000997349i
\(825\) 0 0
\(826\) 3.48738 2.01344i 0.121341 0.0700565i
\(827\) 6.22326 + 6.22326i 0.216404 + 0.216404i 0.806981 0.590577i \(-0.201100\pi\)
−0.590577 + 0.806981i \(0.701100\pi\)
\(828\) 15.8443 + 3.58014i 0.550628 + 0.124418i
\(829\) −34.6858 20.0259i −1.20469 0.695527i −0.243094 0.970003i \(-0.578162\pi\)
−0.961594 + 0.274475i \(0.911496\pi\)
\(830\) 0 0
\(831\) 21.4640 + 20.6310i 0.744578 + 0.715680i
\(832\) 25.7221 + 10.4843i 0.891754 + 0.363477i
\(833\) −21.5358 21.5358i −0.746172 0.746172i
\(834\) 1.11058 + 3.83921i 0.0384562 + 0.132941i
\(835\) 0 0
\(836\) 3.77395 2.17889i 0.130525 0.0753586i
\(837\) −1.30567 21.9697i −0.0451307 0.759384i
\(838\) −0.855555 + 3.19297i −0.0295546 + 0.110299i
\(839\) 3.62533 2.09309i 0.125160 0.0722614i −0.436113 0.899892i \(-0.643645\pi\)
0.561273 + 0.827631i \(0.310312\pi\)
\(840\) 0 0
\(841\) 1.74811 + 3.02782i 0.0602797 + 0.104407i
\(842\) 0.615198 + 2.29595i 0.0212011 + 0.0791236i
\(843\) −18.5119 + 33.5808i −0.637582 + 1.15659i
\(844\) 6.11875i 0.210616i
\(845\) 0 0
\(846\) −0.0241979 0.611144i −0.000831942 0.0210116i
\(847\) −16.7003 62.3264i −0.573830 2.14156i
\(848\) 13.1794 3.53140i 0.452582 0.121269i
\(849\) −4.75840 1.17461i −0.163308 0.0403126i
\(850\) 0 0
\(851\) 8.09736 + 14.0250i 0.277574 + 0.480772i
\(852\) −35.9431 + 21.7111i −1.23139 + 0.743810i
\(853\) −1.57958 1.57958i −0.0540837 0.0540837i 0.679548 0.733631i \(-0.262176\pi\)
−0.733631 + 0.679548i \(0.762176\pi\)
\(854\) 1.18378 + 2.05036i 0.0405081 + 0.0701620i
\(855\) 0 0
\(856\) −6.53267 3.77164i −0.223282 0.128912i
\(857\) −31.1740 + 31.1740i −1.06488 + 1.06488i −0.0671414 + 0.997743i \(0.521388\pi\)
−0.997743 + 0.0671414i \(0.978612\pi\)
\(858\) 3.31116 1.47132i 0.113041 0.0502299i
\(859\) 17.7932i 0.607095i 0.952816 + 0.303547i \(0.0981711\pi\)
−0.952816 + 0.303547i \(0.901829\pi\)
\(860\) 0 0
\(861\) −3.74427 12.9437i −0.127604 0.441121i
\(862\) 0.0838223 0.312829i 0.00285500 0.0106550i
\(863\) 4.49895 4.49895i 0.153146 0.153146i −0.626375 0.779522i \(-0.715462\pi\)
0.779522 + 0.626375i \(0.215462\pi\)
\(864\) 1.38463 6.74608i 0.0471062 0.229506i
\(865\) 0 0
\(866\) 2.94505 0.100077
\(867\) 8.13885 4.91620i 0.276410 0.166963i
\(868\) 8.70925 + 32.5034i 0.295611 + 1.10324i
\(869\) −11.2392 6.48896i −0.381264 0.220123i
\(870\) 0 0
\(871\) −27.4624 3.45747i −0.930526 0.117152i
\(872\) 1.48575 1.48575i 0.0503139 0.0503139i
\(873\) −2.54808 8.19736i −0.0862395 0.277439i
\(874\) −0.110567 0.0638359i −0.00373998 0.00215928i
\(875\) 0 0
\(876\) 4.37698 4.55371i 0.147884 0.153856i
\(877\) −5.92830 1.58848i −0.200184 0.0536393i 0.157334 0.987546i \(-0.449710\pi\)
−0.357518 + 0.933906i \(0.616377\pi\)
\(878\) −2.88388 0.772733i −0.0973262 0.0260785i
\(879\) 9.49185 9.87511i 0.320152 0.333079i
\(880\) 0 0
\(881\) 36.9093 + 21.3096i 1.24350 + 0.717938i 0.969806 0.243878i \(-0.0784195\pi\)
0.273699 + 0.961815i \(0.411753\pi\)
\(882\) −0.890253 2.86401i −0.0299764 0.0964362i
\(883\) 13.2826 13.2826i 0.446996 0.446996i −0.447358 0.894355i \(-0.647635\pi\)
0.894355 + 0.447358i \(0.147635\pi\)
\(884\) 3.03704 24.1229i 0.102147 0.811340i
\(885\) 0 0
\(886\) 2.64092 + 1.52473i 0.0887233 + 0.0512244i
\(887\) −0.0189788 0.0708297i −0.000637244 0.00237823i 0.965606 0.260008i \(-0.0837252\pi\)
−0.966244 + 0.257630i \(0.917059\pi\)
\(888\) 3.91393 2.36417i 0.131343 0.0793364i
\(889\) 7.24169 0.242879
\(890\) 0 0
\(891\) 26.5817 + 38.6262i 0.890519 + 1.29403i
\(892\) −8.12449 + 8.12449i −0.272028 + 0.272028i
\(893\) 0.199397 0.744161i 0.00667257 0.0249024i
\(894\) −0.484331 1.67431i −0.0161985 0.0559972i
\(895\) 0 0
\(896\) 14.0245i 0.468525i
\(897\) 13.7561 + 10.0098i 0.459302 + 0.334217i
\(898\) 0.275440 0.275440i 0.00919156 0.00919156i
\(899\) −18.5243 10.6950i −0.617819 0.356698i
\(900\) 0 0
\(901\) −5.89581 10.2118i −0.196418 0.340206i
\(902\) 0.798478 + 0.798478i 0.0265864 + 0.0265864i
\(903\) 5.55362 3.35462i 0.184813 0.111635i
\(904\) 0.626059 + 1.08437i 0.0208224 + 0.0360655i
\(905\) 0 0
\(906\) −2.19345 0.541456i −0.0728726 0.0179887i
\(907\) −12.8605 + 3.44596i −0.427026 + 0.114421i −0.465930 0.884822i \(-0.654280\pi\)
0.0389038 + 0.999243i \(0.487613\pi\)
\(908\) −7.55255 28.1865i −0.250640 0.935401i
\(909\) −0.328176 8.28841i −0.0108849 0.274909i
\(910\) 0 0
\(911\) 26.2784i 0.870641i −0.900276 0.435321i \(-0.856635\pi\)
0.900276 0.435321i \(-0.143365\pi\)
\(912\) 1.38143 2.50594i 0.0457438 0.0829801i
\(913\) 18.2148 + 67.9787i 0.602823 + 2.24977i
\(914\) 1.94240 + 3.36434i 0.0642490 + 0.111283i
\(915\) 0 0
\(916\) 6.20659 3.58338i 0.205072 0.118398i
\(917\) −20.9879 + 78.3277i −0.693080 + 2.58661i
\(918\) −1.95979 + 0.116471i −0.0646826 + 0.00384412i
\(919\) 12.6380 7.29655i 0.416889 0.240691i −0.276856 0.960911i \(-0.589293\pi\)
0.693746 + 0.720220i \(0.255959\pi\)
\(920\) 0 0
\(921\) −7.28052 25.1684i −0.239901 0.829326i
\(922\) −0.855820 0.855820i −0.0281849 0.0281849i
\(923\) −43.5693 + 5.98707i −1.43410 + 0.197067i
\(924\) −51.6863 49.6803i −1.70035 1.63436i
\(925\) 0 0
\(926\) 0.913562 + 0.527445i 0.0300215 + 0.0173329i
\(927\) 0.188651 + 0.0426271i 0.00619611 + 0.00140006i
\(928\) −4.73279 4.73279i −0.155361 0.155361i
\(929\) −38.3045 + 22.1151i −1.25673 + 0.725573i −0.972437 0.233165i \(-0.925092\pi\)
−0.284292 + 0.958738i \(0.591758\pi\)
\(930\) 0 0
\(931\) 3.77783i 0.123813i
\(932\) −21.4011 5.73440i −0.701015 0.187836i
\(933\) 18.2316 + 10.0504i 0.596875 + 0.329035i
\(934\) 0.359584 0.622817i 0.0117659 0.0203792i
\(935\) 0 0
\(936\) 2.74884 3.93916i 0.0898488 0.128755i
\(937\) −22.4956 22.4956i −0.734898 0.734898i 0.236688 0.971586i \(-0.423938\pi\)
−0.971586 + 0.236688i \(0.923938\pi\)
\(938\) −0.884452 3.30082i −0.0288784 0.107776i
\(939\) −11.2363 38.8434i −0.366684 1.26761i
\(940\) 0 0
\(941\) 37.4186 1.21981 0.609905 0.792474i \(-0.291207\pi\)
0.609905 + 0.792474i \(0.291207\pi\)
\(942\) 2.63169 1.58965i 0.0857450 0.0517935i
\(943\) −1.37225 + 5.12131i −0.0446867 + 0.166773i
\(944\) 35.5135i 1.15586i
\(945\) 0 0
\(946\) −0.271869 + 0.470890i −0.00883921 + 0.0153100i
\(947\) −3.34143 + 0.895335i −0.108582 + 0.0290945i −0.312701 0.949852i \(-0.601234\pi\)
0.204119 + 0.978946i \(0.434567\pi\)
\(948\) −8.57396 + 0.169674i −0.278469 + 0.00551077i
\(949\) 6.09715 2.56605i 0.197922 0.0832974i
\(950\) 0 0
\(951\) −1.83228 + 0.530028i −0.0594157 + 0.0171873i
\(952\) 5.81695 1.55865i 0.188529 0.0505161i
\(953\) −7.66352 + 28.6007i −0.248246 + 0.926466i 0.723478 + 0.690347i \(0.242542\pi\)
−0.971724 + 0.236119i \(0.924124\pi\)
\(954\) −0.0459404 1.16027i −0.00148737 0.0375652i
\(955\) 0 0
\(956\) 0.0941895 + 0.163141i 0.00304631 + 0.00527636i
\(957\) 45.5623 0.901655i 1.47282 0.0291464i
\(958\) −1.71624 0.459864i −0.0554491 0.0148575i
\(959\) 26.7155 46.2725i 0.862687 1.49422i
\(960\) 0 0
\(961\) 13.0603 0.421299
\(962\) 2.36480 0.324959i 0.0762443 0.0104771i
\(963\) 34.5797 37.4309i 1.11431 1.20619i
\(964\) −10.7238 + 18.5741i −0.345389 + 0.598231i
\(965\) 0 0
\(966\) −0.503366 + 2.03915i −0.0161955 + 0.0656086i
\(967\) 18.5880 18.5880i 0.597750 0.597750i −0.341963 0.939713i \(-0.611092\pi\)
0.939713 + 0.341963i \(0.111092\pi\)
\(968\) 6.92443 + 1.85540i 0.222560 + 0.0596347i
\(969\) −2.40087 0.592657i −0.0771272 0.0190389i
\(970\) 0 0
\(971\) −6.10879 + 3.52691i −0.196040 + 0.113184i −0.594807 0.803868i \(-0.702772\pi\)
0.398767 + 0.917052i \(0.369438\pi\)
\(972\) 28.2315 + 12.7657i 0.905527 + 0.409460i
\(973\) 79.9972 21.4352i 2.56459 0.687180i
\(974\) −3.65614 −0.117150
\(975\) 0 0
\(976\) 20.8797 0.668344
\(977\) −19.7099 + 5.28126i −0.630577 + 0.168963i −0.559932 0.828539i \(-0.689173\pi\)
−0.0706455 + 0.997501i \(0.522506\pi\)
\(978\) 2.16519 + 1.19359i 0.0692350 + 0.0381667i
\(979\) −19.5160 + 11.2676i −0.623735 + 0.360114i
\(980\) 0 0
\(981\) 7.57808 + 12.0024i 0.241949 + 0.383208i
\(982\) −3.13710 0.840582i −0.100109 0.0268241i
\(983\) 30.8727 30.8727i 0.984687 0.984687i −0.0151975 0.999885i \(-0.504838\pi\)
0.999885 + 0.0151975i \(0.00483769\pi\)
\(984\) 1.45337 + 0.358767i 0.0463319 + 0.0114371i
\(985\) 0 0
\(986\) −0.954036 + 1.65244i −0.0303827 + 0.0526244i
\(987\) −12.6718 + 0.250768i −0.403347 + 0.00798203i
\(988\) 2.38221 1.84945i 0.0757880 0.0588387i
\(989\) −2.55299 −0.0811803
\(990\) 0 0
\(991\) −6.36105 + 11.0177i −0.202065 + 0.349988i −0.949194 0.314692i \(-0.898099\pi\)
0.747128 + 0.664680i \(0.231432\pi\)
\(992\) −5.42228 1.45290i −0.172158 0.0461295i
\(993\) −0.964945 48.7604i −0.0306216 1.54736i
\(994\) −2.71480 4.70218i −0.0861083 0.149144i
\(995\) 0 0
\(996\) 33.5275 + 32.2263i 1.06236 + 1.02113i
\(997\) −2.34514 + 8.75218i −0.0742713 + 0.277184i −0.993067 0.117549i \(-0.962496\pi\)
0.918796 + 0.394733i \(0.129163\pi\)
\(998\) −1.80241 + 0.482956i −0.0570544 + 0.0152877i
\(999\) 9.75099 + 29.3106i 0.308508 + 0.927348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.407.13 96
3.2 odd 2 inner 975.2.bn.d.407.12 96
5.2 odd 4 195.2.bf.a.173.13 yes 96
5.3 odd 4 inner 975.2.bn.d.368.12 96
5.4 even 2 195.2.bf.a.17.12 96
13.10 even 6 inner 975.2.bn.d.257.13 96
15.2 even 4 195.2.bf.a.173.12 yes 96
15.8 even 4 inner 975.2.bn.d.368.13 96
15.14 odd 2 195.2.bf.a.17.13 yes 96
39.23 odd 6 inner 975.2.bn.d.257.12 96
65.23 odd 12 inner 975.2.bn.d.218.12 96
65.49 even 6 195.2.bf.a.62.12 yes 96
65.62 odd 12 195.2.bf.a.23.13 yes 96
195.23 even 12 inner 975.2.bn.d.218.13 96
195.62 even 12 195.2.bf.a.23.12 yes 96
195.179 odd 6 195.2.bf.a.62.13 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.12 96 5.4 even 2
195.2.bf.a.17.13 yes 96 15.14 odd 2
195.2.bf.a.23.12 yes 96 195.62 even 12
195.2.bf.a.23.13 yes 96 65.62 odd 12
195.2.bf.a.62.12 yes 96 65.49 even 6
195.2.bf.a.62.13 yes 96 195.179 odd 6
195.2.bf.a.173.12 yes 96 15.2 even 4
195.2.bf.a.173.13 yes 96 5.2 odd 4
975.2.bn.d.218.12 96 65.23 odd 12 inner
975.2.bn.d.218.13 96 195.23 even 12 inner
975.2.bn.d.257.12 96 39.23 odd 6 inner
975.2.bn.d.257.13 96 13.10 even 6 inner
975.2.bn.d.368.12 96 5.3 odd 4 inner
975.2.bn.d.368.13 96 15.8 even 4 inner
975.2.bn.d.407.12 96 3.2 odd 2 inner
975.2.bn.d.407.13 96 1.1 even 1 trivial