Properties

Label 975.2.bn.d.257.13
Level $975$
Weight $2$
Character 975.257
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 257.13
Character \(\chi\) \(=\) 975.257
Dual form 975.2.bn.d.368.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0288234 - 0.107570i) q^{2} +(-0.895534 - 1.48257i) q^{3} +(1.72131 + 0.993799i) q^{4} +(-0.185293 + 0.0536002i) q^{6} +(1.03453 + 3.86093i) q^{7} +(0.314011 - 0.314011i) q^{8} +(-1.39604 + 2.65539i) q^{9} +(-2.60494 - 4.51189i) q^{11} +(-0.0681144 - 3.44195i) q^{12} +(3.33885 - 1.36091i) q^{13} +0.445140 q^{14} +(1.96287 + 3.39979i) q^{16} +(0.878092 + 3.27708i) q^{17} +(0.245402 + 0.226709i) q^{18} +(0.210416 - 0.364452i) q^{19} +(4.79764 - 4.99136i) q^{21} +(-0.560429 + 0.150166i) q^{22} +(-0.705071 + 2.63136i) q^{23} +(-0.746752 - 0.184336i) q^{24} +(-0.0501565 - 0.398387i) q^{26} +(5.18700 - 0.308267i) q^{27} +(-2.05624 + 7.67398i) q^{28} +(2.52506 + 4.37354i) q^{29} +4.23553i q^{31} +(1.28019 - 0.343025i) q^{32} +(-4.35638 + 7.90256i) q^{33} +0.377826 q^{34} +(-5.04193 + 3.18337i) q^{36} +(5.74223 + 1.53863i) q^{37} +(-0.0331393 - 0.0331393i) q^{38} +(-5.00770 - 3.73134i) q^{39} +(0.973131 + 1.68551i) q^{41} +(-0.398638 - 0.659952i) q^{42} +(0.242554 + 0.905224i) q^{43} -10.3551i q^{44} +(0.262734 + 0.151689i) q^{46} +(-1.29449 - 1.29449i) q^{47} +(3.28262 - 5.95473i) q^{48} +(-7.77434 + 4.48852i) q^{49} +(4.07215 - 4.23657i) q^{51} +(7.09967 + 0.975600i) q^{52} +(2.45762 + 2.45762i) q^{53} +(0.116347 - 0.566853i) q^{54} +(1.53723 + 0.887520i) q^{56} +(-0.728761 + 0.0144218i) q^{57} +(0.543244 - 0.145562i) q^{58} +(7.83433 + 4.52315i) q^{59} +(2.65934 - 4.60611i) q^{61} +(0.455618 + 0.122082i) q^{62} +(-11.6965 - 2.64291i) q^{63} +7.70388i q^{64} +(0.724516 + 0.696396i) q^{66} +(-7.41523 - 1.98691i) q^{67} +(-1.74529 + 6.51352i) q^{68} +(4.53259 - 1.31116i) q^{69} +(6.09876 - 10.5634i) q^{71} +(0.395450 + 1.27219i) q^{72} +(-1.29733 - 1.29733i) q^{73} +(0.331021 - 0.573345i) q^{74} +(0.724384 - 0.418223i) q^{76} +(14.7252 - 14.7252i) q^{77} +(-0.545721 + 0.431130i) q^{78} -2.49102i q^{79} +(-5.10216 - 7.41404i) q^{81} +(0.209360 - 0.0560979i) q^{82} +(9.55183 - 9.55183i) q^{83} +(13.2186 - 3.82379i) q^{84} +0.104367 q^{86} +(4.22280 - 7.66024i) q^{87} +(-2.23476 - 0.598803i) q^{88} +(-3.74597 + 2.16273i) q^{89} +(8.70853 + 11.4832i) q^{91} +(-3.82869 + 3.82869i) q^{92} +(6.27948 - 3.79307i) q^{93} +(-0.176560 + 0.101937i) q^{94} +(-1.65501 - 1.59078i) q^{96} +(0.740590 + 2.76392i) q^{97} +(0.258749 + 0.965663i) q^{98} +(15.6174 - 0.618364i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0288234 0.107570i 0.0203812 0.0760637i −0.954986 0.296650i \(-0.904130\pi\)
0.975367 + 0.220586i \(0.0707971\pi\)
\(3\) −0.895534 1.48257i −0.517037 0.855963i
\(4\) 1.72131 + 0.993799i 0.860655 + 0.496899i
\(5\) 0 0
\(6\) −0.185293 + 0.0536002i −0.0756456 + 0.0218822i
\(7\) 1.03453 + 3.86093i 0.391017 + 1.45929i 0.828460 + 0.560048i \(0.189217\pi\)
−0.437443 + 0.899246i \(0.644116\pi\)
\(8\) 0.314011 0.314011i 0.111020 0.111020i
\(9\) −1.39604 + 2.65539i −0.465346 + 0.885129i
\(10\) 0 0
\(11\) −2.60494 4.51189i −0.785419 1.36039i −0.928748 0.370711i \(-0.879114\pi\)
0.143329 0.989675i \(-0.454219\pi\)
\(12\) −0.0681144 3.44195i −0.0196629 0.993604i
\(13\) 3.33885 1.36091i 0.926031 0.377448i
\(14\) 0.445140 0.118969
\(15\) 0 0
\(16\) 1.96287 + 3.39979i 0.490718 + 0.849948i
\(17\) 0.878092 + 3.27708i 0.212969 + 0.794809i 0.986872 + 0.161506i \(0.0516350\pi\)
−0.773903 + 0.633304i \(0.781698\pi\)
\(18\) 0.245402 + 0.226709i 0.0578419 + 0.0534359i
\(19\) 0.210416 0.364452i 0.0482728 0.0836110i −0.840879 0.541223i \(-0.817962\pi\)
0.889152 + 0.457612i \(0.151295\pi\)
\(20\) 0 0
\(21\) 4.79764 4.99136i 1.04693 1.08920i
\(22\) −0.560429 + 0.150166i −0.119484 + 0.0320156i
\(23\) −0.705071 + 2.63136i −0.147017 + 0.548676i 0.852640 + 0.522499i \(0.175000\pi\)
−0.999657 + 0.0261774i \(0.991667\pi\)
\(24\) −0.746752 0.184336i −0.152430 0.0376275i
\(25\) 0 0
\(26\) −0.0501565 0.398387i −0.00983649 0.0781302i
\(27\) 5.18700 0.308267i 0.998239 0.0593259i
\(28\) −2.05624 + 7.67398i −0.388592 + 1.45024i
\(29\) 2.52506 + 4.37354i 0.468892 + 0.812146i 0.999368 0.0355548i \(-0.0113198\pi\)
−0.530475 + 0.847700i \(0.677987\pi\)
\(30\) 0 0
\(31\) 4.23553i 0.760724i 0.924838 + 0.380362i \(0.124201\pi\)
−0.924838 + 0.380362i \(0.875799\pi\)
\(32\) 1.28019 0.343025i 0.226307 0.0606389i
\(33\) −4.35638 + 7.90256i −0.758349 + 1.37566i
\(34\) 0.377826 0.0647967
\(35\) 0 0
\(36\) −5.04193 + 3.18337i −0.840322 + 0.530561i
\(37\) 5.74223 + 1.53863i 0.944017 + 0.252949i 0.697822 0.716272i \(-0.254153\pi\)
0.246195 + 0.969220i \(0.420820\pi\)
\(38\) −0.0331393 0.0331393i −0.00537590 0.00537590i
\(39\) −5.00770 3.73134i −0.801874 0.597493i
\(40\) 0 0
\(41\) 0.973131 + 1.68551i 0.151978 + 0.263233i 0.931954 0.362576i \(-0.118103\pi\)
−0.779977 + 0.625808i \(0.784769\pi\)
\(42\) −0.398638 0.659952i −0.0615112 0.101833i
\(43\) 0.242554 + 0.905224i 0.0369892 + 0.138045i 0.981951 0.189135i \(-0.0605683\pi\)
−0.944962 + 0.327180i \(0.893902\pi\)
\(44\) 10.3551i 1.56110i
\(45\) 0 0
\(46\) 0.262734 + 0.151689i 0.0387380 + 0.0223654i
\(47\) −1.29449 1.29449i −0.188821 0.188821i 0.606365 0.795186i \(-0.292627\pi\)
−0.795186 + 0.606365i \(0.792627\pi\)
\(48\) 3.28262 5.95473i 0.473805 0.859491i
\(49\) −7.77434 + 4.48852i −1.11062 + 0.641217i
\(50\) 0 0
\(51\) 4.07215 4.23657i 0.570215 0.593239i
\(52\) 7.09967 + 0.975600i 0.984547 + 0.135291i
\(53\) 2.45762 + 2.45762i 0.337580 + 0.337580i 0.855456 0.517876i \(-0.173277\pi\)
−0.517876 + 0.855456i \(0.673277\pi\)
\(54\) 0.116347 0.566853i 0.0158328 0.0771389i
\(55\) 0 0
\(56\) 1.53723 + 0.887520i 0.205421 + 0.118600i
\(57\) −0.728761 + 0.0144218i −0.0965268 + 0.00191022i
\(58\) 0.543244 0.145562i 0.0713314 0.0191132i
\(59\) 7.83433 + 4.52315i 1.01994 + 0.588865i 0.914088 0.405517i \(-0.132908\pi\)
0.105856 + 0.994381i \(0.466242\pi\)
\(60\) 0 0
\(61\) 2.65934 4.60611i 0.340493 0.589752i −0.644031 0.764999i \(-0.722739\pi\)
0.984524 + 0.175248i \(0.0560726\pi\)
\(62\) 0.455618 + 0.122082i 0.0578635 + 0.0155045i
\(63\) −11.6965 2.64291i −1.47362 0.332976i
\(64\) 7.70388i 0.962986i
\(65\) 0 0
\(66\) 0.724516 + 0.696396i 0.0891817 + 0.0857205i
\(67\) −7.41523 1.98691i −0.905915 0.242739i −0.224360 0.974506i \(-0.572029\pi\)
−0.681555 + 0.731767i \(0.738696\pi\)
\(68\) −1.74529 + 6.51352i −0.211648 + 0.789881i
\(69\) 4.53259 1.31116i 0.545660 0.157845i
\(70\) 0 0
\(71\) 6.09876 10.5634i 0.723789 1.25364i −0.235681 0.971830i \(-0.575732\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(72\) 0.395450 + 1.27219i 0.0466043 + 0.149929i
\(73\) −1.29733 1.29733i −0.151841 0.151841i 0.627099 0.778940i \(-0.284242\pi\)
−0.778940 + 0.627099i \(0.784242\pi\)
\(74\) 0.331021 0.573345i 0.0384804 0.0666500i
\(75\) 0 0
\(76\) 0.724384 0.418223i 0.0830925 0.0479735i
\(77\) 14.7252 14.7252i 1.67809 1.67809i
\(78\) −0.545721 + 0.431130i −0.0617907 + 0.0488159i
\(79\) 2.49102i 0.280262i −0.990133 0.140131i \(-0.955248\pi\)
0.990133 0.140131i \(-0.0447523\pi\)
\(80\) 0 0
\(81\) −5.10216 7.41404i −0.566907 0.823782i
\(82\) 0.209360 0.0560979i 0.0231200 0.00619497i
\(83\) 9.55183 9.55183i 1.04845 1.04845i 0.0496844 0.998765i \(-0.484178\pi\)
0.998765 0.0496844i \(-0.0158216\pi\)
\(84\) 13.2186 3.82379i 1.44227 0.417210i
\(85\) 0 0
\(86\) 0.104367 0.0112541
\(87\) 4.22280 7.66024i 0.452732 0.821264i
\(88\) −2.23476 0.598803i −0.238227 0.0638326i
\(89\) −3.74597 + 2.16273i −0.397072 + 0.229249i −0.685220 0.728336i \(-0.740294\pi\)
0.288148 + 0.957586i \(0.406960\pi\)
\(90\) 0 0
\(91\) 8.70853 + 11.4832i 0.912901 + 1.20376i
\(92\) −3.82869 + 3.82869i −0.399168 + 0.399168i
\(93\) 6.27948 3.79307i 0.651152 0.393323i
\(94\) −0.176560 + 0.101937i −0.0182108 + 0.0105140i
\(95\) 0 0
\(96\) −1.65501 1.59078i −0.168914 0.162358i
\(97\) 0.740590 + 2.76392i 0.0751955 + 0.280633i 0.993278 0.115757i \(-0.0369294\pi\)
−0.918082 + 0.396390i \(0.870263\pi\)
\(98\) 0.258749 + 0.965663i 0.0261376 + 0.0975467i
\(99\) 15.6174 0.618364i 1.56961 0.0621479i
\(100\) 0 0
\(101\) −2.39453 + 1.38248i −0.238265 + 0.137562i −0.614379 0.789011i \(-0.710593\pi\)
0.376114 + 0.926573i \(0.377260\pi\)
\(102\) −0.338357 0.560155i −0.0335023 0.0554636i
\(103\) −0.0455864 + 0.0455864i −0.00449176 + 0.00449176i −0.709349 0.704857i \(-0.751011\pi\)
0.704857 + 0.709349i \(0.251011\pi\)
\(104\) 0.621096 1.47578i 0.0609035 0.144712i
\(105\) 0 0
\(106\) 0.335204 0.193530i 0.0325579 0.0187973i
\(107\) −16.4075 4.39639i −1.58618 0.425015i −0.645346 0.763890i \(-0.723287\pi\)
−0.940831 + 0.338875i \(0.889954\pi\)
\(108\) 9.23479 + 4.62421i 0.888618 + 0.444965i
\(109\) 4.73152 0.453198 0.226599 0.973988i \(-0.427239\pi\)
0.226599 + 0.973988i \(0.427239\pi\)
\(110\) 0 0
\(111\) −2.86124 9.89116i −0.271577 0.938827i
\(112\) −11.0957 + 11.0957i −1.04845 + 1.04845i
\(113\) −2.72351 + 0.729762i −0.256206 + 0.0686502i −0.384636 0.923068i \(-0.625673\pi\)
0.128430 + 0.991719i \(0.459006\pi\)
\(114\) −0.0194540 + 0.0788088i −0.00182203 + 0.00738112i
\(115\) 0 0
\(116\) 10.0376i 0.931970i
\(117\) −1.04742 + 10.7658i −0.0968338 + 0.995301i
\(118\) 0.712369 0.712369i 0.0655789 0.0655789i
\(119\) −11.7442 + 6.78050i −1.07659 + 0.621567i
\(120\) 0 0
\(121\) −8.07143 + 13.9801i −0.733766 + 1.27092i
\(122\) −0.418829 0.418829i −0.0379190 0.0379190i
\(123\) 1.62742 2.95217i 0.146740 0.266188i
\(124\) −4.20927 + 7.29067i −0.378003 + 0.654721i
\(125\) 0 0
\(126\) −0.621432 + 1.18202i −0.0553616 + 0.105303i
\(127\) −0.468909 + 1.74999i −0.0416089 + 0.155287i −0.983605 0.180338i \(-0.942281\pi\)
0.941996 + 0.335625i \(0.108947\pi\)
\(128\) 3.38909 + 0.908103i 0.299556 + 0.0802657i
\(129\) 1.12484 1.17026i 0.0990370 0.103036i
\(130\) 0 0
\(131\) 20.2873i 1.77251i 0.463200 + 0.886254i \(0.346701\pi\)
−0.463200 + 0.886254i \(0.653299\pi\)
\(132\) −15.3522 + 9.27339i −1.33624 + 0.807145i
\(133\) 1.62481 + 0.435365i 0.140889 + 0.0377510i
\(134\) −0.427464 + 0.740390i −0.0369273 + 0.0639599i
\(135\) 0 0
\(136\) 1.30477 + 0.753310i 0.111883 + 0.0645958i
\(137\) 12.9118 3.45972i 1.10313 0.295584i 0.339093 0.940753i \(-0.389880\pi\)
0.764040 + 0.645169i \(0.223213\pi\)
\(138\) −0.0103967 0.525365i −0.000885026 0.0447220i
\(139\) −17.9438 10.3598i −1.52197 0.878710i −0.999663 0.0259523i \(-0.991738\pi\)
−0.522307 0.852758i \(-0.674928\pi\)
\(140\) 0 0
\(141\) −0.759913 + 3.07843i −0.0639962 + 0.259251i
\(142\) −0.960517 0.960517i −0.0806048 0.0806048i
\(143\) −14.8378 11.5194i −1.24080 0.963304i
\(144\) −11.7680 + 0.465948i −0.980667 + 0.0388290i
\(145\) 0 0
\(146\) −0.176948 + 0.102161i −0.0146443 + 0.00845490i
\(147\) 13.6167 + 7.50639i 1.12309 + 0.619117i
\(148\) 8.35507 + 8.35507i 0.686783 + 0.686783i
\(149\) −7.82540 4.51800i −0.641082 0.370129i 0.143949 0.989585i \(-0.454020\pi\)
−0.785031 + 0.619456i \(0.787353\pi\)
\(150\) 0 0
\(151\) 11.7129i 0.953180i −0.879126 0.476590i \(-0.841873\pi\)
0.879126 0.476590i \(-0.158127\pi\)
\(152\) −0.0483689 0.180515i −0.00392323 0.0146417i
\(153\) −9.92777 2.24325i −0.802613 0.181356i
\(154\) −1.15956 2.00842i −0.0934403 0.161843i
\(155\) 0 0
\(156\) −4.91160 11.3994i −0.393243 0.912686i
\(157\) −11.2708 11.2708i −0.899508 0.899508i 0.0958846 0.995392i \(-0.469432\pi\)
−0.995392 + 0.0958846i \(0.969432\pi\)
\(158\) −0.267960 0.0717997i −0.0213177 0.00571207i
\(159\) 1.44271 5.84448i 0.114415 0.463497i
\(160\) 0 0
\(161\) −10.8889 −0.858167
\(162\) −0.944592 + 0.335144i −0.0742142 + 0.0263314i
\(163\) 12.3808 3.31744i 0.969742 0.259842i 0.261023 0.965333i \(-0.415940\pi\)
0.708719 + 0.705491i \(0.249273\pi\)
\(164\) 3.86839i 0.302070i
\(165\) 0 0
\(166\) −0.752177 1.30281i −0.0583803 0.101118i
\(167\) −5.83706 + 21.7842i −0.451685 + 1.68571i 0.245968 + 0.969278i \(0.420894\pi\)
−0.697654 + 0.716435i \(0.745773\pi\)
\(168\) −0.0608301 3.07386i −0.00469315 0.237153i
\(169\) 9.29585 9.08774i 0.715066 0.699057i
\(170\) 0 0
\(171\) 0.674012 + 1.06753i 0.0515430 + 0.0816357i
\(172\) −0.482100 + 1.79922i −0.0367598 + 0.137189i
\(173\) −3.49516 + 0.936524i −0.265732 + 0.0712026i −0.389225 0.921143i \(-0.627257\pi\)
0.123493 + 0.992345i \(0.460590\pi\)
\(174\) −0.702299 0.675042i −0.0532412 0.0511748i
\(175\) 0 0
\(176\) 10.2263 17.7125i 0.770838 1.33513i
\(177\) −0.310014 15.6656i −0.0233021 1.17750i
\(178\) 0.124675 + 0.465292i 0.00934476 + 0.0348751i
\(179\) −2.91155 5.04296i −0.217620 0.376928i 0.736460 0.676481i \(-0.236496\pi\)
−0.954080 + 0.299553i \(0.903163\pi\)
\(180\) 0 0
\(181\) 9.95426 0.739894 0.369947 0.929053i \(-0.379376\pi\)
0.369947 + 0.929053i \(0.379376\pi\)
\(182\) 1.48626 0.605795i 0.110169 0.0449045i
\(183\) −9.21041 + 0.182270i −0.680853 + 0.0134738i
\(184\) 0.604876 + 1.04768i 0.0445921 + 0.0772357i
\(185\) 0 0
\(186\) −0.227025 0.784815i −0.0166463 0.0575454i
\(187\) 12.4985 12.4985i 0.913978 0.913978i
\(188\) −0.941755 3.51468i −0.0686846 0.256334i
\(189\) 6.55632 + 19.7077i 0.476902 + 1.43353i
\(190\) 0 0
\(191\) −19.8105 11.4376i −1.43343 0.827594i −0.436053 0.899921i \(-0.643624\pi\)
−0.997381 + 0.0723271i \(0.976957\pi\)
\(192\) 11.4216 6.89909i 0.824280 0.497899i
\(193\) 4.42994 16.5328i 0.318874 1.19005i −0.601454 0.798908i \(-0.705412\pi\)
0.920328 0.391147i \(-0.127922\pi\)
\(194\) 0.318662 0.0228786
\(195\) 0 0
\(196\) −17.8427 −1.27448
\(197\) 0.382929 1.42911i 0.0272826 0.101820i −0.950942 0.309369i \(-0.899882\pi\)
0.978225 + 0.207549i \(0.0665488\pi\)
\(198\) 0.383629 1.69779i 0.0272633 0.120657i
\(199\) −20.6928 11.9470i −1.46687 0.846899i −0.467558 0.883962i \(-0.654866\pi\)
−0.999313 + 0.0370636i \(0.988200\pi\)
\(200\) 0 0
\(201\) 3.69487 + 12.7730i 0.260616 + 0.900935i
\(202\) 0.0796957 + 0.297429i 0.00560737 + 0.0209270i
\(203\) −14.2737 + 14.2737i −1.00181 + 1.00181i
\(204\) 11.2197 3.24556i 0.785538 0.227235i
\(205\) 0 0
\(206\) 0.00358979 + 0.00621770i 0.000250113 + 0.000433208i
\(207\) −6.00297 5.54571i −0.417236 0.385453i
\(208\) 11.1805 + 8.68011i 0.775231 + 0.601857i
\(209\) −2.19249 −0.151658
\(210\) 0 0
\(211\) 1.53923 + 2.66603i 0.105965 + 0.183537i 0.914132 0.405416i \(-0.132873\pi\)
−0.808167 + 0.588953i \(0.799540\pi\)
\(212\) 1.78795 + 6.67270i 0.122797 + 0.458283i
\(213\) −21.1226 + 0.418005i −1.44730 + 0.0286413i
\(214\) −0.945842 + 1.63825i −0.0646565 + 0.111988i
\(215\) 0 0
\(216\) 1.53198 1.72558i 0.104238 0.117411i
\(217\) −16.3531 + 4.38180i −1.11012 + 0.297456i
\(218\) 0.136379 0.508972i 0.00923672 0.0344719i
\(219\) −0.761582 + 3.08519i −0.0514629 + 0.208478i
\(220\) 0 0
\(221\) 7.39163 + 9.74669i 0.497215 + 0.655633i
\(222\) −1.14647 + 0.0226880i −0.0769458 + 0.00152272i
\(223\) 1.49616 5.58375i 0.100190 0.373916i −0.897565 0.440883i \(-0.854666\pi\)
0.997755 + 0.0669668i \(0.0213322\pi\)
\(224\) 2.64879 + 4.58784i 0.176980 + 0.306538i
\(225\) 0 0
\(226\) 0.314003i 0.0208872i
\(227\) −14.1812 + 3.79984i −0.941238 + 0.252204i −0.696640 0.717421i \(-0.745323\pi\)
−0.244598 + 0.969625i \(0.578656\pi\)
\(228\) −1.26876 0.699418i −0.0840254 0.0463201i
\(229\) 3.60574 0.238274 0.119137 0.992878i \(-0.461987\pi\)
0.119137 + 0.992878i \(0.461987\pi\)
\(230\) 0 0
\(231\) −35.0181 8.64423i −2.30402 0.568749i
\(232\) 2.16624 + 0.580442i 0.142220 + 0.0381079i
\(233\) 7.88221 + 7.88221i 0.516381 + 0.516381i 0.916474 0.400093i \(-0.131022\pi\)
−0.400093 + 0.916474i \(0.631022\pi\)
\(234\) 1.12789 + 0.422979i 0.0737327 + 0.0276510i
\(235\) 0 0
\(236\) 8.99021 + 15.5715i 0.585213 + 1.01362i
\(237\) −3.69312 + 2.23079i −0.239894 + 0.144906i
\(238\) 0.390874 + 1.45876i 0.0253366 + 0.0945575i
\(239\) 0.0947772i 0.00613063i 0.999995 + 0.00306532i \(0.000975722\pi\)
−0.999995 + 0.00306532i \(0.999024\pi\)
\(240\) 0 0
\(241\) 9.34499 + 5.39533i 0.601964 + 0.347544i 0.769814 0.638269i \(-0.220349\pi\)
−0.167850 + 0.985813i \(0.553682\pi\)
\(242\) 1.27120 + 1.27120i 0.0817159 + 0.0817159i
\(243\) −6.42267 + 14.2038i −0.412015 + 0.911177i
\(244\) 9.15509 5.28569i 0.586095 0.338382i
\(245\) 0 0
\(246\) −0.270658 0.260154i −0.0172565 0.0165868i
\(247\) 0.206563 1.50321i 0.0131433 0.0956468i
\(248\) 1.33000 + 1.33000i 0.0844554 + 0.0844554i
\(249\) −22.7153 5.60728i −1.43952 0.355347i
\(250\) 0 0
\(251\) 18.5242 + 10.6949i 1.16923 + 0.675058i 0.953500 0.301394i \(-0.0974521\pi\)
0.215735 + 0.976452i \(0.430785\pi\)
\(252\) −17.5068 16.1733i −1.10282 1.01882i
\(253\) 13.7091 3.67333i 0.861882 0.230941i
\(254\) 0.174732 + 0.100881i 0.0109636 + 0.00632986i
\(255\) 0 0
\(256\) −7.50851 + 13.0051i −0.469282 + 0.812821i
\(257\) −15.6729 4.19954i −0.977648 0.261960i −0.265594 0.964085i \(-0.585568\pi\)
−0.712054 + 0.702125i \(0.752235\pi\)
\(258\) −0.0934638 0.154731i −0.00581880 0.00963312i
\(259\) 23.7621i 1.47651i
\(260\) 0 0
\(261\) −15.1385 + 0.599402i −0.937051 + 0.0371021i
\(262\) 2.18231 + 0.584748i 0.134824 + 0.0361259i
\(263\) 5.94046 22.1701i 0.366304 1.36707i −0.499340 0.866406i \(-0.666424\pi\)
0.865644 0.500660i \(-0.166909\pi\)
\(264\) 1.11354 + 3.84945i 0.0685336 + 0.236917i
\(265\) 0 0
\(266\) 0.0936648 0.162232i 0.00574296 0.00994709i
\(267\) 6.56105 + 3.61686i 0.401530 + 0.221348i
\(268\) −10.7893 10.7893i −0.659063 0.659063i
\(269\) −1.73455 + 3.00433i −0.105758 + 0.183177i −0.914047 0.405607i \(-0.867060\pi\)
0.808290 + 0.588785i \(0.200393\pi\)
\(270\) 0 0
\(271\) 10.2881 5.93984i 0.624958 0.360819i −0.153839 0.988096i \(-0.549164\pi\)
0.778797 + 0.627277i \(0.215830\pi\)
\(272\) −9.41782 + 9.41782i −0.571039 + 0.571039i
\(273\) 9.22583 23.1946i 0.558373 1.40380i
\(274\) 1.48865i 0.0899328i
\(275\) 0 0
\(276\) 9.10502 + 2.24758i 0.548058 + 0.135289i
\(277\) −16.6029 + 4.44872i −0.997570 + 0.267298i −0.720427 0.693531i \(-0.756054\pi\)
−0.277143 + 0.960829i \(0.589387\pi\)
\(278\) −1.63161 + 1.63161i −0.0978575 + 0.0978575i
\(279\) −11.2470 5.91296i −0.673339 0.354000i
\(280\) 0 0
\(281\) −22.1387 −1.32068 −0.660341 0.750966i \(-0.729588\pi\)
−0.660341 + 0.750966i \(0.729588\pi\)
\(282\) 0.309245 + 0.170475i 0.0184153 + 0.0101516i
\(283\) −2.73331 0.732387i −0.162478 0.0435359i 0.176663 0.984271i \(-0.443470\pi\)
−0.339141 + 0.940736i \(0.610136\pi\)
\(284\) 20.9957 12.1219i 1.24587 0.719301i
\(285\) 0 0
\(286\) −1.66682 + 1.26408i −0.0985614 + 0.0747464i
\(287\) −5.50091 + 5.50091i −0.324708 + 0.324708i
\(288\) −0.876324 + 3.87827i −0.0516379 + 0.228529i
\(289\) 4.75421 2.74484i 0.279659 0.161461i
\(290\) 0 0
\(291\) 3.43448 3.57316i 0.201333 0.209462i
\(292\) −0.943823 3.52240i −0.0552331 0.206133i
\(293\) −2.04676 7.63862i −0.119573 0.446253i 0.880015 0.474946i \(-0.157532\pi\)
−0.999588 + 0.0286927i \(0.990866\pi\)
\(294\) 1.19995 1.24840i 0.0699823 0.0728080i
\(295\) 0 0
\(296\) 2.28627 1.31998i 0.132887 0.0767222i
\(297\) −14.9027 22.6002i −0.864742 1.31139i
\(298\) −0.711557 + 0.711557i −0.0412194 + 0.0412194i
\(299\) 1.22691 + 9.74525i 0.0709543 + 0.563583i
\(300\) 0 0
\(301\) −3.24408 + 1.87297i −0.186985 + 0.107956i
\(302\) −1.25996 0.337605i −0.0725024 0.0194270i
\(303\) 4.19402 + 2.31200i 0.240940 + 0.132821i
\(304\) 1.65208 0.0947533
\(305\) 0 0
\(306\) −0.527460 + 1.00328i −0.0301529 + 0.0573535i
\(307\) 10.6962 10.6962i 0.610465 0.610465i −0.332602 0.943067i \(-0.607927\pi\)
0.943067 + 0.332602i \(0.107927\pi\)
\(308\) 39.9805 10.7127i 2.27810 0.610415i
\(309\) 0.108409 + 0.0267609i 0.00616719 + 0.00152238i
\(310\) 0 0
\(311\) 12.0194i 0.681560i −0.940143 0.340780i \(-0.889309\pi\)
0.940143 0.340780i \(-0.110691\pi\)
\(312\) −2.74416 + 0.400790i −0.155357 + 0.0226903i
\(313\) −16.5079 + 16.5079i −0.933082 + 0.933082i −0.997897 0.0648148i \(-0.979354\pi\)
0.0648148 + 0.997897i \(0.479354\pi\)
\(314\) −1.53727 + 0.887541i −0.0867530 + 0.0500869i
\(315\) 0 0
\(316\) 2.47557 4.28782i 0.139262 0.241209i
\(317\) −0.778692 0.778692i −0.0437357 0.0437357i 0.684901 0.728636i \(-0.259846\pi\)
−0.728636 + 0.684901i \(0.759846\pi\)
\(318\) −0.587109 0.323651i −0.0329234 0.0181494i
\(319\) 13.1553 22.7856i 0.736554 1.27575i
\(320\) 0 0
\(321\) 8.17556 + 28.2625i 0.456315 + 1.57746i
\(322\) −0.313855 + 1.17132i −0.0174905 + 0.0652753i
\(323\) 1.37910 + 0.369530i 0.0767354 + 0.0205612i
\(324\) −1.41435 17.8324i −0.0785748 0.990688i
\(325\) 0 0
\(326\) 1.42743i 0.0790581i
\(327\) −4.23724 7.01482i −0.234320 0.387921i
\(328\) 0.834844 + 0.223696i 0.0460965 + 0.0123515i
\(329\) 3.65874 6.33712i 0.201713 0.349377i
\(330\) 0 0
\(331\) −24.3850 14.0787i −1.34032 0.773834i −0.353466 0.935448i \(-0.614997\pi\)
−0.986854 + 0.161614i \(0.948330\pi\)
\(332\) 25.9343 6.94906i 1.42333 0.381379i
\(333\) −12.1020 + 13.0999i −0.663186 + 0.717868i
\(334\) 2.17509 + 1.25579i 0.119016 + 0.0687138i
\(335\) 0 0
\(336\) 26.3867 + 6.51359i 1.43952 + 0.355345i
\(337\) 17.9435 + 17.9435i 0.977446 + 0.977446i 0.999751 0.0223051i \(-0.00710052\pi\)
−0.0223051 + 0.999751i \(0.507101\pi\)
\(338\) −0.709634 1.26190i −0.0385990 0.0686382i
\(339\) 3.52092 + 3.38427i 0.191230 + 0.183808i
\(340\) 0 0
\(341\) 19.1103 11.0333i 1.03488 0.597487i
\(342\) 0.134261 0.0417340i 0.00726002 0.00225672i
\(343\) −5.58789 5.58789i −0.301717 0.301717i
\(344\) 0.360415 + 0.208086i 0.0194323 + 0.0112192i
\(345\) 0 0
\(346\) 0.402969i 0.0216637i
\(347\) 0.129801 + 0.484424i 0.00696808 + 0.0260052i 0.969322 0.245793i \(-0.0790483\pi\)
−0.962354 + 0.271798i \(0.912382\pi\)
\(348\) 14.8815 8.98903i 0.797732 0.481863i
\(349\) 4.63210 + 8.02304i 0.247951 + 0.429463i 0.962957 0.269655i \(-0.0869095\pi\)
−0.715006 + 0.699118i \(0.753576\pi\)
\(350\) 0 0
\(351\) 16.8991 8.08829i 0.902007 0.431721i
\(352\) −4.88250 4.88250i −0.260238 0.260238i
\(353\) −20.4549 5.48087i −1.08870 0.291717i −0.330547 0.943790i \(-0.607233\pi\)
−0.758157 + 0.652072i \(0.773900\pi\)
\(354\) −1.69409 0.418187i −0.0900398 0.0222264i
\(355\) 0 0
\(356\) −8.59729 −0.455656
\(357\) 20.5699 + 11.3394i 1.08867 + 0.600145i
\(358\) −0.626394 + 0.167842i −0.0331059 + 0.00887071i
\(359\) 17.7610i 0.937391i −0.883360 0.468695i \(-0.844724\pi\)
0.883360 0.468695i \(-0.155276\pi\)
\(360\) 0 0
\(361\) 9.41145 + 16.3011i 0.495339 + 0.857953i
\(362\) 0.286915 1.07078i 0.0150799 0.0562791i
\(363\) 27.9548 0.553211i 1.46724 0.0290361i
\(364\) 3.57812 + 28.4206i 0.187544 + 1.48964i
\(365\) 0 0
\(366\) −0.245868 + 0.996021i −0.0128518 + 0.0520628i
\(367\) 0.292041 1.08991i 0.0152444 0.0568929i −0.957885 0.287153i \(-0.907291\pi\)
0.973129 + 0.230260i \(0.0739578\pi\)
\(368\) −10.3300 + 2.76792i −0.538490 + 0.144288i
\(369\) −5.83421 + 0.231003i −0.303717 + 0.0120255i
\(370\) 0 0
\(371\) −6.94621 + 12.0312i −0.360629 + 0.624628i
\(372\) 14.5785 0.288501i 0.755859 0.0149581i
\(373\) 4.61559 + 17.2256i 0.238986 + 0.891908i 0.976311 + 0.216370i \(0.0694218\pi\)
−0.737325 + 0.675538i \(0.763912\pi\)
\(374\) −0.984215 1.70471i −0.0508926 0.0881485i
\(375\) 0 0
\(376\) −0.812968 −0.0419256
\(377\) 14.3828 + 11.1662i 0.740752 + 0.575089i
\(378\) 2.30894 0.137222i 0.118759 0.00705793i
\(379\) −5.17481 8.96303i −0.265812 0.460400i 0.701964 0.712212i \(-0.252307\pi\)
−0.967776 + 0.251813i \(0.918973\pi\)
\(380\) 0 0
\(381\) 3.01441 0.871986i 0.154433 0.0446732i
\(382\) −1.80135 + 1.80135i −0.0921650 + 0.0921650i
\(383\) 4.29989 + 16.0474i 0.219714 + 0.819985i 0.984454 + 0.175645i \(0.0562011\pi\)
−0.764739 + 0.644340i \(0.777132\pi\)
\(384\) −1.68872 5.83780i −0.0861769 0.297909i
\(385\) 0 0
\(386\) −1.65075 0.953061i −0.0840210 0.0485095i
\(387\) −2.74234 0.619651i −0.139401 0.0314986i
\(388\) −1.47199 + 5.49356i −0.0747292 + 0.278893i
\(389\) 24.1762 1.22578 0.612891 0.790167i \(-0.290006\pi\)
0.612891 + 0.790167i \(0.290006\pi\)
\(390\) 0 0
\(391\) −9.24230 −0.467403
\(392\) −1.03179 + 3.85068i −0.0521130 + 0.194488i
\(393\) 30.0773 18.1680i 1.51720 0.916452i
\(394\) −0.142693 0.0823836i −0.00718875 0.00415043i
\(395\) 0 0
\(396\) 27.4969 + 14.4562i 1.38177 + 0.726450i
\(397\) −2.21309 8.25936i −0.111072 0.414525i 0.887891 0.460053i \(-0.152170\pi\)
−0.998963 + 0.0455279i \(0.985503\pi\)
\(398\) −1.88158 + 1.88158i −0.0943149 + 0.0943149i
\(399\) −0.809609 2.79878i −0.0405311 0.140114i
\(400\) 0 0
\(401\) −13.7400 23.7983i −0.686142 1.18843i −0.973076 0.230482i \(-0.925970\pi\)
0.286935 0.957950i \(-0.407364\pi\)
\(402\) 1.48049 0.0292982i 0.0738401 0.00146126i
\(403\) 5.76418 + 14.1418i 0.287134 + 0.704454i
\(404\) −5.49564 −0.273418
\(405\) 0 0
\(406\) 1.12401 + 1.94684i 0.0557835 + 0.0966199i
\(407\) −8.01606 29.9163i −0.397341 1.48290i
\(408\) −0.0516315 2.60903i −0.00255614 0.129166i
\(409\) −18.6648 + 32.3284i −0.922916 + 1.59854i −0.128038 + 0.991769i \(0.540868\pi\)
−0.794878 + 0.606769i \(0.792465\pi\)
\(410\) 0 0
\(411\) −16.6923 16.0444i −0.823369 0.791414i
\(412\) −0.123772 + 0.0331646i −0.00609781 + 0.00163390i
\(413\) −9.35870 + 34.9272i −0.460512 + 1.71865i
\(414\) −0.769580 + 0.485896i −0.0378228 + 0.0238805i
\(415\) 0 0
\(416\) 3.80753 2.88753i 0.186680 0.141573i
\(417\) 0.710057 + 35.8805i 0.0347717 + 1.75708i
\(418\) −0.0631949 + 0.235847i −0.00309097 + 0.0115356i
\(419\) −14.8413 25.7059i −0.725046 1.25582i −0.958955 0.283558i \(-0.908485\pi\)
0.233909 0.972259i \(-0.424848\pi\)
\(420\) 0 0
\(421\) 21.3437i 1.04023i −0.854097 0.520114i \(-0.825889\pi\)
0.854097 0.520114i \(-0.174111\pi\)
\(422\) 0.331151 0.0887317i 0.0161202 0.00431939i
\(423\) 5.24452 1.63022i 0.254997 0.0792638i
\(424\) 1.54344 0.0749561
\(425\) 0 0
\(426\) −0.563859 + 2.28421i −0.0273191 + 0.110670i
\(427\) 20.5350 + 5.50234i 0.993760 + 0.266277i
\(428\) −23.8734 23.8734i −1.15396 1.15396i
\(429\) −3.79065 + 32.3141i −0.183014 + 1.56014i
\(430\) 0 0
\(431\) −1.45407 2.51852i −0.0700400 0.121313i 0.828879 0.559429i \(-0.188979\pi\)
−0.898919 + 0.438116i \(0.855646\pi\)
\(432\) 11.2295 + 17.0296i 0.540277 + 0.819339i
\(433\) −6.84446 25.5439i −0.328924 1.22756i −0.910308 0.413932i \(-0.864155\pi\)
0.581384 0.813629i \(-0.302511\pi\)
\(434\) 1.88541i 0.0905024i
\(435\) 0 0
\(436\) 8.14442 + 4.70218i 0.390047 + 0.225194i
\(437\) 0.810645 + 0.810645i 0.0387784 + 0.0387784i
\(438\) 0.309924 + 0.170849i 0.0148087 + 0.00816349i
\(439\) 23.2175 13.4046i 1.10811 0.639768i 0.169771 0.985484i \(-0.445697\pi\)
0.938339 + 0.345716i \(0.112364\pi\)
\(440\) 0 0
\(441\) −1.06549 26.9100i −0.0507376 1.28143i
\(442\) 1.26151 0.514187i 0.0600037 0.0244574i
\(443\) 19.3624 + 19.3624i 0.919937 + 0.919937i 0.997024 0.0770872i \(-0.0245620\pi\)
−0.0770872 + 0.997024i \(0.524562\pi\)
\(444\) 4.90474 19.8693i 0.232769 0.942953i
\(445\) 0 0
\(446\) −0.557522 0.321885i −0.0263994 0.0152417i
\(447\) 0.309661 + 15.6477i 0.0146465 + 0.740113i
\(448\) −29.7442 + 7.96992i −1.40528 + 0.376543i
\(449\) 3.02917 + 1.74889i 0.142956 + 0.0825354i 0.569772 0.821803i \(-0.307032\pi\)
−0.426816 + 0.904338i \(0.640365\pi\)
\(450\) 0 0
\(451\) 5.06990 8.78132i 0.238732 0.413496i
\(452\) −5.41324 1.45047i −0.254617 0.0682245i
\(453\) −17.3652 + 10.4893i −0.815887 + 0.492829i
\(454\) 1.63500i 0.0767343i
\(455\) 0 0
\(456\) −0.224311 + 0.233368i −0.0105043 + 0.0109284i
\(457\) 33.6949 + 9.02853i 1.57618 + 0.422337i 0.937742 0.347334i \(-0.112913\pi\)
0.638441 + 0.769671i \(0.279580\pi\)
\(458\) 0.103930 0.387870i 0.00485631 0.0181240i
\(459\) 5.56488 + 16.7275i 0.259746 + 0.780775i
\(460\) 0 0
\(461\) 5.43399 9.41194i 0.253086 0.438358i −0.711288 0.702901i \(-0.751888\pi\)
0.964374 + 0.264543i \(0.0852211\pi\)
\(462\) −1.93920 + 3.51775i −0.0902198 + 0.163660i
\(463\) −6.69797 6.69797i −0.311281 0.311281i 0.534125 0.845406i \(-0.320641\pi\)
−0.845406 + 0.534125i \(0.820641\pi\)
\(464\) −9.91274 + 17.1694i −0.460188 + 0.797068i
\(465\) 0 0
\(466\) 1.07508 0.620700i 0.0498023 0.0287534i
\(467\) 4.56632 4.56632i 0.211304 0.211304i −0.593517 0.804821i \(-0.702261\pi\)
0.804821 + 0.593517i \(0.202261\pi\)
\(468\) −12.5020 + 17.4904i −0.577905 + 0.808494i
\(469\) 30.6852i 1.41691i
\(470\) 0 0
\(471\) −6.61638 + 26.8032i −0.304867 + 1.23502i
\(472\) 3.88039 1.03975i 0.178609 0.0478582i
\(473\) 3.45243 3.45243i 0.158743 0.158743i
\(474\) 0.133519 + 0.461569i 0.00613274 + 0.0212006i
\(475\) 0 0
\(476\) −26.9538 −1.23543
\(477\) −9.95686 + 3.09500i −0.455893 + 0.141711i
\(478\) 0.0101952 + 0.00273180i 0.000466319 + 0.000124950i
\(479\) −13.8170 + 7.97728i −0.631317 + 0.364491i −0.781262 0.624203i \(-0.785424\pi\)
0.149945 + 0.988694i \(0.452090\pi\)
\(480\) 0 0
\(481\) 21.2664 2.67741i 0.969664 0.122079i
\(482\) 0.849732 0.849732i 0.0387042 0.0387042i
\(483\) 9.75139 + 16.1436i 0.443704 + 0.734559i
\(484\) −27.7869 + 16.0427i −1.26304 + 0.729216i
\(485\) 0 0
\(486\) 1.34279 + 1.10029i 0.0609102 + 0.0499103i
\(487\) −8.49708 31.7115i −0.385040 1.43699i −0.838104 0.545510i \(-0.816336\pi\)
0.453065 0.891478i \(-0.350331\pi\)
\(488\) −0.611308 2.28143i −0.0276726 0.103276i
\(489\) −16.0058 15.3846i −0.723807 0.695716i
\(490\) 0 0
\(491\) 25.2561 14.5816i 1.13979 0.658058i 0.193412 0.981118i \(-0.438045\pi\)
0.946379 + 0.323059i \(0.104711\pi\)
\(492\) 5.73516 3.46427i 0.258561 0.156181i
\(493\) −12.1152 + 12.1152i −0.545642 + 0.545642i
\(494\) −0.155747 0.0655476i −0.00700738 0.00294913i
\(495\) 0 0
\(496\) −14.3999 + 8.31380i −0.646576 + 0.373301i
\(497\) 47.0937 + 12.6187i 2.11244 + 0.566027i
\(498\) −1.25791 + 2.28187i −0.0563682 + 0.102253i
\(499\) 16.7557 0.750087 0.375044 0.927007i \(-0.377628\pi\)
0.375044 + 0.927007i \(0.377628\pi\)
\(500\) 0 0
\(501\) 37.5239 10.8546i 1.67645 0.484950i
\(502\) 1.68439 1.68439i 0.0751778 0.0751778i
\(503\) −8.90077 + 2.38495i −0.396866 + 0.106340i −0.451732 0.892154i \(-0.649194\pi\)
0.0548660 + 0.998494i \(0.482527\pi\)
\(504\) −4.50274 + 2.84293i −0.200568 + 0.126634i
\(505\) 0 0
\(506\) 1.58057i 0.0702648i
\(507\) −21.7980 5.64338i −0.968083 0.250631i
\(508\) −2.54628 + 2.54628i −0.112973 + 0.112973i
\(509\) 0.476859 0.275315i 0.0211364 0.0122031i −0.489395 0.872062i \(-0.662782\pi\)
0.510531 + 0.859859i \(0.329449\pi\)
\(510\) 0 0
\(511\) 3.66677 6.35104i 0.162208 0.280953i
\(512\) 6.14451 + 6.14451i 0.271552 + 0.271552i
\(513\) 0.979082 1.95528i 0.0432275 0.0863276i
\(514\) −0.903491 + 1.56489i −0.0398513 + 0.0690245i
\(515\) 0 0
\(516\) 3.09921 0.896517i 0.136435 0.0394670i
\(517\) −2.46852 + 9.21266i −0.108566 + 0.405172i
\(518\) 2.55610 + 0.684904i 0.112308 + 0.0300930i
\(519\) 4.51850 + 4.34313i 0.198340 + 0.190642i
\(520\) 0 0
\(521\) 32.2002i 1.41072i 0.708852 + 0.705358i \(0.249214\pi\)
−0.708852 + 0.705358i \(0.750786\pi\)
\(522\) −0.371865 + 1.64573i −0.0162761 + 0.0720318i
\(523\) −13.6311 3.65245i −0.596048 0.159711i −0.0518323 0.998656i \(-0.516506\pi\)
−0.544216 + 0.838945i \(0.683173\pi\)
\(524\) −20.1615 + 34.9207i −0.880758 + 1.52552i
\(525\) 0 0
\(526\) −2.21362 1.27803i −0.0965184 0.0557249i
\(527\) −13.8802 + 3.71919i −0.604631 + 0.162010i
\(528\) −35.4181 + 0.700906i −1.54137 + 0.0305030i
\(529\) 13.4917 + 7.78941i 0.586594 + 0.338670i
\(530\) 0 0
\(531\) −22.9477 + 14.4887i −0.995847 + 0.628756i
\(532\) 2.36413 + 2.36413i 0.102498 + 0.102498i
\(533\) 5.54297 + 4.30333i 0.240093 + 0.186398i
\(534\) 0.578179 0.601524i 0.0250202 0.0260305i
\(535\) 0 0
\(536\) −2.95238 + 1.70456i −0.127523 + 0.0736256i
\(537\) −4.86915 + 8.83273i −0.210119 + 0.381160i
\(538\) 0.273182 + 0.273182i 0.0117777 + 0.0117777i
\(539\) 40.5034 + 23.3846i 1.74460 + 1.00725i
\(540\) 0 0
\(541\) 22.8149i 0.980890i −0.871472 0.490445i \(-0.836834\pi\)
0.871472 0.490445i \(-0.163166\pi\)
\(542\) −0.342412 1.27790i −0.0147079 0.0548905i
\(543\) −8.91438 14.7579i −0.382553 0.633322i
\(544\) 2.24824 + 3.89407i 0.0963927 + 0.166957i
\(545\) 0 0
\(546\) −2.22913 1.66097i −0.0953979 0.0710830i
\(547\) −10.0470 10.0470i −0.429577 0.429577i 0.458907 0.888484i \(-0.348241\pi\)
−0.888484 + 0.458907i \(0.848241\pi\)
\(548\) 25.6636 + 6.87653i 1.09629 + 0.293751i
\(549\) 8.51847 + 13.4919i 0.363559 + 0.575819i
\(550\) 0 0
\(551\) 2.12526 0.0905391
\(552\) 1.01157 1.83500i 0.0430552 0.0781029i
\(553\) 9.61765 2.57704i 0.408984 0.109587i
\(554\) 1.91420i 0.0813267i
\(555\) 0 0
\(556\) −20.5912 35.6650i −0.873261 1.51253i
\(557\) 6.81604 25.4378i 0.288805 1.07783i −0.657209 0.753708i \(-0.728263\pi\)
0.946014 0.324126i \(-0.105070\pi\)
\(558\) −0.960235 + 1.03941i −0.0406500 + 0.0440017i
\(559\) 2.04178 + 2.69231i 0.0863581 + 0.113873i
\(560\) 0 0
\(561\) −29.7227 7.33706i −1.25489 0.309771i
\(562\) −0.638111 + 2.38146i −0.0269171 + 0.100456i
\(563\) 18.9045 5.06546i 0.796732 0.213484i 0.162583 0.986695i \(-0.448017\pi\)
0.634149 + 0.773211i \(0.281351\pi\)
\(564\) −4.36739 + 4.54374i −0.183900 + 0.191326i
\(565\) 0 0
\(566\) −0.157566 + 0.272913i −0.00662300 + 0.0114714i
\(567\) 23.3467 27.3692i 0.980470 1.14940i
\(568\) −1.40193 5.23209i −0.0588239 0.219534i
\(569\) 2.45559 + 4.25321i 0.102944 + 0.178304i 0.912896 0.408192i \(-0.133841\pi\)
−0.809952 + 0.586495i \(0.800507\pi\)
\(570\) 0 0
\(571\) −17.2440 −0.721639 −0.360819 0.932636i \(-0.617503\pi\)
−0.360819 + 0.932636i \(0.617503\pi\)
\(572\) −14.0924 34.5743i −0.589233 1.44562i
\(573\) 0.783925 + 39.6132i 0.0327489 + 1.65486i
\(574\) 0.433180 + 0.750289i 0.0180806 + 0.0313165i
\(575\) 0 0
\(576\) −20.4568 10.7549i −0.852367 0.448121i
\(577\) −16.3463 + 16.3463i −0.680507 + 0.680507i −0.960114 0.279607i \(-0.909796\pi\)
0.279607 + 0.960114i \(0.409796\pi\)
\(578\) −0.158231 0.590527i −0.00658156 0.0245627i
\(579\) −28.4782 + 8.23796i −1.18351 + 0.342358i
\(580\) 0 0
\(581\) 46.7606 + 26.9973i 1.93996 + 1.12003i
\(582\) −0.285373 0.472439i −0.0118291 0.0195832i
\(583\) 4.68655 17.4905i 0.194097 0.724381i
\(584\) −0.814753 −0.0337147
\(585\) 0 0
\(586\) −0.880683 −0.0363807
\(587\) −0.347066 + 1.29527i −0.0143250 + 0.0534615i −0.972718 0.231989i \(-0.925477\pi\)
0.958393 + 0.285451i \(0.0921433\pi\)
\(588\) 15.9788 + 26.4531i 0.658954 + 1.09091i
\(589\) 1.54365 + 0.891226i 0.0636049 + 0.0367223i
\(590\) 0 0
\(591\) −2.46169 + 0.712098i −0.101260 + 0.0292918i
\(592\) 6.04025 + 22.5425i 0.248253 + 0.926491i
\(593\) 16.7430 16.7430i 0.687552 0.687552i −0.274138 0.961690i \(-0.588393\pi\)
0.961690 + 0.274138i \(0.0883925\pi\)
\(594\) −2.86065 + 0.951675i −0.117374 + 0.0390477i
\(595\) 0 0
\(596\) −8.97996 15.5537i −0.367834 0.637106i
\(597\) 0.818839 + 41.3774i 0.0335129 + 1.69347i
\(598\) 1.08366 + 0.148912i 0.0443143 + 0.00608945i
\(599\) −29.1006 −1.18902 −0.594509 0.804089i \(-0.702653\pi\)
−0.594509 + 0.804089i \(0.702653\pi\)
\(600\) 0 0
\(601\) 15.9418 + 27.6120i 0.650280 + 1.12632i 0.983055 + 0.183311i \(0.0586816\pi\)
−0.332775 + 0.943006i \(0.607985\pi\)
\(602\) 0.107971 + 0.402952i 0.00440055 + 0.0164231i
\(603\) 15.6279 16.9165i 0.636419 0.688894i
\(604\) 11.6402 20.1615i 0.473635 0.820359i
\(605\) 0 0
\(606\) 0.369589 0.384512i 0.0150135 0.0156197i
\(607\) 14.1691 3.79661i 0.575107 0.154100i 0.0404693 0.999181i \(-0.487115\pi\)
0.534638 + 0.845081i \(0.320448\pi\)
\(608\) 0.144356 0.538745i 0.00585442 0.0218490i
\(609\) 33.9443 + 8.37917i 1.37549 + 0.339541i
\(610\) 0 0
\(611\) −6.08379 2.56042i −0.246124 0.103584i
\(612\) −14.8594 13.7275i −0.600657 0.554903i
\(613\) −5.37967 + 20.0772i −0.217283 + 0.810911i 0.768067 + 0.640369i \(0.221219\pi\)
−0.985350 + 0.170542i \(0.945448\pi\)
\(614\) −0.842294 1.45890i −0.0339922 0.0588762i
\(615\) 0 0
\(616\) 9.24775i 0.372602i
\(617\) 39.2451 10.5157i 1.57995 0.423345i 0.641037 0.767510i \(-0.278504\pi\)
0.938909 + 0.344164i \(0.111838\pi\)
\(618\) 0.00600341 0.0108903i 0.000241492 0.000438072i
\(619\) 21.9052 0.880445 0.440222 0.897889i \(-0.354900\pi\)
0.440222 + 0.897889i \(0.354900\pi\)
\(620\) 0 0
\(621\) −2.84604 + 13.8662i −0.114208 + 0.556432i
\(622\) −1.29293 0.346441i −0.0518420 0.0138910i
\(623\) −12.2255 12.2255i −0.489804 0.489804i
\(624\) 2.85633 24.3493i 0.114345 0.974751i
\(625\) 0 0
\(626\) 1.29995 + 2.25158i 0.0519564 + 0.0899911i
\(627\) 1.96345 + 3.25052i 0.0784126 + 0.129813i
\(628\) −8.19964 30.6015i −0.327201 1.22113i
\(629\) 20.1688i 0.804183i
\(630\) 0 0
\(631\) 16.2845 + 9.40185i 0.648275 + 0.374282i 0.787795 0.615937i \(-0.211223\pi\)
−0.139520 + 0.990219i \(0.544556\pi\)
\(632\) −0.782208 0.782208i −0.0311146 0.0311146i
\(633\) 2.57414 4.66954i 0.102313 0.185598i
\(634\) −0.106209 + 0.0613196i −0.00421809 + 0.00243531i
\(635\) 0 0
\(636\) 8.29159 8.62639i 0.328783 0.342059i
\(637\) −19.8489 + 25.5667i −0.786442 + 1.01299i
\(638\) −2.07188 2.07188i −0.0820264 0.0820264i
\(639\) 19.5357 + 30.9414i 0.772821 + 1.22402i
\(640\) 0 0
\(641\) 18.6204 + 10.7505i 0.735461 + 0.424619i 0.820417 0.571766i \(-0.193742\pi\)
−0.0849557 + 0.996385i \(0.527075\pi\)
\(642\) 3.27585 0.0648275i 0.129288 0.00255854i
\(643\) −2.64106 + 0.707671i −0.104153 + 0.0279078i −0.310519 0.950567i \(-0.600503\pi\)
0.206366 + 0.978475i \(0.433836\pi\)
\(644\) −18.7432 10.8214i −0.738585 0.426422i
\(645\) 0 0
\(646\) 0.0795009 0.137700i 0.00312792 0.00541772i
\(647\) −39.8449 10.6764i −1.56647 0.419733i −0.631762 0.775162i \(-0.717668\pi\)
−0.934703 + 0.355429i \(0.884335\pi\)
\(648\) −3.93023 0.725954i −0.154394 0.0285182i
\(649\) 47.1302i 1.85002i
\(650\) 0 0
\(651\) 21.1411 + 20.3206i 0.828585 + 0.796426i
\(652\) 24.6081 + 6.59373i 0.963729 + 0.258230i
\(653\) −4.49795 + 16.7866i −0.176018 + 0.656909i 0.820358 + 0.571851i \(0.193774\pi\)
−0.996376 + 0.0850584i \(0.972892\pi\)
\(654\) −0.876719 + 0.253611i −0.0342824 + 0.00991696i
\(655\) 0 0
\(656\) −3.82026 + 6.61688i −0.149156 + 0.258346i
\(657\) 5.25604 1.63380i 0.205058 0.0637404i
\(658\) −0.576229 0.576229i −0.0224638 0.0224638i
\(659\) 9.34358 16.1835i 0.363974 0.630422i −0.624637 0.780915i \(-0.714753\pi\)
0.988611 + 0.150494i \(0.0480863\pi\)
\(660\) 0 0
\(661\) 36.7989 21.2459i 1.43131 0.826368i 0.434091 0.900869i \(-0.357070\pi\)
0.997221 + 0.0745005i \(0.0237362\pi\)
\(662\) −2.21731 + 2.21731i −0.0861780 + 0.0861780i
\(663\) 7.83071 19.6871i 0.304119 0.764584i
\(664\) 5.99876i 0.232797i
\(665\) 0 0
\(666\) 1.06034 + 1.67940i 0.0410872 + 0.0650754i
\(667\) −13.2887 + 3.56070i −0.514540 + 0.137871i
\(668\) −31.6965 + 31.6965i −1.22638 + 1.22638i
\(669\) −9.61818 + 2.78228i −0.371860 + 0.107569i
\(670\) 0 0
\(671\) −27.7097 −1.06972
\(672\) 4.42972 8.03560i 0.170880 0.309980i
\(673\) 0.980547 + 0.262737i 0.0377973 + 0.0101278i 0.277668 0.960677i \(-0.410438\pi\)
−0.239871 + 0.970805i \(0.577105\pi\)
\(674\) 2.44738 1.41300i 0.0942697 0.0544267i
\(675\) 0 0
\(676\) 25.0324 6.40462i 0.962786 0.246331i
\(677\) 2.15255 2.15255i 0.0827291 0.0827291i −0.664531 0.747260i \(-0.731369\pi\)
0.747260 + 0.664531i \(0.231369\pi\)
\(678\) 0.465532 0.281201i 0.0178786 0.0107994i
\(679\) −9.90513 + 5.71873i −0.380124 + 0.219465i
\(680\) 0 0
\(681\) 18.3333 + 17.6217i 0.702532 + 0.675266i
\(682\) −0.636035 2.37371i −0.0243550 0.0908942i
\(683\) −8.32509 31.0697i −0.318551 1.18885i −0.920638 0.390418i \(-0.872331\pi\)
0.602087 0.798430i \(-0.294336\pi\)
\(684\) 0.0992783 + 2.50737i 0.00379600 + 0.0958718i
\(685\) 0 0
\(686\) −0.762153 + 0.440029i −0.0290991 + 0.0168004i
\(687\) −3.22906 5.34576i −0.123196 0.203954i
\(688\) −2.60147 + 2.60147i −0.0991802 + 0.0991802i
\(689\) 11.5502 + 4.86103i 0.440028 + 0.185190i
\(690\) 0 0
\(691\) −15.5777 + 8.99379i −0.592603 + 0.342140i −0.766126 0.642690i \(-0.777818\pi\)
0.173523 + 0.984830i \(0.444485\pi\)
\(692\) −6.94696 1.86143i −0.264084 0.0707611i
\(693\) 18.5442 + 59.6580i 0.704435 + 2.26622i
\(694\) 0.0558510 0.00212007
\(695\) 0 0
\(696\) −1.07939 3.73141i −0.0409143 0.141439i
\(697\) −4.66906 + 4.66906i −0.176853 + 0.176853i
\(698\) 0.996554 0.267026i 0.0377201 0.0101071i
\(699\) 4.62715 18.7447i 0.175015 0.708991i
\(700\) 0 0
\(701\) 36.5117i 1.37903i −0.724272 0.689515i \(-0.757824\pi\)
0.724272 0.689515i \(-0.242176\pi\)
\(702\) −0.382971 2.05097i −0.0144543 0.0774090i
\(703\) 1.76901 1.76901i 0.0667196 0.0667196i
\(704\) 34.7591 20.0682i 1.31003 0.756347i
\(705\) 0 0
\(706\) −1.17916 + 2.04236i −0.0443782 + 0.0768653i
\(707\) −7.81490 7.81490i −0.293909 0.293909i
\(708\) 15.0348 27.2734i 0.565043 1.02500i
\(709\) −17.1761 + 29.7499i −0.645063 + 1.11728i 0.339224 + 0.940706i \(0.389836\pi\)
−0.984287 + 0.176577i \(0.943498\pi\)
\(710\) 0 0
\(711\) 6.61462 + 3.47756i 0.248068 + 0.130419i
\(712\) −0.497153 + 1.85540i −0.0186316 + 0.0695340i
\(713\) −11.1452 2.98635i −0.417391 0.111840i
\(714\) 1.81268 1.88587i 0.0678377 0.0705769i
\(715\) 0 0
\(716\) 11.5740i 0.432540i
\(717\) 0.140514 0.0848763i 0.00524759 0.00316976i
\(718\) −1.91056 0.511933i −0.0713014 0.0191052i
\(719\) 5.50044 9.52704i 0.205132 0.355299i −0.745043 0.667016i \(-0.767571\pi\)
0.950175 + 0.311718i \(0.100904\pi\)
\(720\) 0 0
\(721\) −0.223167 0.128845i −0.00831116 0.00479845i
\(722\) 2.02479 0.542540i 0.0753547 0.0201912i
\(723\) −0.369793 18.6863i −0.0137528 0.694952i
\(724\) 17.1344 + 9.89253i 0.636794 + 0.367653i
\(725\) 0 0
\(726\) 0.746242 3.02305i 0.0276956 0.112196i
\(727\) −13.9424 13.9424i −0.517094 0.517094i 0.399597 0.916691i \(-0.369150\pi\)
−0.916691 + 0.399597i \(0.869150\pi\)
\(728\) 6.34042 + 0.871268i 0.234991 + 0.0322913i
\(729\) 26.8099 3.19796i 0.992961 0.118443i
\(730\) 0 0
\(731\) −2.75351 + 1.58974i −0.101842 + 0.0587986i
\(732\) −16.0351 8.83955i −0.592675 0.326719i
\(733\) −10.0007 10.0007i −0.369383 0.369383i 0.497869 0.867252i \(-0.334116\pi\)
−0.867252 + 0.497869i \(0.834116\pi\)
\(734\) −0.108825 0.0628299i −0.00401679 0.00231909i
\(735\) 0 0
\(736\) 3.61049i 0.133084i
\(737\) 10.3515 + 38.6325i 0.381304 + 1.42305i
\(738\) −0.143313 + 0.634247i −0.00527542 + 0.0233469i
\(739\) −5.27257 9.13236i −0.193955 0.335939i 0.752603 0.658475i \(-0.228798\pi\)
−0.946557 + 0.322536i \(0.895465\pi\)
\(740\) 0 0
\(741\) −2.41360 + 1.03993i −0.0886657 + 0.0382028i
\(742\) 1.09399 + 1.09399i 0.0401615 + 0.0401615i
\(743\) 33.1343 + 8.87832i 1.21558 + 0.325714i 0.808949 0.587878i \(-0.200037\pi\)
0.406632 + 0.913592i \(0.366703\pi\)
\(744\) 0.780762 3.16289i 0.0286241 0.115957i
\(745\) 0 0
\(746\) 1.98600 0.0727127
\(747\) 12.0291 + 38.6985i 0.440122 + 1.41590i
\(748\) 33.9347 9.09277i 1.24077 0.332465i
\(749\) 67.8966i 2.48089i
\(750\) 0 0
\(751\) −7.98474 13.8300i −0.291367 0.504663i 0.682766 0.730637i \(-0.260777\pi\)
−0.974133 + 0.225974i \(0.927444\pi\)
\(752\) 1.86008 6.94191i 0.0678301 0.253145i
\(753\) −0.733024 37.0411i −0.0267129 1.34985i
\(754\) 1.61571 1.22531i 0.0588408 0.0446233i
\(755\) 0 0
\(756\) −8.30006 + 40.4388i −0.301870 + 1.47074i
\(757\) 10.9112 40.7211i 0.396574 1.48003i −0.422510 0.906358i \(-0.638851\pi\)
0.819083 0.573675i \(-0.194483\pi\)
\(758\) −1.11331 + 0.298311i −0.0404373 + 0.0108351i
\(759\) −17.7229 17.0351i −0.643301 0.618334i
\(760\) 0 0
\(761\) −2.02411 + 3.50585i −0.0733738 + 0.127087i −0.900378 0.435109i \(-0.856710\pi\)
0.827004 + 0.562196i \(0.190043\pi\)
\(762\) −0.00691435 0.349395i −0.000250480 0.0126572i
\(763\) 4.89492 + 18.2681i 0.177208 + 0.661349i
\(764\) −22.7333 39.3752i −0.822462 1.42455i
\(765\) 0 0
\(766\) 1.85016 0.0668492
\(767\) 32.3133 + 4.44032i 1.16676 + 0.160331i
\(768\) 26.0052 0.514629i 0.938381 0.0185701i
\(769\) −9.59863 16.6253i −0.346135 0.599524i 0.639424 0.768854i \(-0.279173\pi\)
−0.985559 + 0.169330i \(0.945840\pi\)
\(770\) 0 0
\(771\) 7.80949 + 26.9970i 0.281252 + 0.972273i
\(772\) 24.0556 24.0556i 0.865778 0.865778i
\(773\) −0.891235 3.32613i −0.0320555 0.119633i 0.948044 0.318139i \(-0.103058\pi\)
−0.980100 + 0.198506i \(0.936391\pi\)
\(774\) −0.145699 + 0.277134i −0.00523706 + 0.00996136i
\(775\) 0 0
\(776\) 1.10045 + 0.635348i 0.0395040 + 0.0228077i
\(777\) 35.2290 21.2798i 1.26383 0.763408i
\(778\) 0.696840 2.60064i 0.0249829 0.0932375i
\(779\) 0.819051 0.0293455
\(780\) 0 0
\(781\) −63.5476 −2.27391
\(782\) −0.266394 + 0.994197i −0.00952624 + 0.0355524i
\(783\) 14.4457 + 21.9071i 0.516248 + 0.782898i
\(784\) −30.5200 17.6208i −1.09000 0.629313i
\(785\) 0 0
\(786\) −1.08740 3.75909i −0.0387864 0.134082i
\(787\) −8.97719 33.5033i −0.320002 1.19426i −0.919241 0.393694i \(-0.871197\pi\)
0.599239 0.800570i \(-0.295470\pi\)
\(788\) 2.07939 2.07939i 0.0740752 0.0740752i
\(789\) −38.1886 + 11.0469i −1.35955 + 0.393281i
\(790\) 0 0
\(791\) −5.63512 9.76031i −0.200362 0.347037i
\(792\) 4.70987 5.09821i 0.167358 0.181157i
\(793\) 2.61064 18.9982i 0.0927065 0.674647i
\(794\) −0.952251 −0.0337941
\(795\) 0 0
\(796\) −23.7458 41.1289i −0.841647 1.45778i
\(797\) 7.97400 + 29.7594i 0.282454 + 1.05413i 0.950680 + 0.310173i \(0.100387\pi\)
−0.668226 + 0.743958i \(0.732946\pi\)
\(798\) −0.324401 + 0.00641973i −0.0114837 + 0.000227256i
\(799\) 3.10547 5.37883i 0.109864 0.190289i
\(800\) 0 0
\(801\) −0.513392 12.9662i −0.0181398 0.458140i
\(802\) −2.95603 + 0.792066i −0.104381 + 0.0279688i
\(803\) −2.47394 + 9.23288i −0.0873036 + 0.325821i
\(804\) −6.33374 + 25.6582i −0.223374 + 0.904894i
\(805\) 0 0
\(806\) 1.68738 0.212439i 0.0594355 0.00748286i
\(807\) 6.00749 0.118885i 0.211474 0.00418496i
\(808\) −0.317795 + 1.18603i −0.0111800 + 0.0417242i
\(809\) 18.8982 + 32.7327i 0.664427 + 1.15082i 0.979440 + 0.201734i \(0.0646576\pi\)
−0.315013 + 0.949087i \(0.602009\pi\)
\(810\) 0 0
\(811\) 11.6051i 0.407512i −0.979022 0.203756i \(-0.934685\pi\)
0.979022 0.203756i \(-0.0653148\pi\)
\(812\) −38.7545 + 10.3842i −1.36002 + 0.364416i
\(813\) −18.0196 9.93352i −0.631974 0.348384i
\(814\) −3.44916 −0.120893
\(815\) 0 0
\(816\) 22.3966 + 5.52861i 0.784037 + 0.193540i
\(817\) 0.380948 + 0.102075i 0.0133277 + 0.00357114i
\(818\) 2.93960 + 2.93960i 0.102781 + 0.102781i
\(819\) −42.6497 + 7.09359i −1.49030 + 0.247870i
\(820\) 0 0
\(821\) 21.9513 + 38.0208i 0.766107 + 1.32694i 0.939659 + 0.342111i \(0.111142\pi\)
−0.173553 + 0.984825i \(0.555525\pi\)
\(822\) −2.20703 + 1.33314i −0.0769791 + 0.0464986i
\(823\) 11.4601 + 42.7695i 0.399472 + 1.49085i 0.814027 + 0.580827i \(0.197271\pi\)
−0.414554 + 0.910025i \(0.636063\pi\)
\(824\) 0.0286293i 0.000997349i
\(825\) 0 0
\(826\) 3.48738 + 2.01344i 0.121341 + 0.0700565i
\(827\) −6.22326 6.22326i −0.216404 0.216404i 0.590577 0.806981i \(-0.298900\pi\)
−0.806981 + 0.590577i \(0.798900\pi\)
\(828\) −4.82166 15.5116i −0.167564 0.539067i
\(829\) 34.6858 20.0259i 1.20469 0.695527i 0.243094 0.970003i \(-0.421838\pi\)
0.961594 + 0.274475i \(0.0885042\pi\)
\(830\) 0 0
\(831\) 21.4640 + 20.6310i 0.744578 + 0.715680i
\(832\) 10.4843 + 25.7221i 0.363477 + 0.891754i
\(833\) −21.5358 21.5358i −0.746172 0.746172i
\(834\) 3.88014 + 0.957816i 0.134358 + 0.0331665i
\(835\) 0 0
\(836\) −3.77395 2.17889i −0.130525 0.0753586i
\(837\) 1.30567 + 21.9697i 0.0451307 + 0.759384i
\(838\) −3.19297 + 0.855555i −0.110299 + 0.0295546i
\(839\) 3.62533 + 2.09309i 0.125160 + 0.0722614i 0.561273 0.827631i \(-0.310312\pi\)
−0.436113 + 0.899892i \(0.643645\pi\)
\(840\) 0 0
\(841\) 1.74811 3.02782i 0.0602797 0.104407i
\(842\) −2.29595 0.615198i −0.0791236 0.0212011i
\(843\) 19.8259 + 32.8222i 0.682842 + 1.13046i
\(844\) 6.11875i 0.210616i
\(845\) 0 0
\(846\) −0.0241979 0.611144i −0.000831942 0.0210116i
\(847\) −62.3264 16.7003i −2.14156 0.573830i
\(848\) −3.53140 + 13.1794i −0.121269 + 0.452582i
\(849\) 1.36195 + 4.70820i 0.0467421 + 0.161585i
\(850\) 0 0
\(851\) −8.09736 + 14.0250i −0.277574 + 0.480772i
\(852\) −36.7739 20.2721i −1.25985 0.694510i
\(853\) 1.57958 + 1.57958i 0.0540837 + 0.0540837i 0.733631 0.679548i \(-0.237824\pi\)
−0.679548 + 0.733631i \(0.737824\pi\)
\(854\) 1.18378 2.05036i 0.0405081 0.0701620i
\(855\) 0 0
\(856\) −6.53267 + 3.77164i −0.223282 + 0.128912i
\(857\) −31.1740 + 31.1740i −1.06488 + 1.06488i −0.0671414 + 0.997743i \(0.521388\pi\)
−0.997743 + 0.0671414i \(0.978612\pi\)
\(858\) 3.36678 + 1.33916i 0.114940 + 0.0457183i
\(859\) 17.7932i 0.607095i 0.952816 + 0.303547i \(0.0981711\pi\)
−0.952816 + 0.303547i \(0.901829\pi\)
\(860\) 0 0
\(861\) 13.0817 + 3.22924i 0.445825 + 0.110052i
\(862\) −0.312829 + 0.0838223i −0.0106550 + 0.00285500i
\(863\) −4.49895 + 4.49895i −0.153146 + 0.153146i −0.779522 0.626375i \(-0.784538\pi\)
0.626375 + 0.779522i \(0.284538\pi\)
\(864\) 6.53459 2.17391i 0.222311 0.0739580i
\(865\) 0 0
\(866\) −2.94505 −0.100077
\(867\) −8.32698 4.59035i −0.282799 0.155896i
\(868\) −32.5034 8.70925i −1.10324 0.295611i
\(869\) −11.2392 + 6.48896i −0.381264 + 0.220123i
\(870\) 0 0
\(871\) −27.4624 + 3.45747i −0.930526 + 0.117152i
\(872\) 1.48575 1.48575i 0.0503139 0.0503139i
\(873\) −8.37316 1.89198i −0.283389 0.0640338i
\(874\) 0.110567 0.0638359i 0.00373998 0.00215928i
\(875\) 0 0
\(876\) −4.37698 + 4.55371i −0.147884 + 0.153856i
\(877\) −1.58848 5.92830i −0.0536393 0.200184i 0.933906 0.357518i \(-0.116377\pi\)
−0.987546 + 0.157334i \(0.949710\pi\)
\(878\) −0.772733 2.88388i −0.0260785 0.0973262i
\(879\) −9.49185 + 9.87511i −0.320152 + 0.333079i
\(880\) 0 0
\(881\) −36.9093 + 21.3096i −1.24350 + 0.717938i −0.969806 0.243878i \(-0.921581\pi\)
−0.273699 + 0.961815i \(0.588247\pi\)
\(882\) −2.92543 0.661023i −0.0985044 0.0222578i
\(883\) 13.2826 13.2826i 0.446996 0.446996i −0.447358 0.894355i \(-0.647635\pi\)
0.894355 + 0.447358i \(0.147635\pi\)
\(884\) 3.03704 + 24.1229i 0.102147 + 0.811340i
\(885\) 0 0
\(886\) 2.64092 1.52473i 0.0887233 0.0512244i
\(887\) 0.0708297 + 0.0189788i 0.00237823 + 0.000637244i 0.260008 0.965606i \(-0.416275\pi\)
−0.257630 + 0.966244i \(0.582941\pi\)
\(888\) −4.00440 2.20747i −0.134379 0.0740779i
\(889\) −7.24169 −0.242879
\(890\) 0 0
\(891\) −20.1605 + 42.3335i −0.675401 + 1.41823i
\(892\) 8.12449 8.12449i 0.272028 0.272028i
\(893\) −0.744161 + 0.199397i −0.0249024 + 0.00667257i
\(894\) 1.69216 + 0.417710i 0.0565942 + 0.0139703i
\(895\) 0 0
\(896\) 14.0245i 0.468525i
\(897\) 13.3493 10.5462i 0.445720 0.352127i
\(898\) 0.275440 0.275440i 0.00919156 0.00919156i
\(899\) −18.5243 + 10.6950i −0.617819 + 0.356698i
\(900\) 0 0
\(901\) −5.89581 + 10.2118i −0.196418 + 0.340206i
\(902\) −0.798478 0.798478i −0.0265864 0.0265864i
\(903\) 5.68199 + 3.13227i 0.189085 + 0.104235i
\(904\) −0.626059 + 1.08437i −0.0208224 + 0.0360655i
\(905\) 0 0
\(906\) 0.627812 + 2.17031i 0.0208577 + 0.0721039i
\(907\) 3.44596 12.8605i 0.114421 0.427026i −0.884822 0.465930i \(-0.845720\pi\)
0.999243 + 0.0389038i \(0.0123866\pi\)
\(908\) −28.1865 7.55255i −0.935401 0.250640i
\(909\) −0.328176 8.28841i −0.0108849 0.274909i
\(910\) 0 0
\(911\) 26.2784i 0.870641i −0.900276 0.435321i \(-0.856635\pi\)
0.900276 0.435321i \(-0.143365\pi\)
\(912\) −1.47949 2.44933i −0.0489910 0.0811053i
\(913\) −67.9787 18.2148i −2.24977 0.602823i
\(914\) 1.94240 3.36434i 0.0642490 0.111283i
\(915\) 0 0
\(916\) 6.20659 + 3.58338i 0.205072 + 0.118398i
\(917\) −78.3277 + 20.9879i −2.58661 + 0.693080i
\(918\) 1.95979 0.116471i 0.0646826 0.00384412i
\(919\) −12.6380 7.29655i −0.416889 0.240691i 0.276856 0.960911i \(-0.410707\pi\)
−0.693746 + 0.720220i \(0.744041\pi\)
\(920\) 0 0
\(921\) −25.4367 6.27907i −0.838168 0.206902i
\(922\) −0.855820 0.855820i −0.0281849 0.0281849i
\(923\) 5.98707 43.5693i 0.197067 1.43410i
\(924\) −51.6863 49.6803i −1.70035 1.63436i
\(925\) 0 0
\(926\) −0.913562 + 0.527445i −0.0300215 + 0.0173329i
\(927\) −0.0574093 0.184690i −0.00188557 0.00606601i
\(928\) 4.73279 + 4.73279i 0.155361 + 0.155361i
\(929\) −38.3045 22.1151i −1.25673 0.725573i −0.284292 0.958738i \(-0.591758\pi\)
−0.972437 + 0.233165i \(0.925092\pi\)
\(930\) 0 0
\(931\) 3.77783i 0.123813i
\(932\) 5.73440 + 21.4011i 0.187836 + 0.701015i
\(933\) −17.8197 + 10.7638i −0.583390 + 0.352392i
\(934\) −0.359584 0.622817i −0.0117659 0.0203792i
\(935\) 0 0
\(936\) 3.05169 + 3.70949i 0.0997475 + 0.121248i
\(937\) −22.4956 22.4956i −0.734898 0.734898i 0.236688 0.971586i \(-0.423938\pi\)
−0.971586 + 0.236688i \(0.923938\pi\)
\(938\) −3.30082 0.884452i −0.107776 0.0288784i
\(939\) 39.2576 + 9.69076i 1.28112 + 0.316246i
\(940\) 0 0
\(941\) −37.4186 −1.21981 −0.609905 0.792474i \(-0.708793\pi\)
−0.609905 + 0.792474i \(0.708793\pi\)
\(942\) 2.69252 + 1.48428i 0.0877270 + 0.0483606i
\(943\) −5.12131 + 1.37225i −0.166773 + 0.0446867i
\(944\) 35.5135i 1.15586i
\(945\) 0 0
\(946\) −0.271869 0.470890i −0.00883921 0.0153100i
\(947\) −0.895335 + 3.34143i −0.0290945 + 0.108582i −0.978946 0.204119i \(-0.934567\pi\)
0.949852 + 0.312701i \(0.101234\pi\)
\(948\) −8.57396 + 0.169674i −0.278469 + 0.00551077i
\(949\) −6.09715 2.56605i −0.197922 0.0832974i
\(950\) 0 0
\(951\) −0.457121 + 1.85181i −0.0148232 + 0.0600491i
\(952\) −1.55865 + 5.81695i −0.0505161 + 0.188529i
\(953\) 28.6007 7.66352i 0.926466 0.248246i 0.236119 0.971724i \(-0.424124\pi\)
0.690347 + 0.723478i \(0.257458\pi\)
\(954\) 0.0459404 + 1.16027i 0.00148737 + 0.0375652i
\(955\) 0 0
\(956\) −0.0941895 + 0.163141i −0.00304631 + 0.00527636i
\(957\) −45.5623 + 0.901655i −1.47282 + 0.0291464i
\(958\) 0.459864 + 1.71624i 0.0148575 + 0.0554491i
\(959\) 26.7155 + 46.2725i 0.862687 + 1.49422i
\(960\) 0 0
\(961\) 13.0603 0.421299
\(962\) 0.324959 2.36480i 0.0104771 0.0762443i
\(963\) 34.5797 37.4309i 1.11431 1.20619i
\(964\) 10.7238 + 18.5741i 0.345389 + 0.598231i
\(965\) 0 0
\(966\) 2.01764 0.583648i 0.0649165 0.0187786i
\(967\) −18.5880 + 18.5880i −0.597750 + 0.597750i −0.939713 0.341963i \(-0.888908\pi\)
0.341963 + 0.939713i \(0.388908\pi\)
\(968\) 1.85540 + 6.92443i 0.0596347 + 0.222560i
\(969\) −0.687180 2.37555i −0.0220754 0.0763135i
\(970\) 0 0
\(971\) 6.10879 + 3.52691i 0.196040 + 0.113184i 0.594807 0.803868i \(-0.297228\pi\)
−0.398767 + 0.917052i \(0.630562\pi\)
\(972\) −25.1712 + 18.0664i −0.807366 + 0.579479i
\(973\) 21.4352 79.9972i 0.687180 2.56459i
\(974\) −3.65614 −0.117150
\(975\) 0 0
\(976\) 20.8797 0.668344
\(977\) −5.28126 + 19.7099i −0.168963 + 0.630577i 0.828539 + 0.559932i \(0.189173\pi\)
−0.997501 + 0.0706455i \(0.977494\pi\)
\(978\) −2.11627 + 1.27831i −0.0676708 + 0.0408760i
\(979\) 19.5160 + 11.2676i 0.623735 + 0.360114i
\(980\) 0 0
\(981\) −6.60538 + 12.5640i −0.210894 + 0.401139i
\(982\) −0.840582 3.13710i −0.0268241 0.100109i
\(983\) −30.8727 + 30.8727i −0.984687 + 0.984687i −0.999885 0.0151975i \(-0.995162\pi\)
0.0151975 + 0.999885i \(0.495162\pi\)
\(984\) −0.415986 1.43804i −0.0132612 0.0458431i
\(985\) 0 0
\(986\) 0.954036 + 1.65244i 0.0303827 + 0.0526244i
\(987\) −12.6718 + 0.250768i −0.403347 + 0.00798203i
\(988\) 1.84945 2.38221i 0.0588387 0.0757880i
\(989\) −2.55299 −0.0811803
\(990\) 0 0
\(991\) −6.36105 11.0177i −0.202065 0.349988i 0.747128 0.664680i \(-0.231432\pi\)
−0.949194 + 0.314692i \(0.898099\pi\)
\(992\) 1.45290 + 5.42228i 0.0461295 + 0.172158i
\(993\) 0.964945 + 48.7604i 0.0306216 + 1.54736i
\(994\) 2.71480 4.70218i 0.0861083 0.149144i
\(995\) 0 0
\(996\) −33.5275 32.2263i −1.06236 1.02113i
\(997\) 8.75218 2.34514i 0.277184 0.0742713i −0.117549 0.993067i \(-0.537504\pi\)
0.394733 + 0.918796i \(0.370837\pi\)
\(998\) 0.482956 1.80241i 0.0152877 0.0570544i
\(999\) 30.2593 + 6.21072i 0.957360 + 0.196498i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.257.13 96
3.2 odd 2 inner 975.2.bn.d.257.12 96
5.2 odd 4 195.2.bf.a.23.13 yes 96
5.3 odd 4 inner 975.2.bn.d.218.12 96
5.4 even 2 195.2.bf.a.62.12 yes 96
13.4 even 6 inner 975.2.bn.d.407.13 96
15.2 even 4 195.2.bf.a.23.12 yes 96
15.8 even 4 inner 975.2.bn.d.218.13 96
15.14 odd 2 195.2.bf.a.62.13 yes 96
39.17 odd 6 inner 975.2.bn.d.407.12 96
65.4 even 6 195.2.bf.a.17.12 96
65.17 odd 12 195.2.bf.a.173.13 yes 96
65.43 odd 12 inner 975.2.bn.d.368.12 96
195.17 even 12 195.2.bf.a.173.12 yes 96
195.134 odd 6 195.2.bf.a.17.13 yes 96
195.173 even 12 inner 975.2.bn.d.368.13 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.12 96 65.4 even 6
195.2.bf.a.17.13 yes 96 195.134 odd 6
195.2.bf.a.23.12 yes 96 15.2 even 4
195.2.bf.a.23.13 yes 96 5.2 odd 4
195.2.bf.a.62.12 yes 96 5.4 even 2
195.2.bf.a.62.13 yes 96 15.14 odd 2
195.2.bf.a.173.12 yes 96 195.17 even 12
195.2.bf.a.173.13 yes 96 65.17 odd 12
975.2.bn.d.218.12 96 5.3 odd 4 inner
975.2.bn.d.218.13 96 15.8 even 4 inner
975.2.bn.d.257.12 96 3.2 odd 2 inner
975.2.bn.d.257.13 96 1.1 even 1 trivial
975.2.bn.d.368.12 96 65.43 odd 12 inner
975.2.bn.d.368.13 96 195.173 even 12 inner
975.2.bn.d.407.12 96 39.17 odd 6 inner
975.2.bn.d.407.13 96 13.4 even 6 inner