Properties

Label 975.2.bn.d.257.12
Level $975$
Weight $2$
Character 975.257
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 257.12
Character \(\chi\) \(=\) 975.257
Dual form 975.2.bn.d.368.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0288234 + 0.107570i) q^{2} +(-1.51684 + 0.836177i) q^{3} +(1.72131 + 0.993799i) q^{4} +(-0.0462274 - 0.187269i) q^{6} +(1.03453 + 3.86093i) q^{7} +(-0.314011 + 0.314011i) q^{8} +(1.60161 - 2.53670i) q^{9} +(2.60494 + 4.51189i) q^{11} +(-3.44195 - 0.0681144i) q^{12} +(3.33885 - 1.36091i) q^{13} -0.445140 q^{14} +(1.96287 + 3.39979i) q^{16} +(-0.878092 - 3.27708i) q^{17} +(0.226709 + 0.245402i) q^{18} +(0.210416 - 0.364452i) q^{19} +(-4.79764 - 4.99136i) q^{21} +(-0.560429 + 0.150166i) q^{22} +(0.705071 - 2.63136i) q^{23} +(0.213736 - 0.738874i) q^{24} +(0.0501565 + 0.398387i) q^{26} +(-0.308267 + 5.18700i) q^{27} +(-2.05624 + 7.67398i) q^{28} +(-2.52506 - 4.37354i) q^{29} +4.23553i q^{31} +(-1.28019 + 0.343025i) q^{32} +(-7.72402 - 4.66563i) q^{33} +0.377826 q^{34} +(5.27784 - 2.77476i) q^{36} +(5.74223 + 1.53863i) q^{37} +(0.0331393 + 0.0331393i) q^{38} +(-3.92655 + 4.85615i) q^{39} +(-0.973131 - 1.68551i) q^{41} +(0.675207 - 0.372216i) q^{42} +(0.242554 + 0.905224i) q^{43} +10.3551i q^{44} +(0.262734 + 0.151689i) q^{46} +(1.29449 + 1.29449i) q^{47} +(-5.82019 - 3.51564i) q^{48} +(-7.77434 + 4.48852i) q^{49} +(4.07215 + 4.23657i) q^{51} +(7.09967 + 0.975600i) q^{52} +(-2.45762 - 2.45762i) q^{53} +(-0.549082 - 0.182667i) q^{54} +(-1.53723 - 0.887520i) q^{56} +(-0.0144218 + 0.728761i) q^{57} +(0.543244 - 0.145562i) q^{58} +(-7.83433 - 4.52315i) q^{59} +(2.65934 - 4.60611i) q^{61} +(-0.455618 - 0.122082i) q^{62} +(11.4509 + 3.55942i) q^{63} +7.70388i q^{64} +(0.724516 - 0.696396i) q^{66} +(-7.41523 - 1.98691i) q^{67} +(1.74529 - 6.51352i) q^{68} +(1.13080 + 4.58092i) q^{69} +(-6.09876 + 10.5634i) q^{71} +(0.293626 + 1.29948i) q^{72} +(-1.29733 - 1.29733i) q^{73} +(-0.331021 + 0.573345i) q^{74} +(0.724384 - 0.418223i) q^{76} +(-14.7252 + 14.7252i) q^{77} +(-0.409202 - 0.562351i) q^{78} -2.49102i q^{79} +(-3.86966 - 8.12562i) q^{81} +(0.209360 - 0.0560979i) q^{82} +(-9.55183 + 9.55183i) q^{83} +(-3.29782 - 13.3596i) q^{84} -0.104367 q^{86} +(7.48717 + 4.52256i) q^{87} +(-2.23476 - 0.598803i) q^{88} +(3.74597 - 2.16273i) q^{89} +(8.70853 + 11.4832i) q^{91} +(3.82869 - 3.82869i) q^{92} +(-3.54166 - 6.42463i) q^{93} +(-0.176560 + 0.101937i) q^{94} +(1.65501 - 1.59078i) q^{96} +(0.740590 + 2.76392i) q^{97} +(-0.258749 - 0.965663i) q^{98} +(15.6174 + 0.618364i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0288234 + 0.107570i −0.0203812 + 0.0760637i −0.975367 0.220586i \(-0.929203\pi\)
0.954986 + 0.296650i \(0.0958695\pi\)
\(3\) −1.51684 + 0.836177i −0.875749 + 0.482767i
\(4\) 1.72131 + 0.993799i 0.860655 + 0.496899i
\(5\) 0 0
\(6\) −0.0462274 0.187269i −0.0188723 0.0764521i
\(7\) 1.03453 + 3.86093i 0.391017 + 1.45929i 0.828460 + 0.560048i \(0.189217\pi\)
−0.437443 + 0.899246i \(0.644116\pi\)
\(8\) −0.314011 + 0.314011i −0.111020 + 0.111020i
\(9\) 1.60161 2.53670i 0.533872 0.845566i
\(10\) 0 0
\(11\) 2.60494 + 4.51189i 0.785419 + 1.36039i 0.928748 + 0.370711i \(0.120886\pi\)
−0.143329 + 0.989675i \(0.545781\pi\)
\(12\) −3.44195 0.0681144i −0.993604 0.0196629i
\(13\) 3.33885 1.36091i 0.926031 0.377448i
\(14\) −0.445140 −0.118969
\(15\) 0 0
\(16\) 1.96287 + 3.39979i 0.490718 + 0.849948i
\(17\) −0.878092 3.27708i −0.212969 0.794809i −0.986872 0.161506i \(-0.948365\pi\)
0.773903 0.633304i \(-0.218302\pi\)
\(18\) 0.226709 + 0.245402i 0.0534359 + 0.0578419i
\(19\) 0.210416 0.364452i 0.0482728 0.0836110i −0.840879 0.541223i \(-0.817962\pi\)
0.889152 + 0.457612i \(0.151295\pi\)
\(20\) 0 0
\(21\) −4.79764 4.99136i −1.04693 1.08920i
\(22\) −0.560429 + 0.150166i −0.119484 + 0.0320156i
\(23\) 0.705071 2.63136i 0.147017 0.548676i −0.852640 0.522499i \(-0.825000\pi\)
0.999657 0.0261774i \(-0.00833348\pi\)
\(24\) 0.213736 0.738874i 0.0436287 0.150822i
\(25\) 0 0
\(26\) 0.0501565 + 0.398387i 0.00983649 + 0.0781302i
\(27\) −0.308267 + 5.18700i −0.0593259 + 0.998239i
\(28\) −2.05624 + 7.67398i −0.388592 + 1.45024i
\(29\) −2.52506 4.37354i −0.468892 0.812146i 0.530475 0.847700i \(-0.322013\pi\)
−0.999368 + 0.0355548i \(0.988680\pi\)
\(30\) 0 0
\(31\) 4.23553i 0.760724i 0.924838 + 0.380362i \(0.124201\pi\)
−0.924838 + 0.380362i \(0.875799\pi\)
\(32\) −1.28019 + 0.343025i −0.226307 + 0.0606389i
\(33\) −7.72402 4.66563i −1.34458 0.812181i
\(34\) 0.377826 0.0647967
\(35\) 0 0
\(36\) 5.27784 2.77476i 0.879640 0.462460i
\(37\) 5.74223 + 1.53863i 0.944017 + 0.252949i 0.697822 0.716272i \(-0.254153\pi\)
0.246195 + 0.969220i \(0.420820\pi\)
\(38\) 0.0331393 + 0.0331393i 0.00537590 + 0.00537590i
\(39\) −3.92655 + 4.85615i −0.628751 + 0.777607i
\(40\) 0 0
\(41\) −0.973131 1.68551i −0.151978 0.263233i 0.779977 0.625808i \(-0.215231\pi\)
−0.931954 + 0.362576i \(0.881897\pi\)
\(42\) 0.675207 0.372216i 0.104187 0.0574342i
\(43\) 0.242554 + 0.905224i 0.0369892 + 0.138045i 0.981951 0.189135i \(-0.0605683\pi\)
−0.944962 + 0.327180i \(0.893902\pi\)
\(44\) 10.3551i 1.56110i
\(45\) 0 0
\(46\) 0.262734 + 0.151689i 0.0387380 + 0.0223654i
\(47\) 1.29449 + 1.29449i 0.188821 + 0.188821i 0.795186 0.606365i \(-0.207373\pi\)
−0.606365 + 0.795186i \(0.707373\pi\)
\(48\) −5.82019 3.51564i −0.840072 0.507438i
\(49\) −7.77434 + 4.48852i −1.11062 + 0.641217i
\(50\) 0 0
\(51\) 4.07215 + 4.23657i 0.570215 + 0.593239i
\(52\) 7.09967 + 0.975600i 0.984547 + 0.135291i
\(53\) −2.45762 2.45762i −0.337580 0.337580i 0.517876 0.855456i \(-0.326723\pi\)
−0.855456 + 0.517876i \(0.826723\pi\)
\(54\) −0.549082 0.182667i −0.0747206 0.0248579i
\(55\) 0 0
\(56\) −1.53723 0.887520i −0.205421 0.118600i
\(57\) −0.0144218 + 0.728761i −0.00191022 + 0.0965268i
\(58\) 0.543244 0.145562i 0.0713314 0.0191132i
\(59\) −7.83433 4.52315i −1.01994 0.588865i −0.105856 0.994381i \(-0.533758\pi\)
−0.914088 + 0.405517i \(0.867092\pi\)
\(60\) 0 0
\(61\) 2.65934 4.60611i 0.340493 0.589752i −0.644031 0.764999i \(-0.722739\pi\)
0.984524 + 0.175248i \(0.0560726\pi\)
\(62\) −0.455618 0.122082i −0.0578635 0.0155045i
\(63\) 11.4509 + 3.55942i 1.44268 + 0.448445i
\(64\) 7.70388i 0.962986i
\(65\) 0 0
\(66\) 0.724516 0.696396i 0.0891817 0.0857205i
\(67\) −7.41523 1.98691i −0.905915 0.242739i −0.224360 0.974506i \(-0.572029\pi\)
−0.681555 + 0.731767i \(0.738696\pi\)
\(68\) 1.74529 6.51352i 0.211648 0.789881i
\(69\) 1.13080 + 4.58092i 0.136133 + 0.551478i
\(70\) 0 0
\(71\) −6.09876 + 10.5634i −0.723789 + 1.25364i 0.235681 + 0.971830i \(0.424268\pi\)
−0.959470 + 0.281809i \(0.909065\pi\)
\(72\) 0.293626 + 1.29948i 0.0346042 + 0.153145i
\(73\) −1.29733 1.29733i −0.151841 0.151841i 0.627099 0.778940i \(-0.284242\pi\)
−0.778940 + 0.627099i \(0.784242\pi\)
\(74\) −0.331021 + 0.573345i −0.0384804 + 0.0666500i
\(75\) 0 0
\(76\) 0.724384 0.418223i 0.0830925 0.0479735i
\(77\) −14.7252 + 14.7252i −1.67809 + 1.67809i
\(78\) −0.409202 0.562351i −0.0463330 0.0636737i
\(79\) 2.49102i 0.280262i −0.990133 0.140131i \(-0.955248\pi\)
0.990133 0.140131i \(-0.0447523\pi\)
\(80\) 0 0
\(81\) −3.86966 8.12562i −0.429962 0.902847i
\(82\) 0.209360 0.0560979i 0.0231200 0.00619497i
\(83\) −9.55183 + 9.55183i −1.04845 + 1.04845i −0.0496844 + 0.998765i \(0.515822\pi\)
−0.998765 + 0.0496844i \(0.984178\pi\)
\(84\) −3.29782 13.3596i −0.359822 1.45765i
\(85\) 0 0
\(86\) −0.104367 −0.0112541
\(87\) 7.48717 + 4.52256i 0.802709 + 0.484870i
\(88\) −2.23476 0.598803i −0.238227 0.0638326i
\(89\) 3.74597 2.16273i 0.397072 0.229249i −0.288148 0.957586i \(-0.593040\pi\)
0.685220 + 0.728336i \(0.259706\pi\)
\(90\) 0 0
\(91\) 8.70853 + 11.4832i 0.912901 + 1.20376i
\(92\) 3.82869 3.82869i 0.399168 0.399168i
\(93\) −3.54166 6.42463i −0.367253 0.666203i
\(94\) −0.176560 + 0.101937i −0.0182108 + 0.0105140i
\(95\) 0 0
\(96\) 1.65501 1.59078i 0.168914 0.162358i
\(97\) 0.740590 + 2.76392i 0.0751955 + 0.280633i 0.993278 0.115757i \(-0.0369294\pi\)
−0.918082 + 0.396390i \(0.870263\pi\)
\(98\) −0.258749 0.965663i −0.0261376 0.0975467i
\(99\) 15.6174 + 0.618364i 1.56961 + 0.0621479i
\(100\) 0 0
\(101\) 2.39453 1.38248i 0.238265 0.137562i −0.376114 0.926573i \(-0.622740\pi\)
0.614379 + 0.789011i \(0.289407\pi\)
\(102\) −0.573103 + 0.315930i −0.0567456 + 0.0312817i
\(103\) −0.0455864 + 0.0455864i −0.00449176 + 0.00449176i −0.709349 0.704857i \(-0.751011\pi\)
0.704857 + 0.709349i \(0.251011\pi\)
\(104\) −0.621096 + 1.47578i −0.0609035 + 0.144712i
\(105\) 0 0
\(106\) 0.335204 0.193530i 0.0325579 0.0187973i
\(107\) 16.4075 + 4.39639i 1.58618 + 0.425015i 0.940831 0.338875i \(-0.110046\pi\)
0.645346 + 0.763890i \(0.276713\pi\)
\(108\) −5.68546 + 8.62208i −0.547083 + 0.829660i
\(109\) 4.73152 0.453198 0.226599 0.973988i \(-0.427239\pi\)
0.226599 + 0.973988i \(0.427239\pi\)
\(110\) 0 0
\(111\) −9.99662 + 2.46767i −0.948837 + 0.234221i
\(112\) −11.0957 + 11.0957i −1.04845 + 1.04845i
\(113\) 2.72351 0.729762i 0.256206 0.0686502i −0.128430 0.991719i \(-0.540994\pi\)
0.384636 + 0.923068i \(0.374327\pi\)
\(114\) −0.0779774 0.0225567i −0.00730325 0.00211263i
\(115\) 0 0
\(116\) 10.0376i 0.931970i
\(117\) 1.89534 10.6493i 0.175224 0.984529i
\(118\) 0.712369 0.712369i 0.0655789 0.0655789i
\(119\) 11.7442 6.78050i 1.07659 0.621567i
\(120\) 0 0
\(121\) −8.07143 + 13.9801i −0.733766 + 1.27092i
\(122\) 0.418829 + 0.418829i 0.0379190 + 0.0379190i
\(123\) 2.88547 + 1.74294i 0.260174 + 0.157156i
\(124\) −4.20927 + 7.29067i −0.378003 + 0.654721i
\(125\) 0 0
\(126\) −0.712943 + 1.12919i −0.0635140 + 0.100596i
\(127\) −0.468909 + 1.74999i −0.0416089 + 0.155287i −0.983605 0.180338i \(-0.942281\pi\)
0.941996 + 0.335625i \(0.108947\pi\)
\(128\) −3.38909 0.908103i −0.299556 0.0802657i
\(129\) −1.12484 1.17026i −0.0990370 0.103036i
\(130\) 0 0
\(131\) 20.2873i 1.77251i −0.463200 0.886254i \(-0.653299\pi\)
0.463200 0.886254i \(-0.346701\pi\)
\(132\) −8.65874 15.7071i −0.753647 1.36713i
\(133\) 1.62481 + 0.435365i 0.140889 + 0.0377510i
\(134\) 0.427464 0.740390i 0.0369273 0.0639599i
\(135\) 0 0
\(136\) 1.30477 + 0.753310i 0.111883 + 0.0645958i
\(137\) −12.9118 + 3.45972i −1.10313 + 0.295584i −0.764040 0.645169i \(-0.776787\pi\)
−0.339093 + 0.940753i \(0.610120\pi\)
\(138\) −0.525365 0.0103967i −0.0447220 0.000885026i
\(139\) −17.9438 10.3598i −1.52197 0.878710i −0.999663 0.0259523i \(-0.991738\pi\)
−0.522307 0.852758i \(-0.674928\pi\)
\(140\) 0 0
\(141\) −3.04596 0.881112i −0.256516 0.0742030i
\(142\) −0.960517 0.960517i −0.0806048 0.0806048i
\(143\) 14.8378 + 11.5194i 1.24080 + 0.963304i
\(144\) 11.7680 + 0.465948i 0.980667 + 0.0388290i
\(145\) 0 0
\(146\) 0.176948 0.102161i 0.0146443 0.00845490i
\(147\) 8.03924 13.3091i 0.663066 1.09772i
\(148\) 8.35507 + 8.35507i 0.686783 + 0.686783i
\(149\) 7.82540 + 4.51800i 0.641082 + 0.370129i 0.785031 0.619456i \(-0.212647\pi\)
−0.143949 + 0.989585i \(0.545980\pi\)
\(150\) 0 0
\(151\) 11.7129i 0.953180i −0.879126 0.476590i \(-0.841873\pi\)
0.879126 0.476590i \(-0.158127\pi\)
\(152\) 0.0483689 + 0.180515i 0.00392323 + 0.0146417i
\(153\) −9.71933 3.02117i −0.785761 0.244247i
\(154\) −1.15956 2.00842i −0.0934403 0.161843i
\(155\) 0 0
\(156\) −11.5848 + 4.45675i −0.927530 + 0.356826i
\(157\) −11.2708 11.2708i −0.899508 0.899508i 0.0958846 0.995392i \(-0.469432\pi\)
−0.995392 + 0.0958846i \(0.969432\pi\)
\(158\) 0.267960 + 0.0717997i 0.0213177 + 0.00571207i
\(159\) 5.78282 + 1.67281i 0.458608 + 0.132663i
\(160\) 0 0
\(161\) 10.8889 0.858167
\(162\) 0.985613 0.182053i 0.0774370 0.0143034i
\(163\) 12.3808 3.31744i 0.969742 0.259842i 0.261023 0.965333i \(-0.415940\pi\)
0.708719 + 0.705491i \(0.249273\pi\)
\(164\) 3.86839i 0.302070i
\(165\) 0 0
\(166\) −0.752177 1.30281i −0.0583803 0.101118i
\(167\) 5.83706 21.7842i 0.451685 1.68571i −0.245968 0.969278i \(-0.579106\pi\)
0.697654 0.716435i \(-0.254227\pi\)
\(168\) 3.07386 + 0.0608301i 0.237153 + 0.00469315i
\(169\) 9.29585 9.08774i 0.715066 0.699057i
\(170\) 0 0
\(171\) −0.587498 1.11747i −0.0449271 0.0854554i
\(172\) −0.482100 + 1.79922i −0.0367598 + 0.137189i
\(173\) 3.49516 0.936524i 0.265732 0.0712026i −0.123493 0.992345i \(-0.539410\pi\)
0.389225 + 0.921143i \(0.372743\pi\)
\(174\) −0.702299 + 0.675042i −0.0532412 + 0.0511748i
\(175\) 0 0
\(176\) −10.2263 + 17.7125i −0.770838 + 1.33513i
\(177\) 15.6656 + 0.310014i 1.17750 + 0.0233021i
\(178\) 0.124675 + 0.465292i 0.00934476 + 0.0348751i
\(179\) 2.91155 + 5.04296i 0.217620 + 0.376928i 0.954080 0.299553i \(-0.0968374\pi\)
−0.736460 + 0.676481i \(0.763504\pi\)
\(180\) 0 0
\(181\) 9.95426 0.739894 0.369947 0.929053i \(-0.379376\pi\)
0.369947 + 0.929053i \(0.379376\pi\)
\(182\) −1.48626 + 0.605795i −0.110169 + 0.0449045i
\(183\) −0.182270 + 9.21041i −0.0134738 + 0.680853i
\(184\) 0.604876 + 1.04768i 0.0445921 + 0.0772357i
\(185\) 0 0
\(186\) 0.793182 0.195798i 0.0581590 0.0143566i
\(187\) 12.4985 12.4985i 0.913978 0.913978i
\(188\) 0.941755 + 3.51468i 0.0686846 + 0.256334i
\(189\) −20.3456 + 4.17593i −1.47992 + 0.303754i
\(190\) 0 0
\(191\) 19.8105 + 11.4376i 1.43343 + 0.827594i 0.997381 0.0723271i \(-0.0230425\pi\)
0.436053 + 0.899921i \(0.356376\pi\)
\(192\) −6.44181 11.6856i −0.464898 0.843333i
\(193\) 4.42994 16.5328i 0.318874 1.19005i −0.601454 0.798908i \(-0.705412\pi\)
0.920328 0.391147i \(-0.127922\pi\)
\(194\) −0.318662 −0.0228786
\(195\) 0 0
\(196\) −17.8427 −1.27448
\(197\) −0.382929 + 1.42911i −0.0272826 + 0.101820i −0.978225 0.207549i \(-0.933451\pi\)
0.950942 + 0.309369i \(0.100118\pi\)
\(198\) −0.516664 + 1.66215i −0.0367177 + 0.118124i
\(199\) −20.6928 11.9470i −1.46687 0.846899i −0.467558 0.883962i \(-0.654866\pi\)
−0.999313 + 0.0370636i \(0.988200\pi\)
\(200\) 0 0
\(201\) 12.9091 3.18663i 0.910540 0.224768i
\(202\) 0.0796957 + 0.297429i 0.00560737 + 0.0209270i
\(203\) 14.2737 14.2737i 1.00181 1.00181i
\(204\) 2.79913 + 11.3394i 0.195978 + 0.793914i
\(205\) 0 0
\(206\) −0.00358979 0.00621770i −0.000250113 0.000433208i
\(207\) −5.54571 6.00297i −0.385453 0.417236i
\(208\) 11.1805 + 8.68011i 0.775231 + 0.601857i
\(209\) 2.19249 0.151658
\(210\) 0 0
\(211\) 1.53923 + 2.66603i 0.105965 + 0.183537i 0.914132 0.405416i \(-0.132873\pi\)
−0.808167 + 0.588953i \(0.799540\pi\)
\(212\) −1.78795 6.67270i −0.122797 0.458283i
\(213\) 0.418005 21.1226i 0.0286413 1.44730i
\(214\) −0.945842 + 1.63825i −0.0646565 + 0.111988i
\(215\) 0 0
\(216\) −1.53198 1.72558i −0.104238 0.117411i
\(217\) −16.3531 + 4.38180i −1.11012 + 0.297456i
\(218\) −0.136379 + 0.508972i −0.00923672 + 0.0344719i
\(219\) 3.05264 + 0.883046i 0.206279 + 0.0596707i
\(220\) 0 0
\(221\) −7.39163 9.74669i −0.497215 0.655633i
\(222\) 0.0226880 1.14647i 0.00152272 0.0769458i
\(223\) 1.49616 5.58375i 0.100190 0.373916i −0.897565 0.440883i \(-0.854666\pi\)
0.997755 + 0.0669668i \(0.0213322\pi\)
\(224\) −2.64879 4.58784i −0.176980 0.306538i
\(225\) 0 0
\(226\) 0.314003i 0.0208872i
\(227\) 14.1812 3.79984i 0.941238 0.252204i 0.244598 0.969625i \(-0.421344\pi\)
0.696640 + 0.717421i \(0.254677\pi\)
\(228\) −0.749066 + 1.24009i −0.0496081 + 0.0821271i
\(229\) 3.60574 0.238274 0.119137 0.992878i \(-0.461987\pi\)
0.119137 + 0.992878i \(0.461987\pi\)
\(230\) 0 0
\(231\) 10.0229 34.6486i 0.659459 2.27971i
\(232\) 2.16624 + 0.580442i 0.142220 + 0.0381079i
\(233\) −7.88221 7.88221i −0.516381 0.516381i 0.400093 0.916474i \(-0.368978\pi\)
−0.916474 + 0.400093i \(0.868978\pi\)
\(234\) 1.09092 + 0.510831i 0.0713156 + 0.0333941i
\(235\) 0 0
\(236\) −8.99021 15.5715i −0.585213 1.01362i
\(237\) 2.08294 + 3.77848i 0.135301 + 0.245439i
\(238\) 0.390874 + 1.45876i 0.0253366 + 0.0945575i
\(239\) 0.0947772i 0.00613063i −0.999995 0.00306532i \(-0.999024\pi\)
0.999995 0.00306532i \(-0.000975722\pi\)
\(240\) 0 0
\(241\) 9.34499 + 5.39533i 0.601964 + 0.347544i 0.769814 0.638269i \(-0.220349\pi\)
−0.167850 + 0.985813i \(0.553682\pi\)
\(242\) −1.27120 1.27120i −0.0817159 0.0817159i
\(243\) 12.6641 + 9.08955i 0.812404 + 0.583095i
\(244\) 9.15509 5.28569i 0.586095 0.338382i
\(245\) 0 0
\(246\) −0.270658 + 0.260154i −0.0172565 + 0.0165868i
\(247\) 0.206563 1.50321i 0.0131433 0.0956468i
\(248\) −1.33000 1.33000i −0.0844554 0.0844554i
\(249\) 6.50158 22.4756i 0.412021 1.42434i
\(250\) 0 0
\(251\) −18.5242 10.6949i −1.16923 0.675058i −0.215735 0.976452i \(-0.569215\pi\)
−0.953500 + 0.301394i \(0.902548\pi\)
\(252\) 16.1733 + 17.5068i 1.01882 + 1.10282i
\(253\) 13.7091 3.67333i 0.861882 0.230941i
\(254\) −0.174732 0.100881i −0.0109636 0.00632986i
\(255\) 0 0
\(256\) −7.50851 + 13.0051i −0.469282 + 0.812821i
\(257\) 15.6729 + 4.19954i 0.977648 + 0.261960i 0.712054 0.702125i \(-0.247765\pi\)
0.265594 + 0.964085i \(0.414432\pi\)
\(258\) 0.158307 0.0872689i 0.00985579 0.00543313i
\(259\) 23.7621i 1.47651i
\(260\) 0 0
\(261\) −15.1385 0.599402i −0.937051 0.0371021i
\(262\) 2.18231 + 0.584748i 0.134824 + 0.0361259i
\(263\) −5.94046 + 22.1701i −0.366304 + 1.36707i 0.499340 + 0.866406i \(0.333576\pi\)
−0.865644 + 0.500660i \(0.833091\pi\)
\(264\) 3.89049 0.960370i 0.239443 0.0591067i
\(265\) 0 0
\(266\) −0.0936648 + 0.162232i −0.00574296 + 0.00994709i
\(267\) −3.87361 + 6.41282i −0.237061 + 0.392458i
\(268\) −10.7893 10.7893i −0.659063 0.659063i
\(269\) 1.73455 3.00433i 0.105758 0.183177i −0.808290 0.588785i \(-0.799607\pi\)
0.914047 + 0.405607i \(0.132940\pi\)
\(270\) 0 0
\(271\) 10.2881 5.93984i 0.624958 0.360819i −0.153839 0.988096i \(-0.549164\pi\)
0.778797 + 0.627277i \(0.215830\pi\)
\(272\) 9.41782 9.41782i 0.571039 0.571039i
\(273\) −22.8114 10.1363i −1.38061 0.613475i
\(274\) 1.48865i 0.0899328i
\(275\) 0 0
\(276\) −2.60605 + 9.00897i −0.156866 + 0.542276i
\(277\) −16.6029 + 4.44872i −0.997570 + 0.267298i −0.720427 0.693531i \(-0.756054\pi\)
−0.277143 + 0.960829i \(0.589387\pi\)
\(278\) 1.63161 1.63161i 0.0978575 0.0978575i
\(279\) 10.7443 + 6.78369i 0.643242 + 0.406129i
\(280\) 0 0
\(281\) 22.1387 1.32068 0.660341 0.750966i \(-0.270412\pi\)
0.660341 + 0.750966i \(0.270412\pi\)
\(282\) 0.182576 0.302258i 0.0108723 0.0179992i
\(283\) −2.73331 0.732387i −0.162478 0.0435359i 0.176663 0.984271i \(-0.443470\pi\)
−0.339141 + 0.940736i \(0.610136\pi\)
\(284\) −20.9957 + 12.1219i −1.24587 + 0.719301i
\(285\) 0 0
\(286\) −1.66682 + 1.26408i −0.0985614 + 0.0747464i
\(287\) 5.50091 5.50091i 0.324708 0.324708i
\(288\) −1.18022 + 3.79684i −0.0695449 + 0.223731i
\(289\) 4.75421 2.74484i 0.279659 0.161461i
\(290\) 0 0
\(291\) −3.43448 3.57316i −0.201333 0.209462i
\(292\) −0.943823 3.52240i −0.0552331 0.206133i
\(293\) 2.04676 + 7.63862i 0.119573 + 0.446253i 0.999588 0.0286927i \(-0.00913443\pi\)
−0.880015 + 0.474946i \(0.842468\pi\)
\(294\) 1.19995 + 1.24840i 0.0699823 + 0.0728080i
\(295\) 0 0
\(296\) −2.28627 + 1.31998i −0.132887 + 0.0767222i
\(297\) −24.2062 + 12.1210i −1.40459 + 0.703329i
\(298\) −0.711557 + 0.711557i −0.0412194 + 0.0412194i
\(299\) −1.22691 9.74525i −0.0709543 0.563583i
\(300\) 0 0
\(301\) −3.24408 + 1.87297i −0.186985 + 0.107956i
\(302\) 1.25996 + 0.337605i 0.0725024 + 0.0194270i
\(303\) −2.47612 + 4.09926i −0.142250 + 0.235496i
\(304\) 1.65208 0.0947533
\(305\) 0 0
\(306\) 0.605132 0.958431i 0.0345931 0.0547899i
\(307\) 10.6962 10.6962i 0.610465 0.610465i −0.332602 0.943067i \(-0.607927\pi\)
0.943067 + 0.332602i \(0.107927\pi\)
\(308\) −39.9805 + 10.7127i −2.27810 + 0.610415i
\(309\) 0.0310290 0.107266i 0.00176518 0.00610213i
\(310\) 0 0
\(311\) 12.0194i 0.681560i 0.940143 + 0.340780i \(0.110691\pi\)
−0.940143 + 0.340780i \(0.889309\pi\)
\(312\) −0.291908 2.75787i −0.0165260 0.156133i
\(313\) −16.5079 + 16.5079i −0.933082 + 0.933082i −0.997897 0.0648148i \(-0.979354\pi\)
0.0648148 + 0.997897i \(0.479354\pi\)
\(314\) 1.53727 0.887541i 0.0867530 0.0500869i
\(315\) 0 0
\(316\) 2.47557 4.28782i 0.139262 0.241209i
\(317\) 0.778692 + 0.778692i 0.0437357 + 0.0437357i 0.728636 0.684901i \(-0.240154\pi\)
−0.684901 + 0.728636i \(0.740154\pi\)
\(318\) −0.346626 + 0.573844i −0.0194378 + 0.0321796i
\(319\) 13.1553 22.7856i 0.736554 1.27575i
\(320\) 0 0
\(321\) −28.5638 + 7.05100i −1.59428 + 0.393548i
\(322\) −0.313855 + 1.17132i −0.0174905 + 0.0652753i
\(323\) −1.37910 0.369530i −0.0767354 0.0205612i
\(324\) 1.41435 17.8324i 0.0785748 0.990688i
\(325\) 0 0
\(326\) 1.42743i 0.0790581i
\(327\) −7.17697 + 3.95639i −0.396887 + 0.218789i
\(328\) 0.834844 + 0.223696i 0.0460965 + 0.0123515i
\(329\) −3.65874 + 6.33712i −0.201713 + 0.349377i
\(330\) 0 0
\(331\) −24.3850 14.0787i −1.34032 0.773834i −0.353466 0.935448i \(-0.614997\pi\)
−0.986854 + 0.161614i \(0.948330\pi\)
\(332\) −25.9343 + 6.94906i −1.42333 + 0.381379i
\(333\) 13.0999 12.1020i 0.717868 0.663186i
\(334\) 2.17509 + 1.25579i 0.119016 + 0.0687138i
\(335\) 0 0
\(336\) 7.55244 26.1084i 0.412019 1.42433i
\(337\) 17.9435 + 17.9435i 0.977446 + 0.977446i 0.999751 0.0223051i \(-0.00710052\pi\)
−0.0223051 + 0.999751i \(0.507101\pi\)
\(338\) 0.709634 + 1.26190i 0.0385990 + 0.0686382i
\(339\) −3.52092 + 3.38427i −0.191230 + 0.183808i
\(340\) 0 0
\(341\) −19.1103 + 11.0333i −1.03488 + 0.597487i
\(342\) 0.137141 0.0309880i 0.00741572 0.00167564i
\(343\) −5.58789 5.58789i −0.301717 0.301717i
\(344\) −0.360415 0.208086i −0.0194323 0.0112192i
\(345\) 0 0
\(346\) 0.402969i 0.0216637i
\(347\) −0.129801 0.484424i −0.00696808 0.0260052i 0.962354 0.271798i \(-0.0876183\pi\)
−0.969322 + 0.245793i \(0.920952\pi\)
\(348\) 8.39323 + 15.2255i 0.449924 + 0.816171i
\(349\) 4.63210 + 8.02304i 0.247951 + 0.429463i 0.962957 0.269655i \(-0.0869095\pi\)
−0.715006 + 0.699118i \(0.753576\pi\)
\(350\) 0 0
\(351\) 6.02978 + 17.7381i 0.321846 + 0.946792i
\(352\) −4.88250 4.88250i −0.260238 0.260238i
\(353\) 20.4549 + 5.48087i 1.08870 + 0.291717i 0.758157 0.652072i \(-0.226100\pi\)
0.330547 + 0.943790i \(0.392767\pi\)
\(354\) −0.484884 + 1.67622i −0.0257713 + 0.0890900i
\(355\) 0 0
\(356\) 8.59729 0.455656
\(357\) −12.1443 + 20.1052i −0.642747 + 1.06408i
\(358\) −0.626394 + 0.167842i −0.0331059 + 0.00887071i
\(359\) 17.7610i 0.937391i 0.883360 + 0.468695i \(0.155276\pi\)
−0.883360 + 0.468695i \(0.844724\pi\)
\(360\) 0 0
\(361\) 9.41145 + 16.3011i 0.495339 + 0.857953i
\(362\) −0.286915 + 1.07078i −0.0150799 + 0.0562791i
\(363\) 0.553211 27.9548i 0.0290361 1.46724i
\(364\) 3.57812 + 28.4206i 0.187544 + 1.48964i
\(365\) 0 0
\(366\) −0.985514 0.285082i −0.0515136 0.0149015i
\(367\) 0.292041 1.08991i 0.0152444 0.0568929i −0.957885 0.287153i \(-0.907291\pi\)
0.973129 + 0.230260i \(0.0739578\pi\)
\(368\) 10.3300 2.76792i 0.538490 0.144288i
\(369\) −5.83421 0.231003i −0.303717 0.0120255i
\(370\) 0 0
\(371\) 6.94621 12.0312i 0.360629 0.624628i
\(372\) 0.288501 14.5785i 0.0149581 0.755859i
\(373\) 4.61559 + 17.2256i 0.238986 + 0.891908i 0.976311 + 0.216370i \(0.0694218\pi\)
−0.737325 + 0.675538i \(0.763912\pi\)
\(374\) 0.984215 + 1.70471i 0.0508926 + 0.0881485i
\(375\) 0 0
\(376\) −0.812968 −0.0419256
\(377\) −14.3828 11.1662i −0.740752 0.575089i
\(378\) 0.137222 2.30894i 0.00705793 0.118759i
\(379\) −5.17481 8.96303i −0.265812 0.460400i 0.701964 0.712212i \(-0.252307\pi\)
−0.967776 + 0.251813i \(0.918973\pi\)
\(380\) 0 0
\(381\) −0.752043 3.04655i −0.0385283 0.156079i
\(382\) −1.80135 + 1.80135i −0.0921650 + 0.0921650i
\(383\) −4.29989 16.0474i −0.219714 0.819985i −0.984454 0.175645i \(-0.943799\pi\)
0.764739 0.644340i \(-0.222868\pi\)
\(384\) 5.90004 1.45643i 0.301085 0.0743231i
\(385\) 0 0
\(386\) 1.65075 + 0.953061i 0.0840210 + 0.0485095i
\(387\) 2.68476 + 0.834534i 0.136474 + 0.0424218i
\(388\) −1.47199 + 5.49356i −0.0747292 + 0.278893i
\(389\) −24.1762 −1.22578 −0.612891 0.790167i \(-0.709994\pi\)
−0.612891 + 0.790167i \(0.709994\pi\)
\(390\) 0 0
\(391\) −9.24230 −0.467403
\(392\) 1.03179 3.85068i 0.0521130 0.194488i
\(393\) 16.9638 + 30.7726i 0.855709 + 1.55227i
\(394\) −0.142693 0.0823836i −0.00718875 0.00415043i
\(395\) 0 0
\(396\) 26.2679 + 16.5850i 1.32001 + 0.833425i
\(397\) −2.21309 8.25936i −0.111072 0.414525i 0.887891 0.460053i \(-0.152170\pi\)
−0.998963 + 0.0455279i \(0.985503\pi\)
\(398\) 1.88158 1.88158i 0.0943149 0.0943149i
\(399\) −2.82861 + 0.698246i −0.141608 + 0.0349560i
\(400\) 0 0
\(401\) 13.7400 + 23.7983i 0.686142 + 1.18843i 0.973076 + 0.230482i \(0.0740304\pi\)
−0.286935 + 0.957950i \(0.592636\pi\)
\(402\) −0.0292982 + 1.48049i −0.00146126 + 0.0738401i
\(403\) 5.76418 + 14.1418i 0.287134 + 0.704454i
\(404\) 5.49564 0.273418
\(405\) 0 0
\(406\) 1.12401 + 1.94684i 0.0557835 + 0.0966199i
\(407\) 8.01606 + 29.9163i 0.397341 + 1.48290i
\(408\) −2.60903 0.0516315i −0.129166 0.00255614i
\(409\) −18.6648 + 32.3284i −0.922916 + 1.59854i −0.128038 + 0.991769i \(0.540868\pi\)
−0.794878 + 0.606769i \(0.792465\pi\)
\(410\) 0 0
\(411\) 16.6923 16.0444i 0.823369 0.791414i
\(412\) −0.123772 + 0.0331646i −0.00609781 + 0.00163390i
\(413\) 9.35870 34.9272i 0.460512 1.71865i
\(414\) 0.805588 0.423528i 0.0395925 0.0208153i
\(415\) 0 0
\(416\) −3.80753 + 2.88753i −0.186680 + 0.141573i
\(417\) 35.8805 + 0.710057i 1.75708 + 0.0347717i
\(418\) −0.0631949 + 0.235847i −0.00309097 + 0.0115356i
\(419\) 14.8413 + 25.7059i 0.725046 + 1.25582i 0.958955 + 0.283558i \(0.0915150\pi\)
−0.233909 + 0.972259i \(0.575152\pi\)
\(420\) 0 0
\(421\) 21.3437i 1.04023i −0.854097 0.520114i \(-0.825889\pi\)
0.854097 0.520114i \(-0.174111\pi\)
\(422\) −0.331151 + 0.0887317i −0.0161202 + 0.00431939i
\(423\) 5.35700 1.21045i 0.260466 0.0588543i
\(424\) 1.54344 0.0749561
\(425\) 0 0
\(426\) 2.26011 + 0.653789i 0.109503 + 0.0316762i
\(427\) 20.5350 + 5.50234i 0.993760 + 0.266277i
\(428\) 23.8734 + 23.8734i 1.15396 + 1.15396i
\(429\) −32.1388 5.06614i −1.55168 0.244596i
\(430\) 0 0
\(431\) 1.45407 + 2.51852i 0.0700400 + 0.121313i 0.898919 0.438116i \(-0.144354\pi\)
−0.828879 + 0.559429i \(0.811021\pi\)
\(432\) −18.2398 + 9.13337i −0.877563 + 0.439429i
\(433\) −6.84446 25.5439i −0.328924 1.22756i −0.910308 0.413932i \(-0.864155\pi\)
0.581384 0.813629i \(-0.302511\pi\)
\(434\) 1.88541i 0.0905024i
\(435\) 0 0
\(436\) 8.14442 + 4.70218i 0.390047 + 0.225194i
\(437\) −0.810645 0.810645i −0.0387784 0.0387784i
\(438\) −0.182977 + 0.302922i −0.00874299 + 0.0144742i
\(439\) 23.2175 13.4046i 1.10811 0.639768i 0.169771 0.985484i \(-0.445697\pi\)
0.938339 + 0.345716i \(0.112364\pi\)
\(440\) 0 0
\(441\) −1.06549 + 26.9100i −0.0507376 + 1.28143i
\(442\) 1.26151 0.514187i 0.0600037 0.0244574i
\(443\) −19.3624 19.3624i −0.919937 0.919937i 0.0770872 0.997024i \(-0.475438\pi\)
−0.997024 + 0.0770872i \(0.975438\pi\)
\(444\) −19.6596 5.68700i −0.933006 0.269893i
\(445\) 0 0
\(446\) 0.557522 + 0.321885i 0.0263994 + 0.0152417i
\(447\) −15.6477 0.309661i −0.740113 0.0146465i
\(448\) −29.7442 + 7.96992i −1.40528 + 0.376543i
\(449\) −3.02917 1.74889i −0.142956 0.0825354i 0.426816 0.904338i \(-0.359635\pi\)
−0.569772 + 0.821803i \(0.692968\pi\)
\(450\) 0 0
\(451\) 5.06990 8.78132i 0.238732 0.413496i
\(452\) 5.41324 + 1.45047i 0.254617 + 0.0682245i
\(453\) 9.79404 + 17.7666i 0.460164 + 0.834746i
\(454\) 1.63500i 0.0767343i
\(455\) 0 0
\(456\) −0.224311 0.233368i −0.0105043 0.0109284i
\(457\) 33.6949 + 9.02853i 1.57618 + 0.422337i 0.937742 0.347334i \(-0.112913\pi\)
0.638441 + 0.769671i \(0.279580\pi\)
\(458\) −0.103930 + 0.387870i −0.00485631 + 0.0181240i
\(459\) 17.2689 3.54445i 0.806044 0.165441i
\(460\) 0 0
\(461\) −5.43399 + 9.41194i −0.253086 + 0.438358i −0.964374 0.264543i \(-0.914779\pi\)
0.711288 + 0.702901i \(0.248112\pi\)
\(462\) 3.43827 + 2.07686i 0.159963 + 0.0966242i
\(463\) −6.69797 6.69797i −0.311281 0.311281i 0.534125 0.845406i \(-0.320641\pi\)
−0.845406 + 0.534125i \(0.820641\pi\)
\(464\) 9.91274 17.1694i 0.460188 0.797068i
\(465\) 0 0
\(466\) 1.07508 0.620700i 0.0498023 0.0287534i
\(467\) −4.56632 + 4.56632i −0.211304 + 0.211304i −0.804821 0.593517i \(-0.797739\pi\)
0.593517 + 0.804821i \(0.297739\pi\)
\(468\) 13.8457 16.4472i 0.640019 0.760271i
\(469\) 30.6852i 1.41691i
\(470\) 0 0
\(471\) 26.5204 + 7.67163i 1.22200 + 0.353490i
\(472\) 3.88039 1.03975i 0.178609 0.0478582i
\(473\) −3.45243 + 3.45243i −0.158743 + 0.158743i
\(474\) −0.466490 + 0.115153i −0.0214266 + 0.00528917i
\(475\) 0 0
\(476\) 26.9538 1.23543
\(477\) −10.1704 + 2.29808i −0.465670 + 0.105222i
\(478\) 0.0101952 + 0.00273180i 0.000466319 + 0.000124950i
\(479\) 13.8170 7.97728i 0.631317 0.364491i −0.149945 0.988694i \(-0.547910\pi\)
0.781262 + 0.624203i \(0.214576\pi\)
\(480\) 0 0
\(481\) 21.2664 2.67741i 0.969664 0.122079i
\(482\) −0.849732 + 0.849732i −0.0387042 + 0.0387042i
\(483\) −16.5168 + 9.10506i −0.751538 + 0.414295i
\(484\) −27.7869 + 16.0427i −1.26304 + 0.729216i
\(485\) 0 0
\(486\) −1.34279 + 1.10029i −0.0609102 + 0.0499103i
\(487\) −8.49708 31.7115i −0.385040 1.43699i −0.838104 0.545510i \(-0.816336\pi\)
0.453065 0.891478i \(-0.350331\pi\)
\(488\) 0.611308 + 2.28143i 0.0276726 + 0.103276i
\(489\) −16.0058 + 15.3846i −0.723807 + 0.695716i
\(490\) 0 0
\(491\) −25.2561 + 14.5816i −1.13979 + 0.658058i −0.946379 0.323059i \(-0.895289\pi\)
−0.193412 + 0.981118i \(0.561955\pi\)
\(492\) 3.23466 + 5.86773i 0.145830 + 0.264538i
\(493\) −12.1152 + 12.1152i −0.545642 + 0.545642i
\(494\) 0.155747 + 0.0655476i 0.00700738 + 0.00294913i
\(495\) 0 0
\(496\) −14.3999 + 8.31380i −0.646576 + 0.373301i
\(497\) −47.0937 12.6187i −2.11244 0.566027i
\(498\) 2.23031 + 1.34720i 0.0999427 + 0.0603695i
\(499\) 16.7557 0.750087 0.375044 0.927007i \(-0.377628\pi\)
0.375044 + 0.927007i \(0.377628\pi\)
\(500\) 0 0
\(501\) 9.36157 + 37.9240i 0.418244 + 1.69432i
\(502\) 1.68439 1.68439i 0.0751778 0.0751778i
\(503\) 8.90077 2.38495i 0.396866 0.106340i −0.0548660 0.998494i \(-0.517473\pi\)
0.451732 + 0.892154i \(0.350806\pi\)
\(504\) −4.71342 + 2.47802i −0.209952 + 0.110380i
\(505\) 0 0
\(506\) 1.58057i 0.0702648i
\(507\) −6.50137 + 21.5576i −0.288736 + 0.957409i
\(508\) −2.54628 + 2.54628i −0.112973 + 0.112973i
\(509\) −0.476859 + 0.275315i −0.0211364 + 0.0122031i −0.510531 0.859859i \(-0.670551\pi\)
0.489395 + 0.872062i \(0.337218\pi\)
\(510\) 0 0
\(511\) 3.66677 6.35104i 0.162208 0.280953i
\(512\) −6.14451 6.14451i −0.271552 0.271552i
\(513\) 1.82555 + 1.20378i 0.0805999 + 0.0531481i
\(514\) −0.903491 + 1.56489i −0.0398513 + 0.0690245i
\(515\) 0 0
\(516\) −0.773199 3.13225i −0.0340382 0.137890i
\(517\) −2.46852 + 9.21266i −0.108566 + 0.405172i
\(518\) −2.55610 0.684904i −0.112308 0.0300930i
\(519\) −4.51850 + 4.34313i −0.198340 + 0.190642i
\(520\) 0 0
\(521\) 32.2002i 1.41072i −0.708852 0.705358i \(-0.750786\pi\)
0.708852 0.705358i \(-0.249214\pi\)
\(522\) 0.500821 1.61118i 0.0219204 0.0705194i
\(523\) −13.6311 3.65245i −0.596048 0.159711i −0.0518323 0.998656i \(-0.516506\pi\)
−0.544216 + 0.838945i \(0.683173\pi\)
\(524\) 20.1615 34.9207i 0.880758 1.52552i
\(525\) 0 0
\(526\) −2.21362 1.27803i −0.0965184 0.0557249i
\(527\) 13.8802 3.71919i 0.604631 0.162010i
\(528\) 0.700906 35.4181i 0.0305030 1.54137i
\(529\) 13.4917 + 7.78941i 0.586594 + 0.338670i
\(530\) 0 0
\(531\) −24.0215 + 12.6290i −1.04244 + 0.548051i
\(532\) 2.36413 + 2.36413i 0.102498 + 0.102498i
\(533\) −5.54297 4.30333i −0.240093 0.186398i
\(534\) −0.578179 0.601524i −0.0250202 0.0260305i
\(535\) 0 0
\(536\) 2.95238 1.70456i 0.127523 0.0736256i
\(537\) −8.63317 5.21479i −0.372549 0.225035i
\(538\) 0.273182 + 0.273182i 0.0117777 + 0.0117777i
\(539\) −40.5034 23.3846i −1.74460 1.00725i
\(540\) 0 0
\(541\) 22.8149i 0.980890i −0.871472 0.490445i \(-0.836834\pi\)
0.871472 0.490445i \(-0.163166\pi\)
\(542\) 0.342412 + 1.27790i 0.0147079 + 0.0548905i
\(543\) −15.0990 + 8.32353i −0.647961 + 0.357197i
\(544\) 2.24824 + 3.89407i 0.0963927 + 0.166957i
\(545\) 0 0
\(546\) 1.74786 2.16167i 0.0748017 0.0925109i
\(547\) −10.0470 10.0470i −0.429577 0.429577i 0.458907 0.888484i \(-0.348241\pi\)
−0.888484 + 0.458907i \(0.848241\pi\)
\(548\) −25.6636 6.87653i −1.09629 0.293751i
\(549\) −7.42506 14.1231i −0.316894 0.602761i
\(550\) 0 0
\(551\) −2.12526 −0.0905391
\(552\) −1.79354 1.08337i −0.0763383 0.0461115i
\(553\) 9.61765 2.57704i 0.408984 0.109587i
\(554\) 1.91420i 0.0813267i
\(555\) 0 0
\(556\) −20.5912 35.6650i −0.873261 1.51253i
\(557\) −6.81604 + 25.4378i −0.288805 + 1.07783i 0.657209 + 0.753708i \(0.271737\pi\)
−0.946014 + 0.324126i \(0.894930\pi\)
\(558\) −1.03941 + 0.960235i −0.0440017 + 0.0406500i
\(559\) 2.04178 + 2.69231i 0.0863581 + 0.113873i
\(560\) 0 0
\(561\) −8.50725 + 29.4091i −0.359176 + 1.24165i
\(562\) −0.638111 + 2.38146i −0.0269171 + 0.100456i
\(563\) −18.9045 + 5.06546i −0.796732 + 0.213484i −0.634149 0.773211i \(-0.718649\pi\)
−0.162583 + 0.986695i \(0.551983\pi\)
\(564\) −4.36739 4.54374i −0.183900 0.191326i
\(565\) 0 0
\(566\) 0.157566 0.272913i 0.00662300 0.0114714i
\(567\) 27.3692 23.3467i 1.14940 0.980470i
\(568\) −1.40193 5.23209i −0.0588239 0.219534i
\(569\) −2.45559 4.25321i −0.102944 0.178304i 0.809952 0.586495i \(-0.199493\pi\)
−0.912896 + 0.408192i \(0.866159\pi\)
\(570\) 0 0
\(571\) −17.2440 −0.721639 −0.360819 0.932636i \(-0.617503\pi\)
−0.360819 + 0.932636i \(0.617503\pi\)
\(572\) 14.0924 + 34.5743i 0.589233 + 1.44562i
\(573\) −39.6132 0.783925i −1.65486 0.0327489i
\(574\) 0.433180 + 0.750289i 0.0180806 + 0.0313165i
\(575\) 0 0
\(576\) 19.5424 + 12.3387i 0.814267 + 0.514111i
\(577\) −16.3463 + 16.3463i −0.680507 + 0.680507i −0.960114 0.279607i \(-0.909796\pi\)
0.279607 + 0.960114i \(0.409796\pi\)
\(578\) 0.158231 + 0.590527i 0.00658156 + 0.0245627i
\(579\) 7.10481 + 28.7818i 0.295266 + 1.19613i
\(580\) 0 0
\(581\) −46.7606 26.9973i −1.93996 1.12003i
\(582\) 0.483360 0.266458i 0.0200359 0.0110450i
\(583\) 4.68655 17.4905i 0.194097 0.724381i
\(584\) 0.814753 0.0337147
\(585\) 0 0
\(586\) −0.880683 −0.0363807
\(587\) 0.347066 1.29527i 0.0143250 0.0534615i −0.958393 0.285451i \(-0.907857\pi\)
0.972718 + 0.231989i \(0.0745234\pi\)
\(588\) 27.0646 14.9197i 1.11613 0.615278i
\(589\) 1.54365 + 0.891226i 0.0636049 + 0.0367223i
\(590\) 0 0
\(591\) −0.614148 2.48793i −0.0252627 0.102340i
\(592\) 6.04025 + 22.5425i 0.248253 + 0.926491i
\(593\) −16.7430 + 16.7430i −0.687552 + 0.687552i −0.961690 0.274138i \(-0.911607\pi\)
0.274138 + 0.961690i \(0.411607\pi\)
\(594\) −0.606152 2.95323i −0.0248707 0.121173i
\(595\) 0 0
\(596\) 8.97996 + 15.5537i 0.367834 + 0.637106i
\(597\) 41.3774 + 0.818839i 1.69347 + 0.0335129i
\(598\) 1.08366 + 0.148912i 0.0443143 + 0.00608945i
\(599\) 29.1006 1.18902 0.594509 0.804089i \(-0.297347\pi\)
0.594509 + 0.804089i \(0.297347\pi\)
\(600\) 0 0
\(601\) 15.9418 + 27.6120i 0.650280 + 1.12632i 0.983055 + 0.183311i \(0.0586816\pi\)
−0.332775 + 0.943006i \(0.607985\pi\)
\(602\) −0.107971 0.402952i −0.00440055 0.0164231i
\(603\) −16.9165 + 15.6279i −0.688894 + 0.636419i
\(604\) 11.6402 20.1615i 0.473635 0.820359i
\(605\) 0 0
\(606\) −0.369589 0.384512i −0.0150135 0.0156197i
\(607\) 14.1691 3.79661i 0.575107 0.154100i 0.0404693 0.999181i \(-0.487115\pi\)
0.534638 + 0.845081i \(0.320448\pi\)
\(608\) −0.144356 + 0.538745i −0.00585442 + 0.0218490i
\(609\) −9.71556 + 33.5862i −0.393695 + 1.36098i
\(610\) 0 0
\(611\) 6.08379 + 2.56042i 0.246124 + 0.103584i
\(612\) −13.7275 14.8594i −0.554903 0.600657i
\(613\) −5.37967 + 20.0772i −0.217283 + 0.810911i 0.768067 + 0.640369i \(0.221219\pi\)
−0.985350 + 0.170542i \(0.945448\pi\)
\(614\) 0.842294 + 1.45890i 0.0339922 + 0.0588762i
\(615\) 0 0
\(616\) 9.24775i 0.372602i
\(617\) −39.2451 + 10.5157i −1.57995 + 0.423345i −0.938909 0.344164i \(-0.888162\pi\)
−0.641037 + 0.767510i \(0.721496\pi\)
\(618\) 0.0106442 + 0.00642956i 0.000428174 + 0.000258635i
\(619\) 21.9052 0.880445 0.440222 0.897889i \(-0.354900\pi\)
0.440222 + 0.897889i \(0.354900\pi\)
\(620\) 0 0
\(621\) 13.4315 + 4.46836i 0.538988 + 0.179309i
\(622\) −1.29293 0.346441i −0.0518420 0.0138910i
\(623\) 12.2255 + 12.2255i 0.489804 + 0.489804i
\(624\) −24.2172 3.81743i −0.969464 0.152820i
\(625\) 0 0
\(626\) −1.29995 2.25158i −0.0519564 0.0899911i
\(627\) −3.32566 + 1.83331i −0.132814 + 0.0732153i
\(628\) −8.19964 30.6015i −0.327201 1.22113i
\(629\) 20.1688i 0.804183i
\(630\) 0 0
\(631\) 16.2845 + 9.40185i 0.648275 + 0.374282i 0.787795 0.615937i \(-0.211223\pi\)
−0.139520 + 0.990219i \(0.544556\pi\)
\(632\) 0.782208 + 0.782208i 0.0311146 + 0.0311146i
\(633\) −4.56404 2.75687i −0.181404 0.109576i
\(634\) −0.106209 + 0.0613196i −0.00421809 + 0.00243531i
\(635\) 0 0
\(636\) 8.29159 + 8.62639i 0.328783 + 0.342059i
\(637\) −19.8489 + 25.5667i −0.786442 + 1.01299i
\(638\) 2.07188 + 2.07188i 0.0820264 + 0.0820264i
\(639\) 17.0282 + 32.3891i 0.673624 + 1.28129i
\(640\) 0 0
\(641\) −18.6204 10.7505i −0.735461 0.424619i 0.0849557 0.996385i \(-0.472925\pi\)
−0.820417 + 0.571766i \(0.806258\pi\)
\(642\) 0.0648275 3.27585i 0.00255854 0.129288i
\(643\) −2.64106 + 0.707671i −0.104153 + 0.0279078i −0.310519 0.950567i \(-0.600503\pi\)
0.206366 + 0.978475i \(0.433836\pi\)
\(644\) 18.7432 + 10.8214i 0.738585 + 0.426422i
\(645\) 0 0
\(646\) 0.0795009 0.137700i 0.00312792 0.00541772i
\(647\) 39.8449 + 10.6764i 1.56647 + 0.419733i 0.934703 0.355429i \(-0.115665\pi\)
0.631762 + 0.775162i \(0.282332\pi\)
\(648\) 3.76665 + 1.33642i 0.147968 + 0.0524995i
\(649\) 47.1302i 1.85002i
\(650\) 0 0
\(651\) 21.1411 20.3206i 0.828585 0.796426i
\(652\) 24.6081 + 6.59373i 0.963729 + 0.258230i
\(653\) 4.49795 16.7866i 0.176018 0.656909i −0.820358 0.571851i \(-0.806226\pi\)
0.996376 0.0850584i \(-0.0271077\pi\)
\(654\) −0.218726 0.886066i −0.00855286 0.0346479i
\(655\) 0 0
\(656\) 3.82026 6.61688i 0.149156 0.258346i
\(657\) −5.36876 + 1.21311i −0.209455 + 0.0473280i
\(658\) −0.576229 0.576229i −0.0224638 0.0224638i
\(659\) −9.34358 + 16.1835i −0.363974 + 0.630422i −0.988611 0.150494i \(-0.951914\pi\)
0.624637 + 0.780915i \(0.285247\pi\)
\(660\) 0 0
\(661\) 36.7989 21.2459i 1.43131 0.826368i 0.434091 0.900869i \(-0.357070\pi\)
0.997221 + 0.0745005i \(0.0237362\pi\)
\(662\) 2.21731 2.21731i 0.0861780 0.0861780i
\(663\) 19.3619 + 8.60347i 0.751953 + 0.334131i
\(664\) 5.99876i 0.232797i
\(665\) 0 0
\(666\) 0.924235 + 1.75798i 0.0358134 + 0.0681203i
\(667\) −13.2887 + 3.56070i −0.514540 + 0.137871i
\(668\) 31.6965 31.6965i 1.22638 1.22638i
\(669\) 2.39957 + 9.72072i 0.0927727 + 0.375825i
\(670\) 0 0
\(671\) 27.7097 1.06972
\(672\) 7.85405 + 4.74417i 0.302977 + 0.183010i
\(673\) 0.980547 + 0.262737i 0.0377973 + 0.0101278i 0.277668 0.960677i \(-0.410438\pi\)
−0.239871 + 0.970805i \(0.577105\pi\)
\(674\) −2.44738 + 1.41300i −0.0942697 + 0.0544267i
\(675\) 0 0
\(676\) 25.0324 6.40462i 0.962786 0.246331i
\(677\) −2.15255 + 2.15255i −0.0827291 + 0.0827291i −0.747260 0.664531i \(-0.768631\pi\)
0.664531 + 0.747260i \(0.268631\pi\)
\(678\) −0.262562 0.476293i −0.0100836 0.0182919i
\(679\) −9.90513 + 5.71873i −0.380124 + 0.219465i
\(680\) 0 0
\(681\) −18.3333 + 17.6217i −0.702532 + 0.675266i
\(682\) −0.636035 2.37371i −0.0243550 0.0908942i
\(683\) 8.32509 + 31.0697i 0.318551 + 1.18885i 0.920638 + 0.390418i \(0.127669\pi\)
−0.602087 + 0.798430i \(0.705664\pi\)
\(684\) 0.0992783 2.50737i 0.00379600 0.0958718i
\(685\) 0 0
\(686\) 0.762153 0.440029i 0.0290991 0.0168004i
\(687\) −5.46933 + 3.01504i −0.208668 + 0.115031i
\(688\) −2.60147 + 2.60147i −0.0991802 + 0.0991802i
\(689\) −11.5502 4.86103i −0.440028 0.185190i
\(690\) 0 0
\(691\) −15.5777 + 8.99379i −0.592603 + 0.342140i −0.766126 0.642690i \(-0.777818\pi\)
0.173523 + 0.984830i \(0.444485\pi\)
\(692\) 6.94696 + 1.86143i 0.264084 + 0.0707611i
\(693\) 13.7693 + 60.9374i 0.523051 + 2.31482i
\(694\) 0.0558510 0.00212007
\(695\) 0 0
\(696\) −3.77119 + 0.930921i −0.142947 + 0.0352865i
\(697\) −4.66906 + 4.66906i −0.176853 + 0.176853i
\(698\) −0.996554 + 0.267026i −0.0377201 + 0.0101071i
\(699\) 18.5470 + 5.36514i 0.701512 + 0.202928i
\(700\) 0 0
\(701\) 36.5117i 1.37903i 0.724272 + 0.689515i \(0.242176\pi\)
−0.724272 + 0.689515i \(0.757824\pi\)
\(702\) −2.08190 + 0.137352i −0.0785761 + 0.00518402i
\(703\) 1.76901 1.76901i 0.0667196 0.0667196i
\(704\) −34.7591 + 20.0682i −1.31003 + 0.756347i
\(705\) 0 0
\(706\) −1.17916 + 2.04236i −0.0443782 + 0.0768653i
\(707\) 7.81490 + 7.81490i 0.293909 + 0.293909i
\(708\) 26.6573 + 16.1021i 1.00184 + 0.605153i
\(709\) −17.1761 + 29.7499i −0.645063 + 1.11728i 0.339224 + 0.940706i \(0.389836\pi\)
−0.984287 + 0.176577i \(0.943498\pi\)
\(710\) 0 0
\(711\) −6.31896 3.98965i −0.236980 0.149624i
\(712\) −0.497153 + 1.85540i −0.0186316 + 0.0695340i
\(713\) 11.1452 + 2.98635i 0.417391 + 0.111840i
\(714\) −1.81268 1.88587i −0.0678377 0.0705769i
\(715\) 0 0
\(716\) 11.5740i 0.432540i
\(717\) 0.0792506 + 0.143762i 0.00295967 + 0.00536889i
\(718\) −1.91056 0.511933i −0.0713014 0.0191052i
\(719\) −5.50044 + 9.52704i −0.205132 + 0.355299i −0.950175 0.311718i \(-0.899096\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(720\) 0 0
\(721\) −0.223167 0.128845i −0.00831116 0.00479845i
\(722\) −2.02479 + 0.542540i −0.0753547 + 0.0201912i
\(723\) −18.6863 0.369793i −0.694952 0.0137528i
\(724\) 17.1344 + 9.89253i 0.636794 + 0.367653i
\(725\) 0 0
\(726\) 2.99116 + 0.865260i 0.111012 + 0.0321128i
\(727\) −13.9424 13.9424i −0.517094 0.517094i 0.399597 0.916691i \(-0.369150\pi\)
−0.916691 + 0.399597i \(0.869150\pi\)
\(728\) −6.34042 0.871268i −0.234991 0.0322913i
\(729\) −26.8099 3.19796i −0.992961 0.118443i
\(730\) 0 0
\(731\) 2.75351 1.58974i 0.101842 0.0587986i
\(732\) −9.46704 + 15.6728i −0.349912 + 0.579285i
\(733\) −10.0007 10.0007i −0.369383 0.369383i 0.497869 0.867252i \(-0.334116\pi\)
−0.867252 + 0.497869i \(0.834116\pi\)
\(734\) 0.108825 + 0.0628299i 0.00401679 + 0.00231909i
\(735\) 0 0
\(736\) 3.61049i 0.133084i
\(737\) −10.3515 38.6325i −0.381304 1.42305i
\(738\) 0.193011 0.620930i 0.00710483 0.0228568i
\(739\) −5.27257 9.13236i −0.193955 0.335939i 0.752603 0.658475i \(-0.228798\pi\)
−0.946557 + 0.322536i \(0.895465\pi\)
\(740\) 0 0
\(741\) 0.943625 + 2.45285i 0.0346649 + 0.0901077i
\(742\) 1.09399 + 1.09399i 0.0401615 + 0.0401615i
\(743\) −33.1343 8.87832i −1.21558 0.325714i −0.406632 0.913592i \(-0.633297\pi\)
−0.808949 + 0.587878i \(0.799963\pi\)
\(744\) 3.12953 + 0.905286i 0.114734 + 0.0331894i
\(745\) 0 0
\(746\) −1.98600 −0.0727127
\(747\) 8.93174 + 39.5284i 0.326795 + 1.44627i
\(748\) 33.9347 9.09277i 1.24077 0.332465i
\(749\) 67.8966i 2.48089i
\(750\) 0 0
\(751\) −7.98474 13.8300i −0.291367 0.504663i 0.682766 0.730637i \(-0.260777\pi\)
−0.974133 + 0.225974i \(0.927444\pi\)
\(752\) −1.86008 + 6.94191i −0.0678301 + 0.253145i
\(753\) 37.0411 + 0.733024i 1.34985 + 0.0267129i
\(754\) 1.61571 1.22531i 0.0588408 0.0446233i
\(755\) 0 0
\(756\) −39.1710 13.0313i −1.42464 0.473945i
\(757\) 10.9112 40.7211i 0.396574 1.48003i −0.422510 0.906358i \(-0.638851\pi\)
0.819083 0.573675i \(-0.194483\pi\)
\(758\) 1.11331 0.298311i 0.0404373 0.0108351i
\(759\) −17.7229 + 17.0351i −0.643301 + 0.618334i
\(760\) 0 0
\(761\) 2.02411 3.50585i 0.0733738 0.127087i −0.827004 0.562196i \(-0.809957\pi\)
0.900378 + 0.435109i \(0.143290\pi\)
\(762\) 0.349395 + 0.00691435i 0.0126572 + 0.000250480i
\(763\) 4.89492 + 18.2681i 0.177208 + 0.661349i
\(764\) 22.7333 + 39.3752i 0.822462 + 1.42455i
\(765\) 0 0
\(766\) 1.85016 0.0668492
\(767\) −32.3133 4.44032i −1.16676 0.160331i
\(768\) 0.514629 26.0052i 0.0185701 0.938381i
\(769\) −9.59863 16.6253i −0.346135 0.599524i 0.639424 0.768854i \(-0.279173\pi\)
−0.985559 + 0.169330i \(0.945840\pi\)
\(770\) 0 0
\(771\) −27.2848 + 6.73528i −0.982640 + 0.242565i
\(772\) 24.0556 24.0556i 0.865778 0.865778i
\(773\) 0.891235 + 3.32613i 0.0320555 + 0.119633i 0.980100 0.198506i \(-0.0636089\pi\)
−0.948044 + 0.318139i \(0.896942\pi\)
\(774\) −0.167155 + 0.264746i −0.00600826 + 0.00951611i
\(775\) 0 0
\(776\) −1.10045 0.635348i −0.0395040 0.0228077i
\(777\) −19.8693 36.0433i −0.712808 1.29305i
\(778\) 0.696840 2.60064i 0.0249829 0.0932375i
\(779\) −0.819051 −0.0293455
\(780\) 0 0
\(781\) −63.5476 −2.27391
\(782\) 0.266394 0.994197i 0.00952624 0.0355524i
\(783\) 23.4639 11.7493i 0.838533 0.419885i
\(784\) −30.5200 17.6208i −1.09000 0.629313i
\(785\) 0 0
\(786\) −3.79917 + 0.937828i −0.135512 + 0.0334512i
\(787\) −8.97719 33.5033i −0.320002 1.19426i −0.919241 0.393694i \(-0.871197\pi\)
0.599239 0.800570i \(-0.295470\pi\)
\(788\) −2.07939 + 2.07939i −0.0740752 + 0.0740752i
\(789\) −9.52740 38.5958i −0.339184 1.37405i
\(790\) 0 0
\(791\) 5.63512 + 9.76031i 0.200362 + 0.347037i
\(792\) −5.09821 + 4.70987i −0.181157 + 0.167358i
\(793\) 2.61064 18.9982i 0.0927065 0.674647i
\(794\) 0.952251 0.0337941
\(795\) 0 0
\(796\) −23.7458 41.1289i −0.841647 1.45778i
\(797\) −7.97400 29.7594i −0.282454 1.05413i −0.950680 0.310173i \(-0.899613\pi\)
0.668226 0.743958i \(-0.267054\pi\)
\(798\) 0.00641973 0.324401i 0.000227256 0.0114837i
\(799\) 3.10547 5.37883i 0.109864 0.190289i
\(800\) 0 0
\(801\) 0.513392 12.9662i 0.0181398 0.458140i
\(802\) −2.95603 + 0.792066i −0.104381 + 0.0279688i
\(803\) 2.47394 9.23288i 0.0873036 0.325821i
\(804\) 25.3875 + 7.34391i 0.895348 + 0.259000i
\(805\) 0 0
\(806\) −1.68738 + 0.212439i −0.0594355 + 0.00748286i
\(807\) −0.118885 + 6.00749i −0.00418496 + 0.211474i
\(808\) −0.317795 + 1.18603i −0.0111800 + 0.0417242i
\(809\) −18.8982 32.7327i −0.664427 1.15082i −0.979440 0.201734i \(-0.935342\pi\)
0.315013 0.949087i \(-0.397991\pi\)
\(810\) 0 0
\(811\) 11.6051i 0.407512i −0.979022 0.203756i \(-0.934685\pi\)
0.979022 0.203756i \(-0.0653148\pi\)
\(812\) 38.7545 10.3842i 1.36002 0.364416i
\(813\) −10.6387 + 17.6125i −0.373114 + 0.617696i
\(814\) −3.44916 −0.120893
\(815\) 0 0
\(816\) −6.41037 + 22.1603i −0.224408 + 0.775766i
\(817\) 0.380948 + 0.102075i 0.0133277 + 0.00357114i
\(818\) −2.93960 2.93960i −0.102781 0.102781i
\(819\) 43.0770 3.69928i 1.50523 0.129263i
\(820\) 0 0
\(821\) −21.9513 38.0208i −0.766107 1.32694i −0.939659 0.342111i \(-0.888858\pi\)
0.173553 0.984825i \(-0.444475\pi\)
\(822\) 1.24478 + 2.25805i 0.0434166 + 0.0787585i
\(823\) 11.4601 + 42.7695i 0.399472 + 1.49085i 0.814027 + 0.580827i \(0.197271\pi\)
−0.414554 + 0.910025i \(0.636063\pi\)
\(824\) 0.0286293i 0.000997349i
\(825\) 0 0
\(826\) 3.48738 + 2.01344i 0.121341 + 0.0700565i
\(827\) 6.22326 + 6.22326i 0.216404 + 0.216404i 0.806981 0.590577i \(-0.201100\pi\)
−0.590577 + 0.806981i \(0.701100\pi\)
\(828\) −3.58014 15.8443i −0.124418 0.550628i
\(829\) 34.6858 20.0259i 1.20469 0.695527i 0.243094 0.970003i \(-0.421838\pi\)
0.961594 + 0.274475i \(0.0885042\pi\)
\(830\) 0 0
\(831\) 21.4640 20.6310i 0.744578 0.715680i
\(832\) 10.4843 + 25.7221i 0.363477 + 0.891754i
\(833\) 21.5358 + 21.5358i 0.746172 + 0.746172i
\(834\) −1.11058 + 3.83921i −0.0384562 + 0.132941i
\(835\) 0 0
\(836\) 3.77395 + 2.17889i 0.130525 + 0.0753586i
\(837\) −21.9697 1.30567i −0.759384 0.0451307i
\(838\) −3.19297 + 0.855555i −0.110299 + 0.0295546i
\(839\) −3.62533 2.09309i −0.125160 0.0722614i 0.436113 0.899892i \(-0.356355\pi\)
−0.561273 + 0.827631i \(0.689688\pi\)
\(840\) 0 0
\(841\) 1.74811 3.02782i 0.0602797 0.104407i
\(842\) 2.29595 + 0.615198i 0.0791236 + 0.0212011i
\(843\) −33.5808 + 18.5119i −1.15659 + 0.637582i
\(844\) 6.11875i 0.210616i
\(845\) 0 0
\(846\) −0.0241979 + 0.611144i −0.000831942 + 0.0210116i
\(847\) −62.3264 16.7003i −2.14156 0.573830i
\(848\) 3.53140 13.1794i 0.121269 0.452582i
\(849\) 4.75840 1.17461i 0.163308 0.0403126i
\(850\) 0 0
\(851\) 8.09736 14.0250i 0.277574 0.480772i
\(852\) 21.7111 35.9431i 0.743810 1.23139i
\(853\) 1.57958 + 1.57958i 0.0540837 + 0.0540837i 0.733631 0.679548i \(-0.237824\pi\)
−0.679548 + 0.733631i \(0.737824\pi\)
\(854\) −1.18378 + 2.05036i −0.0405081 + 0.0701620i
\(855\) 0 0
\(856\) −6.53267 + 3.77164i −0.223282 + 0.128912i
\(857\) 31.1740 31.1740i 1.06488 1.06488i 0.0671414 0.997743i \(-0.478612\pi\)
0.997743 0.0671414i \(-0.0213879\pi\)
\(858\) 1.47132 3.31116i 0.0502299 0.113041i
\(859\) 17.7932i 0.607095i 0.952816 + 0.303547i \(0.0981711\pi\)
−0.952816 + 0.303547i \(0.901829\pi\)
\(860\) 0 0
\(861\) −3.74427 + 12.9437i −0.127604 + 0.441121i
\(862\) −0.312829 + 0.0838223i −0.0106550 + 0.00285500i
\(863\) 4.49895 4.49895i 0.153146 0.153146i −0.626375 0.779522i \(-0.715462\pi\)
0.779522 + 0.626375i \(0.215462\pi\)
\(864\) −1.38463 6.74608i −0.0471062 0.229506i
\(865\) 0 0
\(866\) 2.94505 0.100077
\(867\) −4.91620 + 8.13885i −0.166963 + 0.276410i
\(868\) −32.5034 8.70925i −1.10324 0.295611i
\(869\) 11.2392 6.48896i 0.381264 0.220123i
\(870\) 0 0
\(871\) −27.4624 + 3.45747i −0.930526 + 0.117152i
\(872\) −1.48575 + 1.48575i −0.0503139 + 0.0503139i
\(873\) 8.19736 + 2.54808i 0.277439 + 0.0862395i
\(874\) 0.110567 0.0638359i 0.00373998 0.00215928i
\(875\) 0 0
\(876\) 4.37698 + 4.55371i 0.147884 + 0.153856i
\(877\) −1.58848 5.92830i −0.0536393 0.200184i 0.933906 0.357518i \(-0.116377\pi\)
−0.987546 + 0.157334i \(0.949710\pi\)
\(878\) 0.772733 + 2.88388i 0.0260785 + 0.0973262i
\(879\) −9.49185 9.87511i −0.320152 0.333079i
\(880\) 0 0
\(881\) 36.9093 21.3096i 1.24350 0.717938i 0.273699 0.961815i \(-0.411753\pi\)
0.969806 + 0.243878i \(0.0784195\pi\)
\(882\) −2.86401 0.890253i −0.0964362 0.0299764i
\(883\) 13.2826 13.2826i 0.446996 0.446996i −0.447358 0.894355i \(-0.647635\pi\)
0.894355 + 0.447358i \(0.147635\pi\)
\(884\) −3.03704 24.1229i −0.102147 0.811340i
\(885\) 0 0
\(886\) 2.64092 1.52473i 0.0887233 0.0512244i
\(887\) −0.0708297 0.0189788i −0.00237823 0.000637244i 0.257630 0.966244i \(-0.417059\pi\)
−0.260008 + 0.965606i \(0.583725\pi\)
\(888\) 2.36417 3.91393i 0.0793364 0.131343i
\(889\) −7.24169 −0.242879
\(890\) 0 0
\(891\) 26.5817 38.6262i 0.890519 1.29403i
\(892\) 8.12449 8.12449i 0.272028 0.272028i
\(893\) 0.744161 0.199397i 0.0249024 0.00667257i
\(894\) 0.484331 1.67431i 0.0161985 0.0559972i
\(895\) 0 0
\(896\) 14.0245i 0.468525i
\(897\) 10.0098 + 13.7561i 0.334217 + 0.459302i
\(898\) 0.275440 0.275440i 0.00919156 0.00919156i
\(899\) 18.5243 10.6950i 0.617819 0.356698i
\(900\) 0 0
\(901\) −5.89581 + 10.2118i −0.196418 + 0.340206i
\(902\) 0.798478 + 0.798478i 0.0265864 + 0.0265864i
\(903\) 3.35462 5.55362i 0.111635 0.184813i
\(904\) −0.626059 + 1.08437i −0.0208224 + 0.0360655i
\(905\) 0 0
\(906\) −2.19345 + 0.541456i −0.0728726 + 0.0179887i
\(907\) 3.44596 12.8605i 0.114421 0.427026i −0.884822 0.465930i \(-0.845720\pi\)
0.999243 + 0.0389038i \(0.0123866\pi\)
\(908\) 28.1865 + 7.55255i 0.935401 + 0.250640i
\(909\) 0.328176 8.28841i 0.0108849 0.274909i
\(910\) 0 0
\(911\) 26.2784i 0.870641i 0.900276 + 0.435321i \(0.143365\pi\)
−0.900276 + 0.435321i \(0.856635\pi\)
\(912\) −2.50594 + 1.38143i −0.0829801 + 0.0457438i
\(913\) −67.9787 18.2148i −2.24977 0.602823i
\(914\) −1.94240 + 3.36434i −0.0642490 + 0.111283i
\(915\) 0 0
\(916\) 6.20659 + 3.58338i 0.205072 + 0.118398i
\(917\) 78.3277 20.9879i 2.58661 0.693080i
\(918\) −0.116471 + 1.95979i −0.00384412 + 0.0646826i
\(919\) −12.6380 7.29655i −0.416889 0.240691i 0.276856 0.960911i \(-0.410707\pi\)
−0.693746 + 0.720220i \(0.744041\pi\)
\(920\) 0 0
\(921\) −7.28052 + 25.1684i −0.239901 + 0.829326i
\(922\) −0.855820 0.855820i −0.0281849 0.0281849i
\(923\) −5.98707 + 43.5693i −0.197067 + 1.43410i
\(924\) 51.6863 49.6803i 1.70035 1.63436i
\(925\) 0 0
\(926\) 0.913562 0.527445i 0.0300215 0.0173329i
\(927\) 0.0426271 + 0.188651i 0.00140006 + 0.00619611i
\(928\) 4.73279 + 4.73279i 0.155361 + 0.155361i
\(929\) 38.3045 + 22.1151i 1.25673 + 0.725573i 0.972437 0.233165i \(-0.0749082\pi\)
0.284292 + 0.958738i \(0.408242\pi\)
\(930\) 0 0
\(931\) 3.77783i 0.123813i
\(932\) −5.73440 21.4011i −0.187836 0.701015i
\(933\) −10.0504 18.2316i −0.329035 0.596875i
\(934\) −0.359584 0.622817i −0.0117659 0.0203792i
\(935\) 0 0
\(936\) 2.74884 + 3.93916i 0.0898488 + 0.128755i
\(937\) −22.4956 22.4956i −0.734898 0.734898i 0.236688 0.971586i \(-0.423938\pi\)
−0.971586 + 0.236688i \(0.923938\pi\)
\(938\) 3.30082 + 0.884452i 0.107776 + 0.0288784i
\(939\) 11.2363 38.8434i 0.366684 1.26761i
\(940\) 0 0
\(941\) 37.4186 1.21981 0.609905 0.792474i \(-0.291207\pi\)
0.609905 + 0.792474i \(0.291207\pi\)
\(942\) −1.58965 + 2.63169i −0.0517935 + 0.0857450i
\(943\) −5.12131 + 1.37225i −0.166773 + 0.0446867i
\(944\) 35.5135i 1.15586i
\(945\) 0 0
\(946\) −0.271869 0.470890i −0.00883921 0.0153100i
\(947\) 0.895335 3.34143i 0.0290945 0.108582i −0.949852 0.312701i \(-0.898766\pi\)
0.978946 + 0.204119i \(0.0654329\pi\)
\(948\) −0.169674 + 8.57396i −0.00551077 + 0.278469i
\(949\) −6.09715 2.56605i −0.197922 0.0832974i
\(950\) 0 0
\(951\) −1.83228 0.530028i −0.0594157 0.0171873i
\(952\) −1.55865 + 5.81695i −0.0505161 + 0.188529i
\(953\) −28.6007 + 7.66352i −0.926466 + 0.248246i −0.690347 0.723478i \(-0.742542\pi\)
−0.236119 + 0.971724i \(0.575876\pi\)
\(954\) 0.0459404 1.16027i 0.00148737 0.0375652i
\(955\) 0 0
\(956\) 0.0941895 0.163141i 0.00304631 0.00527636i
\(957\) −0.901655 + 45.5623i −0.0291464 + 1.47282i
\(958\) 0.459864 + 1.71624i 0.0148575 + 0.0554491i
\(959\) −26.7155 46.2725i −0.862687 1.49422i
\(960\) 0 0
\(961\) 13.0603 0.421299
\(962\) −0.324959 + 2.36480i −0.0104771 + 0.0762443i
\(963\) 37.4309 34.5797i 1.20619 1.11431i
\(964\) 10.7238 + 18.5741i 0.345389 + 0.598231i
\(965\) 0 0
\(966\) −0.503366 2.03915i −0.0161955 0.0656086i
\(967\) −18.5880 + 18.5880i −0.597750 + 0.597750i −0.939713 0.341963i \(-0.888908\pi\)
0.341963 + 0.939713i \(0.388908\pi\)
\(968\) −1.85540 6.92443i −0.0596347 0.222560i
\(969\) 2.40087 0.592657i 0.0771272 0.0190389i
\(970\) 0 0
\(971\) −6.10879 3.52691i −0.196040 0.113184i 0.398767 0.917052i \(-0.369438\pi\)
−0.594807 + 0.803868i \(0.702772\pi\)
\(972\) 12.7657 + 28.2315i 0.409460 + 0.905527i
\(973\) 21.4352 79.9972i 0.687180 2.56459i
\(974\) 3.65614 0.117150
\(975\) 0 0
\(976\) 20.8797 0.668344
\(977\) 5.28126 19.7099i 0.168963 0.630577i −0.828539 0.559932i \(-0.810827\pi\)
0.997501 0.0706455i \(-0.0225059\pi\)
\(978\) −1.19359 2.16519i −0.0381667 0.0692350i
\(979\) 19.5160 + 11.2676i 0.623735 + 0.360114i
\(980\) 0 0
\(981\) 7.57808 12.0024i 0.241949 0.383208i
\(982\) −0.840582 3.13710i −0.0268241 0.100109i
\(983\) 30.8727 30.8727i 0.984687 0.984687i −0.0151975 0.999885i \(-0.504838\pi\)
0.999885 + 0.0151975i \(0.00483769\pi\)
\(984\) −1.45337 + 0.358767i −0.0463319 + 0.0114371i
\(985\) 0 0
\(986\) −0.954036 1.65244i −0.0303827 0.0526244i
\(987\) 0.250768 12.6718i 0.00798203 0.403347i
\(988\) 1.84945 2.38221i 0.0588387 0.0757880i
\(989\) 2.55299 0.0811803
\(990\) 0 0
\(991\) −6.36105 11.0177i −0.202065 0.349988i 0.747128 0.664680i \(-0.231432\pi\)
−0.949194 + 0.314692i \(0.898099\pi\)
\(992\) −1.45290 5.42228i −0.0461295 0.172158i
\(993\) 48.7604 + 0.964945i 1.54736 + 0.0306216i
\(994\) 2.71480 4.70218i 0.0861083 0.149144i
\(995\) 0 0
\(996\) 33.5275 32.2263i 1.06236 1.02113i
\(997\) 8.75218 2.34514i 0.277184 0.0742713i −0.117549 0.993067i \(-0.537504\pi\)
0.394733 + 0.918796i \(0.370837\pi\)
\(998\) −0.482956 + 1.80241i −0.0152877 + 0.0570544i
\(999\) −9.75099 + 29.3106i −0.308508 + 0.927348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.257.12 96
3.2 odd 2 inner 975.2.bn.d.257.13 96
5.2 odd 4 195.2.bf.a.23.12 yes 96
5.3 odd 4 inner 975.2.bn.d.218.13 96
5.4 even 2 195.2.bf.a.62.13 yes 96
13.4 even 6 inner 975.2.bn.d.407.12 96
15.2 even 4 195.2.bf.a.23.13 yes 96
15.8 even 4 inner 975.2.bn.d.218.12 96
15.14 odd 2 195.2.bf.a.62.12 yes 96
39.17 odd 6 inner 975.2.bn.d.407.13 96
65.4 even 6 195.2.bf.a.17.13 yes 96
65.17 odd 12 195.2.bf.a.173.12 yes 96
65.43 odd 12 inner 975.2.bn.d.368.13 96
195.17 even 12 195.2.bf.a.173.13 yes 96
195.134 odd 6 195.2.bf.a.17.12 96
195.173 even 12 inner 975.2.bn.d.368.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.12 96 195.134 odd 6
195.2.bf.a.17.13 yes 96 65.4 even 6
195.2.bf.a.23.12 yes 96 5.2 odd 4
195.2.bf.a.23.13 yes 96 15.2 even 4
195.2.bf.a.62.12 yes 96 15.14 odd 2
195.2.bf.a.62.13 yes 96 5.4 even 2
195.2.bf.a.173.12 yes 96 65.17 odd 12
195.2.bf.a.173.13 yes 96 195.17 even 12
975.2.bn.d.218.12 96 15.8 even 4 inner
975.2.bn.d.218.13 96 5.3 odd 4 inner
975.2.bn.d.257.12 96 1.1 even 1 trivial
975.2.bn.d.257.13 96 3.2 odd 2 inner
975.2.bn.d.368.12 96 195.173 even 12 inner
975.2.bn.d.368.13 96 65.43 odd 12 inner
975.2.bn.d.407.12 96 13.4 even 6 inner
975.2.bn.d.407.13 96 39.17 odd 6 inner