Properties

Label 975.2.bn.d.218.20
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.20
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.85180 + 0.496187i) q^{2} +(-1.71910 - 0.211449i) q^{3} +(1.45090 + 0.837676i) q^{4} +(-3.07850 - 1.24455i) q^{6} +(-1.97020 + 0.527913i) q^{7} +(-0.440097 - 0.440097i) q^{8} +(2.91058 + 0.727001i) q^{9} +(0.0324046 + 0.0561264i) q^{11} +(-2.31710 - 1.74683i) q^{12} +(-1.22133 - 3.39239i) q^{13} -3.91035 q^{14} +(-2.27195 - 3.93513i) q^{16} +(-4.88919 + 1.31006i) q^{17} +(5.02907 + 2.79045i) q^{18} +(-1.37598 + 2.38327i) q^{19} +(3.49859 - 0.490937i) q^{21} +(0.0321575 + 0.120014i) q^{22} +(-5.10100 - 1.36681i) q^{23} +(0.663511 + 0.849627i) q^{24} +(-0.578399 - 6.88803i) q^{26} +(-4.84984 - 1.86522i) q^{27} +(-3.30077 - 0.884440i) q^{28} +(-1.40236 - 2.42895i) q^{29} +0.312918i q^{31} +(-1.93245 - 7.21201i) q^{32} +(-0.0438388 - 0.103339i) q^{33} -9.70382 q^{34} +(3.61396 + 3.49292i) q^{36} +(0.326192 - 1.21737i) q^{37} +(-3.73059 + 3.73059i) q^{38} +(1.38227 + 6.09010i) q^{39} +(-5.66614 - 9.81404i) q^{41} +(6.72227 + 0.826839i) q^{42} +(9.44778 - 2.53152i) q^{43} +0.108578i q^{44} +(-8.76782 - 5.06210i) q^{46} +(-0.638524 + 0.638524i) q^{47} +(3.07362 + 7.24527i) q^{48} +(-2.45919 + 1.41981i) q^{49} +(8.68200 - 1.21830i) q^{51} +(1.06970 - 5.94510i) q^{52} +(5.43756 - 5.43756i) q^{53} +(-8.05541 - 5.86044i) q^{54} +(1.09941 + 0.634745i) q^{56} +(2.86938 - 3.80612i) q^{57} +(-1.39166 - 5.19376i) q^{58} +(-5.86942 - 3.38871i) q^{59} +(-1.38357 + 2.39642i) q^{61} +(-0.155266 + 0.579461i) q^{62} +(-6.11821 + 0.104196i) q^{63} -5.22623i q^{64} +(-0.0299051 - 0.213114i) q^{66} +(-2.83602 + 10.5842i) q^{67} +(-8.19111 - 2.19480i) q^{68} +(8.48010 + 3.42828i) q^{69} +(-6.90717 + 11.9636i) q^{71} +(-0.960986 - 1.60089i) q^{72} +(-7.38949 + 7.38949i) q^{73} +(1.20808 - 2.09246i) q^{74} +(-3.99282 + 2.30525i) q^{76} +(-0.0934734 - 0.0934734i) q^{77} +(-0.462143 + 11.9635i) q^{78} -5.34069i q^{79} +(7.94294 + 4.23199i) q^{81} +(-5.62293 - 20.9851i) q^{82} +(2.60495 + 2.60495i) q^{83} +(5.48733 + 2.21838i) q^{84} +18.7515 q^{86} +(1.89719 + 4.47213i) q^{87} +(0.0104399 - 0.0389622i) q^{88} +(12.5211 - 7.22908i) q^{89} +(4.19716 + 6.03893i) q^{91} +(-6.25608 - 6.25608i) q^{92} +(0.0661662 - 0.537937i) q^{93} +(-1.49924 + 0.865588i) q^{94} +(1.79710 + 12.8068i) q^{96} +(7.12670 - 1.90959i) q^{97} +(-5.25841 + 1.40899i) q^{98} +(0.0535122 + 0.186919i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.85180 + 0.496187i 1.30942 + 0.350857i 0.845004 0.534761i \(-0.179598\pi\)
0.464414 + 0.885618i \(0.346265\pi\)
\(3\) −1.71910 0.211449i −0.992520 0.122080i
\(4\) 1.45090 + 0.837676i 0.725448 + 0.418838i
\(5\) 0 0
\(6\) −3.07850 1.24455i −1.25679 0.508087i
\(7\) −1.97020 + 0.527913i −0.744665 + 0.199532i −0.611150 0.791514i \(-0.709293\pi\)
−0.133515 + 0.991047i \(0.542626\pi\)
\(8\) −0.440097 0.440097i −0.155598 0.155598i
\(9\) 2.91058 + 0.727001i 0.970193 + 0.242334i
\(10\) 0 0
\(11\) 0.0324046 + 0.0561264i 0.00977036 + 0.0169228i 0.870869 0.491515i \(-0.163557\pi\)
−0.861099 + 0.508438i \(0.830223\pi\)
\(12\) −2.31710 1.74683i −0.668890 0.504268i
\(13\) −1.22133 3.39239i −0.338737 0.940881i
\(14\) −3.91035 −1.04508
\(15\) 0 0
\(16\) −2.27195 3.93513i −0.567988 0.983783i
\(17\) −4.88919 + 1.31006i −1.18580 + 0.317735i −0.797226 0.603681i \(-0.793700\pi\)
−0.388577 + 0.921416i \(0.627033\pi\)
\(18\) 5.02907 + 2.79045i 1.18536 + 0.657715i
\(19\) −1.37598 + 2.38327i −0.315672 + 0.546760i −0.979580 0.201054i \(-0.935563\pi\)
0.663908 + 0.747814i \(0.268897\pi\)
\(20\) 0 0
\(21\) 3.49859 0.490937i 0.763454 0.107131i
\(22\) 0.0321575 + 0.120014i 0.00685601 + 0.0255870i
\(23\) −5.10100 1.36681i −1.06363 0.284999i −0.315758 0.948840i \(-0.602259\pi\)
−0.747874 + 0.663840i \(0.768925\pi\)
\(24\) 0.663511 + 0.849627i 0.135439 + 0.173429i
\(25\) 0 0
\(26\) −0.578399 6.88803i −0.113433 1.35085i
\(27\) −4.84984 1.86522i −0.933352 0.358962i
\(28\) −3.30077 0.884440i −0.623788 0.167143i
\(29\) −1.40236 2.42895i −0.260411 0.451045i 0.705940 0.708271i \(-0.250525\pi\)
−0.966351 + 0.257226i \(0.917191\pi\)
\(30\) 0 0
\(31\) 0.312918i 0.0562018i 0.999605 + 0.0281009i \(0.00894597\pi\)
−0.999605 + 0.0281009i \(0.991054\pi\)
\(32\) −1.93245 7.21201i −0.341613 1.27492i
\(33\) −0.0438388 0.103339i −0.00763135 0.0179889i
\(34\) −9.70382 −1.66419
\(35\) 0 0
\(36\) 3.61396 + 3.49292i 0.602326 + 0.582154i
\(37\) 0.326192 1.21737i 0.0536257 0.200134i −0.933916 0.357493i \(-0.883631\pi\)
0.987541 + 0.157359i \(0.0502981\pi\)
\(38\) −3.73059 + 3.73059i −0.605181 + 0.605181i
\(39\) 1.38227 + 6.09010i 0.221341 + 0.975197i
\(40\) 0 0
\(41\) −5.66614 9.81404i −0.884903 1.53270i −0.845825 0.533460i \(-0.820891\pi\)
−0.0390773 0.999236i \(-0.512442\pi\)
\(42\) 6.72227 + 0.826839i 1.03727 + 0.127584i
\(43\) 9.44778 2.53152i 1.44077 0.386054i 0.547968 0.836499i \(-0.315401\pi\)
0.892804 + 0.450445i \(0.148735\pi\)
\(44\) 0.108578i 0.0163688i
\(45\) 0 0
\(46\) −8.76782 5.06210i −1.29274 0.746366i
\(47\) −0.638524 + 0.638524i −0.0931382 + 0.0931382i −0.752141 0.659003i \(-0.770979\pi\)
0.659003 + 0.752141i \(0.270979\pi\)
\(48\) 3.07362 + 7.24527i 0.443639 + 1.04576i
\(49\) −2.45919 + 1.41981i −0.351313 + 0.202830i
\(50\) 0 0
\(51\) 8.68200 1.21830i 1.21572 0.170596i
\(52\) 1.06970 5.94510i 0.148340 0.824436i
\(53\) 5.43756 5.43756i 0.746906 0.746906i −0.226991 0.973897i \(-0.572889\pi\)
0.973897 + 0.226991i \(0.0728887\pi\)
\(54\) −8.05541 5.86044i −1.09620 0.797505i
\(55\) 0 0
\(56\) 1.09941 + 0.634745i 0.146915 + 0.0848214i
\(57\) 2.86938 3.80612i 0.380059 0.504133i
\(58\) −1.39166 5.19376i −0.182734 0.681974i
\(59\) −5.86942 3.38871i −0.764133 0.441172i 0.0666447 0.997777i \(-0.478771\pi\)
−0.830778 + 0.556604i \(0.812104\pi\)
\(60\) 0 0
\(61\) −1.38357 + 2.39642i −0.177149 + 0.306830i −0.940903 0.338677i \(-0.890021\pi\)
0.763754 + 0.645507i \(0.223354\pi\)
\(62\) −0.155266 + 0.579461i −0.0197188 + 0.0735916i
\(63\) −6.11821 + 0.104196i −0.770822 + 0.0131274i
\(64\) 5.22623i 0.653279i
\(65\) 0 0
\(66\) −0.0299051 0.213114i −0.00368107 0.0262326i
\(67\) −2.83602 + 10.5842i −0.346475 + 1.29306i 0.544405 + 0.838823i \(0.316756\pi\)
−0.890880 + 0.454239i \(0.849911\pi\)
\(68\) −8.19111 2.19480i −0.993318 0.266159i
\(69\) 8.48010 + 3.42828i 1.02088 + 0.412716i
\(70\) 0 0
\(71\) −6.90717 + 11.9636i −0.819730 + 1.41981i 0.0861512 + 0.996282i \(0.472543\pi\)
−0.905881 + 0.423532i \(0.860790\pi\)
\(72\) −0.960986 1.60089i −0.113253 0.188666i
\(73\) −7.38949 + 7.38949i −0.864874 + 0.864874i −0.991900 0.127025i \(-0.959457\pi\)
0.127025 + 0.991900i \(0.459457\pi\)
\(74\) 1.20808 2.09246i 0.140437 0.243244i
\(75\) 0 0
\(76\) −3.99282 + 2.30525i −0.458007 + 0.264431i
\(77\) −0.0934734 0.0934734i −0.0106523 0.0106523i
\(78\) −0.462143 + 11.9635i −0.0523274 + 1.35460i
\(79\) 5.34069i 0.600875i −0.953802 0.300437i \(-0.902867\pi\)
0.953802 0.300437i \(-0.0971326\pi\)
\(80\) 0 0
\(81\) 7.94294 + 4.23199i 0.882549 + 0.470221i
\(82\) −5.62293 20.9851i −0.620949 2.31741i
\(83\) 2.60495 + 2.60495i 0.285931 + 0.285931i 0.835469 0.549538i \(-0.185196\pi\)
−0.549538 + 0.835469i \(0.685196\pi\)
\(84\) 5.48733 + 2.21838i 0.598717 + 0.242045i
\(85\) 0 0
\(86\) 18.7515 2.02202
\(87\) 1.89719 + 4.47213i 0.203400 + 0.479462i
\(88\) 0.0104399 0.0389622i 0.00111290 0.00415339i
\(89\) 12.5211 7.22908i 1.32724 0.766281i 0.342366 0.939567i \(-0.388772\pi\)
0.984872 + 0.173285i \(0.0554383\pi\)
\(90\) 0 0
\(91\) 4.19716 + 6.03893i 0.439982 + 0.633052i
\(92\) −6.25608 6.25608i −0.652242 0.652242i
\(93\) 0.0661662 0.537937i 0.00686112 0.0557814i
\(94\) −1.49924 + 0.865588i −0.154635 + 0.0892786i
\(95\) 0 0
\(96\) 1.79710 + 12.8068i 0.183416 + 1.30708i
\(97\) 7.12670 1.90959i 0.723607 0.193890i 0.121827 0.992551i \(-0.461125\pi\)
0.601781 + 0.798661i \(0.294458\pi\)
\(98\) −5.25841 + 1.40899i −0.531179 + 0.142329i
\(99\) 0.0535122 + 0.186919i 0.00537818 + 0.0187860i
\(100\) 0 0
\(101\) −10.1123 + 5.83835i −1.00621 + 0.580938i −0.910081 0.414431i \(-0.863981\pi\)
−0.0961330 + 0.995368i \(0.530647\pi\)
\(102\) 16.6818 + 2.05186i 1.65174 + 0.203165i
\(103\) 12.9298 + 12.9298i 1.27401 + 1.27401i 0.943966 + 0.330042i \(0.107063\pi\)
0.330042 + 0.943966i \(0.392937\pi\)
\(104\) −0.955477 + 2.03049i −0.0936922 + 0.199106i
\(105\) 0 0
\(106\) 12.7673 7.37120i 1.24007 0.715955i
\(107\) −3.87796 + 14.4728i −0.374897 + 1.39913i 0.478598 + 0.878034i \(0.341145\pi\)
−0.853495 + 0.521101i \(0.825522\pi\)
\(108\) −5.47416 6.76884i −0.526752 0.651332i
\(109\) 16.1230 1.54430 0.772152 0.635437i \(-0.219180\pi\)
0.772152 + 0.635437i \(0.219180\pi\)
\(110\) 0 0
\(111\) −0.818167 + 2.02380i −0.0776570 + 0.192090i
\(112\) 6.55360 + 6.55360i 0.619257 + 0.619257i
\(113\) −2.76481 10.3184i −0.260092 0.970675i −0.965187 0.261562i \(-0.915762\pi\)
0.705095 0.709113i \(-0.250904\pi\)
\(114\) 7.20206 5.62441i 0.674535 0.526774i
\(115\) 0 0
\(116\) 4.69888i 0.436280i
\(117\) −1.08851 10.7617i −0.100633 0.994924i
\(118\) −9.18753 9.18753i −0.845781 0.845781i
\(119\) 8.94108 5.16214i 0.819628 0.473212i
\(120\) 0 0
\(121\) 5.49790 9.52264i 0.499809 0.865695i
\(122\) −3.75117 + 3.75117i −0.339615 + 0.339615i
\(123\) 7.66547 + 18.0694i 0.691172 + 1.62926i
\(124\) −0.262124 + 0.454012i −0.0235394 + 0.0407715i
\(125\) 0 0
\(126\) −11.3814 2.84283i −1.01393 0.253259i
\(127\) −0.564662 0.151301i −0.0501056 0.0134258i 0.233679 0.972314i \(-0.424923\pi\)
−0.283785 + 0.958888i \(0.591590\pi\)
\(128\) −1.27172 + 4.74611i −0.112405 + 0.419500i
\(129\) −16.7769 + 2.35421i −1.47713 + 0.207277i
\(130\) 0 0
\(131\) 5.77110i 0.504223i −0.967698 0.252112i \(-0.918875\pi\)
0.967698 0.252112i \(-0.0811250\pi\)
\(132\) 0.0229587 0.186656i 0.00199830 0.0162463i
\(133\) 1.45280 5.42192i 0.125974 0.470140i
\(134\) −10.5035 + 18.1925i −0.907361 + 1.57159i
\(135\) 0 0
\(136\) 2.72827 + 1.57517i 0.233947 + 0.135069i
\(137\) −1.88211 7.02411i −0.160799 0.600111i −0.998539 0.0540406i \(-0.982790\pi\)
0.837740 0.546070i \(-0.183877\pi\)
\(138\) 14.0023 + 10.5562i 1.19196 + 0.898602i
\(139\) 1.85213 + 1.06933i 0.157096 + 0.0906994i 0.576487 0.817106i \(-0.304423\pi\)
−0.419391 + 0.907806i \(0.637756\pi\)
\(140\) 0 0
\(141\) 1.23270 0.962668i 0.103812 0.0810713i
\(142\) −18.7268 + 18.7268i −1.57152 + 1.57152i
\(143\) 0.150826 0.178478i 0.0126127 0.0149251i
\(144\) −3.75184 13.1052i −0.312654 1.09210i
\(145\) 0 0
\(146\) −17.3504 + 10.0173i −1.43593 + 0.829034i
\(147\) 4.52780 1.92080i 0.373446 0.158425i
\(148\) 1.49303 1.49303i 0.122726 0.122726i
\(149\) 2.52248 + 1.45635i 0.206649 + 0.119309i 0.599753 0.800185i \(-0.295265\pi\)
−0.393104 + 0.919494i \(0.628599\pi\)
\(150\) 0 0
\(151\) 12.1330i 0.987367i −0.869642 0.493683i \(-0.835650\pi\)
0.869642 0.493683i \(-0.164350\pi\)
\(152\) 1.65444 0.443305i 0.134192 0.0359568i
\(153\) −15.1828 + 0.258570i −1.22746 + 0.0209041i
\(154\) −0.126713 0.219474i −0.0102109 0.0176857i
\(155\) 0 0
\(156\) −3.09599 + 9.99400i −0.247878 + 0.800161i
\(157\) −0.818660 + 0.818660i −0.0653362 + 0.0653362i −0.739020 0.673684i \(-0.764711\pi\)
0.673684 + 0.739020i \(0.264711\pi\)
\(158\) 2.64998 9.88987i 0.210821 0.786796i
\(159\) −10.4974 + 8.19792i −0.832502 + 0.650137i
\(160\) 0 0
\(161\) 10.7715 0.848916
\(162\) 12.6088 + 11.7780i 0.990644 + 0.925364i
\(163\) −4.71302 17.5892i −0.369152 1.37769i −0.861704 0.507411i \(-0.830603\pi\)
0.492552 0.870283i \(-0.336064\pi\)
\(164\) 18.9856i 1.48252i
\(165\) 0 0
\(166\) 3.53130 + 6.11638i 0.274082 + 0.474723i
\(167\) −5.95097 1.59456i −0.460500 0.123391i 0.0211085 0.999777i \(-0.493280\pi\)
−0.481608 + 0.876387i \(0.659947\pi\)
\(168\) −1.75578 1.32366i −0.135461 0.102122i
\(169\) −10.0167 + 8.28650i −0.770514 + 0.637423i
\(170\) 0 0
\(171\) −5.73754 + 5.93636i −0.438761 + 0.453965i
\(172\) 15.8283 + 4.24119i 1.20690 + 0.323388i
\(173\) 0.870829 + 3.24998i 0.0662079 + 0.247091i 0.991096 0.133148i \(-0.0425085\pi\)
−0.924888 + 0.380239i \(0.875842\pi\)
\(174\) 1.29419 + 9.22283i 0.0981121 + 0.699181i
\(175\) 0 0
\(176\) 0.147243 0.255033i 0.0110989 0.0192238i
\(177\) 9.37355 + 7.06660i 0.704559 + 0.531158i
\(178\) 26.7736 7.17396i 2.00676 0.537711i
\(179\) −1.62397 2.81281i −0.121382 0.210239i 0.798931 0.601422i \(-0.205399\pi\)
−0.920313 + 0.391183i \(0.872066\pi\)
\(180\) 0 0
\(181\) −6.71234 −0.498925 −0.249462 0.968385i \(-0.580254\pi\)
−0.249462 + 0.968385i \(0.580254\pi\)
\(182\) 4.77584 + 13.2655i 0.354009 + 0.983301i
\(183\) 2.88522 3.82712i 0.213281 0.282909i
\(184\) 1.64341 + 2.84646i 0.121154 + 0.209844i
\(185\) 0 0
\(186\) 0.389444 0.963318i 0.0285554 0.0706339i
\(187\) −0.231961 0.231961i −0.0169627 0.0169627i
\(188\) −1.46131 + 0.391556i −0.106577 + 0.0285572i
\(189\) 10.5398 + 1.11457i 0.766659 + 0.0810727i
\(190\) 0 0
\(191\) 1.36065 + 0.785571i 0.0984531 + 0.0568419i 0.548418 0.836204i \(-0.315230\pi\)
−0.449965 + 0.893046i \(0.648564\pi\)
\(192\) −1.10508 + 8.98439i −0.0797523 + 0.648393i
\(193\) −2.95990 0.793102i −0.213058 0.0570888i 0.150711 0.988578i \(-0.451844\pi\)
−0.363769 + 0.931489i \(0.618510\pi\)
\(194\) 14.1447 1.01553
\(195\) 0 0
\(196\) −4.75737 −0.339812
\(197\) 7.19978 + 1.92918i 0.512963 + 0.137448i 0.506010 0.862528i \(-0.331120\pi\)
0.00695355 + 0.999976i \(0.497787\pi\)
\(198\) 0.00634703 + 0.372687i 0.000451064 + 0.0264857i
\(199\) 4.35231 + 2.51281i 0.308527 + 0.178128i 0.646267 0.763111i \(-0.276329\pi\)
−0.337740 + 0.941239i \(0.609662\pi\)
\(200\) 0 0
\(201\) 7.11340 17.5955i 0.501740 1.24109i
\(202\) −21.6229 + 5.79383i −1.52138 + 0.407653i
\(203\) 4.04520 + 4.04520i 0.283917 + 0.283917i
\(204\) 13.6172 + 5.50508i 0.953396 + 0.385432i
\(205\) 0 0
\(206\) 17.5277 + 30.3589i 1.22121 + 2.11520i
\(207\) −13.8532 7.68664i −0.962863 0.534258i
\(208\) −10.5747 + 12.5135i −0.733225 + 0.867653i
\(209\) −0.178353 −0.0123369
\(210\) 0 0
\(211\) −7.34656 12.7246i −0.505758 0.875999i −0.999978 0.00666177i \(-0.997879\pi\)
0.494220 0.869337i \(-0.335454\pi\)
\(212\) 12.4442 3.33443i 0.854674 0.229009i
\(213\) 14.4038 19.1060i 0.986930 1.30912i
\(214\) −14.3624 + 24.8764i −0.981793 + 1.70052i
\(215\) 0 0
\(216\) 1.31352 + 2.95528i 0.0893737 + 0.201081i
\(217\) −0.165194 0.616511i −0.0112141 0.0418515i
\(218\) 29.8565 + 8.00003i 2.02214 + 0.541831i
\(219\) 14.2657 11.1407i 0.963989 0.752822i
\(220\) 0 0
\(221\) 10.4156 + 14.9861i 0.700627 + 1.00807i
\(222\) −2.51926 + 3.34170i −0.169082 + 0.224280i
\(223\) −4.03489 1.08114i −0.270196 0.0723988i 0.121177 0.992631i \(-0.461333\pi\)
−0.391373 + 0.920232i \(0.628000\pi\)
\(224\) 7.61463 + 13.1889i 0.508774 + 0.881222i
\(225\) 0 0
\(226\) 20.4795i 1.36227i
\(227\) 6.08018 + 22.6915i 0.403556 + 1.50609i 0.806704 + 0.590956i \(0.201249\pi\)
−0.403148 + 0.915135i \(0.632084\pi\)
\(228\) 7.35147 3.11867i 0.486863 0.206539i
\(229\) −11.4151 −0.754332 −0.377166 0.926146i \(-0.623101\pi\)
−0.377166 + 0.926146i \(0.623101\pi\)
\(230\) 0 0
\(231\) 0.140925 + 0.180455i 0.00927218 + 0.0118730i
\(232\) −0.451802 + 1.68615i −0.0296622 + 0.110701i
\(233\) 8.68792 8.68792i 0.569164 0.569164i −0.362730 0.931894i \(-0.618155\pi\)
0.931894 + 0.362730i \(0.118155\pi\)
\(234\) 3.32413 20.4687i 0.217305 1.33808i
\(235\) 0 0
\(236\) −5.67728 9.83333i −0.369559 0.640096i
\(237\) −1.12928 + 9.18116i −0.0733548 + 0.596380i
\(238\) 19.1185 5.12277i 1.23927 0.332060i
\(239\) 8.54627i 0.552812i 0.961041 + 0.276406i \(0.0891435\pi\)
−0.961041 + 0.276406i \(0.910856\pi\)
\(240\) 0 0
\(241\) −17.8914 10.3296i −1.15249 0.665388i −0.202995 0.979180i \(-0.565067\pi\)
−0.949492 + 0.313792i \(0.898401\pi\)
\(242\) 14.9060 14.9060i 0.958194 0.958194i
\(243\) −12.7598 8.95472i −0.818543 0.574445i
\(244\) −4.01485 + 2.31797i −0.257024 + 0.148393i
\(245\) 0 0
\(246\) 5.22909 + 37.2643i 0.333395 + 2.37589i
\(247\) 9.76553 + 1.75710i 0.621366 + 0.111802i
\(248\) 0.137714 0.137714i 0.00874487 0.00874487i
\(249\) −3.92735 5.02897i −0.248885 0.318698i
\(250\) 0 0
\(251\) −17.9829 10.3824i −1.13507 0.655333i −0.189865 0.981810i \(-0.560805\pi\)
−0.945205 + 0.326477i \(0.894138\pi\)
\(252\) −8.96417 4.97390i −0.564690 0.313326i
\(253\) −0.0885818 0.330592i −0.00556909 0.0207841i
\(254\) −0.970565 0.560356i −0.0608987 0.0351599i
\(255\) 0 0
\(256\) −9.93615 + 17.2099i −0.621009 + 1.07562i
\(257\) 6.02371 22.4808i 0.375749 1.40231i −0.476499 0.879175i \(-0.658095\pi\)
0.852248 0.523138i \(-0.175239\pi\)
\(258\) −32.2356 3.96498i −2.00690 0.246849i
\(259\) 2.57066i 0.159733i
\(260\) 0 0
\(261\) −2.31582 8.08917i −0.143345 0.500707i
\(262\) 2.86355 10.6869i 0.176911 0.660239i
\(263\) 21.8926 + 5.86610i 1.34996 + 0.361719i 0.860118 0.510095i \(-0.170390\pi\)
0.489837 + 0.871814i \(0.337056\pi\)
\(264\) −0.0261857 + 0.0647723i −0.00161162 + 0.00398646i
\(265\) 0 0
\(266\) 5.38057 9.31942i 0.329904 0.571410i
\(267\) −23.0536 + 9.77990i −1.41086 + 0.598520i
\(268\) −12.9809 + 12.9809i −0.792933 + 0.792933i
\(269\) −4.58057 + 7.93378i −0.279282 + 0.483731i −0.971207 0.238239i \(-0.923430\pi\)
0.691924 + 0.721970i \(0.256763\pi\)
\(270\) 0 0
\(271\) −7.38686 + 4.26480i −0.448720 + 0.259068i −0.707289 0.706924i \(-0.750082\pi\)
0.258570 + 0.965993i \(0.416749\pi\)
\(272\) 16.2632 + 16.2632i 0.986104 + 0.986104i
\(273\) −5.93840 11.2690i −0.359408 0.682030i
\(274\) 13.9411i 0.842213i
\(275\) 0 0
\(276\) 9.43196 + 12.0776i 0.567737 + 0.726989i
\(277\) −5.69974 21.2717i −0.342464 1.27809i −0.895547 0.444967i \(-0.853215\pi\)
0.553083 0.833126i \(-0.313451\pi\)
\(278\) 2.89919 + 2.89919i 0.173882 + 0.173882i
\(279\) −0.227492 + 0.910774i −0.0136196 + 0.0545266i
\(280\) 0 0
\(281\) 1.14521 0.0683174 0.0341587 0.999416i \(-0.489125\pi\)
0.0341587 + 0.999416i \(0.489125\pi\)
\(282\) 2.76037 1.17102i 0.164378 0.0697330i
\(283\) −2.52631 + 9.42831i −0.150174 + 0.560455i 0.849297 + 0.527915i \(0.177026\pi\)
−0.999470 + 0.0325397i \(0.989640\pi\)
\(284\) −20.0432 + 11.5719i −1.18934 + 0.686668i
\(285\) 0 0
\(286\) 0.367858 0.255668i 0.0217519 0.0151179i
\(287\) 16.3444 + 16.3444i 0.964779 + 0.964779i
\(288\) −0.381414 22.3960i −0.0224750 1.31970i
\(289\) 7.46552 4.31022i 0.439148 0.253542i
\(290\) 0 0
\(291\) −12.6553 + 1.77584i −0.741865 + 0.104102i
\(292\) −16.9114 + 4.53139i −0.989664 + 0.265180i
\(293\) −21.6767 + 5.80825i −1.26636 + 0.339321i −0.828637 0.559786i \(-0.810883\pi\)
−0.437728 + 0.899108i \(0.644217\pi\)
\(294\) 9.33763 1.31030i 0.544582 0.0764181i
\(295\) 0 0
\(296\) −0.679316 + 0.392203i −0.0394844 + 0.0227963i
\(297\) −0.0524689 0.332646i −0.00304455 0.0193021i
\(298\) 3.94849 + 3.94849i 0.228730 + 0.228730i
\(299\) 1.59327 + 18.9739i 0.0921413 + 1.09729i
\(300\) 0 0
\(301\) −17.2776 + 9.97521i −0.995863 + 0.574962i
\(302\) 6.02022 22.4678i 0.346425 1.29288i
\(303\) 18.6186 7.89845i 1.06961 0.453754i
\(304\) 12.5047 0.717191
\(305\) 0 0
\(306\) −28.2437 7.05469i −1.61459 0.403290i
\(307\) −8.67444 8.67444i −0.495076 0.495076i 0.414825 0.909901i \(-0.363843\pi\)
−0.909901 + 0.414825i \(0.863843\pi\)
\(308\) −0.0573199 0.213921i −0.00326610 0.0121893i
\(309\) −19.4935 24.9615i −1.10895 1.42001i
\(310\) 0 0
\(311\) 3.86942i 0.219415i −0.993964 0.109707i \(-0.965009\pi\)
0.993964 0.109707i \(-0.0349913\pi\)
\(312\) 2.07190 3.28857i 0.117298 0.186179i
\(313\) −22.5004 22.5004i −1.27180 1.27180i −0.945143 0.326658i \(-0.894078\pi\)
−0.326658 0.945143i \(-0.605922\pi\)
\(314\) −1.92220 + 1.10978i −0.108476 + 0.0626287i
\(315\) 0 0
\(316\) 4.47377 7.74879i 0.251669 0.435903i
\(317\) 1.27451 1.27451i 0.0715836 0.0715836i −0.670409 0.741992i \(-0.733881\pi\)
0.741992 + 0.670409i \(0.233881\pi\)
\(318\) −23.5068 + 9.97217i −1.31820 + 0.559212i
\(319\) 0.0908856 0.157419i 0.00508862 0.00881375i
\(320\) 0 0
\(321\) 9.72684 24.0601i 0.542899 1.34290i
\(322\) 19.9467 + 5.34470i 1.11159 + 0.297849i
\(323\) 3.60522 13.4549i 0.200600 0.748650i
\(324\) 7.97935 + 12.7938i 0.443297 + 0.710766i
\(325\) 0 0
\(326\) 34.9102i 1.93350i
\(327\) −27.7170 3.40919i −1.53275 0.188529i
\(328\) −1.82548 + 6.81278i −0.100795 + 0.376173i
\(329\) 0.920933 1.59510i 0.0507727 0.0879409i
\(330\) 0 0
\(331\) 2.71099 + 1.56519i 0.149009 + 0.0860307i 0.572651 0.819799i \(-0.305915\pi\)
−0.423642 + 0.905830i \(0.639248\pi\)
\(332\) 1.59741 + 5.96162i 0.0876693 + 0.327186i
\(333\) 1.83444 3.30610i 0.100526 0.181173i
\(334\) −10.2288 5.90559i −0.559694 0.323139i
\(335\) 0 0
\(336\) −9.88052 12.6520i −0.539026 0.690224i
\(337\) 20.2542 20.2542i 1.10332 1.10332i 0.109311 0.994008i \(-0.465136\pi\)
0.994008 0.109311i \(-0.0348643\pi\)
\(338\) −22.6605 + 10.3748i −1.23257 + 0.564312i
\(339\) 2.57116 + 18.3230i 0.139646 + 0.995167i
\(340\) 0 0
\(341\) −0.0175630 + 0.0101400i −0.000951090 + 0.000549112i
\(342\) −13.5703 + 8.14603i −0.733798 + 0.440487i
\(343\) 14.1915 14.1915i 0.766272 0.766272i
\(344\) −5.27205 3.04382i −0.284250 0.164112i
\(345\) 0 0
\(346\) 6.45039i 0.346775i
\(347\) −31.0059 + 8.30799i −1.66448 + 0.445996i −0.963615 0.267296i \(-0.913870\pi\)
−0.700867 + 0.713292i \(0.747203\pi\)
\(348\) −0.993572 + 8.07782i −0.0532611 + 0.433017i
\(349\) −9.95791 17.2476i −0.533035 0.923243i −0.999256 0.0385748i \(-0.987718\pi\)
0.466221 0.884668i \(-0.345615\pi\)
\(350\) 0 0
\(351\) −0.404297 + 18.7306i −0.0215798 + 0.999767i
\(352\) 0.342164 0.342164i 0.0182374 0.0182374i
\(353\) 1.37817 5.14341i 0.0733527 0.273756i −0.919502 0.393085i \(-0.871408\pi\)
0.992855 + 0.119329i \(0.0380744\pi\)
\(354\) 13.8515 + 17.7369i 0.736202 + 0.942707i
\(355\) 0 0
\(356\) 24.2225 1.28379
\(357\) −16.4621 + 6.98363i −0.871267 + 0.369613i
\(358\) −1.61159 6.01454i −0.0851752 0.317878i
\(359\) 18.4430i 0.973387i −0.873573 0.486693i \(-0.838203\pi\)
0.873573 0.486693i \(-0.161797\pi\)
\(360\) 0 0
\(361\) 5.71335 + 9.89581i 0.300703 + 0.520832i
\(362\) −12.4299 3.33058i −0.653301 0.175051i
\(363\) −11.4650 + 15.2078i −0.601755 + 0.798203i
\(364\) 1.03098 + 12.2777i 0.0540380 + 0.643528i
\(365\) 0 0
\(366\) 7.24180 5.65544i 0.378535 0.295615i
\(367\) −29.6544 7.94586i −1.54794 0.414770i −0.619122 0.785295i \(-0.712511\pi\)
−0.928823 + 0.370524i \(0.879178\pi\)
\(368\) 6.21064 + 23.1784i 0.323752 + 1.20826i
\(369\) −9.35693 32.6838i −0.487102 1.70145i
\(370\) 0 0
\(371\) −7.84251 + 13.5836i −0.407163 + 0.705227i
\(372\) 0.546617 0.725065i 0.0283408 0.0375928i
\(373\) −23.7490 + 6.36353i −1.22968 + 0.329491i −0.814454 0.580228i \(-0.802963\pi\)
−0.415224 + 0.909719i \(0.636297\pi\)
\(374\) −0.314449 0.544641i −0.0162597 0.0281627i
\(375\) 0 0
\(376\) 0.562024 0.0289842
\(377\) −6.52722 + 7.72391i −0.336169 + 0.397802i
\(378\) 18.9646 + 7.29367i 0.975432 + 0.375146i
\(379\) −11.2914 19.5573i −0.580002 1.00459i −0.995478 0.0949885i \(-0.969719\pi\)
0.415477 0.909604i \(-0.363615\pi\)
\(380\) 0 0
\(381\) 0.938715 + 0.379497i 0.0480918 + 0.0194422i
\(382\) 2.12985 + 2.12985i 0.108973 + 0.108973i
\(383\) −1.77131 + 0.474622i −0.0905099 + 0.0242521i −0.303790 0.952739i \(-0.598252\pi\)
0.213280 + 0.976991i \(0.431585\pi\)
\(384\) 3.18976 7.89011i 0.162777 0.402640i
\(385\) 0 0
\(386\) −5.08760 2.93733i −0.258952 0.149506i
\(387\) 29.3389 0.499655i 1.49138 0.0253989i
\(388\) 11.9397 + 3.19924i 0.606148 + 0.162417i
\(389\) 15.3065 0.776072 0.388036 0.921644i \(-0.373154\pi\)
0.388036 + 0.921644i \(0.373154\pi\)
\(390\) 0 0
\(391\) 26.7304 1.35181
\(392\) 1.70714 + 0.457426i 0.0862234 + 0.0231035i
\(393\) −1.22029 + 9.92107i −0.0615556 + 0.500452i
\(394\) 12.3753 + 7.14488i 0.623459 + 0.359954i
\(395\) 0 0
\(396\) −0.0789365 + 0.316025i −0.00396671 + 0.0158809i
\(397\) 7.74235 2.07456i 0.388578 0.104119i −0.0592405 0.998244i \(-0.518868\pi\)
0.447818 + 0.894125i \(0.352201\pi\)
\(398\) 6.81277 + 6.81277i 0.341493 + 0.341493i
\(399\) −3.64396 + 9.01360i −0.182426 + 0.451244i
\(400\) 0 0
\(401\) 2.14596 + 3.71692i 0.107164 + 0.185614i 0.914620 0.404314i \(-0.132490\pi\)
−0.807456 + 0.589928i \(0.799156\pi\)
\(402\) 21.9032 29.0537i 1.09243 1.44907i
\(403\) 1.06154 0.382178i 0.0528792 0.0190376i
\(404\) −19.5626 −0.973275
\(405\) 0 0
\(406\) 5.48370 + 9.49805i 0.272152 + 0.471380i
\(407\) 0.0788966 0.0211403i 0.00391076 0.00104789i
\(408\) −4.35709 3.28475i −0.215708 0.162619i
\(409\) 18.8150 32.5886i 0.930343 1.61140i 0.147607 0.989046i \(-0.452843\pi\)
0.782735 0.622355i \(-0.213824\pi\)
\(410\) 0 0
\(411\) 1.75028 + 12.4731i 0.0863349 + 0.615252i
\(412\) 7.92881 + 29.5907i 0.390624 + 1.45783i
\(413\) 13.3529 + 3.57789i 0.657051 + 0.176056i
\(414\) −21.8393 21.1079i −1.07334 1.03740i
\(415\) 0 0
\(416\) −22.1058 + 15.3639i −1.08383 + 0.753278i
\(417\) −2.95789 2.22991i −0.144848 0.109199i
\(418\) −0.330273 0.0884963i −0.0161542 0.00432850i
\(419\) −6.05083 10.4803i −0.295602 0.511998i 0.679522 0.733655i \(-0.262187\pi\)
−0.975125 + 0.221656i \(0.928854\pi\)
\(420\) 0 0
\(421\) 22.2934i 1.08651i 0.839567 + 0.543256i \(0.182809\pi\)
−0.839567 + 0.543256i \(0.817191\pi\)
\(422\) −7.29054 27.2087i −0.354898 1.32450i
\(423\) −2.32268 + 1.39427i −0.112933 + 0.0677915i
\(424\) −4.78611 −0.232434
\(425\) 0 0
\(426\) 36.1530 28.2335i 1.75162 1.36792i
\(427\) 1.46081 5.45183i 0.0706937 0.263833i
\(428\) −17.7500 + 17.7500i −0.857979 + 0.857979i
\(429\) −0.297024 + 0.274929i −0.0143404 + 0.0132737i
\(430\) 0 0
\(431\) −0.197713 0.342449i −0.00952349 0.0164952i 0.861224 0.508225i \(-0.169698\pi\)
−0.870748 + 0.491730i \(0.836365\pi\)
\(432\) 3.67869 + 23.3225i 0.176991 + 1.12210i
\(433\) 10.8417 2.90501i 0.521017 0.139606i 0.0112798 0.999936i \(-0.496409\pi\)
0.509737 + 0.860330i \(0.329743\pi\)
\(434\) 1.22362i 0.0587357i
\(435\) 0 0
\(436\) 23.3928 + 13.5059i 1.12031 + 0.646813i
\(437\) 10.2764 10.2764i 0.491585 0.491585i
\(438\) 31.9451 13.5519i 1.52640 0.647535i
\(439\) −18.5828 + 10.7288i −0.886911 + 0.512058i −0.872931 0.487844i \(-0.837783\pi\)
−0.0139799 + 0.999902i \(0.504450\pi\)
\(440\) 0 0
\(441\) −8.18987 + 2.34464i −0.389994 + 0.111650i
\(442\) 11.8516 + 32.9192i 0.563724 + 1.56581i
\(443\) 15.8402 15.8402i 0.752590 0.752590i −0.222372 0.974962i \(-0.571380\pi\)
0.974962 + 0.222372i \(0.0713799\pi\)
\(444\) −2.88236 + 2.25096i −0.136791 + 0.106826i
\(445\) 0 0
\(446\) −6.93533 4.00412i −0.328398 0.189600i
\(447\) −4.02843 3.03698i −0.190538 0.143644i
\(448\) 2.75900 + 10.2967i 0.130350 + 0.486474i
\(449\) 17.4060 + 10.0493i 0.821438 + 0.474257i 0.850912 0.525308i \(-0.176050\pi\)
−0.0294742 + 0.999566i \(0.509383\pi\)
\(450\) 0 0
\(451\) 0.367218 0.636041i 0.0172916 0.0299500i
\(452\) 4.63203 17.2870i 0.217872 0.813111i
\(453\) −2.56550 + 20.8577i −0.120538 + 0.979982i
\(454\) 45.0370i 2.11369i
\(455\) 0 0
\(456\) −2.93787 + 0.412255i −0.137578 + 0.0193056i
\(457\) −6.07741 + 22.6812i −0.284289 + 1.06098i 0.665068 + 0.746783i \(0.268402\pi\)
−0.949357 + 0.314199i \(0.898264\pi\)
\(458\) −21.1385 5.66403i −0.987735 0.264663i
\(459\) 26.1553 + 2.76588i 1.22083 + 0.129100i
\(460\) 0 0
\(461\) −2.45668 + 4.25509i −0.114419 + 0.198179i −0.917547 0.397627i \(-0.869834\pi\)
0.803128 + 0.595806i \(0.203167\pi\)
\(462\) 0.171425 + 0.404090i 0.00797541 + 0.0188000i
\(463\) −8.17642 + 8.17642i −0.379991 + 0.379991i −0.871099 0.491108i \(-0.836592\pi\)
0.491108 + 0.871099i \(0.336592\pi\)
\(464\) −6.37217 + 11.0369i −0.295820 + 0.512376i
\(465\) 0 0
\(466\) 20.3991 11.7774i 0.944969 0.545578i
\(467\) 18.4859 + 18.4859i 0.855427 + 0.855427i 0.990795 0.135368i \(-0.0432217\pi\)
−0.135368 + 0.990795i \(0.543222\pi\)
\(468\) 7.43553 16.5260i 0.343707 0.763915i
\(469\) 22.3501i 1.03203i
\(470\) 0 0
\(471\) 1.58046 1.23425i 0.0728237 0.0568712i
\(472\) 1.09175 + 4.07447i 0.0502519 + 0.187543i
\(473\) 0.448237 + 0.448237i 0.0206100 + 0.0206100i
\(474\) −6.64677 + 16.4413i −0.305296 + 0.755174i
\(475\) 0 0
\(476\) 17.2968 0.792797
\(477\) 19.7796 11.8733i 0.905644 0.543643i
\(478\) −4.24055 + 15.8260i −0.193958 + 0.723862i
\(479\) −16.1211 + 9.30755i −0.736594 + 0.425273i −0.820830 0.571173i \(-0.806488\pi\)
0.0842357 + 0.996446i \(0.473155\pi\)
\(480\) 0 0
\(481\) −4.52818 + 0.380238i −0.206467 + 0.0173374i
\(482\) −28.0058 28.0058i −1.27563 1.27563i
\(483\) −18.5173 2.27763i −0.842567 0.103636i
\(484\) 15.9538 9.21091i 0.725171 0.418678i
\(485\) 0 0
\(486\) −19.1854 22.9136i −0.870266 1.03938i
\(487\) 32.4186 8.68654i 1.46903 0.393625i 0.566430 0.824110i \(-0.308324\pi\)
0.902598 + 0.430485i \(0.141657\pi\)
\(488\) 1.66356 0.445751i 0.0753060 0.0201782i
\(489\) 4.38291 + 31.2341i 0.198202 + 1.41245i
\(490\) 0 0
\(491\) 26.7145 15.4236i 1.20561 0.696059i 0.243812 0.969822i \(-0.421602\pi\)
0.961797 + 0.273764i \(0.0882687\pi\)
\(492\) −4.01447 + 32.6380i −0.180986 + 1.47143i
\(493\) 10.0385 + 10.0385i 0.452109 + 0.452109i
\(494\) 17.2119 + 8.09933i 0.774401 + 0.364406i
\(495\) 0 0
\(496\) 1.23138 0.710935i 0.0552904 0.0319219i
\(497\) 7.29277 27.2170i 0.327125 1.22085i
\(498\) −4.77733 11.2613i −0.214077 0.504632i
\(499\) 10.3869 0.464982 0.232491 0.972598i \(-0.425312\pi\)
0.232491 + 0.972598i \(0.425312\pi\)
\(500\) 0 0
\(501\) 9.89311 + 3.99952i 0.441992 + 0.178685i
\(502\) −28.1490 28.1490i −1.25635 1.25635i
\(503\) 1.77393 + 6.62041i 0.0790957 + 0.295189i 0.994131 0.108185i \(-0.0345039\pi\)
−0.915035 + 0.403374i \(0.867837\pi\)
\(504\) 2.73846 + 2.64675i 0.121981 + 0.117896i
\(505\) 0 0
\(506\) 0.656142i 0.0291691i
\(507\) 18.9718 12.1273i 0.842568 0.538591i
\(508\) −0.692525 0.692525i −0.0307258 0.0307258i
\(509\) −16.1412 + 9.31914i −0.715447 + 0.413064i −0.813075 0.582159i \(-0.802208\pi\)
0.0976275 + 0.995223i \(0.468875\pi\)
\(510\) 0 0
\(511\) 10.6578 18.4598i 0.471471 0.816612i
\(512\) −19.9903 + 19.9903i −0.883454 + 0.883454i
\(513\) 11.1186 8.99197i 0.490899 0.397005i
\(514\) 22.3094 38.6409i 0.984024 1.70438i
\(515\) 0 0
\(516\) −26.3136 10.6379i −1.15839 0.468307i
\(517\) −0.0565292 0.0151469i −0.00248615 0.000666162i
\(518\) −1.27553 + 4.76033i −0.0560434 + 0.209157i
\(519\) −0.809834 5.77116i −0.0355478 0.253326i
\(520\) 0 0
\(521\) 15.0847i 0.660871i −0.943829 0.330435i \(-0.892804\pi\)
0.943829 0.330435i \(-0.107196\pi\)
\(522\) −0.274677 16.1286i −0.0120223 0.705929i
\(523\) −0.415581 + 1.55097i −0.0181721 + 0.0678191i −0.974416 0.224750i \(-0.927843\pi\)
0.956244 + 0.292569i \(0.0945101\pi\)
\(524\) 4.83431 8.37327i 0.211188 0.365788i
\(525\) 0 0
\(526\) 37.6299 + 21.7257i 1.64074 + 0.947283i
\(527\) −0.409940 1.52992i −0.0178573 0.0666443i
\(528\) −0.307052 + 0.407292i −0.0133627 + 0.0177251i
\(529\) 4.23345 + 2.44419i 0.184063 + 0.106269i
\(530\) 0 0
\(531\) −14.6198 14.1302i −0.634446 0.613198i
\(532\) 6.64967 6.64967i 0.288300 0.288300i
\(533\) −26.3729 + 31.2080i −1.14234 + 1.35177i
\(534\) −47.5433 + 6.67148i −2.05740 + 0.288703i
\(535\) 0 0
\(536\) 5.90618 3.40994i 0.255108 0.147287i
\(537\) 2.19700 + 5.17887i 0.0948077 + 0.223485i
\(538\) −12.4189 + 12.4189i −0.535418 + 0.535418i
\(539\) −0.159378 0.0920170i −0.00686490 0.00396345i
\(540\) 0 0
\(541\) 27.8477i 1.19727i 0.801023 + 0.598634i \(0.204290\pi\)
−0.801023 + 0.598634i \(0.795710\pi\)
\(542\) −15.7951 + 4.23228i −0.678458 + 0.181792i
\(543\) 11.5392 + 1.41932i 0.495193 + 0.0609087i
\(544\) 18.8963 + 32.7293i 0.810171 + 1.40326i
\(545\) 0 0
\(546\) −5.40517 23.8144i −0.231320 1.01916i
\(547\) 4.94438 4.94438i 0.211406 0.211406i −0.593458 0.804865i \(-0.702238\pi\)
0.804865 + 0.593458i \(0.202238\pi\)
\(548\) 3.15319 11.7679i 0.134697 0.502698i
\(549\) −5.76920 + 5.96911i −0.246224 + 0.254755i
\(550\) 0 0
\(551\) 7.71847 0.328818
\(552\) −2.22329 5.24084i −0.0946295 0.223065i
\(553\) 2.81942 + 10.5222i 0.119894 + 0.447450i
\(554\) 42.2190i 1.79371i
\(555\) 0 0
\(556\) 1.79150 + 3.10298i 0.0759767 + 0.131595i
\(557\) −1.98454 0.531756i −0.0840877 0.0225312i 0.216530 0.976276i \(-0.430526\pi\)
−0.300618 + 0.953745i \(0.597193\pi\)
\(558\) −0.873183 + 1.57369i −0.0369648 + 0.0666195i
\(559\) −20.1268 28.9588i −0.851274 1.22482i
\(560\) 0 0
\(561\) 0.349715 + 0.447811i 0.0147650 + 0.0189066i
\(562\) 2.12069 + 0.568237i 0.0894560 + 0.0239697i
\(563\) −4.76452 17.7814i −0.200801 0.749399i −0.990689 0.136147i \(-0.956528\pi\)
0.789888 0.613251i \(-0.210139\pi\)
\(564\) 2.59492 0.364131i 0.109266 0.0153327i
\(565\) 0 0
\(566\) −9.35642 + 16.2058i −0.393280 + 0.681180i
\(567\) −17.8833 4.14468i −0.751027 0.174060i
\(568\) 8.30495 2.22531i 0.348468 0.0933717i
\(569\) 2.39632 + 4.15054i 0.100459 + 0.174000i 0.911874 0.410471i \(-0.134636\pi\)
−0.811415 + 0.584471i \(0.801302\pi\)
\(570\) 0 0
\(571\) −11.0204 −0.461190 −0.230595 0.973050i \(-0.574067\pi\)
−0.230595 + 0.973050i \(0.574067\pi\)
\(572\) 0.368340 0.132610i 0.0154011 0.00554472i
\(573\) −2.17298 1.63818i −0.0907774 0.0684359i
\(574\) 22.1566 + 38.3763i 0.924798 + 1.60180i
\(575\) 0 0
\(576\) 3.79948 15.2114i 0.158312 0.633807i
\(577\) 20.8346 + 20.8346i 0.867358 + 0.867358i 0.992179 0.124822i \(-0.0398358\pi\)
−0.124822 + 0.992179i \(0.539836\pi\)
\(578\) 15.9633 4.27735i 0.663986 0.177914i
\(579\) 4.92065 + 1.98929i 0.204495 + 0.0826719i
\(580\) 0 0
\(581\) −6.50746 3.75708i −0.269975 0.155870i
\(582\) −24.3161 2.99088i −1.00794 0.123976i
\(583\) 0.481393 + 0.128989i 0.0199373 + 0.00534217i
\(584\) 6.50418 0.269145
\(585\) 0 0
\(586\) −43.0228 −1.77725
\(587\) −26.3518 7.06095i −1.08766 0.291437i −0.329928 0.944006i \(-0.607024\pi\)
−0.757729 + 0.652569i \(0.773691\pi\)
\(588\) 8.17837 + 1.00594i 0.337270 + 0.0414843i
\(589\) −0.745769 0.430570i −0.0307289 0.0177413i
\(590\) 0 0
\(591\) −11.9692 4.83882i −0.492347 0.199043i
\(592\) −5.53159 + 1.48219i −0.227347 + 0.0609175i
\(593\) −10.8114 10.8114i −0.443972 0.443972i 0.449373 0.893344i \(-0.351648\pi\)
−0.893344 + 0.449373i \(0.851648\pi\)
\(594\) 0.0678931 0.642027i 0.00278569 0.0263427i
\(595\) 0 0
\(596\) 2.43990 + 4.22603i 0.0999422 + 0.173105i
\(597\) −6.95071 5.24005i −0.284474 0.214461i
\(598\) −6.46421 + 35.9264i −0.264341 + 1.46914i
\(599\) 19.7870 0.808476 0.404238 0.914654i \(-0.367537\pi\)
0.404238 + 0.914654i \(0.367537\pi\)
\(600\) 0 0
\(601\) 5.88386 + 10.1912i 0.240008 + 0.415706i 0.960716 0.277533i \(-0.0895167\pi\)
−0.720708 + 0.693238i \(0.756183\pi\)
\(602\) −36.9441 + 9.89915i −1.50573 + 0.403459i
\(603\) −15.9492 + 28.7443i −0.649500 + 1.17056i
\(604\) 10.1635 17.6037i 0.413547 0.716284i
\(605\) 0 0
\(606\) 38.3969 5.38802i 1.55977 0.218873i
\(607\) −10.0229 37.4060i −0.406817 1.51826i −0.800679 0.599094i \(-0.795528\pi\)
0.393861 0.919170i \(-0.371139\pi\)
\(608\) 19.8472 + 5.31804i 0.804910 + 0.215675i
\(609\) −6.09873 7.80943i −0.247133 0.316454i
\(610\) 0 0
\(611\) 2.94597 + 1.38627i 0.119181 + 0.0560826i
\(612\) −22.2453 12.3431i −0.899211 0.498940i
\(613\) 5.89134 + 1.57858i 0.237949 + 0.0637583i 0.375823 0.926692i \(-0.377360\pi\)
−0.137874 + 0.990450i \(0.544027\pi\)
\(614\) −11.7591 20.3674i −0.474560 0.821963i
\(615\) 0 0
\(616\) 0.0822747i 0.00331494i
\(617\) −10.8057 40.3273i −0.435020 1.62352i −0.741019 0.671484i \(-0.765657\pi\)
0.306000 0.952032i \(-0.401009\pi\)
\(618\) −23.7125 55.8960i −0.953855 2.24847i
\(619\) 38.9070 1.56380 0.781902 0.623402i \(-0.214250\pi\)
0.781902 + 0.623402i \(0.214250\pi\)
\(620\) 0 0
\(621\) 22.1896 + 16.1433i 0.890439 + 0.647809i
\(622\) 1.91996 7.16537i 0.0769832 0.287305i
\(623\) −20.8528 + 20.8528i −0.835450 + 0.835450i
\(624\) 20.8249 19.2758i 0.833663 0.771651i
\(625\) 0 0
\(626\) −30.5018 52.8307i −1.21910 2.11154i
\(627\) 0.306605 + 0.0377125i 0.0122446 + 0.00150609i
\(628\) −1.87356 + 0.502020i −0.0747633 + 0.0200328i
\(629\) 6.37927i 0.254358i
\(630\) 0 0
\(631\) 6.37109 + 3.67835i 0.253629 + 0.146433i 0.621425 0.783474i \(-0.286554\pi\)
−0.367796 + 0.929907i \(0.619887\pi\)
\(632\) −2.35042 + 2.35042i −0.0934947 + 0.0934947i
\(633\) 9.93884 + 23.4283i 0.395033 + 0.931190i
\(634\) 2.99253 1.72774i 0.118849 0.0686172i
\(635\) 0 0
\(636\) −22.0979 + 3.10088i −0.876239 + 0.122958i
\(637\) 7.82006 + 6.60847i 0.309842 + 0.261837i
\(638\) 0.246411 0.246411i 0.00975550 0.00975550i
\(639\) −28.8014 + 29.7994i −1.13937 + 1.17885i
\(640\) 0 0
\(641\) 27.5842 + 15.9257i 1.08951 + 0.629029i 0.933446 0.358718i \(-0.116786\pi\)
0.156064 + 0.987747i \(0.450119\pi\)
\(642\) 29.9504 39.7280i 1.18205 1.56794i
\(643\) −3.14107 11.7226i −0.123872 0.462295i 0.875925 0.482447i \(-0.160252\pi\)
−0.999797 + 0.0201514i \(0.993585\pi\)
\(644\) 15.6284 + 9.02306i 0.615845 + 0.355558i
\(645\) 0 0
\(646\) 13.3523 23.1268i 0.525338 0.909913i
\(647\) −8.32851 + 31.0824i −0.327427 + 1.22198i 0.584422 + 0.811450i \(0.301321\pi\)
−0.911849 + 0.410526i \(0.865345\pi\)
\(648\) −1.63318 5.35815i −0.0641573 0.210488i
\(649\) 0.439239i 0.0172417i
\(650\) 0 0
\(651\) 0.153623 + 1.09477i 0.00602097 + 0.0429075i
\(652\) 7.89596 29.4681i 0.309230 1.15406i
\(653\) −32.0085 8.57665i −1.25259 0.335630i −0.429253 0.903184i \(-0.641223\pi\)
−0.823336 + 0.567554i \(0.807890\pi\)
\(654\) −49.6346 20.0660i −1.94087 0.784641i
\(655\) 0 0
\(656\) −25.7464 + 44.5940i −1.00523 + 1.74110i
\(657\) −26.8799 + 16.1355i −1.04868 + 0.629507i
\(658\) 2.49685 2.49685i 0.0973374 0.0973374i
\(659\) −17.7029 + 30.6623i −0.689606 + 1.19443i 0.282359 + 0.959309i \(0.408883\pi\)
−0.971965 + 0.235124i \(0.924450\pi\)
\(660\) 0 0
\(661\) 9.03793 5.21805i 0.351535 0.202959i −0.313826 0.949480i \(-0.601611\pi\)
0.665361 + 0.746522i \(0.268278\pi\)
\(662\) 4.24357 + 4.24357i 0.164931 + 0.164931i
\(663\) −14.7366 27.9648i −0.572321 1.08606i
\(664\) 2.29286i 0.0889803i
\(665\) 0 0
\(666\) 5.03745 5.21200i 0.195197 0.201961i
\(667\) 3.83351 + 14.3068i 0.148434 + 0.553963i
\(668\) −7.29852 7.29852i −0.282388 0.282388i
\(669\) 6.70775 + 2.71176i 0.259336 + 0.104843i
\(670\) 0 0
\(671\) −0.179337 −0.00692322
\(672\) −10.3015 24.2831i −0.397389 0.936742i
\(673\) −8.21798 + 30.6699i −0.316780 + 1.18224i 0.605541 + 0.795814i \(0.292957\pi\)
−0.922321 + 0.386425i \(0.873710\pi\)
\(674\) 47.5566 27.4568i 1.83181 1.05760i
\(675\) 0 0
\(676\) −21.4746 + 3.63212i −0.825945 + 0.139697i
\(677\) 10.8855 + 10.8855i 0.418365 + 0.418365i 0.884640 0.466275i \(-0.154404\pi\)
−0.466275 + 0.884640i \(0.654404\pi\)
\(678\) −4.33036 + 35.2062i −0.166306 + 1.35209i
\(679\) −13.0329 + 7.52456i −0.500158 + 0.288766i
\(680\) 0 0
\(681\) −5.65431 40.2946i −0.216674 1.54409i
\(682\) −0.0375544 + 0.0100627i −0.00143803 + 0.000385320i
\(683\) 21.0850 5.64971i 0.806796 0.216180i 0.168230 0.985748i \(-0.446195\pi\)
0.638566 + 0.769567i \(0.279528\pi\)
\(684\) −13.2973 + 3.80684i −0.508436 + 0.145558i
\(685\) 0 0
\(686\) 33.3215 19.2382i 1.27222 0.734517i
\(687\) 19.6237 + 2.41371i 0.748689 + 0.0920888i
\(688\) −31.4268 31.4268i −1.19813 1.19813i
\(689\) −25.0874 11.8053i −0.955755 0.449745i
\(690\) 0 0
\(691\) −34.2377 + 19.7672i −1.30246 + 0.751978i −0.980826 0.194884i \(-0.937567\pi\)
−0.321639 + 0.946863i \(0.604234\pi\)
\(692\) −1.45894 + 5.44485i −0.0554607 + 0.206982i
\(693\) −0.204106 0.340017i −0.00775336 0.0129162i
\(694\) −61.5388 −2.33598
\(695\) 0 0
\(696\) 1.13322 2.80311i 0.0429547 0.106252i
\(697\) 40.5598 + 40.5598i 1.53631 + 1.53631i
\(698\) −9.88198 36.8800i −0.374038 1.39593i
\(699\) −16.7724 + 13.0983i −0.634391 + 0.495424i
\(700\) 0 0
\(701\) 22.5069i 0.850074i −0.905176 0.425037i \(-0.860261\pi\)
0.905176 0.425037i \(-0.139739\pi\)
\(702\) −10.0426 + 34.4847i −0.379033 + 1.30154i
\(703\) 2.45248 + 2.45248i 0.0924970 + 0.0924970i
\(704\) 0.293330 0.169354i 0.0110553 0.00638277i
\(705\) 0 0
\(706\) 5.10419 8.84072i 0.192099 0.332725i
\(707\) 16.8411 16.8411i 0.633376 0.633376i
\(708\) 7.68054 + 18.1049i 0.288652 + 0.680424i
\(709\) −20.0553 + 34.7369i −0.753194 + 1.30457i 0.193073 + 0.981184i \(0.438154\pi\)
−0.946267 + 0.323386i \(0.895179\pi\)
\(710\) 0 0
\(711\) 3.88269 15.5445i 0.145612 0.582964i
\(712\) −8.69201 2.32902i −0.325747 0.0872836i
\(713\) 0.427700 1.59620i 0.0160175 0.0597780i
\(714\) −33.9496 + 4.76396i −1.27053 + 0.178287i
\(715\) 0 0
\(716\) 5.44145i 0.203357i
\(717\) 1.80710 14.6919i 0.0674873 0.548678i
\(718\) 9.15120 34.1528i 0.341520 1.27457i
\(719\) −5.00371 + 8.66669i −0.186607 + 0.323213i −0.944117 0.329611i \(-0.893082\pi\)
0.757510 + 0.652824i \(0.226416\pi\)
\(720\) 0 0
\(721\) −32.3000 18.6484i −1.20292 0.694503i
\(722\) 5.66978 + 21.1599i 0.211007 + 0.787490i
\(723\) 28.5728 + 21.5407i 1.06264 + 0.801107i
\(724\) −9.73892 5.62277i −0.361944 0.208968i
\(725\) 0 0
\(726\) −28.7767 + 22.4730i −1.06800 + 0.834051i
\(727\) 6.32057 6.32057i 0.234417 0.234417i −0.580116 0.814534i \(-0.696993\pi\)
0.814534 + 0.580116i \(0.196993\pi\)
\(728\) 0.810558 4.50487i 0.0300413 0.166962i
\(729\) 20.0419 + 18.0921i 0.742292 + 0.670076i
\(730\) 0 0
\(731\) −42.8756 + 24.7542i −1.58581 + 0.915568i
\(732\) 7.39204 3.13588i 0.273218 0.115906i
\(733\) 23.4455 23.4455i 0.865981 0.865981i −0.126044 0.992025i \(-0.540228\pi\)
0.992025 + 0.126044i \(0.0402280\pi\)
\(734\) −50.9712 29.4282i −1.88138 1.08622i
\(735\) 0 0
\(736\) 39.4298i 1.45340i
\(737\) −0.685952 + 0.183800i −0.0252674 + 0.00677037i
\(738\) −1.10982 65.1666i −0.0408529 2.39882i
\(739\) 3.41081 + 5.90770i 0.125469 + 0.217318i 0.921916 0.387390i \(-0.126623\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(740\) 0 0
\(741\) −16.4163 5.08554i −0.603069 0.186822i
\(742\) −21.2628 + 21.2628i −0.780580 + 0.780580i
\(743\) −4.99856 + 18.6549i −0.183379 + 0.684381i 0.811592 + 0.584224i \(0.198601\pi\)
−0.994972 + 0.100157i \(0.968065\pi\)
\(744\) −0.265864 + 0.207625i −0.00974704 + 0.00761189i
\(745\) 0 0
\(746\) −47.1359 −1.72577
\(747\) 5.68811 + 9.47572i 0.208117 + 0.346698i
\(748\) −0.142243 0.530860i −0.00520094 0.0194102i
\(749\) 30.5614i 1.11669i
\(750\) 0 0
\(751\) −19.9689 34.5872i −0.728677 1.26211i −0.957442 0.288624i \(-0.906802\pi\)
0.228765 0.973482i \(-0.426531\pi\)
\(752\) 3.96337 + 1.06198i 0.144529 + 0.0387265i
\(753\) 28.7190 + 21.6508i 1.04658 + 0.789001i
\(754\) −15.9196 + 11.0644i −0.579757 + 0.402941i
\(755\) 0 0
\(756\) 14.3585 + 10.4461i 0.522215 + 0.379920i
\(757\) −40.3994 10.8250i −1.46834 0.393440i −0.565978 0.824420i \(-0.691501\pi\)
−0.902362 + 0.430980i \(0.858168\pi\)
\(758\) −11.2053 41.8188i −0.406996 1.51893i
\(759\) 0.0823774 + 0.587050i 0.00299011 + 0.0213086i
\(760\) 0 0
\(761\) −0.0958031 + 0.165936i −0.00347286 + 0.00601517i −0.867757 0.496989i \(-0.834439\pi\)
0.864284 + 0.503005i \(0.167772\pi\)
\(762\) 1.55001 + 1.16853i 0.0561508 + 0.0423314i
\(763\) −31.7655 + 8.51155i −1.14999 + 0.308139i
\(764\) 1.31611 + 2.27956i 0.0476151 + 0.0824717i
\(765\) 0 0
\(766\) −3.51561 −0.127024
\(767\) −4.32732 + 24.0501i −0.156250 + 0.868400i
\(768\) 20.7202 27.4845i 0.747676 0.991761i
\(769\) −4.49084 7.77836i −0.161944 0.280495i 0.773622 0.633647i \(-0.218443\pi\)
−0.935566 + 0.353153i \(0.885110\pi\)
\(770\) 0 0
\(771\) −15.1089 + 37.3729i −0.544132 + 1.34595i
\(772\) −3.63014 3.63014i −0.130652 0.130652i
\(773\) −17.1500 + 4.59533i −0.616842 + 0.165282i −0.553692 0.832722i \(-0.686781\pi\)
−0.0631504 + 0.998004i \(0.520115\pi\)
\(774\) 54.5776 + 13.6323i 1.96175 + 0.490004i
\(775\) 0 0
\(776\) −3.97685 2.29603i −0.142761 0.0824228i
\(777\) 0.543562 4.41920i 0.0195002 0.158538i
\(778\) 28.3446 + 7.59490i 1.01620 + 0.272290i
\(779\) 31.1860 1.11736
\(780\) 0 0
\(781\) −0.895297 −0.0320362
\(782\) 49.4992 + 13.2633i 1.77009 + 0.474293i
\(783\) 2.27067 + 14.3957i 0.0811469 + 0.514462i
\(784\) 11.1743 + 6.45149i 0.399082 + 0.230410i
\(785\) 0 0
\(786\) −7.18244 + 17.7663i −0.256189 + 0.633703i
\(787\) 31.4011 8.41390i 1.11933 0.299923i 0.348717 0.937228i \(-0.386618\pi\)
0.770612 + 0.637305i \(0.219951\pi\)
\(788\) 8.83012 + 8.83012i 0.314560 + 0.314560i
\(789\) −36.3951 14.7136i −1.29570 0.523816i
\(790\) 0 0
\(791\) 10.8945 + 18.8698i 0.387362 + 0.670931i
\(792\) 0.0587118 0.105813i 0.00208623 0.00375990i
\(793\) 9.81941 + 1.76680i 0.348698 + 0.0627409i
\(794\) 15.3666 0.545341
\(795\) 0 0
\(796\) 4.20984 + 7.29165i 0.149214 + 0.258446i
\(797\) 21.0403 5.63774i 0.745287 0.199699i 0.133860 0.991000i \(-0.457263\pi\)
0.611427 + 0.791301i \(0.290596\pi\)
\(798\) −11.2203 + 14.8833i −0.397194 + 0.526862i
\(799\) 2.28536 3.95837i 0.0808503 0.140037i
\(800\) 0 0
\(801\) 41.6993 11.9379i 1.47337 0.421806i
\(802\) 2.12960 + 7.94777i 0.0751987 + 0.280645i
\(803\) −0.654199 0.175292i −0.0230862 0.00618593i
\(804\) 25.0601 19.5706i 0.883803 0.690201i
\(805\) 0 0
\(806\) 2.15539 0.180992i 0.0759205 0.00637516i
\(807\) 9.55203 12.6704i 0.336247 0.446018i
\(808\) 7.01984 + 1.88096i 0.246957 + 0.0661720i
\(809\) −9.05040 15.6758i −0.318195 0.551130i 0.661916 0.749578i \(-0.269743\pi\)
−0.980112 + 0.198448i \(0.936410\pi\)
\(810\) 0 0
\(811\) 23.9232i 0.840056i 0.907511 + 0.420028i \(0.137980\pi\)
−0.907511 + 0.420028i \(0.862020\pi\)
\(812\) 2.48060 + 9.25772i 0.0870520 + 0.324882i
\(813\) 13.6005 5.76966i 0.476990 0.202351i
\(814\) 0.156590 0.00548848
\(815\) 0 0
\(816\) −24.5192 31.3969i −0.858345 1.09911i
\(817\) −6.96666 + 25.9999i −0.243733 + 0.909623i
\(818\) 51.0116 51.0116i 1.78358 1.78358i
\(819\) 7.82586 + 20.6281i 0.273458 + 0.720805i
\(820\) 0 0
\(821\) 9.77979 + 16.9391i 0.341317 + 0.591179i 0.984678 0.174385i \(-0.0557937\pi\)
−0.643360 + 0.765563i \(0.722460\pi\)
\(822\) −2.94783 + 23.9661i −0.102817 + 0.835913i
\(823\) −4.29575 + 1.15104i −0.149740 + 0.0401228i −0.332911 0.942958i \(-0.608031\pi\)
0.183170 + 0.983081i \(0.441364\pi\)
\(824\) 11.3807i 0.396466i
\(825\) 0 0
\(826\) 22.9515 + 13.2510i 0.798584 + 0.461063i
\(827\) 0.374621 0.374621i 0.0130268 0.0130268i −0.700563 0.713590i \(-0.747068\pi\)
0.713590 + 0.700563i \(0.247068\pi\)
\(828\) −13.6606 22.7570i −0.474740 0.790860i
\(829\) 29.3227 16.9295i 1.01842 0.587985i 0.104774 0.994496i \(-0.466588\pi\)
0.913646 + 0.406511i \(0.133255\pi\)
\(830\) 0 0
\(831\) 5.30052 + 37.7733i 0.183873 + 1.31034i
\(832\) −17.7294 + 6.38298i −0.614658 + 0.221290i
\(833\) 10.1634 10.1634i 0.352141 0.352141i
\(834\) −4.37095 5.59701i −0.151354 0.193809i
\(835\) 0 0
\(836\) −0.258771 0.149402i −0.00894979 0.00516717i
\(837\) 0.583663 1.51760i 0.0201743 0.0524561i
\(838\) −6.00469 22.4098i −0.207429 0.774134i
\(839\) −26.5275 15.3157i −0.915831 0.528755i −0.0335282 0.999438i \(-0.510674\pi\)
−0.882303 + 0.470683i \(0.844008\pi\)
\(840\) 0 0
\(841\) 10.5668 18.3022i 0.364372 0.631111i
\(842\) −11.0617 + 41.2828i −0.381211 + 1.42270i
\(843\) −1.96872 0.242153i −0.0678064 0.00834018i
\(844\) 24.6161i 0.847323i
\(845\) 0 0
\(846\) −4.99295 + 1.42941i −0.171661 + 0.0491442i
\(847\) −5.80483 + 21.6639i −0.199456 + 0.744381i
\(848\) −33.7514 9.04366i −1.15903 0.310560i
\(849\) 6.33657 15.6740i 0.217471 0.537930i
\(850\) 0 0
\(851\) −3.32782 + 5.76395i −0.114076 + 0.197586i
\(852\) 36.9030 15.6552i 1.26428 0.536337i
\(853\) 5.73121 5.73121i 0.196233 0.196233i −0.602150 0.798383i \(-0.705689\pi\)
0.798383 + 0.602150i \(0.205689\pi\)
\(854\) 5.41026 9.37085i 0.185135 0.320664i
\(855\) 0 0
\(856\) 8.07610 4.66274i 0.276035 0.159369i
\(857\) 13.1772 + 13.1772i 0.450125 + 0.450125i 0.895396 0.445271i \(-0.146893\pi\)
−0.445271 + 0.895396i \(0.646893\pi\)
\(858\) −0.686444 + 0.361734i −0.0234348 + 0.0123494i
\(859\) 11.2173i 0.382729i 0.981519 + 0.191365i \(0.0612913\pi\)
−0.981519 + 0.191365i \(0.938709\pi\)
\(860\) 0 0
\(861\) −24.6416 31.5536i −0.839782 1.07534i
\(862\) −0.196205 0.732248i −0.00668278 0.0249405i
\(863\) 9.74312 + 9.74312i 0.331659 + 0.331659i 0.853216 0.521557i \(-0.174649\pi\)
−0.521557 + 0.853216i \(0.674649\pi\)
\(864\) −4.07992 + 38.5816i −0.138802 + 1.31257i
\(865\) 0 0
\(866\) 21.5180 0.731210
\(867\) −13.7453 + 5.83111i −0.466816 + 0.198035i
\(868\) 0.276757 1.03287i 0.00939376 0.0350580i
\(869\) 0.299754 0.173063i 0.0101685 0.00587076i
\(870\) 0 0
\(871\) 39.3694 3.30591i 1.33398 0.112017i
\(872\) −7.09569 7.09569i −0.240290 0.240290i
\(873\) 22.1311 0.376903i 0.749025 0.0127562i
\(874\) 24.1287 13.9307i 0.816166 0.471214i
\(875\) 0 0
\(876\) 30.0304 4.21400i 1.01463 0.142378i
\(877\) −50.5897 + 13.5555i −1.70829 + 0.457736i −0.975005 0.222183i \(-0.928682\pi\)
−0.733287 + 0.679919i \(0.762015\pi\)
\(878\) −39.7351 + 10.6470i −1.34100 + 0.359319i
\(879\) 38.4924 5.40142i 1.29832 0.182186i
\(880\) 0 0
\(881\) −6.05038 + 3.49319i −0.203842 + 0.117688i −0.598446 0.801163i \(-0.704215\pi\)
0.394604 + 0.918851i \(0.370882\pi\)
\(882\) −16.3293 + 0.278096i −0.549838 + 0.00936397i
\(883\) −40.5116 40.5116i −1.36332 1.36332i −0.869643 0.493681i \(-0.835651\pi\)
−0.493681 0.869643i \(-0.664349\pi\)
\(884\) 2.55845 + 30.4681i 0.0860501 + 1.02475i
\(885\) 0 0
\(886\) 37.1925 21.4731i 1.24951 0.721403i
\(887\) 0.867046 3.23586i 0.0291126 0.108650i −0.949841 0.312734i \(-0.898755\pi\)
0.978953 + 0.204085i \(0.0654218\pi\)
\(888\) 1.25074 0.530594i 0.0419721 0.0178056i
\(889\) 1.19237 0.0399908
\(890\) 0 0
\(891\) 0.0198614 + 0.582945i 0.000665381 + 0.0195294i
\(892\) −4.94855 4.94855i −0.165690 0.165690i
\(893\) −0.643178 2.40037i −0.0215231 0.0803254i
\(894\) −5.95292 7.62273i −0.199096 0.254942i
\(895\) 0 0
\(896\) 10.0221i 0.334816i
\(897\) 1.27303 32.9549i 0.0425052 1.10033i
\(898\) 27.2459 + 27.2459i 0.909208 + 0.909208i
\(899\) 0.760064 0.438823i 0.0253495 0.0146356i
\(900\) 0 0
\(901\) −19.4618 + 33.7088i −0.648366 + 1.12300i
\(902\) 0.995609 0.995609i 0.0331501 0.0331501i
\(903\) 31.8110 13.4950i 1.05861 0.449086i
\(904\) −3.32432 + 5.75789i −0.110565 + 0.191505i
\(905\) 0 0
\(906\) −15.1001 + 37.3513i −0.501668 + 1.24091i
\(907\) 2.38916 + 0.640173i 0.0793307 + 0.0212566i 0.298266 0.954483i \(-0.403592\pi\)
−0.218935 + 0.975739i \(0.570258\pi\)
\(908\) −10.1864 + 38.0163i −0.338049 + 1.26162i
\(909\) −33.6772 + 9.64131i −1.11700 + 0.319782i
\(910\) 0 0
\(911\) 38.3512i 1.27063i −0.772253 0.635316i \(-0.780870\pi\)
0.772253 0.635316i \(-0.219130\pi\)
\(912\) −21.4967 2.64409i −0.711827 0.0875547i
\(913\) −0.0617942 + 0.230619i −0.00204509 + 0.00763238i
\(914\) −22.5082 + 38.9854i −0.744506 + 1.28952i
\(915\) 0 0
\(916\) −16.5621 9.56216i −0.547229 0.315943i
\(917\) 3.04664 + 11.3702i 0.100609 + 0.375478i
\(918\) 47.0620 + 18.0998i 1.55328 + 0.597382i
\(919\) 8.63426 + 4.98500i 0.284818 + 0.164440i 0.635603 0.772016i \(-0.280752\pi\)
−0.350785 + 0.936456i \(0.614085\pi\)
\(920\) 0 0
\(921\) 13.0780 + 16.7464i 0.430934 + 0.551812i
\(922\) −6.66059 + 6.66059i −0.219355 + 0.219355i
\(923\) 49.0211 + 8.82033i 1.61355 + 0.290325i
\(924\) 0.0533051 + 0.379870i 0.00175361 + 0.0124968i
\(925\) 0 0
\(926\) −19.1981 + 11.0840i −0.630889 + 0.364244i
\(927\) 28.2332 + 47.0331i 0.927299 + 1.54477i
\(928\) −14.8076 + 14.8076i −0.486085 + 0.486085i
\(929\) 34.8259 + 20.1067i 1.14260 + 0.659681i 0.947073 0.321017i \(-0.104025\pi\)
0.195527 + 0.980698i \(0.437358\pi\)
\(930\) 0 0
\(931\) 7.81455i 0.256111i
\(932\) 19.8829 5.32761i 0.651287 0.174512i
\(933\) −0.818183 + 6.65190i −0.0267861 + 0.217773i
\(934\) 25.0597 + 43.4047i 0.819979 + 1.42024i
\(935\) 0 0
\(936\) −4.25716 + 5.21526i −0.139150 + 0.170466i
\(937\) 27.2652 27.2652i 0.890716 0.890716i −0.103874 0.994590i \(-0.533124\pi\)
0.994590 + 0.103874i \(0.0331239\pi\)
\(938\) 11.0898 41.3878i 0.362096 1.35136i
\(939\) 33.9227 + 43.4381i 1.10703 + 1.41755i
\(940\) 0 0
\(941\) 18.4961 0.602957 0.301479 0.953473i \(-0.402520\pi\)
0.301479 + 0.953473i \(0.402520\pi\)
\(942\) 3.53911 1.50138i 0.115310 0.0489175i
\(943\) 15.4891 + 57.8060i 0.504393 + 1.88242i
\(944\) 30.7959i 1.00232i
\(945\) 0 0
\(946\) 0.607634 + 1.05245i 0.0197559 + 0.0342182i
\(947\) 28.3239 + 7.58936i 0.920403 + 0.246621i 0.687757 0.725941i \(-0.258595\pi\)
0.232645 + 0.972562i \(0.425262\pi\)
\(948\) −9.32930 + 12.3749i −0.303002 + 0.401919i
\(949\) 34.0931 + 16.0430i 1.10671 + 0.520779i
\(950\) 0 0
\(951\) −2.46050 + 1.92151i −0.0797871 + 0.0623093i
\(952\) −6.20678 1.66310i −0.201163 0.0539015i
\(953\) 1.69476 + 6.32491i 0.0548985 + 0.204884i 0.987927 0.154917i \(-0.0495111\pi\)
−0.933029 + 0.359801i \(0.882844\pi\)
\(954\) 42.5191 12.1726i 1.37661 0.394103i
\(955\) 0 0
\(956\) −7.15900 + 12.3998i −0.231539 + 0.401037i
\(957\) −0.189527 + 0.251400i −0.00612654 + 0.00812660i
\(958\) −34.4714 + 9.23657i −1.11372 + 0.298420i
\(959\) 7.41624 + 12.8453i 0.239483 + 0.414797i
\(960\) 0 0
\(961\) 30.9021 0.996841
\(962\) −8.57393 1.54270i −0.276435 0.0497387i
\(963\) −21.8088 + 39.3048i −0.702780 + 1.26658i
\(964\) −17.3057 29.9744i −0.557380 0.965410i
\(965\) 0 0
\(966\) −33.1601 13.4058i −1.06691 0.431323i
\(967\) −28.2870 28.2870i −0.909648 0.909648i 0.0865951 0.996244i \(-0.472401\pi\)
−0.996244 + 0.0865951i \(0.972401\pi\)
\(968\) −6.61049 + 1.77128i −0.212469 + 0.0569310i
\(969\) −9.04274 + 22.3679i −0.290495 + 0.718561i
\(970\) 0 0
\(971\) 18.4125 + 10.6304i 0.590884 + 0.341147i 0.765447 0.643499i \(-0.222518\pi\)
−0.174563 + 0.984646i \(0.555851\pi\)
\(972\) −11.0120 23.6810i −0.353211 0.759567i
\(973\) −4.21359 1.12903i −0.135081 0.0361949i
\(974\) 64.3428 2.06168
\(975\) 0 0
\(976\) 12.5736 0.402473
\(977\) −26.4720 7.09314i −0.846913 0.226930i −0.190835 0.981622i \(-0.561119\pi\)
−0.656079 + 0.754692i \(0.727786\pi\)
\(978\) −7.38172 + 60.0139i −0.236041 + 1.91903i
\(979\) 0.811485 + 0.468511i 0.0259352 + 0.0149737i
\(980\) 0 0
\(981\) 46.9273 + 11.7215i 1.49827 + 0.374237i
\(982\) 57.1228 15.3060i 1.82286 0.488435i
\(983\) 8.33022 + 8.33022i 0.265693 + 0.265693i 0.827362 0.561669i \(-0.189841\pi\)
−0.561669 + 0.827362i \(0.689841\pi\)
\(984\) 4.57873 11.3258i 0.145965 0.361054i
\(985\) 0 0
\(986\) 13.6082 + 23.5701i 0.433374 + 0.750625i
\(987\) −1.92045 + 2.54740i −0.0611287 + 0.0810848i
\(988\) 12.6969 + 10.7297i 0.403942 + 0.341358i
\(989\) −51.6532 −1.64248
\(990\) 0 0
\(991\) −11.6131 20.1145i −0.368903 0.638959i 0.620491 0.784213i \(-0.286933\pi\)
−0.989394 + 0.145255i \(0.953600\pi\)
\(992\) 2.25677 0.604700i 0.0716525 0.0191992i
\(993\) −4.32949 3.26395i −0.137392 0.103578i
\(994\) 27.0094 46.7817i 0.856688 1.48383i
\(995\) 0 0
\(996\) −1.48553 10.5864i −0.0470707 0.335442i
\(997\) 4.30927 + 16.0824i 0.136476 + 0.509335i 0.999987 + 0.00500582i \(0.00159341\pi\)
−0.863512 + 0.504329i \(0.831740\pi\)
\(998\) 19.2345 + 5.15386i 0.608856 + 0.163143i
\(999\) −3.85264 + 5.29561i −0.121892 + 0.167546i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.20 96
3.2 odd 2 inner 975.2.bn.d.218.5 96
5.2 odd 4 inner 975.2.bn.d.257.5 96
5.3 odd 4 195.2.bf.a.62.20 yes 96
5.4 even 2 195.2.bf.a.23.5 yes 96
13.4 even 6 inner 975.2.bn.d.368.20 96
15.2 even 4 inner 975.2.bn.d.257.20 96
15.8 even 4 195.2.bf.a.62.5 yes 96
15.14 odd 2 195.2.bf.a.23.20 yes 96
39.17 odd 6 inner 975.2.bn.d.368.5 96
65.4 even 6 195.2.bf.a.173.5 yes 96
65.17 odd 12 inner 975.2.bn.d.407.5 96
65.43 odd 12 195.2.bf.a.17.20 yes 96
195.17 even 12 inner 975.2.bn.d.407.20 96
195.134 odd 6 195.2.bf.a.173.20 yes 96
195.173 even 12 195.2.bf.a.17.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.5 96 195.173 even 12
195.2.bf.a.17.20 yes 96 65.43 odd 12
195.2.bf.a.23.5 yes 96 5.4 even 2
195.2.bf.a.23.20 yes 96 15.14 odd 2
195.2.bf.a.62.5 yes 96 15.8 even 4
195.2.bf.a.62.20 yes 96 5.3 odd 4
195.2.bf.a.173.5 yes 96 65.4 even 6
195.2.bf.a.173.20 yes 96 195.134 odd 6
975.2.bn.d.218.5 96 3.2 odd 2 inner
975.2.bn.d.218.20 96 1.1 even 1 trivial
975.2.bn.d.257.5 96 5.2 odd 4 inner
975.2.bn.d.257.20 96 15.2 even 4 inner
975.2.bn.d.368.5 96 39.17 odd 6 inner
975.2.bn.d.368.20 96 13.4 even 6 inner
975.2.bn.d.407.5 96 65.17 odd 12 inner
975.2.bn.d.407.20 96 195.17 even 12 inner