L(s) = 1 | + (1.85 + 0.496i)2-s + (−1.71 − 0.211i)3-s + (1.45 + 0.837i)4-s + (−3.07 − 1.24i)6-s + (−1.97 + 0.527i)7-s + (−0.440 − 0.440i)8-s + (2.91 + 0.727i)9-s + (0.0324 + 0.0561i)11-s + (−2.31 − 1.74i)12-s + (−1.22 − 3.39i)13-s − 3.91·14-s + (−2.27 − 3.93i)16-s + (−4.88 + 1.31i)17-s + (5.02 + 2.79i)18-s + (−1.37 + 2.38i)19-s + ⋯ |
L(s) = 1 | + (1.30 + 0.350i)2-s + (−0.992 − 0.122i)3-s + (0.725 + 0.418i)4-s + (−1.25 − 0.508i)6-s + (−0.744 + 0.199i)7-s + (−0.155 − 0.155i)8-s + (0.970 + 0.242i)9-s + (0.00977 + 0.0169i)11-s + (−0.668 − 0.504i)12-s + (−0.338 − 0.940i)13-s − 1.04·14-s + (−0.567 − 0.983i)16-s + (−1.18 + 0.317i)17-s + (1.18 + 0.657i)18-s + (−0.315 + 0.546i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.192858 - 0.480107i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.192858 - 0.480107i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.71 + 0.211i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.22 + 3.39i)T \) |
good | 2 | \( 1 + (-1.85 - 0.496i)T + (1.73 + i)T^{2} \) |
| 7 | \( 1 + (1.97 - 0.527i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.0324 - 0.0561i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (4.88 - 1.31i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.37 - 2.38i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.10 + 1.36i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (1.40 + 2.42i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.312iT - 31T^{2} \) |
| 37 | \( 1 + (-0.326 + 1.21i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (5.66 + 9.81i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-9.44 + 2.53i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + (0.638 - 0.638i)T - 47iT^{2} \) |
| 53 | \( 1 + (-5.43 + 5.43i)T - 53iT^{2} \) |
| 59 | \( 1 + (5.86 + 3.38i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.38 - 2.39i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.83 - 10.5i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (6.90 - 11.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (7.38 - 7.38i)T - 73iT^{2} \) |
| 79 | \( 1 + 5.34iT - 79T^{2} \) |
| 83 | \( 1 + (-2.60 - 2.60i)T + 83iT^{2} \) |
| 89 | \( 1 + (-12.5 + 7.22i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.12 + 1.90i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.982699509729196267756200914349, −8.880267474880912239461283625914, −7.58677051143108600509171384884, −6.73674319571150088732258595361, −6.00282726731911796860723742332, −5.52080861143514052578448985493, −4.45120628848659202219648706126, −3.72735893307431284835463344037, −2.34435930535565011284324161678, −0.16176822103168107957820001800,
2.00799764970255805173427521503, 3.31589036351226721716801868373, 4.40608744850535854942566855241, 4.76537155226176946407985958178, 6.05347829398218110386836312989, 6.44028206365384755574760381460, 7.38650466113685373104163612090, 8.917652676122035919540546218347, 9.651117629741572331028059810527, 10.67257683259101790808465558323