Properties

Label 975.2.bn.d.368.20
Level $975$
Weight $2$
Character 975.368
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.20
Character \(\chi\) \(=\) 975.368
Dual form 975.2.bn.d.257.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.496187 + 1.85180i) q^{2} +(0.676428 + 1.59450i) q^{3} +(-1.45090 + 0.837676i) q^{4} +(-2.61706 + 2.04378i) q^{6} +(-0.527913 + 1.97020i) q^{7} +(0.440097 + 0.440097i) q^{8} +(-2.08489 + 2.15713i) q^{9} +(-0.0324046 + 0.0561264i) q^{11} +(-2.31710 - 1.74683i) q^{12} +(-3.39239 - 1.22133i) q^{13} -3.91035 q^{14} +(-2.27195 + 3.93513i) q^{16} +(1.31006 - 4.88919i) q^{17} +(-5.02907 - 2.79045i) q^{18} +(1.37598 + 2.38327i) q^{19} +(-3.49859 + 0.490937i) q^{21} +(-0.120014 - 0.0321575i) q^{22} +(1.36681 + 5.10100i) q^{23} +(-0.404043 + 0.999430i) q^{24} +(0.578399 - 6.88803i) q^{26} +(-4.84984 - 1.86522i) q^{27} +(-0.884440 - 3.30077i) q^{28} +(-1.40236 + 2.42895i) q^{29} -0.312918i q^{31} +(-7.21201 - 1.93245i) q^{32} +(-0.111413 - 0.0137038i) q^{33} +9.70382 q^{34} +(1.21798 - 4.87624i) q^{36} +(1.21737 - 0.326192i) q^{37} +(-3.73059 + 3.73059i) q^{38} +(-0.347286 - 6.23533i) q^{39} +(5.66614 - 9.81404i) q^{41} +(-2.64507 - 6.23507i) q^{42} +(-2.53152 + 9.44778i) q^{43} -0.108578i q^{44} +(-8.76782 + 5.06210i) q^{46} +(0.638524 - 0.638524i) q^{47} +(-7.81140 - 0.960802i) q^{48} +(2.45919 + 1.41981i) q^{49} +(8.68200 - 1.21830i) q^{51} +(5.94510 - 1.06970i) q^{52} +(5.43756 - 5.43756i) q^{53} +(1.04758 - 9.90641i) q^{54} +(-1.09941 + 0.634745i) q^{56} +(-2.86938 + 3.80612i) q^{57} +(-5.19376 - 1.39166i) q^{58} +(-5.86942 + 3.38871i) q^{59} +(-1.38357 - 2.39642i) q^{61} +(0.579461 - 0.155266i) q^{62} +(-3.14934 - 5.24643i) q^{63} -5.22623i q^{64} +(-0.0299051 - 0.213114i) q^{66} +(-10.5842 + 2.83602i) q^{67} +(2.19480 + 8.19111i) q^{68} +(-7.20902 + 5.62984i) q^{69} +(6.90717 + 11.9636i) q^{71} +(-1.86690 + 0.0317942i) q^{72} +(7.38949 - 7.38949i) q^{73} +(1.20808 + 2.09246i) q^{74} +(-3.99282 - 2.30525i) q^{76} +(-0.0934734 - 0.0934734i) q^{77} +(11.3742 - 3.73700i) q^{78} -5.34069i q^{79} +(-0.306459 - 8.99478i) q^{81} +(20.9851 + 5.62293i) q^{82} +(-2.60495 - 2.60495i) q^{83} +(4.66484 - 3.64298i) q^{84} -18.7515 q^{86} +(-4.82157 - 0.593053i) q^{87} +(-0.0389622 + 0.0104399i) q^{88} +(12.5211 + 7.22908i) q^{89} +(4.19716 - 6.03893i) q^{91} +(-6.25608 - 6.25608i) q^{92} +(0.498950 - 0.211667i) q^{93} +(1.49924 + 0.865588i) q^{94} +(-1.79710 - 12.8068i) q^{96} +(1.90959 - 7.12670i) q^{97} +(-1.40899 + 5.25841i) q^{98} +(-0.0535122 - 0.186919i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.496187 + 1.85180i 0.350857 + 1.30942i 0.885618 + 0.464414i \(0.153735\pi\)
−0.534761 + 0.845004i \(0.679598\pi\)
\(3\) 0.676428 + 1.59450i 0.390536 + 0.920588i
\(4\) −1.45090 + 0.837676i −0.725448 + 0.418838i
\(5\) 0 0
\(6\) −2.61706 + 2.04378i −1.06841 + 0.834369i
\(7\) −0.527913 + 1.97020i −0.199532 + 0.744665i 0.791514 + 0.611150i \(0.209293\pi\)
−0.991047 + 0.133515i \(0.957374\pi\)
\(8\) 0.440097 + 0.440097i 0.155598 + 0.155598i
\(9\) −2.08489 + 2.15713i −0.694964 + 0.719045i
\(10\) 0 0
\(11\) −0.0324046 + 0.0561264i −0.00977036 + 0.0169228i −0.870869 0.491515i \(-0.836443\pi\)
0.861099 + 0.508438i \(0.169777\pi\)
\(12\) −2.31710 1.74683i −0.668890 0.504268i
\(13\) −3.39239 1.22133i −0.940881 0.338737i
\(14\) −3.91035 −1.04508
\(15\) 0 0
\(16\) −2.27195 + 3.93513i −0.567988 + 0.983783i
\(17\) 1.31006 4.88919i 0.317735 1.18580i −0.603681 0.797226i \(-0.706300\pi\)
0.921416 0.388577i \(-0.127033\pi\)
\(18\) −5.02907 2.79045i −1.18536 0.657715i
\(19\) 1.37598 + 2.38327i 0.315672 + 0.546760i 0.979580 0.201054i \(-0.0644368\pi\)
−0.663908 + 0.747814i \(0.731103\pi\)
\(20\) 0 0
\(21\) −3.49859 + 0.490937i −0.763454 + 0.107131i
\(22\) −0.120014 0.0321575i −0.0255870 0.00685601i
\(23\) 1.36681 + 5.10100i 0.284999 + 1.06363i 0.948840 + 0.315758i \(0.102259\pi\)
−0.663840 + 0.747874i \(0.731075\pi\)
\(24\) −0.404043 + 0.999430i −0.0824749 + 0.204008i
\(25\) 0 0
\(26\) 0.578399 6.88803i 0.113433 1.35085i
\(27\) −4.84984 1.86522i −0.933352 0.358962i
\(28\) −0.884440 3.30077i −0.167143 0.623788i
\(29\) −1.40236 + 2.42895i −0.260411 + 0.451045i −0.966351 0.257226i \(-0.917191\pi\)
0.705940 + 0.708271i \(0.250525\pi\)
\(30\) 0 0
\(31\) 0.312918i 0.0562018i −0.999605 0.0281009i \(-0.991054\pi\)
0.999605 0.0281009i \(-0.00894597\pi\)
\(32\) −7.21201 1.93245i −1.27492 0.341613i
\(33\) −0.111413 0.0137038i −0.0193946 0.00238553i
\(34\) 9.70382 1.66419
\(35\) 0 0
\(36\) 1.21798 4.87624i 0.202997 0.812707i
\(37\) 1.21737 0.326192i 0.200134 0.0536257i −0.157359 0.987541i \(-0.550298\pi\)
0.357493 + 0.933916i \(0.383631\pi\)
\(38\) −3.73059 + 3.73059i −0.605181 + 0.605181i
\(39\) −0.347286 6.23533i −0.0556103 0.998453i
\(40\) 0 0
\(41\) 5.66614 9.81404i 0.884903 1.53270i 0.0390773 0.999236i \(-0.487558\pi\)
0.845825 0.533460i \(-0.179109\pi\)
\(42\) −2.64507 6.23507i −0.408143 0.962092i
\(43\) −2.53152 + 9.44778i −0.386054 + 1.44077i 0.450445 + 0.892804i \(0.351265\pi\)
−0.836499 + 0.547968i \(0.815401\pi\)
\(44\) 0.108578i 0.0163688i
\(45\) 0 0
\(46\) −8.76782 + 5.06210i −1.29274 + 0.746366i
\(47\) 0.638524 0.638524i 0.0931382 0.0931382i −0.659003 0.752141i \(-0.729021\pi\)
0.752141 + 0.659003i \(0.229021\pi\)
\(48\) −7.81140 0.960802i −1.12748 0.138680i
\(49\) 2.45919 + 1.41981i 0.351313 + 0.202830i
\(50\) 0 0
\(51\) 8.68200 1.21830i 1.21572 0.170596i
\(52\) 5.94510 1.06970i 0.824436 0.148340i
\(53\) 5.43756 5.43756i 0.746906 0.746906i −0.226991 0.973897i \(-0.572889\pi\)
0.973897 + 0.226991i \(0.0728887\pi\)
\(54\) 1.04758 9.90641i 0.142558 1.34809i
\(55\) 0 0
\(56\) −1.09941 + 0.634745i −0.146915 + 0.0848214i
\(57\) −2.86938 + 3.80612i −0.380059 + 0.504133i
\(58\) −5.19376 1.39166i −0.681974 0.182734i
\(59\) −5.86942 + 3.38871i −0.764133 + 0.441172i −0.830778 0.556604i \(-0.812104\pi\)
0.0666447 + 0.997777i \(0.478771\pi\)
\(60\) 0 0
\(61\) −1.38357 2.39642i −0.177149 0.306830i 0.763754 0.645507i \(-0.223354\pi\)
−0.940903 + 0.338677i \(0.890021\pi\)
\(62\) 0.579461 0.155266i 0.0735916 0.0197188i
\(63\) −3.14934 5.24643i −0.396780 0.660988i
\(64\) 5.22623i 0.653279i
\(65\) 0 0
\(66\) −0.0299051 0.213114i −0.00368107 0.0262326i
\(67\) −10.5842 + 2.83602i −1.29306 + 0.346475i −0.838823 0.544405i \(-0.816756\pi\)
−0.454239 + 0.890880i \(0.650089\pi\)
\(68\) 2.19480 + 8.19111i 0.266159 + 0.993318i
\(69\) −7.20902 + 5.62984i −0.867864 + 0.677753i
\(70\) 0 0
\(71\) 6.90717 + 11.9636i 0.819730 + 1.41981i 0.905881 + 0.423532i \(0.139210\pi\)
−0.0861512 + 0.996282i \(0.527457\pi\)
\(72\) −1.86690 + 0.0317942i −0.220017 + 0.00374698i
\(73\) 7.38949 7.38949i 0.864874 0.864874i −0.127025 0.991900i \(-0.540543\pi\)
0.991900 + 0.127025i \(0.0405429\pi\)
\(74\) 1.20808 + 2.09246i 0.140437 + 0.243244i
\(75\) 0 0
\(76\) −3.99282 2.30525i −0.458007 0.264431i
\(77\) −0.0934734 0.0934734i −0.0106523 0.0106523i
\(78\) 11.3742 3.73700i 1.28788 0.423132i
\(79\) 5.34069i 0.600875i −0.953802 0.300437i \(-0.902867\pi\)
0.953802 0.300437i \(-0.0971326\pi\)
\(80\) 0 0
\(81\) −0.306459 8.99478i −0.0340510 0.999420i
\(82\) 20.9851 + 5.62293i 2.31741 + 0.620949i
\(83\) −2.60495 2.60495i −0.285931 0.285931i 0.549538 0.835469i \(-0.314804\pi\)
−0.835469 + 0.549538i \(0.814804\pi\)
\(84\) 4.66484 3.64298i 0.508976 0.397482i
\(85\) 0 0
\(86\) −18.7515 −2.02202
\(87\) −4.82157 0.593053i −0.516926 0.0635820i
\(88\) −0.0389622 + 0.0104399i −0.00415339 + 0.00111290i
\(89\) 12.5211 + 7.22908i 1.32724 + 0.766281i 0.984872 0.173285i \(-0.0554383\pi\)
0.342366 + 0.939567i \(0.388772\pi\)
\(90\) 0 0
\(91\) 4.19716 6.03893i 0.439982 0.633052i
\(92\) −6.25608 6.25608i −0.652242 0.652242i
\(93\) 0.498950 0.211667i 0.0517387 0.0219488i
\(94\) 1.49924 + 0.865588i 0.154635 + 0.0892786i
\(95\) 0 0
\(96\) −1.79710 12.8068i −0.183416 1.30708i
\(97\) 1.90959 7.12670i 0.193890 0.723607i −0.798661 0.601781i \(-0.794458\pi\)
0.992551 0.121827i \(-0.0388752\pi\)
\(98\) −1.40899 + 5.25841i −0.142329 + 0.531179i
\(99\) −0.0535122 0.186919i −0.00537818 0.0187860i
\(100\) 0 0
\(101\) 10.1123 + 5.83835i 1.00621 + 0.580938i 0.910081 0.414431i \(-0.136019\pi\)
0.0961330 + 0.995368i \(0.469353\pi\)
\(102\) 6.56393 + 15.4728i 0.649926 + 1.53203i
\(103\) 12.9298 + 12.9298i 1.27401 + 1.27401i 0.943966 + 0.330042i \(0.107063\pi\)
0.330042 + 0.943966i \(0.392937\pi\)
\(104\) −0.955477 2.03049i −0.0936922 0.199106i
\(105\) 0 0
\(106\) 12.7673 + 7.37120i 1.24007 + 0.715955i
\(107\) 14.4728 3.87796i 1.39913 0.374897i 0.521101 0.853495i \(-0.325522\pi\)
0.878034 + 0.478598i \(0.158855\pi\)
\(108\) 8.59907 1.35635i 0.827446 0.130514i
\(109\) −16.1230 −1.54430 −0.772152 0.635437i \(-0.780820\pi\)
−0.772152 + 0.635437i \(0.780820\pi\)
\(110\) 0 0
\(111\) 1.34358 + 1.72045i 0.127527 + 0.163298i
\(112\) −6.55360 6.55360i −0.619257 0.619257i
\(113\) 10.3184 + 2.76481i 0.970675 + 0.260092i 0.709113 0.705095i \(-0.249096\pi\)
0.261562 + 0.965187i \(0.415762\pi\)
\(114\) −8.47191 3.42497i −0.793467 0.320777i
\(115\) 0 0
\(116\) 4.69888i 0.436280i
\(117\) 9.70736 4.77150i 0.897445 0.441126i
\(118\) −9.18753 9.18753i −0.845781 0.845781i
\(119\) 8.94108 + 5.16214i 0.819628 + 0.473212i
\(120\) 0 0
\(121\) 5.49790 + 9.52264i 0.499809 + 0.865695i
\(122\) 3.75117 3.75117i 0.339615 0.339615i
\(123\) 19.4813 + 2.39620i 1.75657 + 0.216058i
\(124\) 0.262124 + 0.454012i 0.0235394 + 0.0407715i
\(125\) 0 0
\(126\) 8.15265 8.43515i 0.726296 0.751463i
\(127\) 0.151301 + 0.564662i 0.0134258 + 0.0501056i 0.972314 0.233679i \(-0.0750765\pi\)
−0.958888 + 0.283785i \(0.908410\pi\)
\(128\) −4.74611 + 1.27172i −0.419500 + 0.112405i
\(129\) −16.7769 + 2.35421i −1.47713 + 0.207277i
\(130\) 0 0
\(131\) 5.77110i 0.504223i −0.967698 0.252112i \(-0.918875\pi\)
0.967698 0.252112i \(-0.0811250\pi\)
\(132\) 0.173129 0.0734453i 0.0150689 0.00639260i
\(133\) −5.42192 + 1.45280i −0.470140 + 0.125974i
\(134\) −10.5035 18.1925i −0.907361 1.57159i
\(135\) 0 0
\(136\) 2.72827 1.57517i 0.233947 0.135069i
\(137\) −7.02411 1.88211i −0.600111 0.160799i −0.0540406 0.998539i \(-0.517210\pi\)
−0.546070 + 0.837740i \(0.683877\pi\)
\(138\) −14.0023 10.5562i −1.19196 0.898602i
\(139\) −1.85213 + 1.06933i −0.157096 + 0.0906994i −0.576487 0.817106i \(-0.695577\pi\)
0.419391 + 0.907806i \(0.362244\pi\)
\(140\) 0 0
\(141\) 1.45004 + 0.586214i 0.122116 + 0.0493681i
\(142\) −18.7268 + 18.7268i −1.57152 + 1.57152i
\(143\) 0.178478 0.150826i 0.0149251 0.0126127i
\(144\) −3.75184 13.1052i −0.312654 1.09210i
\(145\) 0 0
\(146\) 17.3504 + 10.0173i 1.43593 + 0.829034i
\(147\) −0.600435 + 4.88159i −0.0495231 + 0.402627i
\(148\) −1.49303 + 1.49303i −0.122726 + 0.122726i
\(149\) 2.52248 1.45635i 0.206649 0.119309i −0.393104 0.919494i \(-0.628599\pi\)
0.599753 + 0.800185i \(0.295265\pi\)
\(150\) 0 0
\(151\) 12.1330i 0.987367i 0.869642 + 0.493683i \(0.164350\pi\)
−0.869642 + 0.493683i \(0.835650\pi\)
\(152\) −0.443305 + 1.65444i −0.0359568 + 0.134192i
\(153\) 7.81532 + 13.0194i 0.631831 + 1.05256i
\(154\) 0.126713 0.219474i 0.0102109 0.0176857i
\(155\) 0 0
\(156\) 5.72706 + 8.75591i 0.458532 + 0.701034i
\(157\) −0.818660 + 0.818660i −0.0653362 + 0.0653362i −0.739020 0.673684i \(-0.764711\pi\)
0.673684 + 0.739020i \(0.264711\pi\)
\(158\) 9.88987 2.64998i 0.786796 0.210821i
\(159\) 12.3483 + 4.99210i 0.979286 + 0.395899i
\(160\) 0 0
\(161\) −10.7715 −0.848916
\(162\) 16.5044 5.03060i 1.29671 0.395241i
\(163\) −17.5892 4.71302i −1.37769 0.369152i −0.507411 0.861704i \(-0.669397\pi\)
−0.870283 + 0.492552i \(0.836064\pi\)
\(164\) 18.9856i 1.48252i
\(165\) 0 0
\(166\) 3.53130 6.11638i 0.274082 0.474723i
\(167\) −1.59456 5.95097i −0.123391 0.460500i 0.876387 0.481608i \(-0.159947\pi\)
−0.999777 + 0.0211085i \(0.993280\pi\)
\(168\) −1.75578 1.32366i −0.135461 0.102122i
\(169\) 10.0167 + 8.28650i 0.770514 + 0.637423i
\(170\) 0 0
\(171\) −8.00981 2.00068i −0.612525 0.152996i
\(172\) −4.24119 15.8283i −0.323388 1.20690i
\(173\) −3.24998 0.870829i −0.247091 0.0662079i 0.133148 0.991096i \(-0.457492\pi\)
−0.380239 + 0.924888i \(0.624158\pi\)
\(174\) −1.29419 9.22283i −0.0981121 0.699181i
\(175\) 0 0
\(176\) −0.147243 0.255033i −0.0110989 0.0192238i
\(177\) −9.37355 7.06660i −0.704559 0.531158i
\(178\) −7.17396 + 26.7736i −0.537711 + 2.00676i
\(179\) −1.62397 + 2.81281i −0.121382 + 0.210239i −0.920313 0.391183i \(-0.872066\pi\)
0.798931 + 0.601422i \(0.205399\pi\)
\(180\) 0 0
\(181\) −6.71234 −0.498925 −0.249462 0.968385i \(-0.580254\pi\)
−0.249462 + 0.968385i \(0.580254\pi\)
\(182\) 13.2655 + 4.77584i 0.983301 + 0.354009i
\(183\) 2.88522 3.82712i 0.213281 0.282909i
\(184\) −1.64341 + 2.84646i −0.121154 + 0.209844i
\(185\) 0 0
\(186\) 0.639536 + 0.818927i 0.0468931 + 0.0600466i
\(187\) 0.231961 + 0.231961i 0.0169627 + 0.0169627i
\(188\) −0.391556 + 1.46131i −0.0285572 + 0.106577i
\(189\) 6.23515 8.57047i 0.453541 0.623410i
\(190\) 0 0
\(191\) −1.36065 + 0.785571i −0.0984531 + 0.0568419i −0.548418 0.836204i \(-0.684770\pi\)
0.449965 + 0.893046i \(0.351436\pi\)
\(192\) 8.33325 3.53517i 0.601401 0.255129i
\(193\) −0.793102 2.95990i −0.0570888 0.213058i 0.931489 0.363769i \(-0.118510\pi\)
−0.988578 + 0.150711i \(0.951844\pi\)
\(194\) 14.1447 1.01553
\(195\) 0 0
\(196\) −4.75737 −0.339812
\(197\) 1.92918 + 7.19978i 0.137448 + 0.512963i 0.999976 + 0.00695355i \(0.00221340\pi\)
−0.862528 + 0.506010i \(0.831120\pi\)
\(198\) 0.319583 0.191840i 0.0227118 0.0136335i
\(199\) −4.35231 + 2.51281i −0.308527 + 0.178128i −0.646267 0.763111i \(-0.723671\pi\)
0.337740 + 0.941239i \(0.390338\pi\)
\(200\) 0 0
\(201\) −11.6815 14.9581i −0.823948 1.05507i
\(202\) −5.79383 + 21.6229i −0.407653 + 1.52138i
\(203\) −4.04520 4.04520i −0.283917 0.283917i
\(204\) −11.5761 + 9.04032i −0.810492 + 0.632949i
\(205\) 0 0
\(206\) −17.5277 + 30.3589i −1.22121 + 2.11520i
\(207\) −13.8532 7.68664i −0.962863 0.534258i
\(208\) 12.5135 10.5747i 0.867653 0.733225i
\(209\) −0.178353 −0.0123369
\(210\) 0 0
\(211\) −7.34656 + 12.7246i −0.505758 + 0.875999i 0.494220 + 0.869337i \(0.335454\pi\)
−0.999978 + 0.00666177i \(0.997879\pi\)
\(212\) −3.33443 + 12.4442i −0.229009 + 0.854674i
\(213\) −14.4038 + 19.1060i −0.986930 + 1.30912i
\(214\) 14.3624 + 24.8764i 0.981793 + 1.70052i
\(215\) 0 0
\(216\) −1.31352 2.95528i −0.0893737 0.201081i
\(217\) 0.616511 + 0.165194i 0.0418515 + 0.0112141i
\(218\) −8.00003 29.8565i −0.541831 2.02214i
\(219\) 16.7810 + 6.78412i 1.13396 + 0.458428i
\(220\) 0 0
\(221\) −10.4156 + 14.9861i −0.700627 + 1.00807i
\(222\) −2.51926 + 3.34170i −0.169082 + 0.224280i
\(223\) −1.08114 4.03489i −0.0723988 0.270196i 0.920232 0.391373i \(-0.128000\pi\)
−0.992631 + 0.121177i \(0.961333\pi\)
\(224\) 7.61463 13.1889i 0.508774 0.881222i
\(225\) 0 0
\(226\) 20.4795i 1.36227i
\(227\) 22.6915 + 6.08018i 1.50609 + 0.403556i 0.915135 0.403148i \(-0.132084\pi\)
0.590956 + 0.806704i \(0.298751\pi\)
\(228\) 0.974886 7.92590i 0.0645634 0.524906i
\(229\) 11.4151 0.754332 0.377166 0.926146i \(-0.376899\pi\)
0.377166 + 0.926146i \(0.376899\pi\)
\(230\) 0 0
\(231\) 0.0858158 0.212272i 0.00564626 0.0139665i
\(232\) −1.68615 + 0.451802i −0.110701 + 0.0296622i
\(233\) 8.68792 8.68792i 0.569164 0.569164i −0.362730 0.931894i \(-0.618155\pi\)
0.931894 + 0.362730i \(0.118155\pi\)
\(234\) 13.6525 + 15.6085i 0.892493 + 1.02036i
\(235\) 0 0
\(236\) 5.67728 9.83333i 0.369559 0.640096i
\(237\) 8.51576 3.61259i 0.553158 0.234663i
\(238\) −5.12277 + 19.1185i −0.332060 + 1.23927i
\(239\) 8.54627i 0.552812i −0.961041 0.276406i \(-0.910856\pi\)
0.961041 0.276406i \(-0.0891435\pi\)
\(240\) 0 0
\(241\) −17.8914 + 10.3296i −1.15249 + 0.665388i −0.949492 0.313792i \(-0.898401\pi\)
−0.202995 + 0.979180i \(0.565067\pi\)
\(242\) −14.9060 + 14.9060i −0.958194 + 0.958194i
\(243\) 14.1349 6.57297i 0.906756 0.421656i
\(244\) 4.01485 + 2.31797i 0.257024 + 0.148393i
\(245\) 0 0
\(246\) 5.22909 + 37.2643i 0.333395 + 2.37589i
\(247\) −1.75710 9.76553i −0.111802 0.621366i
\(248\) 0.137714 0.137714i 0.00874487 0.00874487i
\(249\) 2.39155 5.91567i 0.151558 0.374890i
\(250\) 0 0
\(251\) 17.9829 10.3824i 1.13507 0.655333i 0.189865 0.981810i \(-0.439195\pi\)
0.945205 + 0.326477i \(0.105862\pi\)
\(252\) 8.96417 + 4.97390i 0.564690 + 0.313326i
\(253\) −0.330592 0.0885818i −0.0207841 0.00556909i
\(254\) −0.970565 + 0.560356i −0.0608987 + 0.0351599i
\(255\) 0 0
\(256\) −9.93615 17.2099i −0.621009 1.07562i
\(257\) −22.4808 + 6.02371i −1.40231 + 0.375749i −0.879175 0.476499i \(-0.841905\pi\)
−0.523138 + 0.852248i \(0.675239\pi\)
\(258\) −12.6840 29.8993i −0.789672 1.86145i
\(259\) 2.57066i 0.159733i
\(260\) 0 0
\(261\) −2.31582 8.08917i −0.143345 0.500707i
\(262\) 10.6869 2.86355i 0.660239 0.176911i
\(263\) −5.86610 21.8926i −0.361719 1.34996i −0.871814 0.489837i \(-0.837056\pi\)
0.510095 0.860118i \(-0.329610\pi\)
\(264\) −0.0430016 0.0550637i −0.00264657 0.00338893i
\(265\) 0 0
\(266\) −5.38057 9.31942i −0.329904 0.571410i
\(267\) −3.05716 + 24.8550i −0.187095 + 1.52110i
\(268\) 12.9809 12.9809i 0.792933 0.792933i
\(269\) −4.58057 7.93378i −0.279282 0.483731i 0.691924 0.721970i \(-0.256763\pi\)
−0.971207 + 0.238239i \(0.923430\pi\)
\(270\) 0 0
\(271\) −7.38686 4.26480i −0.448720 0.259068i 0.258570 0.965993i \(-0.416749\pi\)
−0.707289 + 0.706924i \(0.750082\pi\)
\(272\) 16.2632 + 16.2632i 0.986104 + 0.986104i
\(273\) 12.4682 + 2.60749i 0.754609 + 0.157813i
\(274\) 13.9411i 0.842213i
\(275\) 0 0
\(276\) 5.74356 14.2071i 0.345722 0.855169i
\(277\) 21.2717 + 5.69974i 1.27809 + 0.342464i 0.833126 0.553083i \(-0.186549\pi\)
0.444967 + 0.895547i \(0.353215\pi\)
\(278\) −2.89919 2.89919i −0.173882 0.173882i
\(279\) 0.675007 + 0.652401i 0.0404116 + 0.0390582i
\(280\) 0 0
\(281\) −1.14521 −0.0683174 −0.0341587 0.999416i \(-0.510875\pi\)
−0.0341587 + 0.999416i \(0.510875\pi\)
\(282\) −0.366055 + 2.97606i −0.0217983 + 0.177222i
\(283\) 9.42831 2.52631i 0.560455 0.150174i 0.0325397 0.999470i \(-0.489640\pi\)
0.527915 + 0.849297i \(0.322974\pi\)
\(284\) −20.0432 11.5719i −1.18934 0.686668i
\(285\) 0 0
\(286\) 0.367858 + 0.255668i 0.0217519 + 0.0151179i
\(287\) 16.3444 + 16.3444i 0.964779 + 0.964779i
\(288\) 19.2048 11.5283i 1.13165 0.679313i
\(289\) −7.46552 4.31022i −0.439148 0.253542i
\(290\) 0 0
\(291\) 12.6553 1.77584i 0.741865 0.104102i
\(292\) −4.53139 + 16.9114i −0.265180 + 0.989664i
\(293\) −5.80825 + 21.6767i −0.339321 + 1.26636i 0.559786 + 0.828637i \(0.310883\pi\)
−0.899108 + 0.437728i \(0.855783\pi\)
\(294\) −9.33763 + 1.31030i −0.544582 + 0.0764181i
\(295\) 0 0
\(296\) 0.679316 + 0.392203i 0.0394844 + 0.0227963i
\(297\) 0.261846 0.211762i 0.0151938 0.0122877i
\(298\) 3.94849 + 3.94849i 0.228730 + 0.228730i
\(299\) 1.59327 18.9739i 0.0921413 1.09729i
\(300\) 0 0
\(301\) −17.2776 9.97521i −0.995863 0.574962i
\(302\) −22.4678 + 6.02022i −1.29288 + 0.346425i
\(303\) −2.46903 + 20.0734i −0.141842 + 1.15319i
\(304\) −12.5047 −0.717191
\(305\) 0 0
\(306\) −20.2314 + 20.9324i −1.15655 + 1.19663i
\(307\) 8.67444 + 8.67444i 0.495076 + 0.495076i 0.909901 0.414825i \(-0.136157\pi\)
−0.414825 + 0.909901i \(0.636157\pi\)
\(308\) 0.213921 + 0.0573199i 0.0121893 + 0.00326610i
\(309\) −11.8705 + 29.3626i −0.675291 + 1.67038i
\(310\) 0 0
\(311\) 3.86942i 0.219415i −0.993964 0.109707i \(-0.965009\pi\)
0.993964 0.109707i \(-0.0349913\pi\)
\(312\) 2.59131 2.89699i 0.146704 0.164010i
\(313\) −22.5004 22.5004i −1.27180 1.27180i −0.945143 0.326658i \(-0.894078\pi\)
−0.326658 0.945143i \(-0.605922\pi\)
\(314\) −1.92220 1.10978i −0.108476 0.0626287i
\(315\) 0 0
\(316\) 4.47377 + 7.74879i 0.251669 + 0.435903i
\(317\) −1.27451 + 1.27451i −0.0715836 + 0.0715836i −0.741992 0.670409i \(-0.766119\pi\)
0.670409 + 0.741992i \(0.266119\pi\)
\(318\) −3.11726 + 25.3436i −0.174807 + 1.42120i
\(319\) −0.0908856 0.157419i −0.00508862 0.00881375i
\(320\) 0 0
\(321\) 15.9732 + 20.4537i 0.891538 + 1.14162i
\(322\) −5.34470 19.9467i −0.297849 1.11159i
\(323\) 13.4549 3.60522i 0.748650 0.200600i
\(324\) 7.97935 + 12.7938i 0.443297 + 0.710766i
\(325\) 0 0
\(326\) 34.9102i 1.93350i
\(327\) −10.9061 25.7082i −0.603106 1.42167i
\(328\) 6.81278 1.82548i 0.376173 0.100795i
\(329\) 0.920933 + 1.59510i 0.0507727 + 0.0879409i
\(330\) 0 0
\(331\) 2.71099 1.56519i 0.149009 0.0860307i −0.423642 0.905830i \(-0.639248\pi\)
0.572651 + 0.819799i \(0.305915\pi\)
\(332\) 5.96162 + 1.59741i 0.327186 + 0.0876693i
\(333\) −1.83444 + 3.30610i −0.100526 + 0.181173i
\(334\) 10.2288 5.90559i 0.559694 0.323139i
\(335\) 0 0
\(336\) 6.01671 14.8828i 0.328239 0.811923i
\(337\) 20.2542 20.2542i 1.10332 1.10332i 0.109311 0.994008i \(-0.465136\pi\)
0.994008 0.109311i \(-0.0348643\pi\)
\(338\) −10.3748 + 22.6605i −0.564312 + 1.23257i
\(339\) 2.57116 + 18.3230i 0.139646 + 0.995167i
\(340\) 0 0
\(341\) 0.0175630 + 0.0101400i 0.000951090 + 0.000549112i
\(342\) −0.269511 15.8252i −0.0145735 0.855731i
\(343\) −14.1915 + 14.1915i −0.766272 + 0.766272i
\(344\) −5.27205 + 3.04382i −0.284250 + 0.164112i
\(345\) 0 0
\(346\) 6.45039i 0.346775i
\(347\) 8.30799 31.0059i 0.445996 1.66448i −0.267296 0.963615i \(-0.586130\pi\)
0.713292 0.700867i \(-0.247203\pi\)
\(348\) 7.49238 3.17845i 0.401634 0.170383i
\(349\) 9.95791 17.2476i 0.533035 0.923243i −0.466221 0.884668i \(-0.654385\pi\)
0.999256 0.0385748i \(-0.0122818\pi\)
\(350\) 0 0
\(351\) 14.1745 + 12.2508i 0.756579 + 0.653902i
\(352\) 0.342164 0.342164i 0.0182374 0.0182374i
\(353\) 5.14341 1.37817i 0.273756 0.0733527i −0.119329 0.992855i \(-0.538074\pi\)
0.393085 + 0.919502i \(0.371408\pi\)
\(354\) 8.43486 20.8643i 0.448308 1.10892i
\(355\) 0 0
\(356\) −24.2225 −1.28379
\(357\) −2.18306 + 17.7484i −0.115540 + 0.939346i
\(358\) −6.01454 1.61159i −0.317878 0.0851752i
\(359\) 18.4430i 0.973387i 0.873573 + 0.486693i \(0.161797\pi\)
−0.873573 + 0.486693i \(0.838203\pi\)
\(360\) 0 0
\(361\) 5.71335 9.89581i 0.300703 0.520832i
\(362\) −3.33058 12.4299i −0.175051 0.653301i
\(363\) −11.4650 + 15.2078i −0.601755 + 0.798203i
\(364\) −1.03098 + 12.2777i −0.0540380 + 0.643528i
\(365\) 0 0
\(366\) 8.51866 + 3.44386i 0.445277 + 0.180014i
\(367\) 7.94586 + 29.6544i 0.414770 + 1.54794i 0.785295 + 0.619122i \(0.212511\pi\)
−0.370524 + 0.928823i \(0.620822\pi\)
\(368\) −23.1784 6.21064i −1.20826 0.323752i
\(369\) 9.35693 + 32.6838i 0.487102 + 1.70145i
\(370\) 0 0
\(371\) 7.84251 + 13.5836i 0.407163 + 0.705227i
\(372\) −0.546617 + 0.725065i −0.0283408 + 0.0375928i
\(373\) 6.36353 23.7490i 0.329491 1.22968i −0.580228 0.814454i \(-0.697037\pi\)
0.909719 0.415224i \(-0.136297\pi\)
\(374\) −0.314449 + 0.544641i −0.0162597 + 0.0281627i
\(375\) 0 0
\(376\) 0.562024 0.0289842
\(377\) 7.72391 6.52722i 0.397802 0.336169i
\(378\) 18.9646 + 7.29367i 0.975432 + 0.375146i
\(379\) 11.2914 19.5573i 0.580002 1.00459i −0.415477 0.909604i \(-0.636385\pi\)
0.995478 0.0949885i \(-0.0302814\pi\)
\(380\) 0 0
\(381\) −0.798012 + 0.623202i −0.0408834 + 0.0319276i
\(382\) −2.12985 2.12985i −0.108973 0.108973i
\(383\) −0.474622 + 1.77131i −0.0242521 + 0.0905099i −0.976991 0.213280i \(-0.931585\pi\)
0.952739 + 0.303790i \(0.0982521\pi\)
\(384\) −5.23815 6.70746i −0.267308 0.342289i
\(385\) 0 0
\(386\) 5.08760 2.93733i 0.258952 0.149506i
\(387\) −15.1022 25.1584i −0.767687 1.27887i
\(388\) 3.19924 + 11.9397i 0.162417 + 0.606148i
\(389\) 15.3065 0.776072 0.388036 0.921644i \(-0.373154\pi\)
0.388036 + 0.921644i \(0.373154\pi\)
\(390\) 0 0
\(391\) 26.7304 1.35181
\(392\) 0.457426 + 1.70714i 0.0231035 + 0.0862234i
\(393\) 9.20205 3.90373i 0.464182 0.196917i
\(394\) −12.3753 + 7.14488i −0.623459 + 0.359954i
\(395\) 0 0
\(396\) 0.234218 + 0.226374i 0.0117699 + 0.0113757i
\(397\) 2.07456 7.74235i 0.104119 0.388578i −0.894125 0.447818i \(-0.852201\pi\)
0.998244 + 0.0592405i \(0.0188679\pi\)
\(398\) −6.81277 6.81277i −0.341493 0.341493i
\(399\) −5.98403 7.66256i −0.299576 0.383608i
\(400\) 0 0
\(401\) −2.14596 + 3.71692i −0.107164 + 0.185614i −0.914620 0.404314i \(-0.867510\pi\)
0.807456 + 0.589928i \(0.200844\pi\)
\(402\) 21.9032 29.0537i 1.09243 1.44907i
\(403\) −0.382178 + 1.06154i −0.0190376 + 0.0528792i
\(404\) −19.5626 −0.973275
\(405\) 0 0
\(406\) 5.48370 9.49805i 0.272152 0.471380i
\(407\) −0.0211403 + 0.0788966i −0.00104789 + 0.00391076i
\(408\) 4.35709 + 3.28475i 0.215708 + 0.162619i
\(409\) −18.8150 32.5886i −0.930343 1.61140i −0.782735 0.622355i \(-0.786176\pi\)
−0.147607 0.989046i \(-0.547157\pi\)
\(410\) 0 0
\(411\) −1.75028 12.4731i −0.0863349 0.615252i
\(412\) −29.5907 7.92881i −1.45783 0.390624i
\(413\) −3.57789 13.3529i −0.176056 0.657051i
\(414\) 7.36031 29.4673i 0.361740 1.44824i
\(415\) 0 0
\(416\) 22.1058 + 15.3639i 1.08383 + 0.753278i
\(417\) −2.95789 2.22991i −0.144848 0.109199i
\(418\) −0.0884963 0.330273i −0.00432850 0.0161542i
\(419\) −6.05083 + 10.4803i −0.295602 + 0.511998i −0.975125 0.221656i \(-0.928854\pi\)
0.679522 + 0.733655i \(0.262187\pi\)
\(420\) 0 0
\(421\) 22.2934i 1.08651i −0.839567 0.543256i \(-0.817191\pi\)
0.839567 0.543256i \(-0.182809\pi\)
\(422\) −27.2087 7.29054i −1.32450 0.354898i
\(423\) 0.0461292 + 2.70863i 0.00224288 + 0.131698i
\(424\) 4.78611 0.232434
\(425\) 0 0
\(426\) −42.5274 17.1927i −2.06046 0.832988i
\(427\) 5.45183 1.46081i 0.263833 0.0706937i
\(428\) −17.7500 + 17.7500i −0.857979 + 0.857979i
\(429\) 0.361221 + 0.182562i 0.0174399 + 0.00881416i
\(430\) 0 0
\(431\) 0.197713 0.342449i 0.00952349 0.0164952i −0.861224 0.508225i \(-0.830302\pi\)
0.870748 + 0.491730i \(0.163635\pi\)
\(432\) 18.3585 14.8471i 0.883274 0.714330i
\(433\) −2.90501 + 10.8417i −0.139606 + 0.521017i 0.860330 + 0.509737i \(0.170257\pi\)
−0.999936 + 0.0112798i \(0.996409\pi\)
\(434\) 1.22362i 0.0587357i
\(435\) 0 0
\(436\) 23.3928 13.5059i 1.12031 0.646813i
\(437\) −10.2764 + 10.2764i −0.491585 + 0.491585i
\(438\) −4.23627 + 34.4413i −0.202417 + 1.64567i
\(439\) 18.5828 + 10.7288i 0.886911 + 0.512058i 0.872931 0.487844i \(-0.162217\pi\)
0.0139799 + 0.999902i \(0.495550\pi\)
\(440\) 0 0
\(441\) −8.18987 + 2.34464i −0.389994 + 0.111650i
\(442\) −32.9192 11.8516i −1.56581 0.563724i
\(443\) 15.8402 15.8402i 0.752590 0.752590i −0.222372 0.974962i \(-0.571380\pi\)
0.974962 + 0.222372i \(0.0713799\pi\)
\(444\) −3.39057 1.37072i −0.160909 0.0650513i
\(445\) 0 0
\(446\) 6.93533 4.00412i 0.328398 0.189600i
\(447\) 4.02843 + 3.03698i 0.190538 + 0.143644i
\(448\) 10.2967 + 2.75900i 0.486474 + 0.130350i
\(449\) 17.4060 10.0493i 0.821438 0.474257i −0.0294742 0.999566i \(-0.509383\pi\)
0.850912 + 0.525308i \(0.176050\pi\)
\(450\) 0 0
\(451\) 0.367218 + 0.636041i 0.0172916 + 0.0299500i
\(452\) −17.2870 + 4.63203i −0.813111 + 0.217872i
\(453\) −19.3461 + 8.20708i −0.908958 + 0.385602i
\(454\) 45.0370i 2.11369i
\(455\) 0 0
\(456\) −2.93787 + 0.412255i −0.137578 + 0.0193056i
\(457\) −22.6812 + 6.07741i −1.06098 + 0.284289i −0.746783 0.665068i \(-0.768402\pi\)
−0.314199 + 0.949357i \(0.601736\pi\)
\(458\) 5.66403 + 21.1385i 0.264663 + 0.987735i
\(459\) −15.4730 + 21.2683i −0.722217 + 0.992717i
\(460\) 0 0
\(461\) 2.45668 + 4.25509i 0.114419 + 0.198179i 0.917547 0.397627i \(-0.130166\pi\)
−0.803128 + 0.595806i \(0.796833\pi\)
\(462\) 0.435665 + 0.0535868i 0.0202690 + 0.00249308i
\(463\) 8.17642 8.17642i 0.379991 0.379991i −0.491108 0.871099i \(-0.663408\pi\)
0.871099 + 0.491108i \(0.163408\pi\)
\(464\) −6.37217 11.0369i −0.295820 0.512376i
\(465\) 0 0
\(466\) 20.3991 + 11.7774i 0.944969 + 0.545578i
\(467\) 18.4859 + 18.4859i 0.855427 + 0.855427i 0.990795 0.135368i \(-0.0432217\pi\)
−0.135368 + 0.990795i \(0.543222\pi\)
\(468\) −10.0874 + 15.0546i −0.466290 + 0.695898i
\(469\) 22.3501i 1.03203i
\(470\) 0 0
\(471\) −1.85912 0.751593i −0.0856638 0.0346316i
\(472\) −4.07447 1.09175i −0.187543 0.0502519i
\(473\) −0.448237 0.448237i −0.0206100 0.0206100i
\(474\) 10.9152 + 13.9769i 0.501351 + 0.641981i
\(475\) 0 0
\(476\) −17.2968 −0.792797
\(477\) 0.392829 + 23.0663i 0.0179864 + 1.05613i
\(478\) 15.8260 4.24055i 0.723862 0.193958i
\(479\) −16.1211 9.30755i −0.736594 0.425273i 0.0842357 0.996446i \(-0.473155\pi\)
−0.820830 + 0.571173i \(0.806488\pi\)
\(480\) 0 0
\(481\) −4.52818 0.380238i −0.206467 0.0173374i
\(482\) −28.0058 28.0058i −1.27563 1.27563i
\(483\) −7.28617 17.1753i −0.331532 0.781502i
\(484\) −15.9538 9.21091i −0.725171 0.418678i
\(485\) 0 0
\(486\) 19.1854 + 22.9136i 0.870266 + 1.03938i
\(487\) 8.68654 32.4186i 0.393625 1.46903i −0.430485 0.902598i \(-0.641657\pi\)
0.824110 0.566430i \(-0.191676\pi\)
\(488\) 0.445751 1.66356i 0.0201782 0.0753060i
\(489\) −4.38291 31.2341i −0.198202 1.41245i
\(490\) 0 0
\(491\) −26.7145 15.4236i −1.20561 0.696059i −0.243812 0.969822i \(-0.578398\pi\)
−0.961797 + 0.273764i \(0.911731\pi\)
\(492\) −30.2726 + 12.8424i −1.36479 + 0.578978i
\(493\) 10.0385 + 10.0385i 0.452109 + 0.452109i
\(494\) 17.2119 8.09933i 0.774401 0.364406i
\(495\) 0 0
\(496\) 1.23138 + 0.710935i 0.0552904 + 0.0319219i
\(497\) −27.2170 + 7.29277i −1.22085 + 0.327125i
\(498\) 12.1413 + 1.49338i 0.544063 + 0.0669198i
\(499\) −10.3869 −0.464982 −0.232491 0.972598i \(-0.574688\pi\)
−0.232491 + 0.972598i \(0.574688\pi\)
\(500\) 0 0
\(501\) 8.41024 6.56793i 0.375742 0.293433i
\(502\) 28.1490 + 28.1490i 1.25635 + 1.25635i
\(503\) −6.62041 1.77393i −0.295189 0.0790957i 0.108185 0.994131i \(-0.465496\pi\)
−0.403374 + 0.915035i \(0.632163\pi\)
\(504\) 0.922921 3.69495i 0.0411102 0.164586i
\(505\) 0 0
\(506\) 0.656142i 0.0291691i
\(507\) −6.43729 + 21.5769i −0.285890 + 0.958262i
\(508\) −0.692525 0.692525i −0.0307258 0.0307258i
\(509\) −16.1412 9.31914i −0.715447 0.413064i 0.0976275 0.995223i \(-0.468875\pi\)
−0.813075 + 0.582159i \(0.802208\pi\)
\(510\) 0 0
\(511\) 10.6578 + 18.4598i 0.471471 + 0.816612i
\(512\) 19.9903 19.9903i 0.883454 0.883454i
\(513\) −2.22796 14.1250i −0.0983668 0.623634i
\(514\) −22.3094 38.6409i −0.984024 1.70438i
\(515\) 0 0
\(516\) 22.3695 17.4693i 0.984763 0.769044i
\(517\) 0.0151469 + 0.0565292i 0.000666162 + 0.00248615i
\(518\) −4.76033 + 1.27553i −0.209157 + 0.0560434i
\(519\) −0.809834 5.77116i −0.0355478 0.253326i
\(520\) 0 0
\(521\) 15.0847i 0.660871i −0.943829 0.330435i \(-0.892804\pi\)
0.943829 0.330435i \(-0.107196\pi\)
\(522\) 13.8304 8.30217i 0.605341 0.363376i
\(523\) 1.55097 0.415581i 0.0678191 0.0181721i −0.224750 0.974416i \(-0.572157\pi\)
0.292569 + 0.956244i \(0.405490\pi\)
\(524\) 4.83431 + 8.37327i 0.211188 + 0.365788i
\(525\) 0 0
\(526\) 37.6299 21.7257i 1.64074 0.947283i
\(527\) −1.52992 0.409940i −0.0666443 0.0178573i
\(528\) 0.307052 0.407292i 0.0133627 0.0177251i
\(529\) −4.23345 + 2.44419i −0.184063 + 0.106269i
\(530\) 0 0
\(531\) 4.92719 19.7262i 0.213822 0.856045i
\(532\) 6.64967 6.64967i 0.288300 0.288300i
\(533\) −31.2080 + 26.3729i −1.35177 + 1.14234i
\(534\) −47.5433 + 6.67148i −2.05740 + 0.288703i
\(535\) 0 0
\(536\) −5.90618 3.40994i −0.255108 0.147287i
\(537\) −5.58353 0.686775i −0.240947 0.0296365i
\(538\) 12.4189 12.4189i 0.535418 0.535418i
\(539\) −0.159378 + 0.0920170i −0.00686490 + 0.00396345i
\(540\) 0 0
\(541\) 27.8477i 1.19727i −0.801023 0.598634i \(-0.795710\pi\)
0.801023 0.598634i \(-0.204290\pi\)
\(542\) 4.23228 15.7951i 0.181792 0.678458i
\(543\) −4.54041 10.7029i −0.194848 0.459304i
\(544\) −18.8963 + 32.7293i −0.810171 + 1.40326i
\(545\) 0 0
\(546\) 1.35801 + 24.3823i 0.0581175 + 1.04347i
\(547\) 4.94438 4.94438i 0.211406 0.211406i −0.593458 0.804865i \(-0.702238\pi\)
0.804865 + 0.593458i \(0.202238\pi\)
\(548\) 11.7679 3.15319i 0.502698 0.134697i
\(549\) 8.05400 + 2.01172i 0.343737 + 0.0858581i
\(550\) 0 0
\(551\) −7.71847 −0.328818
\(552\) −5.65034 0.694992i −0.240495 0.0295808i
\(553\) 10.5222 + 2.81942i 0.447450 + 0.119894i
\(554\) 42.2190i 1.79371i
\(555\) 0 0
\(556\) 1.79150 3.10298i 0.0759767 0.131595i
\(557\) −0.531756 1.98454i −0.0225312 0.0840877i 0.953745 0.300618i \(-0.0971928\pi\)
−0.976276 + 0.216530i \(0.930526\pi\)
\(558\) −0.873183 + 1.57369i −0.0369648 + 0.0666195i
\(559\) 20.1268 28.9588i 0.851274 1.22482i
\(560\) 0 0
\(561\) −0.212958 + 0.526768i −0.00899110 + 0.0222402i
\(562\) −0.568237 2.12069i −0.0239697 0.0894560i
\(563\) 17.7814 + 4.76452i 0.749399 + 0.200801i 0.613251 0.789888i \(-0.289861\pi\)
0.136147 + 0.990689i \(0.456528\pi\)
\(564\) −2.59492 + 0.364131i −0.109266 + 0.0153327i
\(565\) 0 0
\(566\) 9.35642 + 16.2058i 0.393280 + 0.681180i
\(567\) 17.8833 + 4.14468i 0.751027 + 0.174060i
\(568\) −2.22531 + 8.30495i −0.0933717 + 0.348468i
\(569\) 2.39632 4.15054i 0.100459 0.174000i −0.811415 0.584471i \(-0.801302\pi\)
0.911874 + 0.410471i \(0.134636\pi\)
\(570\) 0 0
\(571\) −11.0204 −0.461190 −0.230595 0.973050i \(-0.574067\pi\)
−0.230595 + 0.973050i \(0.574067\pi\)
\(572\) −0.132610 + 0.368340i −0.00554472 + 0.0154011i
\(573\) −2.17298 1.63818i −0.0907774 0.0684359i
\(574\) −22.1566 + 38.3763i −0.924798 + 1.60180i
\(575\) 0 0
\(576\) 11.2737 + 10.8961i 0.469737 + 0.454005i
\(577\) −20.8346 20.8346i −0.867358 0.867358i 0.124822 0.992179i \(-0.460164\pi\)
−0.992179 + 0.124822i \(0.960164\pi\)
\(578\) 4.27735 15.9633i 0.177914 0.663986i
\(579\) 4.18310 3.26676i 0.173844 0.135762i
\(580\) 0 0
\(581\) 6.50746 3.75708i 0.269975 0.155870i
\(582\) 9.56788 + 22.5538i 0.396601 + 0.934886i
\(583\) 0.128989 + 0.481393i 0.00534217 + 0.0199373i
\(584\) 6.50418 0.269145
\(585\) 0 0
\(586\) −43.0228 −1.77725
\(587\) −7.06095 26.3518i −0.291437 1.08766i −0.944006 0.329928i \(-0.892976\pi\)
0.652569 0.757729i \(-0.273691\pi\)
\(588\) −3.21802 7.58565i −0.132709 0.312827i
\(589\) 0.745769 0.430570i 0.0307289 0.0177413i
\(590\) 0 0
\(591\) −10.1751 + 7.94622i −0.418549 + 0.326864i
\(592\) −1.48219 + 5.53159i −0.0609175 + 0.227347i
\(593\) 10.8114 + 10.8114i 0.443972 + 0.443972i 0.893344 0.449373i \(-0.148352\pi\)
−0.449373 + 0.893344i \(0.648352\pi\)
\(594\) 0.522065 + 0.379811i 0.0214206 + 0.0155838i
\(595\) 0 0
\(596\) −2.43990 + 4.22603i −0.0999422 + 0.173105i
\(597\) −6.95071 5.24005i −0.284474 0.214461i
\(598\) 35.9264 6.46421i 1.46914 0.264341i
\(599\) 19.7870 0.808476 0.404238 0.914654i \(-0.367537\pi\)
0.404238 + 0.914654i \(0.367537\pi\)
\(600\) 0 0
\(601\) 5.88386 10.1912i 0.240008 0.415706i −0.720708 0.693238i \(-0.756183\pi\)
0.960716 + 0.277533i \(0.0895167\pi\)
\(602\) 9.89915 36.9441i 0.403459 1.50573i
\(603\) 15.9492 28.7443i 0.649500 1.17056i
\(604\) −10.1635 17.6037i −0.413547 0.716284i
\(605\) 0 0
\(606\) −38.3969 + 5.38802i −1.55977 + 0.218873i
\(607\) 37.4060 + 10.0229i 1.51826 + 0.406817i 0.919170 0.393861i \(-0.128861\pi\)
0.599094 + 0.800679i \(0.295528\pi\)
\(608\) −5.31804 19.8472i −0.215675 0.804910i
\(609\) 3.71380 9.18637i 0.150491 0.372250i
\(610\) 0 0
\(611\) −2.94597 + 1.38627i −0.119181 + 0.0560826i
\(612\) −22.2453 12.3431i −0.899211 0.498940i
\(613\) 1.57858 + 5.89134i 0.0637583 + 0.237949i 0.990450 0.137874i \(-0.0440268\pi\)
−0.926692 + 0.375823i \(0.877360\pi\)
\(614\) −11.7591 + 20.3674i −0.474560 + 0.821963i
\(615\) 0 0
\(616\) 0.0822747i 0.00331494i
\(617\) −40.3273 10.8057i −1.62352 0.435020i −0.671484 0.741019i \(-0.734343\pi\)
−0.952032 + 0.306000i \(0.901009\pi\)
\(618\) −60.2636 7.41243i −2.42416 0.298172i
\(619\) −38.9070 −1.56380 −0.781902 0.623402i \(-0.785750\pi\)
−0.781902 + 0.623402i \(0.785750\pi\)
\(620\) 0 0
\(621\) 2.88570 27.2884i 0.115799 1.09505i
\(622\) 7.16537 1.91996i 0.287305 0.0769832i
\(623\) −20.8528 + 20.8528i −0.835450 + 0.835450i
\(624\) 25.3259 + 12.7998i 1.01385 + 0.512400i
\(625\) 0 0
\(626\) 30.5018 52.8307i 1.21910 2.11154i
\(627\) −0.120643 0.284384i −0.00481801 0.0113572i
\(628\) 0.502020 1.87356i 0.0200328 0.0747633i
\(629\) 6.37927i 0.254358i
\(630\) 0 0
\(631\) 6.37109 3.67835i 0.253629 0.146433i −0.367796 0.929907i \(-0.619887\pi\)
0.621425 + 0.783474i \(0.286554\pi\)
\(632\) 2.35042 2.35042i 0.0934947 0.0934947i
\(633\) −25.2589 3.10684i −1.00395 0.123486i
\(634\) −2.99253 1.72774i −0.118849 0.0686172i
\(635\) 0 0
\(636\) −22.0979 + 3.10088i −0.876239 + 0.122958i
\(637\) −6.60847 7.82006i −0.261837 0.309842i
\(638\) 0.246411 0.246411i 0.00975550 0.00975550i
\(639\) −40.2077 10.0430i −1.59059 0.397297i
\(640\) 0 0
\(641\) −27.5842 + 15.9257i −1.08951 + 0.629029i −0.933446 0.358718i \(-0.883214\pi\)
−0.156064 + 0.987747i \(0.549881\pi\)
\(642\) −29.9504 + 39.7280i −1.18205 + 1.56794i
\(643\) −11.7226 3.14107i −0.462295 0.123872i 0.0201514 0.999797i \(-0.493585\pi\)
−0.482447 + 0.875925i \(0.660252\pi\)
\(644\) 15.6284 9.02306i 0.615845 0.355558i
\(645\) 0 0
\(646\) 13.3523 + 23.1268i 0.525338 + 0.909913i
\(647\) 31.0824 8.32851i 1.22198 0.327427i 0.410526 0.911849i \(-0.365345\pi\)
0.811450 + 0.584422i \(0.198679\pi\)
\(648\) 3.82370 4.09345i 0.150209 0.160806i
\(649\) 0.439239i 0.0172417i
\(650\) 0 0
\(651\) 0.153623 + 1.09477i 0.00602097 + 0.0429075i
\(652\) 29.4681 7.89596i 1.15406 0.309230i
\(653\) 8.57665 + 32.0085i 0.335630 + 1.25259i 0.903184 + 0.429253i \(0.141223\pi\)
−0.567554 + 0.823336i \(0.692110\pi\)
\(654\) 42.1949 32.9519i 1.64995 1.28852i
\(655\) 0 0
\(656\) 25.7464 + 44.5940i 1.00523 + 1.74110i
\(657\) 0.533843 + 31.3464i 0.0208272 + 1.22294i
\(658\) −2.49685 + 2.49685i −0.0973374 + 0.0973374i
\(659\) −17.7029 30.6623i −0.689606 1.19443i −0.971965 0.235124i \(-0.924450\pi\)
0.282359 0.959309i \(-0.408883\pi\)
\(660\) 0 0
\(661\) 9.03793 + 5.21805i 0.351535 + 0.202959i 0.665361 0.746522i \(-0.268278\pi\)
−0.313826 + 0.949480i \(0.601611\pi\)
\(662\) 4.24357 + 4.24357i 0.164931 + 0.164931i
\(663\) −30.9407 6.47068i −1.20164 0.251300i
\(664\) 2.29286i 0.0889803i
\(665\) 0 0
\(666\) −7.03245 1.75656i −0.272502 0.0680652i
\(667\) −14.3068 3.83351i −0.553963 0.148434i
\(668\) 7.29852 + 7.29852i 0.282388 + 0.282388i
\(669\) 5.70233 4.45320i 0.220465 0.172171i
\(670\) 0 0
\(671\) 0.179337 0.00692322
\(672\) 26.1806 + 3.22021i 1.00994 + 0.124222i
\(673\) 30.6699 8.21798i 1.18224 0.316780i 0.386425 0.922321i \(-0.373710\pi\)
0.795814 + 0.605541i \(0.207043\pi\)
\(674\) 47.5566 + 27.4568i 1.83181 + 1.05760i
\(675\) 0 0
\(676\) −21.4746 3.63212i −0.825945 0.139697i
\(677\) 10.8855 + 10.8855i 0.418365 + 0.418365i 0.884640 0.466275i \(-0.154404\pi\)
−0.466275 + 0.884640i \(0.654404\pi\)
\(678\) −32.6546 + 13.8529i −1.25409 + 0.532017i
\(679\) 13.0329 + 7.52456i 0.500158 + 0.288766i
\(680\) 0 0
\(681\) 5.65431 + 40.2946i 0.216674 + 1.54409i
\(682\) −0.0100627 + 0.0375544i −0.000385320 + 0.00143803i
\(683\) 5.64971 21.0850i 0.216180 0.806796i −0.769567 0.638566i \(-0.779528\pi\)
0.985748 0.168230i \(-0.0538052\pi\)
\(684\) 13.2973 3.80684i 0.508436 0.145558i
\(685\) 0 0
\(686\) −33.3215 19.2382i −1.27222 0.734517i
\(687\) 7.72150 + 18.2014i 0.294593 + 0.694428i
\(688\) −31.4268 31.4268i −1.19813 1.19813i
\(689\) −25.0874 + 11.8053i −0.955755 + 0.449745i
\(690\) 0 0
\(691\) −34.2377 19.7672i −1.30246 0.751978i −0.321639 0.946863i \(-0.604234\pi\)
−0.980826 + 0.194884i \(0.937567\pi\)
\(692\) 5.44485 1.45894i 0.206982 0.0554607i
\(693\) 0.396517 0.00675285i 0.0150624 0.000256520i
\(694\) 61.5388 2.33598
\(695\) 0 0
\(696\) −1.86096 2.38296i −0.0705394 0.0903258i
\(697\) −40.5598 40.5598i −1.53631 1.53631i
\(698\) 36.8800 + 9.88198i 1.39593 + 0.374038i
\(699\) 19.7297 + 7.97618i 0.746245 + 0.301687i
\(700\) 0 0
\(701\) 22.5069i 0.850074i −0.905176 0.425037i \(-0.860261\pi\)
0.905176 0.425037i \(-0.139739\pi\)
\(702\) −15.6529 + 32.3270i −0.590779 + 1.22010i
\(703\) 2.45248 + 2.45248i 0.0924970 + 0.0924970i
\(704\) 0.293330 + 0.169354i 0.0110553 + 0.00638277i
\(705\) 0 0
\(706\) 5.10419 + 8.84072i 0.192099 + 0.332725i
\(707\) −16.8411 + 16.8411i −0.633376 + 0.633376i
\(708\) 19.5196 + 2.40091i 0.733590 + 0.0902316i
\(709\) 20.0553 + 34.7369i 0.753194 + 1.30457i 0.946267 + 0.323386i \(0.104821\pi\)
−0.193073 + 0.981184i \(0.561846\pi\)
\(710\) 0 0
\(711\) 11.5206 + 11.1348i 0.432056 + 0.417586i
\(712\) 2.32902 + 8.69201i 0.0872836 + 0.325747i
\(713\) 1.59620 0.427700i 0.0597780 0.0160175i
\(714\) −33.9496 + 4.76396i −1.27053 + 0.178287i
\(715\) 0 0
\(716\) 5.44145i 0.203357i
\(717\) 13.6271 5.78094i 0.508912 0.215893i
\(718\) −34.1528 + 9.15120i −1.27457 + 0.341520i
\(719\) −5.00371 8.66669i −0.186607 0.323213i 0.757510 0.652824i \(-0.226416\pi\)
−0.944117 + 0.329611i \(0.893082\pi\)
\(720\) 0 0
\(721\) −32.3000 + 18.6484i −1.20292 + 0.694503i
\(722\) 21.1599 + 5.66978i 0.787490 + 0.211007i
\(723\) −28.5728 21.5407i −1.06264 0.801107i
\(724\) 9.73892 5.62277i 0.361944 0.208968i
\(725\) 0 0
\(726\) −33.8505 13.6849i −1.25631 0.507893i
\(727\) 6.32057 6.32057i 0.234417 0.234417i −0.580116 0.814534i \(-0.696993\pi\)
0.814534 + 0.580116i \(0.196993\pi\)
\(728\) 4.50487 0.810558i 0.166962 0.0300413i
\(729\) 20.0419 + 18.0921i 0.742292 + 0.670076i
\(730\) 0 0
\(731\) 42.8756 + 24.7542i 1.58581 + 0.915568i
\(732\) −0.980265 + 7.96963i −0.0362316 + 0.294566i
\(733\) −23.4455 + 23.4455i −0.865981 + 0.865981i −0.992025 0.126044i \(-0.959772\pi\)
0.126044 + 0.992025i \(0.459772\pi\)
\(734\) −50.9712 + 29.4282i −1.88138 + 1.08622i
\(735\) 0 0
\(736\) 39.4298i 1.45340i
\(737\) 0.183800 0.685952i 0.00677037 0.0252674i
\(738\) −55.8810 + 33.5444i −2.05701 + 1.23479i
\(739\) −3.41081 + 5.90770i −0.125469 + 0.217318i −0.921916 0.387390i \(-0.873377\pi\)
0.796447 + 0.604708i \(0.206710\pi\)
\(740\) 0 0
\(741\) 14.3826 9.40738i 0.528359 0.345589i
\(742\) −21.2628 + 21.2628i −0.780580 + 0.780580i
\(743\) −18.6549 + 4.99856i −0.684381 + 0.183379i −0.584224 0.811592i \(-0.698601\pi\)
−0.100157 + 0.994972i \(0.531935\pi\)
\(744\) 0.312740 + 0.126432i 0.0114656 + 0.00463524i
\(745\) 0 0
\(746\) 47.1359 1.72577
\(747\) 11.0503 0.188191i 0.404308 0.00688555i
\(748\) −0.530860 0.142243i −0.0194102 0.00520094i
\(749\) 30.5614i 1.11669i
\(750\) 0 0
\(751\) −19.9689 + 34.5872i −0.728677 + 1.26211i 0.228765 + 0.973482i \(0.426531\pi\)
−0.957442 + 0.288624i \(0.906802\pi\)
\(752\) 1.06198 + 3.96337i 0.0387265 + 0.144529i
\(753\) 28.7190 + 21.6508i 1.04658 + 0.789001i
\(754\) 15.9196 + 11.0644i 0.579757 + 0.402941i
\(755\) 0 0
\(756\) −1.86729 + 17.6579i −0.0679126 + 0.642212i
\(757\) 10.8250 + 40.3994i 0.393440 + 1.46834i 0.824420 + 0.565978i \(0.191501\pi\)
−0.430980 + 0.902362i \(0.641832\pi\)
\(758\) 41.8188 + 11.2053i 1.51893 + 0.406996i
\(759\) −0.0823774 0.587050i −0.00299011 0.0213086i
\(760\) 0 0
\(761\) 0.0958031 + 0.165936i 0.00347286 + 0.00601517i 0.867757 0.496989i \(-0.165561\pi\)
−0.864284 + 0.503005i \(0.832228\pi\)
\(762\) −1.55001 1.16853i −0.0561508 0.0423314i
\(763\) 8.51155 31.7655i 0.308139 1.14999i
\(764\) 1.31611 2.27956i 0.0476151 0.0824717i
\(765\) 0 0
\(766\) −3.51561 −0.127024
\(767\) 24.0501 4.32732i 0.868400 0.156250i
\(768\) 20.7202 27.4845i 0.747676 0.991761i
\(769\) 4.49084 7.77836i 0.161944 0.280495i −0.773622 0.633647i \(-0.781557\pi\)
0.935566 + 0.353153i \(0.114890\pi\)
\(770\) 0 0
\(771\) −24.8115 31.7711i −0.893563 1.14421i
\(772\) 3.63014 + 3.63014i 0.130652 + 0.130652i
\(773\) −4.59533 + 17.1500i −0.165282 + 0.616842i 0.832722 + 0.553692i \(0.186781\pi\)
−0.998004 + 0.0631504i \(0.979885\pi\)
\(774\) 39.0948 40.4494i 1.40523 1.45393i
\(775\) 0 0
\(776\) 3.97685 2.29603i 0.142761 0.0824228i
\(777\) −4.09892 + 1.73886i −0.147048 + 0.0623814i
\(778\) 7.59490 + 28.3446i 0.272290 + 1.01620i
\(779\) 31.1860 1.11736
\(780\) 0 0
\(781\) −0.895297 −0.0320362
\(782\) 13.2633 + 49.4992i 0.474293 + 1.77009i
\(783\) 11.3317 9.16432i 0.404963 0.327506i
\(784\) −11.1743 + 6.45149i −0.399082 + 0.230410i
\(785\) 0 0
\(786\) 11.7949 + 15.1033i 0.420709 + 0.538718i
\(787\) 8.41390 31.4011i 0.299923 1.11933i −0.637305 0.770612i \(-0.719951\pi\)
0.937228 0.348717i \(-0.113382\pi\)
\(788\) −8.83012 8.83012i −0.314560 0.314560i
\(789\) 30.9398 24.1623i 1.10149 0.860200i
\(790\) 0 0
\(791\) −10.8945 + 18.8698i −0.387362 + 0.670931i
\(792\) 0.0587118 0.105813i 0.00208623 0.00375990i
\(793\) 1.76680 + 9.81941i 0.0627409 + 0.348698i
\(794\) 15.3666 0.545341
\(795\) 0 0
\(796\) 4.20984 7.29165i 0.149214 0.258446i
\(797\) −5.63774 + 21.0403i −0.199699 + 0.745287i 0.791301 + 0.611427i \(0.209404\pi\)
−0.991000 + 0.133860i \(0.957263\pi\)
\(798\) 11.2203 14.8833i 0.397194 0.526862i
\(799\) −2.28536 3.95837i −0.0808503 0.140037i
\(800\) 0 0
\(801\) −41.6993 + 11.9379i −1.47337 + 0.421806i
\(802\) −7.94777 2.12960i −0.280645 0.0751987i
\(803\) 0.175292 + 0.654199i 0.00618593 + 0.0230862i
\(804\) 29.4787 + 11.9174i 1.03963 + 0.420296i
\(805\) 0 0
\(806\) −2.15539 0.180992i −0.0759205 0.00637516i
\(807\) 9.55203 12.6704i 0.336247 0.446018i
\(808\) 1.88096 + 7.01984i 0.0661720 + 0.246957i
\(809\) −9.05040 + 15.6758i −0.318195 + 0.551130i −0.980112 0.198448i \(-0.936410\pi\)
0.661916 + 0.749578i \(0.269743\pi\)
\(810\) 0 0
\(811\) 23.9232i 0.840056i −0.907511 0.420028i \(-0.862020\pi\)
0.907511 0.420028i \(-0.137980\pi\)
\(812\) 9.25772 + 2.48060i 0.324882 + 0.0870520i
\(813\) 1.80358 14.6632i 0.0632542 0.514261i
\(814\) −0.156590 −0.00548848
\(815\) 0 0
\(816\) −14.9309 + 36.9327i −0.522686 + 1.29290i
\(817\) −25.9999 + 6.96666i −0.909623 + 0.243733i
\(818\) 51.0116 51.0116i 1.78358 1.78358i
\(819\) 4.27617 + 21.6444i 0.149421 + 0.756315i
\(820\) 0 0
\(821\) −9.77979 + 16.9391i −0.341317 + 0.591179i −0.984678 0.174385i \(-0.944206\pi\)
0.643360 + 0.765563i \(0.277540\pi\)
\(822\) 22.2292 9.43015i 0.775331 0.328914i
\(823\) 1.15104 4.29575i 0.0401228 0.149740i −0.942958 0.332911i \(-0.891969\pi\)
0.983081 + 0.183170i \(0.0586360\pi\)
\(824\) 11.3807i 0.396466i
\(825\) 0 0
\(826\) 22.9515 13.2510i 0.798584 0.461063i
\(827\) −0.374621 + 0.374621i −0.0130268 + 0.0130268i −0.713590 0.700563i \(-0.752932\pi\)
0.700563 + 0.713590i \(0.252932\pi\)
\(828\) 26.5385 0.451962i 0.922275 0.0157067i
\(829\) −29.3227 16.9295i −1.01842 0.587985i −0.104774 0.994496i \(-0.533412\pi\)
−0.913646 + 0.406511i \(0.866745\pi\)
\(830\) 0 0
\(831\) 5.30052 + 37.7733i 0.183873 + 1.31034i
\(832\) −6.38298 + 17.7294i −0.221290 + 0.614658i
\(833\) 10.1634 10.1634i 0.352141 0.352141i
\(834\) 2.66168 6.58386i 0.0921664 0.227980i
\(835\) 0 0
\(836\) 0.258771 0.149402i 0.00894979 0.00516717i
\(837\) −0.583663 + 1.51760i −0.0201743 + 0.0524561i
\(838\) −22.4098 6.00469i −0.774134 0.207429i
\(839\) −26.5275 + 15.3157i −0.915831 + 0.528755i −0.882303 0.470683i \(-0.844008\pi\)
−0.0335282 + 0.999438i \(0.510674\pi\)
\(840\) 0 0
\(841\) 10.5668 + 18.3022i 0.364372 + 0.631111i
\(842\) 41.2828 11.0617i 1.42270 0.381211i
\(843\) −0.774650 1.82604i −0.0266804 0.0628921i
\(844\) 24.6161i 0.847323i
\(845\) 0 0
\(846\) −4.99295 + 1.42941i −0.171661 + 0.0491442i
\(847\) −21.6639 + 5.80483i −0.744381 + 0.199456i
\(848\) 9.04366 + 33.7514i 0.310560 + 1.15903i
\(849\) 10.4058 + 13.3246i 0.357126 + 0.457300i
\(850\) 0 0
\(851\) 3.32782 + 5.76395i 0.114076 + 0.197586i
\(852\) 4.89374 39.7865i 0.167657 1.36306i
\(853\) −5.73121 + 5.73121i −0.196233 + 0.196233i −0.798383 0.602150i \(-0.794311\pi\)
0.602150 + 0.798383i \(0.294311\pi\)
\(854\) 5.41026 + 9.37085i 0.185135 + 0.320664i
\(855\) 0 0
\(856\) 8.07610 + 4.66274i 0.276035 + 0.159369i
\(857\) 13.1772 + 13.1772i 0.450125 + 0.450125i 0.895396 0.445271i \(-0.146893\pi\)
−0.445271 + 0.895396i \(0.646893\pi\)
\(858\) −0.158834 + 0.759492i −0.00542250 + 0.0259286i
\(859\) 11.2173i 0.382729i 0.981519 + 0.191365i \(0.0612913\pi\)
−0.981519 + 0.191365i \(0.938709\pi\)
\(860\) 0 0
\(861\) −15.0054 + 37.1170i −0.511383 + 1.26494i
\(862\) 0.732248 + 0.196205i 0.0249405 + 0.00668278i
\(863\) −9.74312 9.74312i −0.331659 0.331659i 0.521557 0.853216i \(-0.325351\pi\)
−0.853216 + 0.521557i \(0.825351\pi\)
\(864\) 31.3726 + 22.8241i 1.06732 + 0.776491i
\(865\) 0 0
\(866\) −21.5180 −0.731210
\(867\) 1.82278 14.8194i 0.0619049 0.503292i
\(868\) −1.03287 + 0.276757i −0.0350580 + 0.00939376i
\(869\) 0.299754 + 0.173063i 0.0101685 + 0.00587076i
\(870\) 0 0
\(871\) 39.3694 + 3.30591i 1.33398 + 0.112017i
\(872\) −7.09569 7.09569i −0.240290 0.240290i
\(873\) 11.3920 + 18.9777i 0.385560 + 0.642296i
\(874\) −24.1287 13.9307i −0.816166 0.471214i
\(875\) 0 0
\(876\) −30.0304 + 4.21400i −1.01463 + 0.142378i
\(877\) −13.5555 + 50.5897i −0.457736 + 1.70829i 0.222183 + 0.975005i \(0.428682\pi\)
−0.679919 + 0.733287i \(0.737985\pi\)
\(878\) −10.6470 + 39.7351i −0.359319 + 1.34100i
\(879\) −38.4924 + 5.40142i −1.29832 + 0.182186i
\(880\) 0 0
\(881\) 6.05038 + 3.49319i 0.203842 + 0.117688i 0.598446 0.801163i \(-0.295785\pi\)
−0.394604 + 0.918851i \(0.629118\pi\)
\(882\) −8.40551 14.0026i −0.283028 0.471491i
\(883\) −40.5116 40.5116i −1.36332 1.36332i −0.869643 0.493681i \(-0.835651\pi\)
−0.493681 0.869643i \(-0.664349\pi\)
\(884\) 2.55845 30.4681i 0.0860501 1.02475i
\(885\) 0 0
\(886\) 37.1925 + 21.4731i 1.24951 + 0.721403i
\(887\) −3.23586 + 0.867046i −0.108650 + 0.0291126i −0.312734 0.949841i \(-0.601245\pi\)
0.204085 + 0.978953i \(0.434578\pi\)
\(888\) −0.165862 + 1.34847i −0.00556596 + 0.0452517i
\(889\) −1.19237 −0.0399908
\(890\) 0 0
\(891\) 0.514776 + 0.274272i 0.0172456 + 0.00918846i
\(892\) 4.94855 + 4.94855i 0.165690 + 0.165690i
\(893\) 2.40037 + 0.643178i 0.0803254 + 0.0215231i
\(894\) −3.62502 + 8.96675i −0.121239 + 0.299893i
\(895\) 0 0
\(896\) 10.0221i 0.334816i
\(897\) 31.3318 10.2940i 1.04614 0.343707i
\(898\) 27.2459 + 27.2459i 0.909208 + 0.909208i
\(899\) 0.760064 + 0.438823i 0.0253495 + 0.0146356i
\(900\) 0 0
\(901\) −19.4618 33.7088i −0.648366 1.12300i
\(902\) −0.995609 + 0.995609i −0.0331501 + 0.0331501i
\(903\) 4.21849 34.2967i 0.140383 1.14132i
\(904\) 3.32432 + 5.75789i 0.110565 + 0.191505i
\(905\) 0 0
\(906\) −24.7971 31.7527i −0.823829 1.05491i
\(907\) −0.640173 2.38916i −0.0212566 0.0793307i 0.954483 0.298266i \(-0.0964083\pi\)
−0.975739 + 0.218935i \(0.929742\pi\)
\(908\) −38.0163 + 10.1864i −1.26162 + 0.338049i
\(909\) −33.6772 + 9.64131i −1.11700 + 0.319782i
\(910\) 0 0
\(911\) 38.3512i 1.27063i −0.772253 0.635316i \(-0.780870\pi\)
0.772253 0.635316i \(-0.219130\pi\)
\(912\) −8.45849 19.9387i −0.280089 0.660237i
\(913\) 0.230619 0.0617942i 0.00763238 0.00204509i
\(914\) −22.5082 38.9854i −0.744506 1.28952i
\(915\) 0 0
\(916\) −16.5621 + 9.56216i −0.547229 + 0.315943i
\(917\) 11.3702 + 3.04664i 0.375478 + 0.100609i
\(918\) −47.0620 18.0998i −1.55328 0.597382i
\(919\) −8.63426 + 4.98500i −0.284818 + 0.164440i −0.635603 0.772016i \(-0.719248\pi\)
0.350785 + 0.936456i \(0.385915\pi\)
\(920\) 0 0
\(921\) −7.96380 + 19.6991i −0.262416 + 0.649106i
\(922\) −6.66059 + 6.66059i −0.219355 + 0.219355i
\(923\) −8.82033 49.0211i −0.290325 1.61355i
\(924\) 0.0533051 + 0.379870i 0.00175361 + 0.0124968i
\(925\) 0 0
\(926\) 19.1981 + 11.0840i 0.630889 + 0.364244i
\(927\) −54.8484 + 0.934092i −1.80146 + 0.0306796i
\(928\) 14.8076 14.8076i 0.486085 0.486085i
\(929\) 34.8259 20.1067i 1.14260 0.659681i 0.195527 0.980698i \(-0.437358\pi\)
0.947073 + 0.321017i \(0.104025\pi\)
\(930\) 0 0
\(931\) 7.81455i 0.256111i
\(932\) −5.32761 + 19.8829i −0.174512 + 0.651287i
\(933\) 6.16980 2.61738i 0.201990 0.0856892i
\(934\) −25.0597 + 43.4047i −0.819979 + 1.42024i
\(935\) 0 0
\(936\) 6.37210 + 2.17225i 0.208279 + 0.0710023i
\(937\) 27.2652 27.2652i 0.890716 0.890716i −0.103874 0.994590i \(-0.533124\pi\)
0.994590 + 0.103874i \(0.0331239\pi\)
\(938\) 41.3878 11.0898i 1.35136 0.362096i
\(939\) 20.6571 51.0970i 0.674120 1.66749i
\(940\) 0 0
\(941\) −18.4961 −0.602957 −0.301479 0.953473i \(-0.597480\pi\)
−0.301479 + 0.953473i \(0.597480\pi\)
\(942\) 0.469324 3.81565i 0.0152914 0.124320i
\(943\) 57.8060 + 15.4891i 1.88242 + 0.504393i
\(944\) 30.7959i 1.00232i
\(945\) 0 0
\(946\) 0.607634 1.05245i 0.0197559 0.0342182i
\(947\) 7.58936 + 28.3239i 0.246621 + 0.920403i 0.972562 + 0.232645i \(0.0747381\pi\)
−0.725941 + 0.687757i \(0.758595\pi\)
\(948\) −9.32930 + 12.3749i −0.303002 + 0.401919i
\(949\) −34.0931 + 16.0430i −1.10671 + 0.520779i
\(950\) 0 0
\(951\) −2.89433 1.17010i −0.0938550 0.0379431i
\(952\) 1.66310 + 6.20678i 0.0539015 + 0.201163i
\(953\) −6.32491 1.69476i −0.204884 0.0548985i 0.154917 0.987927i \(-0.450489\pi\)
−0.359801 + 0.933029i \(0.617156\pi\)
\(954\) −42.5191 + 12.1726i −1.37661 + 0.394103i
\(955\) 0 0
\(956\) 7.15900 + 12.3998i 0.231539 + 0.401037i
\(957\) 0.189527 0.251400i 0.00612654 0.00812660i
\(958\) 9.23657 34.4714i 0.298420 1.11372i
\(959\) 7.41624 12.8453i 0.239483 0.414797i
\(960\) 0 0
\(961\) 30.9021 0.996841
\(962\) −1.54270 8.57393i −0.0497387 0.276435i
\(963\) −21.8088 + 39.3048i −0.702780 + 1.26658i
\(964\) 17.3057 29.9744i 0.557380 0.965410i
\(965\) 0 0
\(966\) 28.1898 22.0147i 0.906992 0.708310i
\(967\) 28.2870 + 28.2870i 0.909648 + 0.909648i 0.996244 0.0865951i \(-0.0275986\pi\)
−0.0865951 + 0.996244i \(0.527599\pi\)
\(968\) −1.77128 + 6.61049i −0.0569310 + 0.212469i
\(969\) 14.8498 + 19.0152i 0.477044 + 0.610856i
\(970\) 0 0
\(971\) −18.4125 + 10.6304i −0.590884 + 0.341147i −0.765447 0.643499i \(-0.777482\pi\)
0.174563 + 0.984646i \(0.444149\pi\)
\(972\) −15.0023 + 21.3772i −0.481199 + 0.685673i
\(973\) −1.12903 4.21359i −0.0361949 0.135081i
\(974\) 64.3428 2.06168
\(975\) 0 0
\(976\) 12.5736 0.402473
\(977\) −7.09314 26.4720i −0.226930 0.846913i −0.981622 0.190835i \(-0.938881\pi\)
0.754692 0.656079i \(-0.227786\pi\)
\(978\) 55.6645 23.6142i 1.77995 0.755099i
\(979\) −0.811485 + 0.468511i −0.0259352 + 0.0149737i
\(980\) 0 0
\(981\) 33.6147 34.7795i 1.07324 1.11042i
\(982\) 15.3060 57.1228i 0.488435 1.82286i
\(983\) −8.33022 8.33022i −0.265693 0.265693i 0.561669 0.827362i \(-0.310159\pi\)
−0.827362 + 0.561669i \(0.810159\pi\)
\(984\) 7.51909 + 9.62821i 0.239700 + 0.306936i
\(985\) 0 0
\(986\) −13.6082 + 23.5701i −0.433374 + 0.750625i
\(987\) −1.92045 + 2.54740i −0.0611287 + 0.0810848i
\(988\) 10.7297 + 12.6969i 0.341358 + 0.403942i
\(989\) −51.6532 −1.64248
\(990\) 0 0
\(991\) −11.6131 + 20.1145i −0.368903 + 0.638959i −0.989394 0.145255i \(-0.953600\pi\)
0.620491 + 0.784213i \(0.286933\pi\)
\(992\) −0.604700 + 2.25677i −0.0191992 + 0.0716525i
\(993\) 4.32949 + 3.26395i 0.137392 + 0.103578i
\(994\) −27.0094 46.7817i −0.856688 1.48383i
\(995\) 0 0
\(996\) 1.48553 + 10.5864i 0.0470707 + 0.335442i
\(997\) −16.0824 4.30927i −0.509335 0.136476i −0.00500582 0.999987i \(-0.501593\pi\)
−0.504329 + 0.863512i \(0.668260\pi\)
\(998\) −5.15386 19.2345i −0.163143 0.608856i
\(999\) −6.51246 0.688680i −0.206045 0.0217889i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.368.20 96
3.2 odd 2 inner 975.2.bn.d.368.5 96
5.2 odd 4 inner 975.2.bn.d.407.5 96
5.3 odd 4 195.2.bf.a.17.20 yes 96
5.4 even 2 195.2.bf.a.173.5 yes 96
13.10 even 6 inner 975.2.bn.d.218.20 96
15.2 even 4 inner 975.2.bn.d.407.20 96
15.8 even 4 195.2.bf.a.17.5 96
15.14 odd 2 195.2.bf.a.173.20 yes 96
39.23 odd 6 inner 975.2.bn.d.218.5 96
65.23 odd 12 195.2.bf.a.62.20 yes 96
65.49 even 6 195.2.bf.a.23.5 yes 96
65.62 odd 12 inner 975.2.bn.d.257.5 96
195.23 even 12 195.2.bf.a.62.5 yes 96
195.62 even 12 inner 975.2.bn.d.257.20 96
195.179 odd 6 195.2.bf.a.23.20 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.5 96 15.8 even 4
195.2.bf.a.17.20 yes 96 5.3 odd 4
195.2.bf.a.23.5 yes 96 65.49 even 6
195.2.bf.a.23.20 yes 96 195.179 odd 6
195.2.bf.a.62.5 yes 96 195.23 even 12
195.2.bf.a.62.20 yes 96 65.23 odd 12
195.2.bf.a.173.5 yes 96 5.4 even 2
195.2.bf.a.173.20 yes 96 15.14 odd 2
975.2.bn.d.218.5 96 39.23 odd 6 inner
975.2.bn.d.218.20 96 13.10 even 6 inner
975.2.bn.d.257.5 96 65.62 odd 12 inner
975.2.bn.d.257.20 96 195.62 even 12 inner
975.2.bn.d.368.5 96 3.2 odd 2 inner
975.2.bn.d.368.20 96 1.1 even 1 trivial
975.2.bn.d.407.5 96 5.2 odd 4 inner
975.2.bn.d.407.20 96 15.2 even 4 inner