Properties

Label 972.2.l.b.215.9
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.9
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.b.755.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.117341 + 1.40934i) q^{2} +(-1.97246 - 0.330746i) q^{4} +(0.194411 - 0.231690i) q^{5} +(-0.166049 + 0.456215i) q^{7} +(0.697584 - 2.74105i) q^{8} +(0.303717 + 0.301177i) q^{10} +(0.0318926 - 0.0267611i) q^{11} +(-0.749815 + 4.25241i) q^{13} +(-0.623477 - 0.287551i) q^{14} +(3.78121 + 1.30477i) q^{16} +(2.14427 + 1.23800i) q^{17} +(6.55326 - 3.78353i) q^{19} +(-0.460098 + 0.392699i) q^{20} +(0.0339731 + 0.0480877i) q^{22} +(-6.17265 + 2.24666i) q^{23} +(0.852356 + 4.83395i) q^{25} +(-5.90510 - 1.55572i) q^{26} +(0.478416 - 0.844947i) q^{28} +(-6.91801 + 1.21983i) q^{29} +(1.22825 + 3.37459i) q^{31} +(-2.28255 + 5.17590i) q^{32} +(-1.99636 + 2.87673i) q^{34} +(0.0734187 + 0.127165i) q^{35} +(-3.36015 + 5.81994i) q^{37} +(4.56330 + 9.67972i) q^{38} +(-0.499456 - 0.694513i) q^{40} +(6.22846 + 1.09825i) q^{41} +(1.55474 + 1.85287i) q^{43} +(-0.0717582 + 0.0422369i) q^{44} +(-2.44200 - 8.96296i) q^{46} +(-6.75922 - 2.46015i) q^{47} +(5.18175 + 4.34801i) q^{49} +(-6.91269 + 0.634036i) q^{50} +(2.88545 - 8.13973i) q^{52} +9.90799i q^{53} -0.0125918i q^{55} +(1.13468 + 0.773397i) q^{56} +(-0.907388 - 9.89295i) q^{58} +(-3.33471 - 2.79816i) q^{59} +(7.07970 + 2.57680i) q^{61} +(-4.90006 + 1.33504i) q^{62} +(-7.02675 - 3.82423i) q^{64} +(0.839468 + 1.00044i) q^{65} +(-10.9694 - 1.93421i) q^{67} +(-3.82003 - 3.15111i) q^{68} +(-0.187833 + 0.0885501i) q^{70} +(-1.68932 + 2.92598i) q^{71} +(0.315477 + 0.546421i) q^{73} +(-7.80798 - 5.41850i) q^{74} +(-14.1775 + 5.29540i) q^{76} +(0.00691309 + 0.0189936i) q^{77} +(2.98154 - 0.525727i) q^{79} +(1.03741 - 0.622407i) q^{80} +(-2.27865 + 8.64913i) q^{82} +(0.999837 + 5.67036i) q^{83} +(0.703701 - 0.256126i) q^{85} +(-2.79375 + 1.97374i) q^{86} +(-0.0511058 - 0.106088i) q^{88} +(-9.00521 + 5.19916i) q^{89} +(-1.81551 - 1.04819i) q^{91} +(12.9184 - 2.38987i) q^{92} +(4.26032 - 9.23734i) q^{94} +(0.397420 - 2.25388i) q^{95} +(-2.55186 + 2.14126i) q^{97} +(-6.73584 + 6.79263i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} + 12 q^{14} + 3 q^{16} + 18 q^{17} - 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 6 q^{29} + 57 q^{32} - 3 q^{34} - 6 q^{37} - 45 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.117341 + 1.40934i −0.0829726 + 0.996552i
\(3\) 0 0
\(4\) −1.97246 0.330746i −0.986231 0.165373i
\(5\) 0.194411 0.231690i 0.0869431 0.103615i −0.720819 0.693123i \(-0.756234\pi\)
0.807762 + 0.589509i \(0.200679\pi\)
\(6\) 0 0
\(7\) −0.166049 + 0.456215i −0.0627605 + 0.172433i −0.967109 0.254361i \(-0.918135\pi\)
0.904349 + 0.426794i \(0.140357\pi\)
\(8\) 0.697584 2.74105i 0.246633 0.969109i
\(9\) 0 0
\(10\) 0.303717 + 0.301177i 0.0960436 + 0.0952405i
\(11\) 0.0318926 0.0267611i 0.00961599 0.00806878i −0.637967 0.770064i \(-0.720224\pi\)
0.647583 + 0.761995i \(0.275780\pi\)
\(12\) 0 0
\(13\) −0.749815 + 4.25241i −0.207961 + 1.17941i 0.684750 + 0.728778i \(0.259911\pi\)
−0.892711 + 0.450629i \(0.851200\pi\)
\(14\) −0.623477 0.287551i −0.166631 0.0768514i
\(15\) 0 0
\(16\) 3.78121 + 1.30477i 0.945303 + 0.326192i
\(17\) 2.14427 + 1.23800i 0.520062 + 0.300258i 0.736960 0.675936i \(-0.236261\pi\)
−0.216898 + 0.976194i \(0.569594\pi\)
\(18\) 0 0
\(19\) 6.55326 3.78353i 1.50342 0.868001i 0.503430 0.864036i \(-0.332071\pi\)
0.999992 0.00396479i \(-0.00126203\pi\)
\(20\) −0.460098 + 0.392699i −0.102881 + 0.0878101i
\(21\) 0 0
\(22\) 0.0339731 + 0.0480877i 0.00724309 + 0.0102523i
\(23\) −6.17265 + 2.24666i −1.28709 + 0.468461i −0.892769 0.450514i \(-0.851241\pi\)
−0.394316 + 0.918975i \(0.629019\pi\)
\(24\) 0 0
\(25\) 0.852356 + 4.83395i 0.170471 + 0.966791i
\(26\) −5.90510 1.55572i −1.15809 0.305103i
\(27\) 0 0
\(28\) 0.478416 0.844947i 0.0904122 0.159680i
\(29\) −6.91801 + 1.21983i −1.28464 + 0.226517i −0.773950 0.633246i \(-0.781722\pi\)
−0.510692 + 0.859764i \(0.670611\pi\)
\(30\) 0 0
\(31\) 1.22825 + 3.37459i 0.220600 + 0.606094i 0.999786 0.0206992i \(-0.00658924\pi\)
−0.779186 + 0.626793i \(0.784367\pi\)
\(32\) −2.28255 + 5.17590i −0.403502 + 0.914979i
\(33\) 0 0
\(34\) −1.99636 + 2.87673i −0.342374 + 0.493356i
\(35\) 0.0734187 + 0.127165i 0.0124100 + 0.0214948i
\(36\) 0 0
\(37\) −3.36015 + 5.81994i −0.552405 + 0.956793i 0.445696 + 0.895184i \(0.352956\pi\)
−0.998100 + 0.0616082i \(0.980377\pi\)
\(38\) 4.56330 + 9.67972i 0.740265 + 1.57026i
\(39\) 0 0
\(40\) −0.499456 0.694513i −0.0789710 0.109812i
\(41\) 6.22846 + 1.09825i 0.972722 + 0.171517i 0.637355 0.770571i \(-0.280029\pi\)
0.335367 + 0.942088i \(0.391140\pi\)
\(42\) 0 0
\(43\) 1.55474 + 1.85287i 0.237096 + 0.282560i 0.871452 0.490481i \(-0.163179\pi\)
−0.634356 + 0.773041i \(0.718735\pi\)
\(44\) −0.0717582 + 0.0422369i −0.0108179 + 0.00636745i
\(45\) 0 0
\(46\) −2.44200 8.96296i −0.360053 1.32152i
\(47\) −6.75922 2.46015i −0.985933 0.358850i −0.201789 0.979429i \(-0.564675\pi\)
−0.784144 + 0.620579i \(0.786898\pi\)
\(48\) 0 0
\(49\) 5.18175 + 4.34801i 0.740250 + 0.621144i
\(50\) −6.91269 + 0.634036i −0.977601 + 0.0896663i
\(51\) 0 0
\(52\) 2.88545 8.13973i 0.400140 1.12878i
\(53\) 9.90799i 1.36097i 0.732763 + 0.680484i \(0.238230\pi\)
−0.732763 + 0.680484i \(0.761770\pi\)
\(54\) 0 0
\(55\) 0.0125918i 0.00169788i
\(56\) 1.13468 + 0.773397i 0.151628 + 0.103350i
\(57\) 0 0
\(58\) −0.907388 9.89295i −0.119146 1.29901i
\(59\) −3.33471 2.79816i −0.434143 0.364289i 0.399369 0.916790i \(-0.369229\pi\)
−0.833512 + 0.552501i \(0.813674\pi\)
\(60\) 0 0
\(61\) 7.07970 + 2.57680i 0.906462 + 0.329925i 0.752839 0.658204i \(-0.228684\pi\)
0.153623 + 0.988130i \(0.450906\pi\)
\(62\) −4.90006 + 1.33504i −0.622308 + 0.169550i
\(63\) 0 0
\(64\) −7.02675 3.82423i −0.878344 0.478029i
\(65\) 0.839468 + 1.00044i 0.104123 + 0.124089i
\(66\) 0 0
\(67\) −10.9694 1.93421i −1.34013 0.236301i −0.542810 0.839856i \(-0.682639\pi\)
−0.797322 + 0.603554i \(0.793751\pi\)
\(68\) −3.82003 3.15111i −0.463247 0.382128i
\(69\) 0 0
\(70\) −0.187833 + 0.0885501i −0.0224504 + 0.0105838i
\(71\) −1.68932 + 2.92598i −0.200485 + 0.347250i −0.948685 0.316223i \(-0.897585\pi\)
0.748200 + 0.663473i \(0.230918\pi\)
\(72\) 0 0
\(73\) 0.315477 + 0.546421i 0.0369237 + 0.0639538i 0.883897 0.467682i \(-0.154911\pi\)
−0.846973 + 0.531636i \(0.821577\pi\)
\(74\) −7.80798 5.41850i −0.907659 0.629887i
\(75\) 0 0
\(76\) −14.1775 + 5.29540i −1.62627 + 0.607424i
\(77\) 0.00691309 + 0.0189936i 0.000787820 + 0.00216452i
\(78\) 0 0
\(79\) 2.98154 0.525727i 0.335450 0.0591489i −0.00338622 0.999994i \(-0.501078\pi\)
0.338836 + 0.940845i \(0.389967\pi\)
\(80\) 1.03741 0.622407i 0.115986 0.0695873i
\(81\) 0 0
\(82\) −2.27865 + 8.64913i −0.251635 + 0.955136i
\(83\) 0.999837 + 5.67036i 0.109746 + 0.622403i 0.989218 + 0.146451i \(0.0467852\pi\)
−0.879471 + 0.475952i \(0.842104\pi\)
\(84\) 0 0
\(85\) 0.703701 0.256126i 0.0763270 0.0277808i
\(86\) −2.79375 + 1.97374i −0.301258 + 0.212834i
\(87\) 0 0
\(88\) −0.0511058 0.106088i −0.00544790 0.0113090i
\(89\) −9.00521 + 5.19916i −0.954550 + 0.551110i −0.894491 0.447085i \(-0.852462\pi\)
−0.0600588 + 0.998195i \(0.519129\pi\)
\(90\) 0 0
\(91\) −1.81551 1.04819i −0.190317 0.109880i
\(92\) 12.9184 2.38987i 1.34683 0.249161i
\(93\) 0 0
\(94\) 4.26032 9.23734i 0.439418 0.952759i
\(95\) 0.397420 2.25388i 0.0407745 0.231244i
\(96\) 0 0
\(97\) −2.55186 + 2.14126i −0.259102 + 0.217412i −0.763080 0.646304i \(-0.776314\pi\)
0.503978 + 0.863717i \(0.331869\pi\)
\(98\) −6.73584 + 6.79263i −0.680422 + 0.686160i
\(99\) 0 0
\(100\) −0.0824291 9.81670i −0.00824291 0.981670i
\(101\) 5.71163 15.6926i 0.568329 1.56147i −0.238784 0.971073i \(-0.576749\pi\)
0.807113 0.590397i \(-0.201029\pi\)
\(102\) 0 0
\(103\) 10.2156 12.1745i 1.00657 1.19959i 0.0267664 0.999642i \(-0.491479\pi\)
0.979807 0.199946i \(-0.0640766\pi\)
\(104\) 11.1330 + 5.02170i 1.09168 + 0.492418i
\(105\) 0 0
\(106\) −13.9637 1.16261i −1.35627 0.112923i
\(107\) 1.00162 0.0968302 0.0484151 0.998827i \(-0.484583\pi\)
0.0484151 + 0.998827i \(0.484583\pi\)
\(108\) 0 0
\(109\) 7.26618 0.695973 0.347987 0.937499i \(-0.386865\pi\)
0.347987 + 0.937499i \(0.386865\pi\)
\(110\) 0.0177462 + 0.00147754i 0.00169203 + 0.000140878i
\(111\) 0 0
\(112\) −1.22312 + 1.50839i −0.115574 + 0.142530i
\(113\) 9.30051 11.0839i 0.874918 1.04269i −0.123812 0.992306i \(-0.539512\pi\)
0.998730 0.0503815i \(-0.0160437\pi\)
\(114\) 0 0
\(115\) −0.679501 + 1.86691i −0.0633638 + 0.174091i
\(116\) 14.0490 0.117967i 1.30441 0.0109529i
\(117\) 0 0
\(118\) 4.33485 4.37140i 0.399055 0.402420i
\(119\) −0.920846 + 0.772682i −0.0844138 + 0.0708316i
\(120\) 0 0
\(121\) −1.90983 + 10.8312i −0.173621 + 0.984653i
\(122\) −4.46232 + 9.67531i −0.403999 + 0.875962i
\(123\) 0 0
\(124\) −1.30654 7.06249i −0.117331 0.634230i
\(125\) 2.59533 + 1.49841i 0.232133 + 0.134022i
\(126\) 0 0
\(127\) −7.70348 + 4.44760i −0.683573 + 0.394661i −0.801200 0.598397i \(-0.795805\pi\)
0.117627 + 0.993058i \(0.462471\pi\)
\(128\) 6.21415 9.45433i 0.549259 0.835652i
\(129\) 0 0
\(130\) −1.50846 + 1.06570i −0.132301 + 0.0934682i
\(131\) 18.2616 6.64668i 1.59552 0.580723i 0.617020 0.786948i \(-0.288340\pi\)
0.978505 + 0.206224i \(0.0661176\pi\)
\(132\) 0 0
\(133\) 0.637942 + 3.61795i 0.0553166 + 0.313716i
\(134\) 4.01312 15.2327i 0.346681 1.31590i
\(135\) 0 0
\(136\) 4.88922 5.01396i 0.419247 0.429943i
\(137\) −15.1042 + 2.66328i −1.29044 + 0.227540i −0.776408 0.630231i \(-0.782960\pi\)
−0.514033 + 0.857770i \(0.671849\pi\)
\(138\) 0 0
\(139\) 3.05591 + 8.39605i 0.259199 + 0.712144i 0.999217 + 0.0395570i \(0.0125947\pi\)
−0.740018 + 0.672587i \(0.765183\pi\)
\(140\) −0.102756 0.275111i −0.00868450 0.0232511i
\(141\) 0 0
\(142\) −3.92547 2.72415i −0.329418 0.228606i
\(143\) 0.0898857 + 0.155687i 0.00751662 + 0.0130192i
\(144\) 0 0
\(145\) −1.06231 + 1.83998i −0.0882203 + 0.152802i
\(146\) −0.807110 + 0.380495i −0.0667969 + 0.0314900i
\(147\) 0 0
\(148\) 8.55268 10.3683i 0.703026 0.852266i
\(149\) 1.69578 + 0.299012i 0.138924 + 0.0244960i 0.242678 0.970107i \(-0.421974\pi\)
−0.103754 + 0.994603i \(0.533085\pi\)
\(150\) 0 0
\(151\) −0.387667 0.462003i −0.0315479 0.0375973i 0.750040 0.661393i \(-0.230034\pi\)
−0.781588 + 0.623795i \(0.785590\pi\)
\(152\) −5.79941 20.6022i −0.470394 1.67106i
\(153\) 0 0
\(154\) −0.0275795 + 0.00751415i −0.00222242 + 0.000605507i
\(155\) 1.02064 + 0.371484i 0.0819800 + 0.0298383i
\(156\) 0 0
\(157\) −7.94651 6.66791i −0.634201 0.532157i 0.268031 0.963410i \(-0.413627\pi\)
−0.902231 + 0.431253i \(0.858072\pi\)
\(158\) 0.391069 + 4.26369i 0.0311118 + 0.339201i
\(159\) 0 0
\(160\) 0.755451 + 1.53509i 0.0597237 + 0.121360i
\(161\) 3.18911i 0.251337i
\(162\) 0 0
\(163\) 5.70430i 0.446795i 0.974727 + 0.223397i \(0.0717148\pi\)
−0.974727 + 0.223397i \(0.928285\pi\)
\(164\) −11.9222 4.22629i −0.930964 0.330017i
\(165\) 0 0
\(166\) −8.10877 + 0.743742i −0.629363 + 0.0577256i
\(167\) 4.02217 + 3.37500i 0.311245 + 0.261165i 0.785006 0.619488i \(-0.212660\pi\)
−0.473761 + 0.880653i \(0.657104\pi\)
\(168\) 0 0
\(169\) −5.30479 1.93079i −0.408061 0.148522i
\(170\) 0.278395 + 1.02181i 0.0213519 + 0.0783689i
\(171\) 0 0
\(172\) −2.45384 4.16894i −0.187104 0.317879i
\(173\) −0.891706 1.06269i −0.0677952 0.0807951i 0.731081 0.682291i \(-0.239016\pi\)
−0.798876 + 0.601496i \(0.794572\pi\)
\(174\) 0 0
\(175\) −2.34686 0.413814i −0.177406 0.0312814i
\(176\) 0.155510 0.0595769i 0.0117220 0.00449078i
\(177\) 0 0
\(178\) −6.27069 13.3015i −0.470008 0.996986i
\(179\) 5.77179 9.99703i 0.431403 0.747213i −0.565591 0.824686i \(-0.691352\pi\)
0.996994 + 0.0774732i \(0.0246852\pi\)
\(180\) 0 0
\(181\) 8.57298 + 14.8488i 0.637225 + 1.10371i 0.986039 + 0.166514i \(0.0532510\pi\)
−0.348814 + 0.937192i \(0.613416\pi\)
\(182\) 1.69028 2.43567i 0.125292 0.180544i
\(183\) 0 0
\(184\) 1.85228 + 18.4868i 0.136552 + 1.36286i
\(185\) 0.695173 + 1.90997i 0.0511101 + 0.140424i
\(186\) 0 0
\(187\) 0.101517 0.0179001i 0.00742363 0.00130899i
\(188\) 12.5186 + 7.08814i 0.913014 + 0.516956i
\(189\) 0 0
\(190\) 3.12985 + 0.824572i 0.227063 + 0.0598208i
\(191\) 2.87475 + 16.3035i 0.208010 + 1.17968i 0.892633 + 0.450785i \(0.148856\pi\)
−0.684623 + 0.728898i \(0.740033\pi\)
\(192\) 0 0
\(193\) 8.27219 3.01083i 0.595445 0.216724i −0.0266776 0.999644i \(-0.508493\pi\)
0.622123 + 0.782920i \(0.286271\pi\)
\(194\) −2.71832 3.84769i −0.195164 0.276248i
\(195\) 0 0
\(196\) −8.78272 10.2901i −0.627337 0.735009i
\(197\) 10.8232 6.24879i 0.771122 0.445208i −0.0621526 0.998067i \(-0.519797\pi\)
0.833275 + 0.552859i \(0.186463\pi\)
\(198\) 0 0
\(199\) −3.88531 2.24318i −0.275422 0.159015i 0.355927 0.934514i \(-0.384165\pi\)
−0.631349 + 0.775499i \(0.717499\pi\)
\(200\) 13.8447 + 1.03573i 0.978969 + 0.0732373i
\(201\) 0 0
\(202\) 21.4459 + 9.89100i 1.50893 + 0.695928i
\(203\) 0.592221 3.35865i 0.0415658 0.235731i
\(204\) 0 0
\(205\) 1.46533 1.22956i 0.102343 0.0858761i
\(206\) 15.9592 + 15.8258i 1.11193 + 1.10264i
\(207\) 0 0
\(208\) −8.38363 + 15.1009i −0.581300 + 1.04706i
\(209\) 0.107749 0.296039i 0.00745319 0.0204775i
\(210\) 0 0
\(211\) 14.4269 17.1933i 0.993188 1.18363i 0.0102029 0.999948i \(-0.496752\pi\)
0.982985 0.183687i \(-0.0588033\pi\)
\(212\) 3.27703 19.5431i 0.225067 1.34223i
\(213\) 0 0
\(214\) −0.117531 + 1.41162i −0.00803426 + 0.0964963i
\(215\) 0.731549 0.0498912
\(216\) 0 0
\(217\) −1.74349 −0.118356
\(218\) −0.852621 + 10.2405i −0.0577468 + 0.693574i
\(219\) 0 0
\(220\) −0.00416470 + 0.0248369i −0.000280784 + 0.00167451i
\(221\) −6.87228 + 8.19006i −0.462279 + 0.550923i
\(222\) 0 0
\(223\) 6.26467 17.2121i 0.419514 1.15260i −0.532468 0.846450i \(-0.678735\pi\)
0.951982 0.306154i \(-0.0990423\pi\)
\(224\) −1.98231 1.90079i −0.132449 0.127002i
\(225\) 0 0
\(226\) 14.5296 + 14.4082i 0.966498 + 0.958416i
\(227\) 15.0169 12.6007i 0.996709 0.836338i 0.0101841 0.999948i \(-0.496758\pi\)
0.986525 + 0.163610i \(0.0523138\pi\)
\(228\) 0 0
\(229\) 0.984254 5.58198i 0.0650413 0.368868i −0.934863 0.355010i \(-0.884478\pi\)
0.999904 0.0138580i \(-0.00441128\pi\)
\(230\) −2.55138 1.17671i −0.168233 0.0775901i
\(231\) 0 0
\(232\) −1.48227 + 19.8136i −0.0973155 + 1.30083i
\(233\) −6.50499 3.75566i −0.426156 0.246041i 0.271552 0.962424i \(-0.412463\pi\)
−0.697708 + 0.716383i \(0.745797\pi\)
\(234\) 0 0
\(235\) −1.88406 + 1.08776i −0.122902 + 0.0709577i
\(236\) 5.65212 + 6.62220i 0.367922 + 0.431069i
\(237\) 0 0
\(238\) −0.980916 1.38845i −0.0635833 0.0899999i
\(239\) −6.08140 + 2.21345i −0.393373 + 0.143176i −0.531131 0.847290i \(-0.678233\pi\)
0.137758 + 0.990466i \(0.456010\pi\)
\(240\) 0 0
\(241\) −0.120498 0.683378i −0.00776195 0.0440202i 0.980681 0.195615i \(-0.0626703\pi\)
−0.988443 + 0.151595i \(0.951559\pi\)
\(242\) −15.0407 3.96253i −0.966852 0.254721i
\(243\) 0 0
\(244\) −13.1122 7.42422i −0.839420 0.475287i
\(245\) 2.01478 0.355259i 0.128719 0.0226967i
\(246\) 0 0
\(247\) 11.1754 + 30.7041i 0.711073 + 1.95366i
\(248\) 10.1067 1.01264i 0.641779 0.0643028i
\(249\) 0 0
\(250\) −2.41631 + 3.48187i −0.152821 + 0.220213i
\(251\) −1.09113 1.88989i −0.0688715 0.119289i 0.829533 0.558457i \(-0.188607\pi\)
−0.898405 + 0.439168i \(0.855273\pi\)
\(252\) 0 0
\(253\) −0.136739 + 0.236839i −0.00859670 + 0.0148899i
\(254\) −5.36424 11.3787i −0.336582 0.713962i
\(255\) 0 0
\(256\) 12.5952 + 9.86722i 0.787197 + 0.616701i
\(257\) −14.1712 2.49877i −0.883977 0.155869i −0.286812 0.957987i \(-0.592595\pi\)
−0.597166 + 0.802118i \(0.703706\pi\)
\(258\) 0 0
\(259\) −2.09720 2.49934i −0.130314 0.155302i
\(260\) −1.32493 2.25098i −0.0821686 0.139600i
\(261\) 0 0
\(262\) 7.22458 + 26.5167i 0.446336 + 1.63821i
\(263\) 9.62617 + 3.50364i 0.593575 + 0.216044i 0.621301 0.783572i \(-0.286604\pi\)
−0.0277260 + 0.999616i \(0.508827\pi\)
\(264\) 0 0
\(265\) 2.29558 + 1.92622i 0.141016 + 0.118327i
\(266\) −5.17377 + 0.474541i −0.317224 + 0.0290960i
\(267\) 0 0
\(268\) 20.9971 + 7.44326i 1.28260 + 0.454669i
\(269\) 3.15222i 0.192194i −0.995372 0.0960971i \(-0.969364\pi\)
0.995372 0.0960971i \(-0.0306359\pi\)
\(270\) 0 0
\(271\) 3.33151i 0.202375i 0.994867 + 0.101188i \(0.0322642\pi\)
−0.994867 + 0.101188i \(0.967736\pi\)
\(272\) 6.49265 + 7.47891i 0.393675 + 0.453475i
\(273\) 0 0
\(274\) −1.98112 21.5995i −0.119684 1.30487i
\(275\) 0.156546 + 0.131358i 0.00944007 + 0.00792116i
\(276\) 0 0
\(277\) −3.92367 1.42810i −0.235750 0.0858061i 0.221443 0.975173i \(-0.428923\pi\)
−0.457194 + 0.889367i \(0.651145\pi\)
\(278\) −12.1915 + 3.32161i −0.731195 + 0.199217i
\(279\) 0 0
\(280\) 0.399782 0.112537i 0.0238915 0.00672534i
\(281\) 12.6165 + 15.0357i 0.752635 + 0.896955i 0.997358 0.0726377i \(-0.0231417\pi\)
−0.244724 + 0.969593i \(0.578697\pi\)
\(282\) 0 0
\(283\) −15.1640 2.67383i −0.901407 0.158942i −0.296308 0.955092i \(-0.595755\pi\)
−0.605099 + 0.796150i \(0.706867\pi\)
\(284\) 4.29987 5.21265i 0.255150 0.309314i
\(285\) 0 0
\(286\) −0.229962 + 0.108411i −0.0135979 + 0.00641046i
\(287\) −1.53526 + 2.65916i −0.0906238 + 0.156965i
\(288\) 0 0
\(289\) −5.43473 9.41323i −0.319690 0.553720i
\(290\) −2.46850 1.71306i −0.144955 0.100595i
\(291\) 0 0
\(292\) −0.441539 1.18214i −0.0258391 0.0691794i
\(293\) −6.36906 17.4989i −0.372085 1.02229i −0.974554 0.224152i \(-0.928039\pi\)
0.602469 0.798142i \(-0.294184\pi\)
\(294\) 0 0
\(295\) −1.29661 + 0.228627i −0.0754915 + 0.0133112i
\(296\) 13.6088 + 13.2702i 0.790995 + 0.771317i
\(297\) 0 0
\(298\) −0.620393 + 2.35484i −0.0359384 + 0.136412i
\(299\) −4.92538 27.9332i −0.284842 1.61542i
\(300\) 0 0
\(301\) −1.10347 + 0.401630i −0.0636030 + 0.0231496i
\(302\) 0.696608 0.492141i 0.0400853 0.0283196i
\(303\) 0 0
\(304\) 29.7159 5.75584i 1.70432 0.330120i
\(305\) 1.97339 1.13934i 0.112996 0.0652382i
\(306\) 0 0
\(307\) 17.7533 + 10.2499i 1.01323 + 0.584990i 0.912136 0.409887i \(-0.134432\pi\)
0.101096 + 0.994877i \(0.467765\pi\)
\(308\) −0.00735376 0.0397506i −0.000419019 0.00226500i
\(309\) 0 0
\(310\) −0.643309 + 1.39484i −0.0365375 + 0.0792216i
\(311\) −3.47790 + 19.7241i −0.197213 + 1.11845i 0.712018 + 0.702161i \(0.247782\pi\)
−0.909231 + 0.416292i \(0.863330\pi\)
\(312\) 0 0
\(313\) −13.5141 + 11.3397i −0.763863 + 0.640957i −0.939129 0.343564i \(-0.888366\pi\)
0.175266 + 0.984521i \(0.443921\pi\)
\(314\) 10.3298 10.4169i 0.582944 0.587859i
\(315\) 0 0
\(316\) −6.05487 + 0.0508417i −0.340613 + 0.00286007i
\(317\) −1.46957 + 4.03761i −0.0825392 + 0.226775i −0.974096 0.226134i \(-0.927391\pi\)
0.891557 + 0.452908i \(0.149614\pi\)
\(318\) 0 0
\(319\) −0.187990 + 0.224037i −0.0105254 + 0.0125437i
\(320\) −2.25211 + 0.884556i −0.125897 + 0.0494482i
\(321\) 0 0
\(322\) 4.49453 + 0.374214i 0.250470 + 0.0208541i
\(323\) 18.7360 1.04250
\(324\) 0 0
\(325\) −21.1951 −1.17569
\(326\) −8.03928 0.669348i −0.445254 0.0370718i
\(327\) 0 0
\(328\) 7.35522 16.3064i 0.406124 0.900371i
\(329\) 2.24472 2.67515i 0.123755 0.147486i
\(330\) 0 0
\(331\) −6.88468 + 18.9155i −0.378416 + 1.03969i 0.593597 + 0.804763i \(0.297707\pi\)
−0.972013 + 0.234927i \(0.924515\pi\)
\(332\) −0.0966917 11.5153i −0.00530664 0.631982i
\(333\) 0 0
\(334\) −5.22848 + 5.27257i −0.286090 + 0.288502i
\(335\) −2.58072 + 2.16548i −0.141000 + 0.118313i
\(336\) 0 0
\(337\) 2.29367 13.0081i 0.124944 0.708595i −0.856397 0.516319i \(-0.827302\pi\)
0.981341 0.192276i \(-0.0615869\pi\)
\(338\) 3.34360 7.24968i 0.181868 0.394330i
\(339\) 0 0
\(340\) −1.47274 + 0.272453i −0.0798703 + 0.0147758i
\(341\) 0.129480 + 0.0747552i 0.00701173 + 0.00404822i
\(342\) 0 0
\(343\) −5.78720 + 3.34124i −0.312480 + 0.180410i
\(344\) 6.16338 2.96910i 0.332307 0.160083i
\(345\) 0 0
\(346\) 1.60233 1.13202i 0.0861417 0.0608576i
\(347\) −16.7772 + 6.10639i −0.900645 + 0.327808i −0.750511 0.660858i \(-0.770193\pi\)
−0.150134 + 0.988666i \(0.547971\pi\)
\(348\) 0 0
\(349\) −2.27001 12.8739i −0.121511 0.689123i −0.983319 0.181889i \(-0.941779\pi\)
0.861808 0.507234i \(-0.169332\pi\)
\(350\) 0.858586 3.25895i 0.0458933 0.174198i
\(351\) 0 0
\(352\) 0.0657163 + 0.226157i 0.00350269 + 0.0120542i
\(353\) 21.1607 3.73120i 1.12627 0.198592i 0.420678 0.907210i \(-0.361792\pi\)
0.705592 + 0.708618i \(0.250681\pi\)
\(354\) 0 0
\(355\) 0.349499 + 0.960240i 0.0185495 + 0.0509642i
\(356\) 19.4820 7.27671i 1.03255 0.385665i
\(357\) 0 0
\(358\) 13.4119 + 9.30745i 0.708842 + 0.491914i
\(359\) 9.46695 + 16.3972i 0.499647 + 0.865413i 1.00000 0.000407927i \(-0.000129847\pi\)
−0.500353 + 0.865821i \(0.666797\pi\)
\(360\) 0 0
\(361\) 19.1302 33.1344i 1.00685 1.74392i
\(362\) −21.9330 + 10.3398i −1.15277 + 0.543450i
\(363\) 0 0
\(364\) 3.23434 + 2.66798i 0.169526 + 0.139840i
\(365\) 0.187932 + 0.0331375i 0.00983682 + 0.00173450i
\(366\) 0 0
\(367\) −15.3111 18.2471i −0.799233 0.952489i 0.200396 0.979715i \(-0.435777\pi\)
−0.999629 + 0.0272258i \(0.991333\pi\)
\(368\) −26.2715 + 0.441225i −1.36949 + 0.0230004i
\(369\) 0 0
\(370\) −2.77337 + 0.755615i −0.144180 + 0.0392825i
\(371\) −4.52018 1.64521i −0.234676 0.0854151i
\(372\) 0 0
\(373\) −16.6039 13.9323i −0.859717 0.721388i 0.102190 0.994765i \(-0.467415\pi\)
−0.961907 + 0.273377i \(0.911859\pi\)
\(374\) 0.0133152 + 0.145172i 0.000688514 + 0.00750664i
\(375\) 0 0
\(376\) −11.4585 + 16.8112i −0.590929 + 0.866972i
\(377\) 30.3329i 1.56222i
\(378\) 0 0
\(379\) 33.6783i 1.72994i −0.501825 0.864969i \(-0.667338\pi\)
0.501825 0.864969i \(-0.332662\pi\)
\(380\) −1.52936 + 4.31425i −0.0784545 + 0.221317i
\(381\) 0 0
\(382\) −23.3145 + 2.13842i −1.19287 + 0.109411i
\(383\) 1.15170 + 0.966388i 0.0588490 + 0.0493801i 0.671738 0.740789i \(-0.265548\pi\)
−0.612889 + 0.790169i \(0.709993\pi\)
\(384\) 0 0
\(385\) 0.00574459 + 0.00209086i 0.000292772 + 0.000106560i
\(386\) 3.27261 + 12.0116i 0.166571 + 0.611374i
\(387\) 0 0
\(388\) 5.74166 3.37954i 0.291489 0.171570i
\(389\) −2.48223 2.95820i −0.125854 0.149987i 0.699438 0.714693i \(-0.253434\pi\)
−0.825292 + 0.564707i \(0.808989\pi\)
\(390\) 0 0
\(391\) −16.0172 2.82426i −0.810024 0.142829i
\(392\) 15.5328 11.1704i 0.784526 0.564188i
\(393\) 0 0
\(394\) 7.53664 + 15.9868i 0.379690 + 0.805403i
\(395\) 0.457839 0.793000i 0.0230364 0.0399002i
\(396\) 0 0
\(397\) −9.80431 16.9816i −0.492064 0.852280i 0.507894 0.861419i \(-0.330424\pi\)
−0.999958 + 0.00913954i \(0.997091\pi\)
\(398\) 3.61731 5.21249i 0.181319 0.261279i
\(399\) 0 0
\(400\) −3.08425 + 19.3903i −0.154212 + 0.969517i
\(401\) 7.41930 + 20.3844i 0.370502 + 1.01795i 0.975168 + 0.221467i \(0.0710845\pi\)
−0.604666 + 0.796479i \(0.706693\pi\)
\(402\) 0 0
\(403\) −15.2711 + 2.69271i −0.760708 + 0.134133i
\(404\) −16.4562 + 29.0639i −0.818728 + 1.44598i
\(405\) 0 0
\(406\) 4.66398 + 1.22875i 0.231470 + 0.0609817i
\(407\) 0.0485842 + 0.275535i 0.00240823 + 0.0136577i
\(408\) 0 0
\(409\) 10.3343 3.76139i 0.510999 0.185989i −0.0736354 0.997285i \(-0.523460\pi\)
0.584635 + 0.811297i \(0.301238\pi\)
\(410\) 1.56092 + 2.20942i 0.0770883 + 0.109116i
\(411\) 0 0
\(412\) −24.1766 + 20.6349i −1.19109 + 1.01661i
\(413\) 1.83029 1.05672i 0.0900626 0.0519976i
\(414\) 0 0
\(415\) 1.50814 + 0.870727i 0.0740319 + 0.0427423i
\(416\) −20.2986 13.5873i −0.995220 0.666173i
\(417\) 0 0
\(418\) 0.404576 + 0.186593i 0.0197884 + 0.00912656i
\(419\) 4.20531 23.8495i 0.205443 1.16512i −0.691298 0.722569i \(-0.742961\pi\)
0.896741 0.442555i \(-0.145928\pi\)
\(420\) 0 0
\(421\) 28.0468 23.5341i 1.36692 1.14698i 0.393141 0.919478i \(-0.371388\pi\)
0.973777 0.227503i \(-0.0730561\pi\)
\(422\) 22.5383 + 22.3498i 1.09715 + 1.08797i
\(423\) 0 0
\(424\) 27.1583 + 6.91165i 1.31893 + 0.335660i
\(425\) −4.15673 + 11.4205i −0.201631 + 0.553977i
\(426\) 0 0
\(427\) −2.35115 + 2.80199i −0.113780 + 0.135598i
\(428\) −1.97566 0.331282i −0.0954969 0.0160131i
\(429\) 0 0
\(430\) −0.0858408 + 1.03100i −0.00413961 + 0.0497192i
\(431\) −38.5608 −1.85741 −0.928705 0.370820i \(-0.879077\pi\)
−0.928705 + 0.370820i \(0.879077\pi\)
\(432\) 0 0
\(433\) −6.56251 −0.315374 −0.157687 0.987489i \(-0.550404\pi\)
−0.157687 + 0.987489i \(0.550404\pi\)
\(434\) 0.204583 2.45716i 0.00982029 0.117948i
\(435\) 0 0
\(436\) −14.3323 2.40326i −0.686391 0.115095i
\(437\) −31.9507 + 38.0773i −1.52841 + 1.82149i
\(438\) 0 0
\(439\) 0.624030 1.71451i 0.0297833 0.0818291i −0.923910 0.382610i \(-0.875025\pi\)
0.953693 + 0.300781i \(0.0972474\pi\)
\(440\) −0.0345149 0.00878386i −0.00164543 0.000418754i
\(441\) 0 0
\(442\) −10.7362 10.6464i −0.510667 0.506397i
\(443\) −1.33656 + 1.12150i −0.0635017 + 0.0532843i −0.673986 0.738744i \(-0.735419\pi\)
0.610484 + 0.792028i \(0.290975\pi\)
\(444\) 0 0
\(445\) −0.546118 + 3.09719i −0.0258885 + 0.146821i
\(446\) 23.5225 + 10.8487i 1.11382 + 0.513702i
\(447\) 0 0
\(448\) 2.91146 2.57070i 0.137553 0.121454i
\(449\) −8.00158 4.61971i −0.377618 0.218018i 0.299164 0.954202i \(-0.403292\pi\)
−0.676781 + 0.736184i \(0.736626\pi\)
\(450\) 0 0
\(451\) 0.228032 0.131654i 0.0107376 0.00619937i
\(452\) −22.0109 + 18.7865i −1.03530 + 0.883643i
\(453\) 0 0
\(454\) 15.9965 + 22.6425i 0.750755 + 1.06267i
\(455\) −0.595808 + 0.216857i −0.0279319 + 0.0101664i
\(456\) 0 0
\(457\) −4.78964 27.1634i −0.224050 1.27065i −0.864493 0.502645i \(-0.832360\pi\)
0.640443 0.768006i \(-0.278751\pi\)
\(458\) 7.75140 + 2.04214i 0.362199 + 0.0954229i
\(459\) 0 0
\(460\) 1.95776 3.45767i 0.0912812 0.161215i
\(461\) 20.4199 3.60059i 0.951052 0.167696i 0.323463 0.946241i \(-0.395153\pi\)
0.627589 + 0.778545i \(0.284042\pi\)
\(462\) 0 0
\(463\) 3.27860 + 9.00787i 0.152369 + 0.418631i 0.992268 0.124112i \(-0.0396081\pi\)
−0.839899 + 0.542743i \(0.817386\pi\)
\(464\) −27.7501 4.41396i −1.28827 0.204913i
\(465\) 0 0
\(466\) 6.05629 8.72703i 0.280552 0.404272i
\(467\) −8.74737 15.1509i −0.404780 0.701099i 0.589516 0.807757i \(-0.299319\pi\)
−0.994296 + 0.106657i \(0.965985\pi\)
\(468\) 0 0
\(469\) 2.70388 4.68326i 0.124854 0.216253i
\(470\) −1.31194 2.78291i −0.0605155 0.128366i
\(471\) 0 0
\(472\) −9.99614 + 7.18868i −0.460110 + 0.330886i
\(473\) 0.0991696 + 0.0174863i 0.00455982 + 0.000804020i
\(474\) 0 0
\(475\) 23.8751 + 28.4533i 1.09547 + 1.30552i
\(476\) 2.07190 1.21952i 0.0949652 0.0558966i
\(477\) 0 0
\(478\) −2.40590 8.83047i −0.110043 0.403896i
\(479\) −24.6167 8.95976i −1.12477 0.409382i −0.288378 0.957517i \(-0.593116\pi\)
−0.836390 + 0.548135i \(0.815338\pi\)
\(480\) 0 0
\(481\) −22.2293 18.6526i −1.01357 0.850486i
\(482\) 0.977249 0.0896339i 0.0445125 0.00408271i
\(483\) 0 0
\(484\) 7.34944 20.7324i 0.334065 0.942383i
\(485\) 1.00752i 0.0457493i
\(486\) 0 0
\(487\) 7.10957i 0.322166i 0.986941 + 0.161083i \(0.0514986\pi\)
−0.986941 + 0.161083i \(0.948501\pi\)
\(488\) 12.0018 17.6083i 0.543297 0.797090i
\(489\) 0 0
\(490\) 0.264264 + 2.88119i 0.0119382 + 0.130159i
\(491\) 15.1317 + 12.6970i 0.682883 + 0.573006i 0.916847 0.399239i \(-0.130726\pi\)
−0.233965 + 0.972245i \(0.575170\pi\)
\(492\) 0 0
\(493\) −16.3442 5.94882i −0.736108 0.267921i
\(494\) −44.5838 + 12.1470i −2.00592 + 0.546521i
\(495\) 0 0
\(496\) 0.241218 + 14.3626i 0.0108310 + 0.644901i
\(497\) −1.05437 1.25655i −0.0472949 0.0563639i
\(498\) 0 0
\(499\) −38.9262 6.86374i −1.74258 0.307263i −0.790350 0.612655i \(-0.790101\pi\)
−0.952227 + 0.305392i \(0.901212\pi\)
\(500\) −4.62359 3.81396i −0.206773 0.170565i
\(501\) 0 0
\(502\) 2.79153 1.31601i 0.124592 0.0587363i
\(503\) −19.5426 + 33.8489i −0.871364 + 1.50925i −0.0107769 + 0.999942i \(0.503430\pi\)
−0.860587 + 0.509304i \(0.829903\pi\)
\(504\) 0 0
\(505\) −2.52541 4.37413i −0.112379 0.194646i
\(506\) −0.317740 0.220502i −0.0141253 0.00980251i
\(507\) 0 0
\(508\) 16.6658 6.22483i 0.739427 0.276182i
\(509\) 5.04413 + 13.8586i 0.223577 + 0.614273i 0.999870 0.0160989i \(-0.00512466\pi\)
−0.776293 + 0.630372i \(0.782902\pi\)
\(510\) 0 0
\(511\) −0.301670 + 0.0531926i −0.0133451 + 0.00235310i
\(512\) −15.3842 + 16.5930i −0.679891 + 0.733314i
\(513\) 0 0
\(514\) 5.18448 19.6788i 0.228677 0.867996i
\(515\) −0.834679 4.73370i −0.0367804 0.208592i
\(516\) 0 0
\(517\) −0.281406 + 0.102423i −0.0123762 + 0.00450457i
\(518\) 3.76851 2.66238i 0.165579 0.116978i
\(519\) 0 0
\(520\) 3.32786 1.60314i 0.145936 0.0703023i
\(521\) 10.1293 5.84816i 0.443773 0.256213i −0.261424 0.965224i \(-0.584192\pi\)
0.705197 + 0.709012i \(0.250859\pi\)
\(522\) 0 0
\(523\) −6.89969 3.98354i −0.301702 0.174188i 0.341505 0.939880i \(-0.389063\pi\)
−0.643207 + 0.765692i \(0.722397\pi\)
\(524\) −38.2187 + 7.07037i −1.66959 + 0.308871i
\(525\) 0 0
\(526\) −6.06736 + 13.1554i −0.264549 + 0.573603i
\(527\) −1.54403 + 8.75661i −0.0672588 + 0.381444i
\(528\) 0 0
\(529\) 15.4351 12.9515i 0.671089 0.563111i
\(530\) −2.98406 + 3.00922i −0.129619 + 0.130712i
\(531\) 0 0
\(532\) −0.0616937 7.34727i −0.00267476 0.318544i
\(533\) −9.34038 + 25.6625i −0.404577 + 1.11157i
\(534\) 0 0
\(535\) 0.194726 0.232065i 0.00841872 0.0100330i
\(536\) −12.9539 + 28.7186i −0.559522 + 1.24045i
\(537\) 0 0
\(538\) 4.44254 + 0.369885i 0.191531 + 0.0159469i
\(539\) 0.281617 0.0121301
\(540\) 0 0
\(541\) 8.41220 0.361669 0.180834 0.983514i \(-0.442120\pi\)
0.180834 + 0.983514i \(0.442120\pi\)
\(542\) −4.69523 0.390923i −0.201677 0.0167916i
\(543\) 0 0
\(544\) −11.3022 + 8.27275i −0.484576 + 0.354691i
\(545\) 1.41262 1.68350i 0.0605101 0.0721132i
\(546\) 0 0
\(547\) −5.97901 + 16.4272i −0.255644 + 0.702376i 0.743780 + 0.668425i \(0.233031\pi\)
−0.999424 + 0.0339508i \(0.989191\pi\)
\(548\) 30.6734 0.257559i 1.31030 0.0110024i
\(549\) 0 0
\(550\) −0.203496 + 0.205212i −0.00867711 + 0.00875028i
\(551\) −40.7203 + 34.1684i −1.73474 + 1.45562i
\(552\) 0 0
\(553\) −0.255237 + 1.44752i −0.0108538 + 0.0615549i
\(554\) 2.47308 5.36220i 0.105071 0.227818i
\(555\) 0 0
\(556\) −3.25071 17.5716i −0.137861 0.745203i
\(557\) −0.688812 0.397686i −0.0291859 0.0168505i 0.485336 0.874328i \(-0.338697\pi\)
−0.514522 + 0.857477i \(0.672031\pi\)
\(558\) 0 0
\(559\) −9.04493 + 5.22209i −0.382560 + 0.220871i
\(560\) 0.111691 + 0.576632i 0.00471981 + 0.0243672i
\(561\) 0 0
\(562\) −22.6708 + 16.0165i −0.956310 + 0.675617i
\(563\) 5.88781 2.14299i 0.248142 0.0903162i −0.214955 0.976624i \(-0.568960\pi\)
0.463097 + 0.886308i \(0.346738\pi\)
\(564\) 0 0
\(565\) −0.759910 4.30967i −0.0319697 0.181309i
\(566\) 5.54768 21.0575i 0.233187 0.885111i
\(567\) 0 0
\(568\) 6.84184 + 6.67163i 0.287077 + 0.279935i
\(569\) 5.33693 0.941045i 0.223736 0.0394507i −0.0606563 0.998159i \(-0.519319\pi\)
0.284392 + 0.958708i \(0.408208\pi\)
\(570\) 0 0
\(571\) −10.4263 28.6461i −0.436328 1.19880i −0.941863 0.335996i \(-0.890927\pi\)
0.505535 0.862806i \(-0.331295\pi\)
\(572\) −0.125803 0.336815i −0.00526010 0.0140830i
\(573\) 0 0
\(574\) −3.56750 2.47573i −0.148904 0.103335i
\(575\) −16.1215 27.9233i −0.672315 1.16448i
\(576\) 0 0
\(577\) −9.67484 + 16.7573i −0.402769 + 0.697616i −0.994059 0.108843i \(-0.965286\pi\)
0.591290 + 0.806459i \(0.298619\pi\)
\(578\) 13.9041 6.55481i 0.578336 0.272644i
\(579\) 0 0
\(580\) 2.70394 3.27794i 0.112275 0.136109i
\(581\) −2.75293 0.485415i −0.114211 0.0201384i
\(582\) 0 0
\(583\) 0.265149 + 0.315992i 0.0109813 + 0.0130871i
\(584\) 1.71784 0.483564i 0.0710848 0.0200100i
\(585\) 0 0
\(586\) 25.4091 6.92282i 1.04964 0.285979i
\(587\) 40.6493 + 14.7951i 1.67778 + 0.610660i 0.993002 0.118096i \(-0.0376791\pi\)
0.684773 + 0.728756i \(0.259901\pi\)
\(588\) 0 0
\(589\) 20.8169 + 17.4675i 0.857746 + 0.719734i
\(590\) −0.170067 1.85419i −0.00700156 0.0763356i
\(591\) 0 0
\(592\) −20.2991 + 17.6222i −0.834288 + 0.724269i
\(593\) 32.7916i 1.34659i 0.739375 + 0.673294i \(0.235121\pi\)
−0.739375 + 0.673294i \(0.764879\pi\)
\(594\) 0 0
\(595\) 0.363568i 0.0149048i
\(596\) −3.24596 1.15066i −0.132960 0.0471329i
\(597\) 0 0
\(598\) 39.9453 3.66381i 1.63348 0.149824i
\(599\) −28.7904 24.1580i −1.17634 0.987070i −0.999996 0.00274159i \(-0.999127\pi\)
−0.176347 0.984328i \(-0.556428\pi\)
\(600\) 0 0
\(601\) −9.38452 3.41569i −0.382802 0.139329i 0.143449 0.989658i \(-0.454181\pi\)
−0.526251 + 0.850329i \(0.676403\pi\)
\(602\) −0.436550 1.60229i −0.0177925 0.0653044i
\(603\) 0 0
\(604\) 0.611852 + 1.03950i 0.0248959 + 0.0422968i
\(605\) 2.13818 + 2.54819i 0.0869294 + 0.103598i
\(606\) 0 0
\(607\) 28.5897 + 5.04113i 1.16042 + 0.204613i 0.720520 0.693434i \(-0.243903\pi\)
0.439899 + 0.898047i \(0.355014\pi\)
\(608\) 4.62502 + 42.5551i 0.187569 + 1.72584i
\(609\) 0 0
\(610\) 1.37415 + 2.91486i 0.0556377 + 0.118019i
\(611\) 15.5298 26.8983i 0.628266 1.08819i
\(612\) 0 0
\(613\) −10.6465 18.4402i −0.430007 0.744794i 0.566866 0.823810i \(-0.308156\pi\)
−0.996873 + 0.0790155i \(0.974822\pi\)
\(614\) −16.5287 + 23.8176i −0.667043 + 0.961200i
\(615\) 0 0
\(616\) 0.0568848 0.00569956i 0.00229195 0.000229642i
\(617\) −0.850396 2.33644i −0.0342357 0.0940617i 0.921397 0.388622i \(-0.127049\pi\)
−0.955633 + 0.294561i \(0.904827\pi\)
\(618\) 0 0
\(619\) 13.1393 2.31682i 0.528114 0.0931207i 0.0967674 0.995307i \(-0.469150\pi\)
0.431347 + 0.902186i \(0.358039\pi\)
\(620\) −1.89031 1.07031i −0.0759168 0.0429847i
\(621\) 0 0
\(622\) −27.3899 7.21598i −1.09823 0.289334i
\(623\) −0.876632 4.97163i −0.0351215 0.199184i
\(624\) 0 0
\(625\) −22.2108 + 8.08407i −0.888432 + 0.323363i
\(626\) −14.3957 20.3766i −0.575367 0.814411i
\(627\) 0 0
\(628\) 13.4688 + 15.7805i 0.537464 + 0.629710i
\(629\) −14.4101 + 8.31969i −0.574570 + 0.331728i
\(630\) 0 0
\(631\) −33.1235 19.1238i −1.31862 0.761308i −0.335117 0.942176i \(-0.608776\pi\)
−0.983507 + 0.180868i \(0.942109\pi\)
\(632\) 0.638831 8.53931i 0.0254113 0.339676i
\(633\) 0 0
\(634\) −5.51791 2.54489i −0.219144 0.101071i
\(635\) −0.467175 + 2.64948i −0.0185393 + 0.105141i
\(636\) 0 0
\(637\) −22.3749 + 18.7747i −0.886525 + 0.743882i
\(638\) −0.293685 0.291229i −0.0116271 0.0115299i
\(639\) 0 0
\(640\) −0.982372 3.27778i −0.0388317 0.129566i
\(641\) −4.86140 + 13.3566i −0.192014 + 0.527553i −0.997918 0.0644923i \(-0.979457\pi\)
0.805905 + 0.592046i \(0.201679\pi\)
\(642\) 0 0
\(643\) 0.409458 0.487973i 0.0161474 0.0192438i −0.757910 0.652359i \(-0.773780\pi\)
0.774058 + 0.633115i \(0.218224\pi\)
\(644\) −1.05479 + 6.29040i −0.0415644 + 0.247876i
\(645\) 0 0
\(646\) −2.19850 + 26.4053i −0.0864988 + 1.03890i
\(647\) −7.26586 −0.285650 −0.142825 0.989748i \(-0.545619\pi\)
−0.142825 + 0.989748i \(0.545619\pi\)
\(648\) 0 0
\(649\) −0.181235 −0.00711408
\(650\) 2.48705 29.8710i 0.0975502 1.17164i
\(651\) 0 0
\(652\) 1.88667 11.2515i 0.0738879 0.440643i
\(653\) 20.4733 24.3991i 0.801182 0.954811i −0.198498 0.980101i \(-0.563606\pi\)
0.999680 + 0.0252900i \(0.00805092\pi\)
\(654\) 0 0
\(655\) 2.01029 5.52322i 0.0785484 0.215810i
\(656\) 22.1182 + 12.2794i 0.863570 + 0.479430i
\(657\) 0 0
\(658\) 3.50679 + 3.47747i 0.136709 + 0.135566i
\(659\) 11.3095 9.48984i 0.440557 0.369672i −0.395360 0.918526i \(-0.629380\pi\)
0.835918 + 0.548854i \(0.184936\pi\)
\(660\) 0 0
\(661\) 3.47979 19.7349i 0.135348 0.767598i −0.839268 0.543717i \(-0.817016\pi\)
0.974617 0.223880i \(-0.0718725\pi\)
\(662\) −25.8505 11.9224i −1.00471 0.463377i
\(663\) 0 0
\(664\) 16.2402 + 1.21494i 0.630243 + 0.0471489i
\(665\) 0.962265 + 0.555564i 0.0373150 + 0.0215438i
\(666\) 0 0
\(667\) 39.9619 23.0720i 1.54733 0.893352i
\(668\) −6.81731 7.98738i −0.263770 0.309041i
\(669\) 0 0
\(670\) −2.74906 3.89120i −0.106206 0.150330i
\(671\) 0.294748 0.107280i 0.0113786 0.00414148i
\(672\) 0 0
\(673\) 6.03662 + 34.2354i 0.232695 + 1.31968i 0.847415 + 0.530932i \(0.178158\pi\)
−0.614720 + 0.788745i \(0.710731\pi\)
\(674\) 18.0636 + 4.75894i 0.695784 + 0.183307i
\(675\) 0 0
\(676\) 9.82490 + 5.56294i 0.377881 + 0.213959i
\(677\) 33.0938 5.83534i 1.27190 0.224270i 0.503363 0.864075i \(-0.332096\pi\)
0.768537 + 0.639805i \(0.220985\pi\)
\(678\) 0 0
\(679\) −0.553144 1.51975i −0.0212277 0.0583227i
\(680\) −0.211165 2.10755i −0.00809782 0.0808209i
\(681\) 0 0
\(682\) −0.120549 + 0.173709i −0.00461605 + 0.00665166i
\(683\) 12.3153 + 21.3308i 0.471233 + 0.816200i 0.999459 0.0329044i \(-0.0104757\pi\)
−0.528225 + 0.849104i \(0.677142\pi\)
\(684\) 0 0
\(685\) −2.31937 + 4.01726i −0.0886185 + 0.153492i
\(686\) −4.02986 8.54818i −0.153861 0.326371i
\(687\) 0 0
\(688\) 3.46125 + 9.03467i 0.131959 + 0.344444i
\(689\) −42.1329 7.42916i −1.60514 0.283029i
\(690\) 0 0
\(691\) 9.45010 + 11.2622i 0.359499 + 0.428434i 0.915232 0.402926i \(-0.132007\pi\)
−0.555733 + 0.831361i \(0.687562\pi\)
\(692\) 1.40737 + 2.39105i 0.0535003 + 0.0908942i
\(693\) 0 0
\(694\) −6.63731 24.3612i −0.251949 0.924739i
\(695\) 2.53938 + 0.924260i 0.0963243 + 0.0350592i
\(696\) 0 0
\(697\) 11.9959 + 10.0657i 0.454376 + 0.381267i
\(698\) 18.4100 1.68858i 0.696829 0.0639136i
\(699\) 0 0
\(700\) 4.49222 + 1.59245i 0.169790 + 0.0601888i
\(701\) 32.3443i 1.22163i −0.791775 0.610813i \(-0.790843\pi\)
0.791775 0.610813i \(-0.209157\pi\)
\(702\) 0 0
\(703\) 50.8528i 1.91795i
\(704\) −0.326442 + 0.0660789i −0.0123033 + 0.00249044i
\(705\) 0 0
\(706\) 2.77550 + 30.2604i 0.104457 + 1.13886i
\(707\) 6.21078 + 5.21147i 0.233581 + 0.195997i
\(708\) 0 0
\(709\) 36.8919 + 13.4276i 1.38551 + 0.504283i 0.923842 0.382773i \(-0.125031\pi\)
0.461663 + 0.887056i \(0.347253\pi\)
\(710\) −1.39431 + 0.379886i −0.0523276 + 0.0142569i
\(711\) 0 0
\(712\) 7.96929 + 28.3106i 0.298662 + 1.06099i
\(713\) −15.1631 18.0707i −0.567863 0.676752i
\(714\) 0 0
\(715\) 0.0535457 + 0.00944156i 0.00200250 + 0.000353094i
\(716\) −14.6911 + 17.8098i −0.549032 + 0.665582i
\(717\) 0 0
\(718\) −24.2201 + 11.4181i −0.903886 + 0.426118i
\(719\) −0.482259 + 0.835298i −0.0179852 + 0.0311514i −0.874878 0.484343i \(-0.839059\pi\)
0.856893 + 0.515495i \(0.172392\pi\)
\(720\) 0 0
\(721\) 3.85790 + 6.68207i 0.143676 + 0.248853i
\(722\) 44.4528 + 30.8489i 1.65436 + 1.14808i
\(723\) 0 0
\(724\) −11.9987 32.1243i −0.445928 1.19389i
\(725\) −11.7932 32.4016i −0.437989 1.20337i
\(726\) 0 0
\(727\) 20.6400 3.63939i 0.765495 0.134977i 0.222751 0.974875i \(-0.428496\pi\)
0.542744 + 0.839898i \(0.317385\pi\)
\(728\) −4.13960 + 4.24521i −0.153424 + 0.157338i
\(729\) 0 0
\(730\) −0.0687541 + 0.260972i −0.00254470 + 0.00965899i
\(731\) 1.03994 + 5.89782i 0.0384637 + 0.218139i
\(732\) 0 0
\(733\) −1.68677 + 0.613933i −0.0623022 + 0.0226761i −0.372983 0.927838i \(-0.621665\pi\)
0.310681 + 0.950514i \(0.399443\pi\)
\(734\) 27.5129 19.4374i 1.01552 0.717447i
\(735\) 0 0
\(736\) 2.46089 37.0771i 0.0907095 1.36668i
\(737\) −0.401606 + 0.231867i −0.0147934 + 0.00854095i
\(738\) 0 0
\(739\) 17.1448 + 9.89858i 0.630683 + 0.364125i 0.781017 0.624510i \(-0.214701\pi\)
−0.150333 + 0.988635i \(0.548035\pi\)
\(740\) −0.739486 3.99727i −0.0271840 0.146943i
\(741\) 0 0
\(742\) 2.84906 6.17740i 0.104592 0.226780i
\(743\) −6.72417 + 38.1347i −0.246686 + 1.39903i 0.569858 + 0.821743i \(0.306998\pi\)
−0.816544 + 0.577283i \(0.804113\pi\)
\(744\) 0 0
\(745\) 0.398956 0.334764i 0.0146166 0.0122648i
\(746\) 21.5837 21.7656i 0.790234 0.796897i
\(747\) 0 0
\(748\) −0.206158 + 0.00173107i −0.00753789 + 6.32943e-5i
\(749\) −0.166318 + 0.456954i −0.00607712 + 0.0166967i
\(750\) 0 0
\(751\) 14.8195 17.6612i 0.540770 0.644465i −0.424590 0.905386i \(-0.639582\pi\)
0.965360 + 0.260921i \(0.0840261\pi\)
\(752\) −22.3481 18.1216i −0.814952 0.660826i
\(753\) 0 0
\(754\) 42.7493 + 3.55929i 1.55684 + 0.129622i
\(755\) −0.182408 −0.00663851
\(756\) 0 0
\(757\) 33.3070 1.21056 0.605281 0.796012i \(-0.293061\pi\)
0.605281 + 0.796012i \(0.293061\pi\)
\(758\) 47.4641 + 3.95185i 1.72397 + 0.143538i
\(759\) 0 0
\(760\) −5.90078 2.66162i −0.214044 0.0965472i
\(761\) 10.2052 12.1621i 0.369940 0.440877i −0.548673 0.836037i \(-0.684867\pi\)
0.918612 + 0.395161i \(0.129311\pi\)
\(762\) 0 0
\(763\) −1.20654 + 3.31494i −0.0436797 + 0.120009i
\(764\) −0.278010 33.1089i −0.0100580 1.19784i
\(765\) 0 0
\(766\) −1.49711 + 1.50973i −0.0540927 + 0.0545488i
\(767\) 14.3993 12.0825i 0.519930 0.436273i
\(768\) 0 0
\(769\) −3.82683 + 21.7030i −0.137999 + 0.782631i 0.834725 + 0.550666i \(0.185626\pi\)
−0.972724 + 0.231964i \(0.925485\pi\)
\(770\) −0.00362080 + 0.00785072i −0.000130485 + 0.000282920i
\(771\) 0 0
\(772\) −17.3124 + 3.20275i −0.623087 + 0.115270i
\(773\) 18.9410 + 10.9356i 0.681261 + 0.393326i 0.800330 0.599560i \(-0.204658\pi\)
−0.119069 + 0.992886i \(0.537991\pi\)
\(774\) 0 0
\(775\) −15.2657 + 8.81366i −0.548360 + 0.316596i
\(776\) 4.08918 + 8.48849i 0.146793 + 0.304719i
\(777\) 0 0
\(778\) 4.46037 3.15118i 0.159912 0.112975i
\(779\) 44.9720 16.3685i 1.61129 0.586461i
\(780\) 0 0
\(781\) 0.0244257 + 0.138525i 0.000874022 + 0.00495682i
\(782\) 5.85981 22.2422i 0.209546 0.795380i
\(783\) 0 0
\(784\) 13.9202 + 23.2017i 0.497149 + 0.828633i
\(785\) −3.08977 + 0.544811i −0.110279 + 0.0194451i
\(786\) 0 0
\(787\) −1.15642 3.17723i −0.0412218 0.113256i 0.917374 0.398027i \(-0.130305\pi\)
−0.958596 + 0.284771i \(0.908083\pi\)
\(788\) −23.4151 + 8.74576i −0.834130 + 0.311555i
\(789\) 0 0
\(790\) 1.06388 + 0.738301i 0.0378512 + 0.0262676i
\(791\) 3.51231 + 6.08351i 0.124884 + 0.216305i
\(792\) 0 0
\(793\) −16.2661 + 28.1737i −0.577625 + 1.00048i
\(794\) 25.0832 11.8249i 0.890169 0.419651i
\(795\) 0 0
\(796\) 6.92170 + 5.70965i 0.245333 + 0.202373i
\(797\) 47.1233 + 8.30912i 1.66919 + 0.294324i 0.926776 0.375613i \(-0.122568\pi\)
0.742418 + 0.669937i \(0.233679\pi\)
\(798\) 0 0
\(799\) −11.4479 13.6431i −0.404999 0.482659i
\(800\) −26.9656 6.62203i −0.953378 0.234124i
\(801\) 0 0
\(802\) −29.5990 + 8.06437i −1.04518 + 0.284763i
\(803\) 0.0246842 + 0.00898432i 0.000871087 + 0.000317050i
\(804\) 0 0
\(805\) −0.738884 0.619997i −0.0260422 0.0218520i
\(806\) −2.00301 21.8381i −0.0705529 0.769214i
\(807\) 0 0
\(808\) −39.0299 26.6028i −1.37307 0.935882i
\(809\) 17.3637i 0.610473i 0.952277 + 0.305237i \(0.0987356\pi\)
−0.952277 + 0.305237i \(0.901264\pi\)
\(810\) 0 0
\(811\) 13.7618i 0.483242i 0.970371 + 0.241621i \(0.0776791\pi\)
−0.970371 + 0.241621i \(0.922321\pi\)
\(812\) −2.27900 + 6.42894i −0.0799771 + 0.225612i
\(813\) 0 0
\(814\) −0.394022 + 0.0361400i −0.0138105 + 0.00126671i
\(815\) 1.32163 + 1.10898i 0.0462946 + 0.0388458i
\(816\) 0 0
\(817\) 17.1990 + 6.25993i 0.601717 + 0.219007i
\(818\) 4.08842 + 15.0059i 0.142948 + 0.524669i
\(819\) 0 0
\(820\) −3.29698 + 1.94061i −0.115136 + 0.0677689i
\(821\) −17.1467 20.4347i −0.598425 0.713175i 0.378777 0.925488i \(-0.376345\pi\)
−0.977202 + 0.212313i \(0.931900\pi\)
\(822\) 0 0
\(823\) 43.4440 + 7.66035i 1.51436 + 0.267023i 0.868214 0.496190i \(-0.165268\pi\)
0.646148 + 0.763212i \(0.276379\pi\)
\(824\) −26.2447 36.4942i −0.914277 1.27134i
\(825\) 0 0
\(826\) 1.27450 + 2.70349i 0.0443456 + 0.0940664i
\(827\) 5.67028 9.82121i 0.197175 0.341517i −0.750436 0.660943i \(-0.770157\pi\)
0.947611 + 0.319426i \(0.103490\pi\)
\(828\) 0 0
\(829\) 14.5329 + 25.1717i 0.504747 + 0.874248i 0.999985 + 0.00549015i \(0.00174758\pi\)
−0.495238 + 0.868757i \(0.664919\pi\)
\(830\) −1.40412 + 2.02331i −0.0487375 + 0.0702301i
\(831\) 0 0
\(832\) 21.5310 27.0132i 0.746452 0.936514i
\(833\) 5.72827 + 15.7383i 0.198473 + 0.545299i
\(834\) 0 0
\(835\) 1.56391 0.275759i 0.0541212 0.00954303i
\(836\) −0.310446 + 0.548289i −0.0107370 + 0.0189630i
\(837\) 0 0
\(838\) 33.1185 + 8.72523i 1.14406 + 0.301408i
\(839\) 2.04353 + 11.5894i 0.0705503 + 0.400111i 0.999549 + 0.0300279i \(0.00955962\pi\)
−0.928999 + 0.370083i \(0.879329\pi\)
\(840\) 0 0
\(841\) 19.1198 6.95904i 0.659304 0.239967i
\(842\) 29.8764 + 42.2889i 1.02961 + 1.45737i
\(843\) 0 0
\(844\) −34.1431 + 29.1415i −1.17525 + 1.00309i
\(845\) −1.47865 + 0.853700i −0.0508672 + 0.0293682i
\(846\) 0 0
\(847\) −4.62422 2.66980i −0.158890 0.0917353i
\(848\) −12.9276 + 37.4642i −0.443937 + 1.28653i
\(849\) 0 0
\(850\) −15.6076 7.19833i −0.535337 0.246901i
\(851\) 7.66556 43.4735i 0.262772 1.49025i
\(852\) 0 0
\(853\) −33.4958 + 28.1063i −1.14687 + 0.962342i −0.999642 0.0267597i \(-0.991481\pi\)
−0.147233 + 0.989102i \(0.547037\pi\)
\(854\) −3.67306 3.64235i −0.125690 0.124639i
\(855\) 0 0
\(856\) 0.698713 2.74549i 0.0238815 0.0938390i
\(857\) 1.39456 3.83152i 0.0476372 0.130882i −0.913593 0.406631i \(-0.866704\pi\)
0.961230 + 0.275749i \(0.0889258\pi\)
\(858\) 0 0
\(859\) −25.0149 + 29.8116i −0.853499 + 1.01716i 0.146112 + 0.989268i \(0.453324\pi\)
−0.999611 + 0.0278919i \(0.991121\pi\)
\(860\) −1.44295 0.241957i −0.0492043 0.00825067i
\(861\) 0 0
\(862\) 4.52477 54.3452i 0.154114 1.85100i
\(863\) 48.5663 1.65322 0.826608 0.562778i \(-0.190268\pi\)
0.826608 + 0.562778i \(0.190268\pi\)
\(864\) 0 0
\(865\) −0.419573 −0.0142659
\(866\) 0.770052 9.24879i 0.0261674 0.314287i
\(867\) 0 0
\(868\) 3.43897 + 0.576652i 0.116726 + 0.0195729i
\(869\) 0.0810203 0.0965562i 0.00274843 0.00327545i
\(870\) 0 0
\(871\) 16.4501 45.1963i 0.557391 1.53142i
\(872\) 5.06877 19.9170i 0.171650 0.674474i
\(873\) 0 0
\(874\) −49.9147 49.4973i −1.68839 1.67427i
\(875\) −1.11455 + 0.935219i −0.0376787 + 0.0316162i
\(876\) 0 0
\(877\) −2.95518 + 16.7597i −0.0997895 + 0.565934i 0.893385 + 0.449293i \(0.148324\pi\)
−0.993174 + 0.116641i \(0.962787\pi\)
\(878\) 2.34310 + 1.08065i 0.0790757 + 0.0364702i
\(879\) 0 0
\(880\) 0.0164294 0.0476125i 0.000553836 0.00160502i
\(881\) 2.59611 + 1.49886i 0.0874651 + 0.0504980i 0.543095 0.839672i \(-0.317252\pi\)
−0.455630 + 0.890169i \(0.650586\pi\)
\(882\) 0 0
\(883\) 17.0858 9.86450i 0.574984 0.331967i −0.184154 0.982897i \(-0.558954\pi\)
0.759137 + 0.650931i \(0.225621\pi\)
\(884\) 16.2641 13.8816i 0.547022 0.466889i
\(885\) 0 0
\(886\) −1.42374 2.01526i −0.0478316 0.0677039i
\(887\) −43.7296 + 15.9163i −1.46830 + 0.534416i −0.947637 0.319349i \(-0.896536\pi\)
−0.520658 + 0.853765i \(0.674313\pi\)
\(888\) 0 0
\(889\) −0.749912 4.25296i −0.0251512 0.142640i
\(890\) −4.30090 1.13309i −0.144166 0.0379813i
\(891\) 0 0
\(892\) −18.0497 + 31.8781i −0.604347 + 1.06736i
\(893\) −53.6030 + 9.45165i −1.79376 + 0.316287i
\(894\) 0 0
\(895\) −1.19411 3.28079i −0.0399147 0.109665i
\(896\) 3.28136 + 4.40487i 0.109622 + 0.147156i
\(897\) 0 0
\(898\) 7.44965 10.7348i 0.248598 0.358226i
\(899\) −12.6135 21.8472i −0.420683 0.728645i
\(900\) 0 0
\(901\) −12.2661 + 21.2454i −0.408642 + 0.707788i
\(902\) 0.158788 + 0.336823i 0.00528706 + 0.0112150i
\(903\) 0 0
\(904\) −23.8937 33.2252i −0.794694 1.10505i
\(905\) 5.10700 + 0.900503i 0.169763 + 0.0299337i
\(906\) 0 0
\(907\) −22.3588 26.6461i −0.742411 0.884771i 0.254190 0.967154i \(-0.418191\pi\)
−0.996601 + 0.0823838i \(0.973747\pi\)
\(908\) −33.7880 + 19.8876i −1.12129 + 0.659994i
\(909\) 0 0
\(910\) −0.235711 0.865141i −0.00781375 0.0286791i
\(911\) 28.1223 + 10.2357i 0.931735 + 0.339124i 0.762897 0.646520i \(-0.223776\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(912\) 0 0
\(913\) 0.183633 + 0.154086i 0.00607735 + 0.00509950i
\(914\) 38.8444 3.56284i 1.28486 0.117848i
\(915\) 0 0
\(916\) −3.78762 + 10.6847i −0.125147 + 0.353033i
\(917\) 9.43490i 0.311568i
\(918\) 0 0
\(919\) 52.7647i 1.74055i −0.492569 0.870273i \(-0.663942\pi\)
0.492569 0.870273i \(-0.336058\pi\)
\(920\) 4.64330 + 3.16488i 0.153085 + 0.104343i
\(921\) 0 0
\(922\) 2.67834 + 29.2011i 0.0882065 + 0.961686i
\(923\) −11.1758 9.37762i −0.367856 0.308668i
\(924\) 0 0
\(925\) −30.9974 11.2821i −1.01919 0.370954i
\(926\) −13.0798 + 3.56365i −0.429830 + 0.117109i
\(927\) 0 0
\(928\) 9.47698 38.5913i 0.311097 1.26682i
\(929\) −35.7471 42.6017i −1.17282 1.39772i −0.900132 0.435617i \(-0.856530\pi\)
−0.272692 0.962101i \(-0.587914\pi\)
\(930\) 0 0
\(931\) 50.4082 + 8.88832i 1.65206 + 0.291303i
\(932\) 11.5887 + 9.55940i 0.379600 + 0.313128i
\(933\) 0 0
\(934\) 22.3791 10.5502i 0.732268 0.345212i
\(935\) 0.0155887 0.0270003i 0.000509803 0.000883005i
\(936\) 0 0
\(937\) 9.12048 + 15.7971i 0.297953 + 0.516070i 0.975667 0.219255i \(-0.0703628\pi\)
−0.677715 + 0.735325i \(0.737029\pi\)
\(938\) 6.28301 + 4.36022i 0.205148 + 0.142366i
\(939\) 0 0
\(940\) 4.07600 1.52242i 0.132945 0.0496559i
\(941\) −5.96053 16.3764i −0.194308 0.533856i 0.803830 0.594859i \(-0.202792\pi\)
−0.998138 + 0.0610030i \(0.980570\pi\)
\(942\) 0 0
\(943\) −40.9134 + 7.21414i −1.33232 + 0.234925i
\(944\) −8.95832 14.9315i −0.291568 0.485978i
\(945\) 0 0
\(946\) −0.0362807 + 0.137712i −0.00117959 + 0.00447739i
\(947\) −7.47101 42.3702i −0.242775 1.37685i −0.825603 0.564251i \(-0.809165\pi\)
0.582828 0.812596i \(-0.301946\pi\)
\(948\) 0 0
\(949\) −2.56016 + 0.931821i −0.0831063 + 0.0302482i
\(950\) −42.9018 + 30.3094i −1.39192 + 0.983365i
\(951\) 0 0
\(952\) 1.47560 + 3.06310i 0.0478243 + 0.0992756i
\(953\) 17.5809 10.1503i 0.569502 0.328802i −0.187449 0.982274i \(-0.560022\pi\)
0.756950 + 0.653472i \(0.226688\pi\)
\(954\) 0 0
\(955\) 4.33625 + 2.50353i 0.140318 + 0.0810124i
\(956\) 12.7274 2.35454i 0.411634 0.0761513i
\(957\) 0 0
\(958\) 15.5159 33.6419i 0.501295 1.08692i
\(959\) 1.29301 7.33301i 0.0417534 0.236795i
\(960\) 0 0
\(961\) 13.8681 11.6367i 0.447359 0.375379i
\(962\) 28.8962 29.1399i 0.931652 0.939507i
\(963\) 0 0
\(964\) 0.0116530 + 1.38779i 0.000375319 + 0.0446977i
\(965\) 0.910624 2.50192i 0.0293140 0.0805396i
\(966\) 0 0
\(967\) −30.0283 + 35.7863i −0.965644 + 1.15081i 0.0228793 + 0.999738i \(0.492717\pi\)
−0.988523 + 0.151071i \(0.951728\pi\)
\(968\) 28.3566 + 12.7906i 0.911415 + 0.411105i
\(969\) 0 0
\(970\) −1.41994 0.118224i −0.0455916 0.00379594i
\(971\) 29.3788 0.942809 0.471405 0.881917i \(-0.343747\pi\)
0.471405 + 0.881917i \(0.343747\pi\)
\(972\) 0 0
\(973\) −4.33784 −0.139065
\(974\) −10.0198 0.834245i −0.321055 0.0267309i
\(975\) 0 0
\(976\) 23.4077 + 18.9808i 0.749263 + 0.607560i
\(977\) 12.0038 14.3055i 0.384035 0.457675i −0.539049 0.842275i \(-0.681216\pi\)
0.923083 + 0.384600i \(0.125661\pi\)
\(978\) 0 0
\(979\) −0.148065 + 0.406804i −0.00473217 + 0.0130015i
\(980\) −4.09157 + 0.0343562i −0.130700 + 0.00109747i
\(981\) 0 0
\(982\) −19.6699 + 19.8357i −0.627691 + 0.632984i
\(983\) −20.0449 + 16.8196i −0.639332 + 0.536463i −0.903813 0.427928i \(-0.859244\pi\)
0.264481 + 0.964391i \(0.414799\pi\)
\(984\) 0 0
\(985\) 0.656370 3.72246i 0.0209137 0.118607i
\(986\) 10.3017 22.3365i 0.328074 0.711339i
\(987\) 0 0
\(988\) −11.8878 64.2590i −0.378200 2.04435i
\(989\) −13.7596 7.94413i −0.437531 0.252609i
\(990\) 0 0
\(991\) −25.5875 + 14.7730i −0.812815 + 0.469279i −0.847932 0.530105i \(-0.822153\pi\)
0.0351178 + 0.999383i \(0.488819\pi\)
\(992\) −20.2701 1.34537i −0.643576 0.0427155i
\(993\) 0 0
\(994\) 1.89462 1.33852i 0.0600937 0.0424552i
\(995\) −1.27507 + 0.464087i −0.0404224 + 0.0147125i
\(996\) 0 0
\(997\) 6.87604 + 38.9959i 0.217766 + 1.23501i 0.876041 + 0.482236i \(0.160175\pi\)
−0.658275 + 0.752778i \(0.728714\pi\)
\(998\) 14.2410 54.0548i 0.450790 1.71107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.b.215.9 96
3.2 odd 2 972.2.l.c.215.8 96
4.3 odd 2 inner 972.2.l.b.215.7 96
9.2 odd 6 972.2.l.d.863.3 96
9.4 even 3 324.2.l.a.179.3 96
9.5 odd 6 108.2.l.a.23.14 yes 96
9.7 even 3 972.2.l.a.863.14 96
12.11 even 2 972.2.l.c.215.10 96
27.2 odd 18 inner 972.2.l.b.755.7 96
27.7 even 9 972.2.l.d.107.12 96
27.11 odd 18 324.2.l.a.143.16 96
27.16 even 9 108.2.l.a.47.1 yes 96
27.20 odd 18 972.2.l.a.107.5 96
27.25 even 9 972.2.l.c.755.10 96
36.7 odd 6 972.2.l.a.863.5 96
36.11 even 6 972.2.l.d.863.12 96
36.23 even 6 108.2.l.a.23.1 96
36.31 odd 6 324.2.l.a.179.16 96
108.7 odd 18 972.2.l.d.107.3 96
108.11 even 18 324.2.l.a.143.3 96
108.43 odd 18 108.2.l.a.47.14 yes 96
108.47 even 18 972.2.l.a.107.14 96
108.79 odd 18 972.2.l.c.755.8 96
108.83 even 18 inner 972.2.l.b.755.9 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.1 96 36.23 even 6
108.2.l.a.23.14 yes 96 9.5 odd 6
108.2.l.a.47.1 yes 96 27.16 even 9
108.2.l.a.47.14 yes 96 108.43 odd 18
324.2.l.a.143.3 96 108.11 even 18
324.2.l.a.143.16 96 27.11 odd 18
324.2.l.a.179.3 96 9.4 even 3
324.2.l.a.179.16 96 36.31 odd 6
972.2.l.a.107.5 96 27.20 odd 18
972.2.l.a.107.14 96 108.47 even 18
972.2.l.a.863.5 96 36.7 odd 6
972.2.l.a.863.14 96 9.7 even 3
972.2.l.b.215.7 96 4.3 odd 2 inner
972.2.l.b.215.9 96 1.1 even 1 trivial
972.2.l.b.755.7 96 27.2 odd 18 inner
972.2.l.b.755.9 96 108.83 even 18 inner
972.2.l.c.215.8 96 3.2 odd 2
972.2.l.c.215.10 96 12.11 even 2
972.2.l.c.755.8 96 108.79 odd 18
972.2.l.c.755.10 96 27.25 even 9
972.2.l.d.107.3 96 108.7 odd 18
972.2.l.d.107.12 96 27.7 even 9
972.2.l.d.863.3 96 9.2 odd 6
972.2.l.d.863.12 96 36.11 even 6