Properties

Label 972.2.l.d.107.12
Level $972$
Weight $2$
Character 972.107
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.12
Character \(\chi\) \(=\) 972.107
Dual form 972.2.l.d.863.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.816016 + 1.15504i) q^{2} +(-0.668236 + 1.88506i) q^{4} +(-0.103444 + 0.284210i) q^{5} +(-0.478118 - 0.0843052i) q^{7} +(-2.72261 + 0.766402i) q^{8} +(-0.412685 + 0.112438i) q^{10} +(-0.0391221 + 0.0142393i) q^{11} +(-3.30779 + 2.77557i) q^{13} +(-0.292776 - 0.621040i) q^{14} +(-3.10692 - 2.51933i) q^{16} +(-2.14427 + 1.23800i) q^{17} +(-6.55326 - 3.78353i) q^{19} +(-0.466628 - 0.384917i) q^{20} +(-0.0483712 - 0.0335681i) q^{22} +(1.14066 + 6.46900i) q^{23} +(3.76015 + 3.15514i) q^{25} +(-5.90510 - 1.55572i) q^{26} +(0.478416 - 0.844947i) q^{28} +(-4.51541 + 5.38126i) q^{29} +(3.53661 - 0.623599i) q^{31} +(0.374633 - 5.64444i) q^{32} +(-3.17970 - 1.46650i) q^{34} +(0.0734187 - 0.127165i) q^{35} +(-3.36015 - 5.81994i) q^{37} +(-0.977440 - 10.6567i) q^{38} +(0.0638189 - 0.853073i) q^{40} +(4.06534 + 4.84488i) q^{41} +(-0.827261 - 2.27288i) q^{43} +(-0.000699143 - 0.0832628i) q^{44} +(-6.54116 + 6.59631i) q^{46} +(1.24905 - 7.08373i) q^{47} +(-6.35636 - 2.31353i) q^{49} +(-0.575971 + 6.91777i) q^{50} +(-3.02173 - 8.09012i) q^{52} +9.90799i q^{53} -0.0125918i q^{55} +(1.36634 - 0.136900i) q^{56} +(-9.90022 - 0.824289i) q^{58} +(4.09063 + 1.48887i) q^{59} +(-1.30827 + 7.41960i) q^{61} +(3.60621 + 3.57605i) q^{62} +(6.82526 - 4.17323i) q^{64} +(-0.446672 - 1.22722i) q^{65} +(-7.15980 - 8.53272i) q^{67} +(-0.900820 - 4.86936i) q^{68} +(0.206792 - 0.0189671i) q^{70} +(-1.68932 - 2.92598i) q^{71} +(0.315477 - 0.546421i) q^{73} +(3.98034 - 8.63027i) q^{74} +(11.5113 - 9.82502i) q^{76} +(0.0199054 - 0.00350987i) q^{77} +(1.94606 - 2.31923i) q^{79} +(1.03741 - 0.622407i) q^{80} +(-2.27865 + 8.64913i) q^{82} +(4.41076 + 3.70106i) q^{83} +(-0.130039 - 0.737486i) q^{85} +(1.95021 - 2.81023i) q^{86} +(0.0956014 - 0.0687513i) q^{88} +(9.00521 + 5.19916i) q^{89} +(1.81551 - 1.04819i) q^{91} +(-12.9567 - 2.17260i) q^{92} +(9.20124 - 4.33773i) q^{94} +(1.75321 - 1.47112i) q^{95} +(3.13032 - 1.13934i) q^{97} +(-2.51468 - 9.22972i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} + 33 q^{14} + 3 q^{16} - 18 q^{17} - 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 30 q^{29} + 33 q^{32} + 15 q^{34} - 6 q^{37} - 63 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.816016 + 1.15504i 0.577010 + 0.816737i
\(3\) 0 0
\(4\) −0.668236 + 1.88506i −0.334118 + 0.942531i
\(5\) −0.103444 + 0.284210i −0.0462615 + 0.127102i −0.960672 0.277686i \(-0.910433\pi\)
0.914410 + 0.404788i \(0.132655\pi\)
\(6\) 0 0
\(7\) −0.478118 0.0843052i −0.180712 0.0318644i 0.0825599 0.996586i \(-0.473690\pi\)
−0.263272 + 0.964722i \(0.584802\pi\)
\(8\) −2.72261 + 0.766402i −0.962589 + 0.270964i
\(9\) 0 0
\(10\) −0.412685 + 0.112438i −0.130503 + 0.0355559i
\(11\) −0.0391221 + 0.0142393i −0.0117958 + 0.00429331i −0.347911 0.937527i \(-0.613109\pi\)
0.336116 + 0.941821i \(0.390887\pi\)
\(12\) 0 0
\(13\) −3.30779 + 2.77557i −0.917416 + 0.769803i −0.973515 0.228622i \(-0.926578\pi\)
0.0560994 + 0.998425i \(0.482134\pi\)
\(14\) −0.292776 0.621040i −0.0782478 0.165980i
\(15\) 0 0
\(16\) −3.10692 2.51933i −0.776730 0.629833i
\(17\) −2.14427 + 1.23800i −0.520062 + 0.300258i −0.736960 0.675936i \(-0.763739\pi\)
0.216898 + 0.976194i \(0.430406\pi\)
\(18\) 0 0
\(19\) −6.55326 3.78353i −1.50342 0.868001i −0.999992 0.00396479i \(-0.998738\pi\)
−0.503430 0.864036i \(-0.667929\pi\)
\(20\) −0.466628 0.384917i −0.104341 0.0860701i
\(21\) 0 0
\(22\) −0.0483712 0.0335681i −0.0103128 0.00715675i
\(23\) 1.14066 + 6.46900i 0.237844 + 1.34888i 0.836541 + 0.547904i \(0.184574\pi\)
−0.598697 + 0.800975i \(0.704315\pi\)
\(24\) 0 0
\(25\) 3.76015 + 3.15514i 0.752030 + 0.631028i
\(26\) −5.90510 1.55572i −1.15809 0.305103i
\(27\) 0 0
\(28\) 0.478416 0.844947i 0.0904122 0.159680i
\(29\) −4.51541 + 5.38126i −0.838491 + 0.999274i 0.161432 + 0.986884i \(0.448389\pi\)
−0.999923 + 0.0123907i \(0.996056\pi\)
\(30\) 0 0
\(31\) 3.53661 0.623599i 0.635193 0.112002i 0.153226 0.988191i \(-0.451034\pi\)
0.481967 + 0.876189i \(0.339923\pi\)
\(32\) 0.374633 5.64444i 0.0662264 0.997805i
\(33\) 0 0
\(34\) −3.17970 1.46650i −0.545313 0.251502i
\(35\) 0.0734187 0.127165i 0.0124100 0.0214948i
\(36\) 0 0
\(37\) −3.36015 5.81994i −0.552405 0.956793i −0.998100 0.0616082i \(-0.980377\pi\)
0.445696 0.895184i \(-0.352956\pi\)
\(38\) −0.977440 10.6567i −0.158562 1.72875i
\(39\) 0 0
\(40\) 0.0638189 0.853073i 0.0100907 0.134883i
\(41\) 4.06534 + 4.84488i 0.634899 + 0.756643i 0.983555 0.180608i \(-0.0578064\pi\)
−0.348656 + 0.937251i \(0.613362\pi\)
\(42\) 0 0
\(43\) −0.827261 2.27288i −0.126156 0.346611i 0.860495 0.509459i \(-0.170154\pi\)
−0.986651 + 0.162848i \(0.947932\pi\)
\(44\) −0.000699143 0.0832628i −0.000105400 0.0125523i
\(45\) 0 0
\(46\) −6.54116 + 6.59631i −0.964441 + 0.972573i
\(47\) 1.24905 7.08373i 0.182193 1.03327i −0.747316 0.664469i \(-0.768658\pi\)
0.929509 0.368799i \(-0.120231\pi\)
\(48\) 0 0
\(49\) −6.35636 2.31353i −0.908051 0.330504i
\(50\) −0.575971 + 6.91777i −0.0814547 + 0.978320i
\(51\) 0 0
\(52\) −3.02173 8.09012i −0.419039 1.12190i
\(53\) 9.90799i 1.36097i 0.732763 + 0.680484i \(0.238230\pi\)
−0.732763 + 0.680484i \(0.761770\pi\)
\(54\) 0 0
\(55\) 0.0125918i 0.00169788i
\(56\) 1.36634 0.136900i 0.182585 0.0182941i
\(57\) 0 0
\(58\) −9.90022 0.824289i −1.29996 0.108235i
\(59\) 4.09063 + 1.48887i 0.532555 + 0.193834i 0.594279 0.804259i \(-0.297438\pi\)
−0.0617238 + 0.998093i \(0.519660\pi\)
\(60\) 0 0
\(61\) −1.30827 + 7.41960i −0.167507 + 0.949982i 0.778934 + 0.627106i \(0.215761\pi\)
−0.946441 + 0.322876i \(0.895350\pi\)
\(62\) 3.60621 + 3.57605i 0.457989 + 0.454159i
\(63\) 0 0
\(64\) 6.82526 4.17323i 0.853157 0.521654i
\(65\) −0.446672 1.22722i −0.0554028 0.152218i
\(66\) 0 0
\(67\) −7.15980 8.53272i −0.874709 1.04244i −0.998741 0.0501590i \(-0.984027\pi\)
0.124033 0.992278i \(-0.460417\pi\)
\(68\) −0.900820 4.86936i −0.109241 0.590497i
\(69\) 0 0
\(70\) 0.206792 0.0189671i 0.0247163 0.00226700i
\(71\) −1.68932 2.92598i −0.200485 0.347250i 0.748200 0.663473i \(-0.230918\pi\)
−0.948685 + 0.316223i \(0.897585\pi\)
\(72\) 0 0
\(73\) 0.315477 0.546421i 0.0369237 0.0639538i −0.846973 0.531636i \(-0.821577\pi\)
0.883897 + 0.467682i \(0.154911\pi\)
\(74\) 3.98034 8.63027i 0.462705 1.00325i
\(75\) 0 0
\(76\) 11.5113 9.82502i 1.32044 1.12701i
\(77\) 0.0199054 0.00350987i 0.00226844 0.000399987i
\(78\) 0 0
\(79\) 1.94606 2.31923i 0.218949 0.260934i −0.645378 0.763863i \(-0.723300\pi\)
0.864327 + 0.502930i \(0.167745\pi\)
\(80\) 1.03741 0.622407i 0.115986 0.0695873i
\(81\) 0 0
\(82\) −2.27865 + 8.64913i −0.251635 + 0.955136i
\(83\) 4.41076 + 3.70106i 0.484143 + 0.406245i 0.851922 0.523669i \(-0.175437\pi\)
−0.367778 + 0.929913i \(0.619882\pi\)
\(84\) 0 0
\(85\) −0.130039 0.737486i −0.0141047 0.0799915i
\(86\) 1.95021 2.81023i 0.210297 0.303034i
\(87\) 0 0
\(88\) 0.0956014 0.0687513i 0.0101911 0.00732892i
\(89\) 9.00521 + 5.19916i 0.954550 + 0.551110i 0.894491 0.447085i \(-0.147538\pi\)
0.0600588 + 0.998195i \(0.480871\pi\)
\(90\) 0 0
\(91\) 1.81551 1.04819i 0.190317 0.109880i
\(92\) −12.9567 2.17260i −1.35083 0.226510i
\(93\) 0 0
\(94\) 9.20124 4.33773i 0.949035 0.447403i
\(95\) 1.75321 1.47112i 0.179876 0.150933i
\(96\) 0 0
\(97\) 3.13032 1.13934i 0.317836 0.115683i −0.178176 0.983999i \(-0.557020\pi\)
0.496012 + 0.868316i \(0.334797\pi\)
\(98\) −2.51468 9.22972i −0.254021 0.932343i
\(99\) 0 0
\(100\) −8.46030 + 4.97974i −0.846030 + 0.497974i
\(101\) 16.4460 + 2.89987i 1.63644 + 0.288548i 0.914855 0.403782i \(-0.132304\pi\)
0.721581 + 0.692330i \(0.243416\pi\)
\(102\) 0 0
\(103\) −5.43561 + 14.9342i −0.535587 + 1.47151i 0.316745 + 0.948511i \(0.397410\pi\)
−0.852332 + 0.523001i \(0.824812\pi\)
\(104\) 6.87864 10.0919i 0.674506 0.989591i
\(105\) 0 0
\(106\) −11.4441 + 8.08508i −1.11155 + 0.785293i
\(107\) 1.00162 0.0968302 0.0484151 0.998827i \(-0.484583\pi\)
0.0484151 + 0.998827i \(0.484583\pi\)
\(108\) 0 0
\(109\) 7.26618 0.695973 0.347987 0.937499i \(-0.386865\pi\)
0.347987 + 0.937499i \(0.386865\pi\)
\(110\) 0.0145441 0.0102751i 0.00138672 0.000979697i
\(111\) 0 0
\(112\) 1.27308 + 1.46647i 0.120295 + 0.138568i
\(113\) −4.94870 + 13.5964i −0.465534 + 1.27905i 0.455733 + 0.890116i \(0.349377\pi\)
−0.921268 + 0.388929i \(0.872845\pi\)
\(114\) 0 0
\(115\) −1.95655 0.344992i −0.182449 0.0321706i
\(116\) −7.12665 12.1078i −0.661693 1.12418i
\(117\) 0 0
\(118\) 1.61832 + 5.93979i 0.148978 + 0.546802i
\(119\) 1.12959 0.411135i 0.103549 0.0376887i
\(120\) 0 0
\(121\) −8.42516 + 7.06955i −0.765924 + 0.642686i
\(122\) −9.63750 + 4.54340i −0.872539 + 0.411340i
\(123\) 0 0
\(124\) −1.18776 + 7.08343i −0.106664 + 0.636111i
\(125\) −2.59533 + 1.49841i −0.232133 + 0.134022i
\(126\) 0 0
\(127\) 7.70348 + 4.44760i 0.683573 + 0.394661i 0.801200 0.598397i \(-0.204195\pi\)
−0.117627 + 0.993058i \(0.537529\pi\)
\(128\) 10.3898 + 4.47802i 0.918335 + 0.395805i
\(129\) 0 0
\(130\) 1.05300 1.51736i 0.0923540 0.133081i
\(131\) −3.37461 19.1384i −0.294841 1.67213i −0.667848 0.744298i \(-0.732784\pi\)
0.373007 0.927829i \(-0.378327\pi\)
\(132\) 0 0
\(133\) 2.81427 + 2.36145i 0.244028 + 0.204764i
\(134\) 4.01312 15.2327i 0.346681 1.31590i
\(135\) 0 0
\(136\) 4.88922 5.01396i 0.419247 0.429943i
\(137\) −9.85858 + 11.7490i −0.842275 + 1.00378i 0.157592 + 0.987504i \(0.449627\pi\)
−0.999867 + 0.0162805i \(0.994818\pi\)
\(138\) 0 0
\(139\) 8.79915 1.55153i 0.746334 0.131599i 0.212468 0.977168i \(-0.431850\pi\)
0.533866 + 0.845569i \(0.320739\pi\)
\(140\) 0.190653 + 0.223375i 0.0161131 + 0.0188786i
\(141\) 0 0
\(142\) 2.00112 4.33888i 0.167930 0.364110i
\(143\) 0.0898857 0.155687i 0.00751662 0.0130192i
\(144\) 0 0
\(145\) −1.06231 1.83998i −0.0882203 0.152802i
\(146\) 0.888573 0.0815005i 0.0735388 0.00674503i
\(147\) 0 0
\(148\) 13.2163 2.44499i 1.08638 0.200977i
\(149\) 1.10684 + 1.31908i 0.0906760 + 0.108063i 0.809475 0.587155i \(-0.199752\pi\)
−0.718799 + 0.695218i \(0.755308\pi\)
\(150\) 0 0
\(151\) 0.206273 + 0.566731i 0.0167863 + 0.0461199i 0.947803 0.318857i \(-0.103299\pi\)
−0.931016 + 0.364977i \(0.881077\pi\)
\(152\) 20.7417 + 5.27866i 1.68238 + 0.428155i
\(153\) 0 0
\(154\) 0.0202972 + 0.0201275i 0.00163560 + 0.00162192i
\(155\) −0.188607 + 1.06964i −0.0151493 + 0.0859159i
\(156\) 0 0
\(157\) 9.74784 + 3.54792i 0.777962 + 0.283155i 0.700323 0.713826i \(-0.253039\pi\)
0.0776395 + 0.996981i \(0.475262\pi\)
\(158\) 4.26682 + 0.355255i 0.339450 + 0.0282625i
\(159\) 0 0
\(160\) 1.56545 + 0.690356i 0.123760 + 0.0545775i
\(161\) 3.18911i 0.251337i
\(162\) 0 0
\(163\) 5.70430i 0.446795i 0.974727 + 0.223397i \(0.0717148\pi\)
−0.974727 + 0.223397i \(0.928285\pi\)
\(164\) −11.8495 + 4.42589i −0.925291 + 0.345604i
\(165\) 0 0
\(166\) −0.675630 + 8.11473i −0.0524391 + 0.629825i
\(167\) −4.93392 1.79580i −0.381798 0.138963i 0.143989 0.989579i \(-0.454007\pi\)
−0.525787 + 0.850616i \(0.676229\pi\)
\(168\) 0 0
\(169\) 0.980286 5.55948i 0.0754066 0.427652i
\(170\) 0.745712 0.752000i 0.0571935 0.0576758i
\(171\) 0 0
\(172\) 4.83733 0.0406182i 0.368843 0.00309711i
\(173\) 0.474467 + 1.30359i 0.0360730 + 0.0991099i 0.956422 0.291989i \(-0.0943172\pi\)
−0.920349 + 0.391099i \(0.872095\pi\)
\(174\) 0 0
\(175\) −1.53180 1.82553i −0.115793 0.137997i
\(176\) 0.157423 + 0.0543213i 0.0118662 + 0.00409462i
\(177\) 0 0
\(178\) 1.34316 + 14.6440i 0.100674 + 1.09761i
\(179\) 5.77179 + 9.99703i 0.431403 + 0.747213i 0.996994 0.0774732i \(-0.0246852\pi\)
−0.565591 + 0.824686i \(0.691352\pi\)
\(180\) 0 0
\(181\) 8.57298 14.8488i 0.637225 1.10371i −0.348814 0.937192i \(-0.613416\pi\)
0.986039 0.166514i \(-0.0532510\pi\)
\(182\) 2.69218 + 1.24165i 0.199558 + 0.0920373i
\(183\) 0 0
\(184\) −8.06343 16.7384i −0.594444 1.23397i
\(185\) 2.00167 0.352948i 0.147166 0.0259493i
\(186\) 0 0
\(187\) 0.0662603 0.0789659i 0.00484543 0.00577456i
\(188\) 12.5186 + 7.08814i 0.913014 + 0.516956i
\(189\) 0 0
\(190\) 3.12985 + 0.824572i 0.227063 + 0.0598208i
\(191\) 12.6819 + 10.6414i 0.917630 + 0.769983i 0.973555 0.228452i \(-0.0733663\pi\)
−0.0559250 + 0.998435i \(0.517811\pi\)
\(192\) 0 0
\(193\) −1.52864 8.66934i −0.110034 0.624033i −0.989090 0.147314i \(-0.952937\pi\)
0.879056 0.476719i \(-0.158174\pi\)
\(194\) 3.87038 + 2.68592i 0.277877 + 0.192838i
\(195\) 0 0
\(196\) 8.60869 10.4362i 0.614906 0.745439i
\(197\) −10.8232 6.24879i −0.771122 0.445208i 0.0621526 0.998067i \(-0.480203\pi\)
−0.833275 + 0.552859i \(0.813537\pi\)
\(198\) 0 0
\(199\) 3.88531 2.24318i 0.275422 0.159015i −0.355927 0.934514i \(-0.615835\pi\)
0.631349 + 0.775499i \(0.282501\pi\)
\(200\) −12.6555 5.70844i −0.894882 0.403648i
\(201\) 0 0
\(202\) 10.0707 + 21.3621i 0.708573 + 1.50303i
\(203\) 2.61257 2.19221i 0.183366 0.153863i
\(204\) 0 0
\(205\) −1.79750 + 0.654235i −0.125543 + 0.0456937i
\(206\) −21.6852 + 5.90821i −1.51088 + 0.411644i
\(207\) 0 0
\(208\) 17.2696 0.290040i 1.19743 0.0201107i
\(209\) 0.310252 + 0.0547058i 0.0214606 + 0.00378408i
\(210\) 0 0
\(211\) −7.67638 + 21.0907i −0.528464 + 1.45194i 0.332415 + 0.943133i \(0.392137\pi\)
−0.860879 + 0.508810i \(0.830086\pi\)
\(212\) −18.6772 6.62088i −1.28275 0.454724i
\(213\) 0 0
\(214\) 0.817337 + 1.15691i 0.0558720 + 0.0790848i
\(215\) 0.731549 0.0498912
\(216\) 0 0
\(217\) −1.74349 −0.118356
\(218\) 5.92932 + 8.39273i 0.401584 + 0.568427i
\(219\) 0 0
\(220\) 0.0237364 + 0.00841432i 0.00160031 + 0.000567293i
\(221\) 3.65666 10.0466i 0.245974 0.675807i
\(222\) 0 0
\(223\) 18.0384 + 3.18066i 1.20794 + 0.212993i 0.741128 0.671363i \(-0.234291\pi\)
0.466813 + 0.884356i \(0.345402\pi\)
\(224\) −0.654974 + 2.66712i −0.0437623 + 0.178205i
\(225\) 0 0
\(226\) −19.7426 + 5.37896i −1.31326 + 0.357803i
\(227\) −18.4210 + 6.70470i −1.22264 + 0.445006i −0.871073 0.491154i \(-0.836575\pi\)
−0.351572 + 0.936161i \(0.614353\pi\)
\(228\) 0 0
\(229\) 4.34201 3.64338i 0.286928 0.240761i −0.487951 0.872871i \(-0.662255\pi\)
0.774879 + 0.632110i \(0.217811\pi\)
\(230\) −1.19809 2.54141i −0.0789999 0.167575i
\(231\) 0 0
\(232\) 8.16952 18.1117i 0.536355 1.18909i
\(233\) 6.50499 3.75566i 0.426156 0.246041i −0.271552 0.962424i \(-0.587537\pi\)
0.697708 + 0.716383i \(0.254203\pi\)
\(234\) 0 0
\(235\) 1.88406 + 1.08776i 0.122902 + 0.0709577i
\(236\) −5.54012 + 6.71618i −0.360631 + 0.437186i
\(237\) 0 0
\(238\) 1.39664 + 0.969223i 0.0905306 + 0.0628254i
\(239\) 1.12380 + 6.37337i 0.0726924 + 0.412259i 0.999340 + 0.0363276i \(0.0115660\pi\)
−0.926648 + 0.375931i \(0.877323\pi\)
\(240\) 0 0
\(241\) −0.531573 0.446043i −0.0342416 0.0287322i 0.625506 0.780219i \(-0.284892\pi\)
−0.659748 + 0.751487i \(0.729337\pi\)
\(242\) −15.0407 3.96253i −0.966852 0.254721i
\(243\) 0 0
\(244\) −13.1122 7.42422i −0.839420 0.475287i
\(245\) 1.31505 1.56722i 0.0840156 0.100126i
\(246\) 0 0
\(247\) 32.1783 5.67389i 2.04745 0.361021i
\(248\) −9.15088 + 4.40828i −0.581082 + 0.279926i
\(249\) 0 0
\(250\) −3.84856 1.77498i −0.243404 0.112260i
\(251\) −1.09113 + 1.88989i −0.0688715 + 0.119289i −0.898405 0.439168i \(-0.855273\pi\)
0.829533 + 0.558457i \(0.188607\pi\)
\(252\) 0 0
\(253\) −0.136739 0.236839i −0.00859670 0.0148899i
\(254\) 1.14900 + 12.5271i 0.0720945 + 0.786023i
\(255\) 0 0
\(256\) 3.30592 + 15.6547i 0.206620 + 0.978421i
\(257\) −9.24962 11.0233i −0.576975 0.687612i 0.396072 0.918220i \(-0.370373\pi\)
−0.973047 + 0.230607i \(0.925929\pi\)
\(258\) 0 0
\(259\) 1.11590 + 3.06590i 0.0693384 + 0.190506i
\(260\) 2.61187 0.0219314i 0.161981 0.00136013i
\(261\) 0 0
\(262\) 19.3518 19.5150i 1.19556 1.20564i
\(263\) −1.77884 + 10.0883i −0.109688 + 0.622073i 0.879555 + 0.475796i \(0.157840\pi\)
−0.989244 + 0.146277i \(0.953271\pi\)
\(264\) 0 0
\(265\) −2.81595 1.02492i −0.172982 0.0629604i
\(266\) −0.431083 + 5.17757i −0.0264314 + 0.317457i
\(267\) 0 0
\(268\) 20.8691 7.79480i 1.27479 0.476143i
\(269\) 3.15222i 0.192194i −0.995372 0.0960971i \(-0.969364\pi\)
0.995372 0.0960971i \(-0.0306359\pi\)
\(270\) 0 0
\(271\) 3.33151i 0.202375i 0.994867 + 0.101188i \(0.0322642\pi\)
−0.994867 + 0.101188i \(0.967736\pi\)
\(272\) 9.78101 + 1.55578i 0.593061 + 0.0943329i
\(273\) 0 0
\(274\) −21.6153 1.79969i −1.30583 0.108723i
\(275\) −0.192032 0.0698939i −0.0115800 0.00421476i
\(276\) 0 0
\(277\) 0.725065 4.11205i 0.0435649 0.247069i −0.955246 0.295811i \(-0.904410\pi\)
0.998811 + 0.0487421i \(0.0155212\pi\)
\(278\) 8.97233 + 8.89730i 0.538124 + 0.533625i
\(279\) 0 0
\(280\) −0.102431 + 0.402489i −0.00612145 + 0.0240533i
\(281\) −6.71308 18.4440i −0.400469 1.10028i −0.962054 0.272860i \(-0.912031\pi\)
0.561585 0.827419i \(-0.310192\pi\)
\(282\) 0 0
\(283\) −9.89761 11.7955i −0.588352 0.701170i 0.386937 0.922106i \(-0.373533\pi\)
−0.975288 + 0.220936i \(0.929089\pi\)
\(284\) 6.64452 1.22922i 0.394280 0.0729409i
\(285\) 0 0
\(286\) 0.253172 0.0232211i 0.0149704 0.00137310i
\(287\) −1.53526 2.65916i −0.0906238 0.156965i
\(288\) 0 0
\(289\) −5.43473 + 9.41323i −0.319690 + 0.553720i
\(290\) 1.25839 2.72847i 0.0738950 0.160221i
\(291\) 0 0
\(292\) 0.819226 + 0.959831i 0.0479416 + 0.0561699i
\(293\) −18.3390 + 3.23366i −1.07138 + 0.188912i −0.681399 0.731913i \(-0.738628\pi\)
−0.389976 + 0.920825i \(0.627517\pi\)
\(294\) 0 0
\(295\) −0.846301 + 1.00858i −0.0492736 + 0.0587219i
\(296\) 13.6088 + 13.2702i 0.790995 + 0.771317i
\(297\) 0 0
\(298\) −0.620393 + 2.35484i −0.0359384 + 0.136412i
\(299\) −21.7282 18.2321i −1.25657 1.05439i
\(300\) 0 0
\(301\) 0.203913 + 1.15645i 0.0117534 + 0.0666566i
\(302\) −0.486275 + 0.700716i −0.0279820 + 0.0403217i
\(303\) 0 0
\(304\) 10.8285 + 28.2650i 0.621058 + 1.62111i
\(305\) −1.97339 1.13934i −0.112996 0.0652382i
\(306\) 0 0
\(307\) −17.7533 + 10.2499i −1.01323 + 0.584990i −0.912136 0.409887i \(-0.865568\pi\)
−0.101096 + 0.994877i \(0.532235\pi\)
\(308\) −0.00668521 + 0.0398684i −0.000380925 + 0.00227171i
\(309\) 0 0
\(310\) −1.38939 + 0.654998i −0.0789120 + 0.0372014i
\(311\) −15.3427 + 12.8740i −0.870002 + 0.730018i −0.964099 0.265545i \(-0.914448\pi\)
0.0940965 + 0.995563i \(0.470004\pi\)
\(312\) 0 0
\(313\) 16.5775 6.03372i 0.937017 0.341046i 0.172030 0.985092i \(-0.444968\pi\)
0.764987 + 0.644046i \(0.222745\pi\)
\(314\) 3.85640 + 14.1543i 0.217629 + 0.798774i
\(315\) 0 0
\(316\) 3.07146 + 5.21825i 0.172783 + 0.293549i
\(317\) −4.23145 0.746120i −0.237662 0.0419063i 0.0535483 0.998565i \(-0.482947\pi\)
−0.291210 + 0.956659i \(0.594058\pi\)
\(318\) 0 0
\(319\) 0.100027 0.274822i 0.00560045 0.0153871i
\(320\) 0.480042 + 2.37150i 0.0268352 + 0.132571i
\(321\) 0 0
\(322\) 3.68355 2.60236i 0.205276 0.145024i
\(323\) 18.7360 1.04250
\(324\) 0 0
\(325\) −21.1951 −1.17569
\(326\) −6.58869 + 4.65480i −0.364914 + 0.257805i
\(327\) 0 0
\(328\) −14.7815 10.0751i −0.816170 0.556302i
\(329\) −1.19439 + 3.28156i −0.0658489 + 0.180918i
\(330\) 0 0
\(331\) −19.8236 3.49544i −1.08961 0.192127i −0.400146 0.916451i \(-0.631041\pi\)
−0.689459 + 0.724324i \(0.742152\pi\)
\(332\) −9.92416 + 5.84137i −0.544659 + 0.320587i
\(333\) 0 0
\(334\) −1.95194 7.16428i −0.106805 0.392012i
\(335\) 3.16572 1.15223i 0.172962 0.0629529i
\(336\) 0 0
\(337\) 10.1185 8.49041i 0.551189 0.462502i −0.324155 0.946004i \(-0.605080\pi\)
0.875343 + 0.483502i \(0.160635\pi\)
\(338\) 7.22135 3.40435i 0.392789 0.185172i
\(339\) 0 0
\(340\) 1.47710 + 0.247683i 0.0801072 + 0.0134325i
\(341\) −0.129480 + 0.0747552i −0.00701173 + 0.00404822i
\(342\) 0 0
\(343\) 5.78720 + 3.34124i 0.312480 + 0.180410i
\(344\) 3.99425 + 5.55416i 0.215356 + 0.299460i
\(345\) 0 0
\(346\) −1.11852 + 1.61178i −0.0601322 + 0.0866496i
\(347\) 3.10029 + 17.5826i 0.166433 + 0.943886i 0.947575 + 0.319533i \(0.103526\pi\)
−0.781143 + 0.624353i \(0.785363\pi\)
\(348\) 0 0
\(349\) −10.0141 8.40283i −0.536043 0.449793i 0.334139 0.942524i \(-0.391554\pi\)
−0.870182 + 0.492730i \(0.835999\pi\)
\(350\) 0.858586 3.25895i 0.0458933 0.174198i
\(351\) 0 0
\(352\) 0.0657163 + 0.226157i 0.00350269 + 0.0120542i
\(353\) 13.8117 16.4601i 0.735120 0.876082i −0.260886 0.965370i \(-0.584015\pi\)
0.996006 + 0.0892874i \(0.0284590\pi\)
\(354\) 0 0
\(355\) 1.00634 0.177445i 0.0534111 0.00941781i
\(356\) −15.8183 + 13.5011i −0.838371 + 0.715558i
\(357\) 0 0
\(358\) −6.83710 + 14.8244i −0.361352 + 0.783493i
\(359\) 9.46695 16.3972i 0.499647 0.865413i −0.500353 0.865821i \(-0.666797\pi\)
1.00000 0.000407927i \(0.000129847\pi\)
\(360\) 0 0
\(361\) 19.1302 + 33.1344i 1.00685 + 1.74392i
\(362\) 24.1467 2.21475i 1.26912 0.116405i
\(363\) 0 0
\(364\) 0.762706 + 4.12278i 0.0399766 + 0.216093i
\(365\) 0.122664 + 0.146185i 0.00642053 + 0.00765169i
\(366\) 0 0
\(367\) 8.14687 + 22.3833i 0.425263 + 1.16840i 0.948656 + 0.316309i \(0.102444\pi\)
−0.523393 + 0.852091i \(0.675334\pi\)
\(368\) 12.7536 22.9724i 0.664828 1.19752i
\(369\) 0 0
\(370\) 2.04106 + 2.02400i 0.106110 + 0.105223i
\(371\) 0.835295 4.73719i 0.0433664 0.245943i
\(372\) 0 0
\(373\) 20.3677 + 7.41323i 1.05460 + 0.383843i 0.810397 0.585882i \(-0.199252\pi\)
0.244202 + 0.969724i \(0.421474\pi\)
\(374\) 0.145278 + 0.0120958i 0.00751216 + 0.000625460i
\(375\) 0 0
\(376\) 2.02829 + 20.2435i 0.104601 + 1.04398i
\(377\) 30.3329i 1.56222i
\(378\) 0 0
\(379\) 33.6783i 1.72994i −0.501825 0.864969i \(-0.667338\pi\)
0.501825 0.864969i \(-0.332662\pi\)
\(380\) 1.60159 + 4.28796i 0.0821599 + 0.219968i
\(381\) 0 0
\(382\) −1.94259 + 23.3316i −0.0993914 + 1.19375i
\(383\) −1.41277 0.514205i −0.0721889 0.0262746i 0.305673 0.952136i \(-0.401118\pi\)
−0.377862 + 0.925862i \(0.623341\pi\)
\(384\) 0 0
\(385\) −0.00106156 + 0.00602039i −5.41020e−5 + 0.000306828i
\(386\) 8.76604 8.83996i 0.446180 0.449942i
\(387\) 0 0
\(388\) 0.0559413 + 6.66219i 0.00283999 + 0.338222i
\(389\) 1.32077 + 3.62877i 0.0669655 + 0.183986i 0.968662 0.248384i \(-0.0798996\pi\)
−0.901696 + 0.432370i \(0.857677\pi\)
\(390\) 0 0
\(391\) −10.4545 12.4592i −0.528706 0.630087i
\(392\) 19.0790 + 1.42731i 0.963635 + 0.0720901i
\(393\) 0 0
\(394\) −1.61432 17.6004i −0.0813281 0.886693i
\(395\) 0.457839 + 0.793000i 0.0230364 + 0.0399002i
\(396\) 0 0
\(397\) −9.80431 + 16.9816i −0.492064 + 0.852280i −0.999958 0.00913954i \(-0.997091\pi\)
0.507894 + 0.861419i \(0.330424\pi\)
\(398\) 5.76144 + 2.65721i 0.288795 + 0.133194i
\(399\) 0 0
\(400\) −3.73364 19.2758i −0.186682 0.963792i
\(401\) 21.3630 3.76688i 1.06682 0.188109i 0.387439 0.921896i \(-0.373360\pi\)
0.679380 + 0.733787i \(0.262249\pi\)
\(402\) 0 0
\(403\) −9.96751 + 11.8788i −0.496517 + 0.591726i
\(404\) −16.4562 + 29.0639i −0.818728 + 1.44598i
\(405\) 0 0
\(406\) 4.66398 + 1.22875i 0.231470 + 0.0609817i
\(407\) 0.214328 + 0.179842i 0.0106238 + 0.00891446i
\(408\) 0 0
\(409\) −1.90971 10.8305i −0.0944288 0.535533i −0.994921 0.100660i \(-0.967905\pi\)
0.900492 0.434873i \(-0.143207\pi\)
\(410\) −2.22245 1.54231i −0.109759 0.0761694i
\(411\) 0 0
\(412\) −24.5197 20.2260i −1.20800 0.996466i
\(413\) −1.83029 1.05672i −0.0900626 0.0519976i
\(414\) 0 0
\(415\) −1.50814 + 0.870727i −0.0740319 + 0.0427423i
\(416\) 14.4273 + 19.7104i 0.707356 + 0.966383i
\(417\) 0 0
\(418\) 0.189983 + 0.402995i 0.00929239 + 0.0197111i
\(419\) 18.5516 15.5667i 0.906306 0.760481i −0.0651068 0.997878i \(-0.520739\pi\)
0.971413 + 0.237397i \(0.0762944\pi\)
\(420\) 0 0
\(421\) −34.4045 + 12.5222i −1.67677 + 0.610296i −0.992862 0.119269i \(-0.961945\pi\)
−0.683912 + 0.729565i \(0.739723\pi\)
\(422\) −30.6247 + 8.34381i −1.49078 + 0.406170i
\(423\) 0 0
\(424\) −7.59351 26.9756i −0.368773 1.31005i
\(425\) −11.9688 2.11043i −0.580573 0.102371i
\(426\) 0 0
\(427\) 1.25102 3.43715i 0.0605411 0.166335i
\(428\) −0.669318 + 1.88812i −0.0323527 + 0.0912655i
\(429\) 0 0
\(430\) 0.596956 + 0.844969i 0.0287878 + 0.0407480i
\(431\) −38.5608 −1.85741 −0.928705 0.370820i \(-0.879077\pi\)
−0.928705 + 0.370820i \(0.879077\pi\)
\(432\) 0 0
\(433\) −6.56251 −0.315374 −0.157687 0.987489i \(-0.550404\pi\)
−0.157687 + 0.987489i \(0.550404\pi\)
\(434\) −1.42271 2.01380i −0.0682925 0.0966655i
\(435\) 0 0
\(436\) −4.85552 + 13.6972i −0.232537 + 0.655977i
\(437\) 17.0006 46.7088i 0.813249 2.23438i
\(438\) 0 0
\(439\) 1.79682 + 0.316828i 0.0857577 + 0.0151214i 0.216362 0.976313i \(-0.430581\pi\)
−0.130605 + 0.991435i \(0.541692\pi\)
\(440\) 0.00965041 + 0.0342827i 0.000460065 + 0.00163437i
\(441\) 0 0
\(442\) 14.5881 3.97459i 0.693886 0.189052i
\(443\) 1.63953 0.596740i 0.0778964 0.0283520i −0.302778 0.953061i \(-0.597914\pi\)
0.380674 + 0.924709i \(0.375692\pi\)
\(444\) 0 0
\(445\) −2.40918 + 2.02155i −0.114206 + 0.0958304i
\(446\) 11.0458 + 23.4306i 0.523036 + 1.10947i
\(447\) 0 0
\(448\) −3.61511 + 1.41990i −0.170798 + 0.0670837i
\(449\) 8.00158 4.61971i 0.377618 0.218018i −0.299164 0.954202i \(-0.596708\pi\)
0.676781 + 0.736184i \(0.263374\pi\)
\(450\) 0 0
\(451\) −0.228032 0.131654i −0.0107376 0.00619937i
\(452\) −22.3232 18.4142i −1.05000 0.866133i
\(453\) 0 0
\(454\) −22.7760 15.8059i −1.06893 0.741806i
\(455\) 0.110101 + 0.624414i 0.00516161 + 0.0292730i
\(456\) 0 0
\(457\) −21.1294 17.7297i −0.988391 0.829359i −0.00305718 0.999995i \(-0.500973\pi\)
−0.985334 + 0.170637i \(0.945418\pi\)
\(458\) 7.75140 + 2.04214i 0.362199 + 0.0954229i
\(459\) 0 0
\(460\) 1.95776 3.45767i 0.0912812 0.161215i
\(461\) 13.3282 15.8839i 0.620755 0.739787i −0.360445 0.932780i \(-0.617375\pi\)
0.981200 + 0.192994i \(0.0618197\pi\)
\(462\) 0 0
\(463\) 9.44034 1.66459i 0.438730 0.0773599i 0.0500796 0.998745i \(-0.484053\pi\)
0.388650 + 0.921385i \(0.372941\pi\)
\(464\) 27.5862 5.34332i 1.28066 0.248058i
\(465\) 0 0
\(466\) 9.64611 + 4.44885i 0.446848 + 0.206089i
\(467\) −8.74737 + 15.1509i −0.404780 + 0.701099i −0.994296 0.106657i \(-0.965985\pi\)
0.589516 + 0.807757i \(0.299319\pi\)
\(468\) 0 0
\(469\) 2.70388 + 4.68326i 0.124854 + 0.216253i
\(470\) 0.281013 + 3.06379i 0.0129622 + 0.141322i
\(471\) 0 0
\(472\) −12.2783 0.918546i −0.565154 0.0422795i
\(473\) 0.0647284 + 0.0771403i 0.00297621 + 0.00354691i
\(474\) 0 0
\(475\) −12.7037 34.9031i −0.582885 1.60146i
\(476\) 0.0201866 + 2.40407i 0.000925251 + 0.110191i
\(477\) 0 0
\(478\) −6.44446 + 6.49880i −0.294763 + 0.297248i
\(479\) 4.54899 25.7986i 0.207849 1.17877i −0.685045 0.728501i \(-0.740217\pi\)
0.892894 0.450268i \(-0.148671\pi\)
\(480\) 0 0
\(481\) 27.2683 + 9.92485i 1.24333 + 0.452534i
\(482\) 0.0814253 0.977967i 0.00370882 0.0445452i
\(483\) 0 0
\(484\) −7.69655 20.6061i −0.349843 0.936640i
\(485\) 1.00752i 0.0457493i
\(486\) 0 0
\(487\) 7.10957i 0.322166i 0.986941 + 0.161083i \(0.0514986\pi\)
−0.986941 + 0.161083i \(0.948501\pi\)
\(488\) −2.12446 21.2034i −0.0961700 0.959831i
\(489\) 0 0
\(490\) 2.88330 + 0.240063i 0.130254 + 0.0108449i
\(491\) −18.5617 6.75592i −0.837679 0.304890i −0.112673 0.993632i \(-0.535941\pi\)
−0.725007 + 0.688742i \(0.758163\pi\)
\(492\) 0 0
\(493\) 3.02029 17.1289i 0.136027 0.771449i
\(494\) 32.8115 + 32.5372i 1.47626 + 1.46392i
\(495\) 0 0
\(496\) −12.5590 6.97241i −0.563916 0.313071i
\(497\) 0.561018 + 1.54138i 0.0251651 + 0.0691405i
\(498\) 0 0
\(499\) −25.4073 30.2792i −1.13739 1.35548i −0.925750 0.378136i \(-0.876565\pi\)
−0.211636 0.977349i \(-0.567879\pi\)
\(500\) −1.09031 5.89365i −0.0487602 0.263572i
\(501\) 0 0
\(502\) −3.07328 + 0.281884i −0.137167 + 0.0125811i
\(503\) −19.5426 33.8489i −0.871364 1.50925i −0.860587 0.509304i \(-0.829903\pi\)
−0.0107769 0.999942i \(-0.503430\pi\)
\(504\) 0 0
\(505\) −2.52541 + 4.37413i −0.112379 + 0.194646i
\(506\) 0.161977 0.351203i 0.00720076 0.0156129i
\(507\) 0 0
\(508\) −13.5317 + 11.5495i −0.600374 + 0.512426i
\(509\) 14.5240 2.56097i 0.643764 0.113513i 0.157771 0.987476i \(-0.449569\pi\)
0.485993 + 0.873963i \(0.338458\pi\)
\(510\) 0 0
\(511\) −0.196901 + 0.234658i −0.00871040 + 0.0103807i
\(512\) −15.3842 + 16.5930i −0.679891 + 0.733314i
\(513\) 0 0
\(514\) 5.18448 19.6788i 0.228677 0.867996i
\(515\) −3.68217 3.08970i −0.162256 0.136149i
\(516\) 0 0
\(517\) 0.0520017 + 0.294916i 0.00228703 + 0.0129704i
\(518\) −2.63065 + 3.79073i −0.115584 + 0.166555i
\(519\) 0 0
\(520\) 2.15666 + 2.99892i 0.0945758 + 0.131511i
\(521\) −10.1293 5.84816i −0.443773 0.256213i 0.261424 0.965224i \(-0.415808\pi\)
−0.705197 + 0.709012i \(0.749141\pi\)
\(522\) 0 0
\(523\) 6.89969 3.98354i 0.301702 0.174188i −0.341505 0.939880i \(-0.610937\pi\)
0.643207 + 0.765692i \(0.277603\pi\)
\(524\) 38.3320 + 6.42759i 1.67454 + 0.280791i
\(525\) 0 0
\(526\) −13.1040 + 6.17760i −0.571361 + 0.269356i
\(527\) −6.81143 + 5.71547i −0.296711 + 0.248970i
\(528\) 0 0
\(529\) −18.9339 + 6.89137i −0.823213 + 0.299625i
\(530\) −1.11403 4.08888i −0.0483905 0.177610i
\(531\) 0 0
\(532\) −6.33207 + 3.72706i −0.274530 + 0.161589i
\(533\) −26.8946 4.74224i −1.16493 0.205409i
\(534\) 0 0
\(535\) −0.103611 + 0.284670i −0.00447951 + 0.0123073i
\(536\) 26.0329 + 17.7440i 1.12445 + 0.766425i
\(537\) 0 0
\(538\) 3.64094 2.57226i 0.156972 0.110898i
\(539\) 0.281617 0.0121301
\(540\) 0 0
\(541\) 8.41220 0.361669 0.180834 0.983514i \(-0.442120\pi\)
0.180834 + 0.983514i \(0.442120\pi\)
\(542\) −3.84803 + 2.71857i −0.165287 + 0.116772i
\(543\) 0 0
\(544\) 6.18447 + 12.5670i 0.265157 + 0.538806i
\(545\) −0.751641 + 2.06512i −0.0321968 + 0.0884599i
\(546\) 0 0
\(547\) −17.2159 3.03562i −0.736097 0.129794i −0.206983 0.978345i \(-0.566365\pi\)
−0.529114 + 0.848551i \(0.677476\pi\)
\(548\) −15.5597 26.4351i −0.664679 1.12925i
\(549\) 0 0
\(550\) −0.0759708 0.278839i −0.00323941 0.0118897i
\(551\) 49.9508 18.1806i 2.12798 0.774520i
\(552\) 0 0
\(553\) −1.12597 + 0.944803i −0.0478812 + 0.0401771i
\(554\) 5.34124 2.51802i 0.226928 0.106980i
\(555\) 0 0
\(556\) −2.95518 + 17.6237i −0.125328 + 0.747413i
\(557\) 0.688812 0.397686i 0.0291859 0.0168505i −0.485336 0.874328i \(-0.661303\pi\)
0.514522 + 0.857477i \(0.327969\pi\)
\(558\) 0 0
\(559\) 9.04493 + 5.22209i 0.382560 + 0.220871i
\(560\) −0.548477 + 0.210125i −0.0231774 + 0.00887942i
\(561\) 0 0
\(562\) 15.8256 22.8045i 0.667563 0.961950i
\(563\) −1.08802 6.17049i −0.0458547 0.260055i 0.953259 0.302155i \(-0.0977062\pi\)
−0.999113 + 0.0421004i \(0.986595\pi\)
\(564\) 0 0
\(565\) −3.35233 2.81293i −0.141033 0.118341i
\(566\) 5.54768 21.0575i 0.233187 0.885111i
\(567\) 0 0
\(568\) 6.84184 + 6.67163i 0.287077 + 0.279935i
\(569\) 3.48344 4.15140i 0.146033 0.174036i −0.688069 0.725645i \(-0.741542\pi\)
0.834103 + 0.551609i \(0.185986\pi\)
\(570\) 0 0
\(571\) −30.0214 + 5.29359i −1.25636 + 0.221530i −0.761913 0.647680i \(-0.775740\pi\)
−0.494444 + 0.869209i \(0.664628\pi\)
\(572\) 0.233414 + 0.273475i 0.00975953 + 0.0114346i
\(573\) 0 0
\(574\) 1.81863 3.94320i 0.0759082 0.164586i
\(575\) −16.1215 + 27.9233i −0.672315 + 1.16448i
\(576\) 0 0
\(577\) −9.67484 16.7573i −0.402769 0.697616i 0.591290 0.806459i \(-0.298619\pi\)
−0.994059 + 0.108843i \(0.965286\pi\)
\(578\) −15.3075 + 1.40401i −0.636708 + 0.0583993i
\(579\) 0 0
\(580\) 4.17835 0.772986i 0.173497 0.0320965i
\(581\) −1.79685 2.14140i −0.0745457 0.0888401i
\(582\) 0 0
\(583\) −0.141083 0.387622i −0.00584305 0.0160536i
\(584\) −0.440143 + 1.72948i −0.0182132 + 0.0715662i
\(585\) 0 0
\(586\) −18.6999 18.5436i −0.772486 0.766027i
\(587\) −7.51168 + 42.6009i −0.310040 + 1.75833i 0.288735 + 0.957409i \(0.406765\pi\)
−0.598775 + 0.800917i \(0.704346\pi\)
\(588\) 0 0
\(589\) −25.5357 9.29424i −1.05218 0.382962i
\(590\) −1.85555 0.154493i −0.0763917 0.00636036i
\(591\) 0 0
\(592\) −4.22266 + 26.5474i −0.173550 + 1.09109i
\(593\) 32.7916i 1.34659i 0.739375 + 0.673294i \(0.235121\pi\)
−0.739375 + 0.673294i \(0.764879\pi\)
\(594\) 0 0
\(595\) 0.363568i 0.0149048i
\(596\) −3.22618 + 1.20501i −0.132150 + 0.0493590i
\(597\) 0 0
\(598\) 3.32828 39.9746i 0.136103 1.63468i
\(599\) 35.3166 + 12.8542i 1.44300 + 0.525209i 0.940627 0.339443i \(-0.110238\pi\)
0.502372 + 0.864651i \(0.332461\pi\)
\(600\) 0 0
\(601\) 1.73419 9.83507i 0.0707390 0.401181i −0.928793 0.370598i \(-0.879153\pi\)
0.999532 0.0305826i \(-0.00973627\pi\)
\(602\) −1.16935 + 1.17921i −0.0476591 + 0.0480609i
\(603\) 0 0
\(604\) −1.20616 + 0.0101279i −0.0490781 + 0.000412100i
\(605\) −1.13770 3.12581i −0.0462542 0.127082i
\(606\) 0 0
\(607\) 18.6606 + 22.2388i 0.757409 + 0.902645i 0.997681 0.0680603i \(-0.0216810\pi\)
−0.240272 + 0.970706i \(0.577237\pi\)
\(608\) −23.8110 + 35.5720i −0.965662 + 1.44264i
\(609\) 0 0
\(610\) −0.294337 3.20906i −0.0119174 0.129931i
\(611\) 15.5298 + 26.8983i 0.628266 + 1.08819i
\(612\) 0 0
\(613\) −10.6465 + 18.4402i −0.430007 + 0.744794i −0.996873 0.0790155i \(-0.974822\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(614\) −26.3259 12.1417i −1.06243 0.489999i
\(615\) 0 0
\(616\) −0.0515049 + 0.0248116i −0.00207519 + 0.000999687i
\(617\) −2.44862 + 0.431758i −0.0985777 + 0.0173819i −0.222719 0.974883i \(-0.571493\pi\)
0.124142 + 0.992264i \(0.460382\pi\)
\(618\) 0 0
\(619\) 8.57608 10.2206i 0.344702 0.410800i −0.565643 0.824650i \(-0.691372\pi\)
0.910345 + 0.413851i \(0.135816\pi\)
\(620\) −1.89031 1.07031i −0.0759168 0.0429847i
\(621\) 0 0
\(622\) −27.3899 7.21598i −1.09823 0.289334i
\(623\) −3.86724 3.24500i −0.154938 0.130008i
\(624\) 0 0
\(625\) 4.10439 + 23.2771i 0.164176 + 0.931086i
\(626\) 20.4967 + 14.2241i 0.819213 + 0.568509i
\(627\) 0 0
\(628\) −13.2019 + 16.0044i −0.526814 + 0.638646i
\(629\) 14.4101 + 8.31969i 0.574570 + 0.331728i
\(630\) 0 0
\(631\) 33.1235 19.1238i 1.31862 0.761308i 0.335117 0.942176i \(-0.391224\pi\)
0.983507 + 0.180868i \(0.0578908\pi\)
\(632\) −3.52092 + 7.80584i −0.140055 + 0.310499i
\(633\) 0 0
\(634\) −2.59114 5.49635i −0.102907 0.218288i
\(635\) −2.06093 + 1.72932i −0.0817854 + 0.0686261i
\(636\) 0 0
\(637\) 27.4468 9.98983i 1.08748 0.395812i
\(638\) 0.399055 0.108724i 0.0157987 0.00430443i
\(639\) 0 0
\(640\) −2.34745 + 2.48965i −0.0927913 + 0.0984120i
\(641\) −13.9978 2.46820i −0.552881 0.0974879i −0.109774 0.993957i \(-0.535013\pi\)
−0.443107 + 0.896469i \(0.646124\pi\)
\(642\) 0 0
\(643\) −0.217868 + 0.598587i −0.00859187 + 0.0236060i −0.943914 0.330190i \(-0.892887\pi\)
0.935323 + 0.353796i \(0.115109\pi\)
\(644\) 6.01167 + 2.13108i 0.236893 + 0.0839762i
\(645\) 0 0
\(646\) 15.2889 + 21.6408i 0.601532 + 0.851446i
\(647\) −7.26586 −0.285650 −0.142825 0.989748i \(-0.545619\pi\)
−0.142825 + 0.989748i \(0.545619\pi\)
\(648\) 0 0
\(649\) −0.181235 −0.00711408
\(650\) −17.2955 24.4812i −0.678386 0.960230i
\(651\) 0 0
\(652\) −10.7530 3.81182i −0.421118 0.149282i
\(653\) −10.8936 + 29.9299i −0.426300 + 1.17125i 0.521742 + 0.853103i \(0.325282\pi\)
−0.948042 + 0.318146i \(0.896940\pi\)
\(654\) 0 0
\(655\) 5.78839 + 1.02065i 0.226171 + 0.0398801i
\(656\) −0.424819 25.2946i −0.0165864 0.987588i
\(657\) 0 0
\(658\) −4.76497 + 1.29824i −0.185758 + 0.0506105i
\(659\) −13.8732 + 5.04944i −0.540424 + 0.196698i −0.597787 0.801655i \(-0.703953\pi\)
0.0573629 + 0.998353i \(0.481731\pi\)
\(660\) 0 0
\(661\) 15.3510 12.8810i 0.597085 0.501014i −0.293422 0.955983i \(-0.594794\pi\)
0.890507 + 0.454969i \(0.150350\pi\)
\(662\) −12.1390 25.7494i −0.471797 1.00078i
\(663\) 0 0
\(664\) −14.8453 6.69616i −0.576109 0.259861i
\(665\) −0.962265 + 0.555564i −0.0373150 + 0.0215438i
\(666\) 0 0
\(667\) −39.9619 23.0720i −1.54733 0.893352i
\(668\) 6.68222 8.10073i 0.258543 0.313427i
\(669\) 0 0
\(670\) 3.91414 + 2.71629i 0.151217 + 0.104940i
\(671\) −0.0544673 0.308899i −0.00210269 0.0119249i
\(672\) 0 0
\(673\) 26.6304 + 22.3456i 1.02653 + 0.861358i 0.990434 0.137991i \(-0.0440643\pi\)
0.0360929 + 0.999348i \(0.488509\pi\)
\(674\) 18.0636 + 4.75894i 0.695784 + 0.183307i
\(675\) 0 0
\(676\) 9.82490 + 5.56294i 0.377881 + 0.213959i
\(677\) 21.6005 25.7424i 0.830174 0.989362i −0.169819 0.985475i \(-0.554318\pi\)
0.999992 0.00388710i \(-0.00123731\pi\)
\(678\) 0 0
\(679\) −1.59272 + 0.280839i −0.0611228 + 0.0107776i
\(680\) 0.919255 + 1.90823i 0.0352518 + 0.0731772i
\(681\) 0 0
\(682\) −0.192003 0.0885530i −0.00735217 0.00339087i
\(683\) 12.3153 21.3308i 0.471233 0.816200i −0.528225 0.849104i \(-0.677142\pi\)
0.999459 + 0.0329044i \(0.0104757\pi\)
\(684\) 0 0
\(685\) −2.31937 4.01726i −0.0886185 0.153492i
\(686\) 0.863180 + 9.41096i 0.0329563 + 0.359312i
\(687\) 0 0
\(688\) −3.15591 + 9.14581i −0.120318 + 0.348681i
\(689\) −27.5003 32.7736i −1.04768 1.24857i
\(690\) 0 0
\(691\) −5.02830 13.8151i −0.191285 0.525552i 0.806561 0.591151i \(-0.201326\pi\)
−0.997846 + 0.0655990i \(0.979104\pi\)
\(692\) −2.77440 + 0.0232961i −0.105467 + 0.000885586i
\(693\) 0 0
\(694\) −17.7788 + 17.9287i −0.674873 + 0.680564i
\(695\) −0.469259 + 2.66130i −0.0178000 + 0.100949i
\(696\) 0 0
\(697\) −14.7151 5.35587i −0.557375 0.202868i
\(698\) 1.53394 18.4235i 0.0580604 0.697341i
\(699\) 0 0
\(700\) 4.46484 1.66766i 0.168755 0.0630315i
\(701\) 32.3443i 1.22163i −0.791775 0.610813i \(-0.790843\pi\)
0.791775 0.610813i \(-0.209157\pi\)
\(702\) 0 0
\(703\) 50.8528i 1.91795i
\(704\) −0.207595 + 0.260452i −0.00782402 + 0.00981617i
\(705\) 0 0
\(706\) 30.2826 + 2.52132i 1.13970 + 0.0948912i
\(707\) −7.61865 2.77296i −0.286529 0.104288i
\(708\) 0 0
\(709\) −6.81735 + 38.6631i −0.256031 + 1.45202i 0.537381 + 0.843339i \(0.319414\pi\)
−0.793412 + 0.608685i \(0.791698\pi\)
\(710\) 1.02615 + 1.01757i 0.0385106 + 0.0381886i
\(711\) 0 0
\(712\) −28.5024 7.25370i −1.06817 0.271844i
\(713\) 8.06812 + 22.1670i 0.302153 + 0.830160i
\(714\) 0 0
\(715\) 0.0349495 + 0.0416512i 0.00130704 + 0.00155767i
\(716\) −22.7019 + 4.19981i −0.848411 + 0.156954i
\(717\) 0 0
\(718\) 26.6647 2.44570i 0.995116 0.0912728i
\(719\) −0.482259 0.835298i −0.0179852 0.0311514i 0.856893 0.515495i \(-0.172392\pi\)
−0.874878 + 0.484343i \(0.839059\pi\)
\(720\) 0 0
\(721\) 3.85790 6.68207i 0.143676 0.248853i
\(722\) −22.6611 + 49.1344i −0.843358 + 1.82859i
\(723\) 0 0
\(724\) 22.2622 + 26.0831i 0.827369 + 0.969372i
\(725\) −33.9572 + 5.98758i −1.26114 + 0.222373i
\(726\) 0 0
\(727\) 13.4718 16.0551i 0.499641 0.595449i −0.456001 0.889979i \(-0.650719\pi\)
0.955642 + 0.294530i \(0.0951631\pi\)
\(728\) −4.13960 + 4.24521i −0.153424 + 0.157338i
\(729\) 0 0
\(730\) −0.0687541 + 0.260972i −0.00254470 + 0.00965899i
\(731\) 4.58769 + 3.84953i 0.169682 + 0.142380i
\(732\) 0 0
\(733\) 0.311702 + 1.76775i 0.0115130 + 0.0652934i 0.990023 0.140906i \(-0.0450016\pi\)
−0.978510 + 0.206199i \(0.933890\pi\)
\(734\) −19.2057 + 27.6751i −0.708895 + 1.02151i
\(735\) 0 0
\(736\) 36.9412 4.01487i 1.36167 0.147990i
\(737\) 0.401606 + 0.231867i 0.0147934 + 0.00854095i
\(738\) 0 0
\(739\) −17.1448 + 9.89858i −0.630683 + 0.364125i −0.781017 0.624510i \(-0.785299\pi\)
0.150333 + 0.988635i \(0.451965\pi\)
\(740\) −0.672258 + 4.00913i −0.0247127 + 0.147378i
\(741\) 0 0
\(742\) 6.15326 2.90083i 0.225893 0.106493i
\(743\) −29.6635 + 24.8906i −1.08825 + 0.913149i −0.996579 0.0826402i \(-0.973665\pi\)
−0.0916695 + 0.995789i \(0.529220\pi\)
\(744\) 0 0
\(745\) −0.489392 + 0.178124i −0.0179299 + 0.00652596i
\(746\) 8.05778 + 29.5748i 0.295016 + 1.08281i
\(747\) 0 0
\(748\) 0.104578 + 0.177673i 0.00382376 + 0.00649635i
\(749\) −0.478893 0.0844417i −0.0174984 0.00308543i
\(750\) 0 0
\(751\) −7.88528 + 21.6646i −0.287738 + 0.790553i 0.708644 + 0.705566i \(0.249307\pi\)
−0.996382 + 0.0849873i \(0.972915\pi\)
\(752\) −21.7270 + 18.8618i −0.792301 + 0.687820i
\(753\) 0 0
\(754\) 35.0357 24.7521i 1.27593 0.901419i
\(755\) −0.182408 −0.00663851
\(756\) 0 0
\(757\) 33.3070 1.21056 0.605281 0.796012i \(-0.293061\pi\)
0.605281 + 0.796012i \(0.293061\pi\)
\(758\) 38.8998 27.4820i 1.41290 0.998192i
\(759\) 0 0
\(760\) −3.64585 + 5.34895i −0.132249 + 0.194027i
\(761\) −5.43009 + 14.9191i −0.196841 + 0.540815i −0.998366 0.0571457i \(-0.981800\pi\)
0.801525 + 0.597961i \(0.204022\pi\)
\(762\) 0 0
\(763\) −3.47409 0.612576i −0.125771 0.0221768i
\(764\) −28.5342 + 16.7952i −1.03233 + 0.607630i
\(765\) 0 0
\(766\) −0.558912 2.05140i −0.0201943 0.0741201i
\(767\) −17.6634 + 6.42895i −0.637789 + 0.232136i
\(768\) 0 0
\(769\) −16.8819 + 14.1656i −0.608779 + 0.510826i −0.894254 0.447560i \(-0.852293\pi\)
0.285475 + 0.958386i \(0.407849\pi\)
\(770\) −0.00782004 + 0.00368659i −0.000281815 + 0.000132856i
\(771\) 0 0
\(772\) 17.3637 + 2.91158i 0.624935 + 0.104790i
\(773\) −18.9410 + 10.9356i −0.681261 + 0.393326i −0.800330 0.599560i \(-0.795342\pi\)
0.119069 + 0.992886i \(0.462009\pi\)
\(774\) 0 0
\(775\) 15.2657 + 8.81366i 0.548360 + 0.316596i
\(776\) −7.64945 + 5.50107i −0.274599 + 0.197477i
\(777\) 0 0
\(778\) −3.11361 + 4.48667i −0.111628 + 0.160855i
\(779\) −8.31048 47.1311i −0.297754 1.68865i
\(780\) 0 0
\(781\) 0.107754 + 0.0904159i 0.00385572 + 0.00323534i
\(782\) 5.85981 22.2422i 0.209546 0.795380i
\(783\) 0 0
\(784\) 13.9202 + 23.2017i 0.497149 + 0.828633i
\(785\) −2.01671 + 2.40342i −0.0719794 + 0.0857817i
\(786\) 0 0
\(787\) −3.32977 + 0.587128i −0.118693 + 0.0209288i −0.232679 0.972554i \(-0.574749\pi\)
0.113986 + 0.993482i \(0.463638\pi\)
\(788\) 19.0118 16.2268i 0.677268 0.578055i
\(789\) 0 0
\(790\) −0.542343 + 1.17592i −0.0192957 + 0.0418375i
\(791\) 3.51231 6.08351i 0.124884 0.216305i
\(792\) 0 0
\(793\) −16.2661 28.1737i −0.577625 1.00048i
\(794\) −27.6149 + 2.53285i −0.980014 + 0.0898876i
\(795\) 0 0
\(796\) 1.63224 + 8.82302i 0.0578532 + 0.312724i
\(797\) 30.7576 + 36.6554i 1.08949 + 1.29840i 0.951392 + 0.307984i \(0.0996543\pi\)
0.138098 + 0.990419i \(0.455901\pi\)
\(798\) 0 0
\(799\) 6.09132 + 16.7358i 0.215495 + 0.592069i
\(800\) 19.2177 20.0419i 0.679447 0.708588i
\(801\) 0 0
\(802\) 21.7835 + 21.6013i 0.769201 + 0.762769i
\(803\) −0.00456146 + 0.0258693i −0.000160970 + 0.000912908i
\(804\) 0 0
\(805\) 0.906376 + 0.329894i 0.0319455 + 0.0116272i
\(806\) −21.8542 1.81957i −0.769780 0.0640917i
\(807\) 0 0
\(808\) −46.9985 + 4.70900i −1.65340 + 0.165662i
\(809\) 17.3637i 0.610473i 0.952277 + 0.305237i \(0.0987356\pi\)
−0.952277 + 0.305237i \(0.901264\pi\)
\(810\) 0 0
\(811\) 13.7618i 0.483242i 0.970371 + 0.241621i \(0.0776791\pi\)
−0.970371 + 0.241621i \(0.922321\pi\)
\(812\) 2.38663 + 6.38977i 0.0837544 + 0.224237i
\(813\) 0 0
\(814\) −0.0328303 + 0.394312i −0.00115070 + 0.0138206i
\(815\) −1.62122 0.590074i −0.0567887 0.0206694i
\(816\) 0 0
\(817\) −3.17825 + 18.0247i −0.111193 + 0.630606i
\(818\) 10.9513 11.0436i 0.382903 0.386131i
\(819\) 0 0
\(820\) −0.0321227 3.82557i −0.00112177 0.133595i
\(821\) 9.12358 + 25.0668i 0.318415 + 0.874839i 0.990885 + 0.134714i \(0.0430114\pi\)
−0.672469 + 0.740125i \(0.734766\pi\)
\(822\) 0 0
\(823\) 28.3560 + 33.7934i 0.988430 + 1.17796i 0.984035 + 0.177974i \(0.0569543\pi\)
0.00439434 + 0.999990i \(0.498601\pi\)
\(824\) 3.35346 44.8260i 0.116823 1.56159i
\(825\) 0 0
\(826\) −0.272993 2.97635i −0.00949865 0.103561i
\(827\) 5.67028 + 9.82121i 0.197175 + 0.341517i 0.947611 0.319426i \(-0.103490\pi\)
−0.750436 + 0.660943i \(0.770157\pi\)
\(828\) 0 0
\(829\) 14.5329 25.1717i 0.504747 0.874248i −0.495238 0.868757i \(-0.664919\pi\)
0.999985 0.00549015i \(-0.00174758\pi\)
\(830\) −2.23639 1.03144i −0.0776264 0.0358018i
\(831\) 0 0
\(832\) −10.9934 + 32.7481i −0.381129 + 1.13534i
\(833\) 16.4939 2.90832i 0.571480 0.100767i
\(834\) 0 0
\(835\) 1.02077 1.21650i 0.0353251 0.0420988i
\(836\) −0.310446 + 0.548289i −0.0107370 + 0.0189630i
\(837\) 0 0
\(838\) 33.1185 + 8.72523i 1.14406 + 0.301408i
\(839\) 9.01496 + 7.56445i 0.311231 + 0.261154i 0.785001 0.619495i \(-0.212663\pi\)
−0.473770 + 0.880649i \(0.657107\pi\)
\(840\) 0 0
\(841\) −3.53320 20.0378i −0.121834 0.690957i
\(842\) −42.5383 29.5203i −1.46597 1.01734i
\(843\) 0 0
\(844\) −34.6276 28.5640i −1.19193 0.983214i
\(845\) 1.47865 + 0.853700i 0.0508672 + 0.0293682i
\(846\) 0 0
\(847\) 4.62422 2.66980i 0.158890 0.0917353i
\(848\) 24.9615 30.7834i 0.857183 1.05710i
\(849\) 0 0
\(850\) −7.32913 15.5466i −0.251387 0.533245i
\(851\) 33.8164 28.3753i 1.15921 0.972694i
\(852\) 0 0
\(853\) 41.0887 14.9551i 1.40685 0.512052i 0.476646 0.879095i \(-0.341852\pi\)
0.930204 + 0.367044i \(0.119630\pi\)
\(854\) 4.99090 1.35979i 0.170785 0.0465311i
\(855\) 0 0
\(856\) −2.72702 + 0.767643i −0.0932077 + 0.0262375i
\(857\) 4.01547 + 0.708036i 0.137166 + 0.0241860i 0.241810 0.970324i \(-0.422259\pi\)
−0.104644 + 0.994510i \(0.533370\pi\)
\(858\) 0 0
\(859\) 13.3102 36.5694i 0.454137 1.24773i −0.475650 0.879634i \(-0.657787\pi\)
0.929787 0.368097i \(-0.119991\pi\)
\(860\) −0.488847 + 1.37902i −0.0166696 + 0.0470241i
\(861\) 0 0
\(862\) −31.4663 44.5393i −1.07174 1.51701i
\(863\) 48.5663 1.65322 0.826608 0.562778i \(-0.190268\pi\)
0.826608 + 0.562778i \(0.190268\pi\)
\(864\) 0 0
\(865\) −0.419573 −0.0142659
\(866\) −5.35512 7.57997i −0.181974 0.257578i
\(867\) 0 0
\(868\) 1.16506 3.28659i 0.0395448 0.111554i
\(869\) −0.0431100 + 0.118444i −0.00146241 + 0.00401793i
\(870\) 0 0
\(871\) 47.3662 + 8.35194i 1.60494 + 0.282995i
\(872\) −19.7830 + 5.56881i −0.669937 + 0.188584i
\(873\) 0 0
\(874\) 67.8233 18.4787i 2.29416 0.625052i
\(875\) 1.36720 0.497620i 0.0462198 0.0168226i
\(876\) 0 0
\(877\) −13.0367 + 10.9391i −0.440219 + 0.369387i −0.835791 0.549047i \(-0.814991\pi\)
0.395573 + 0.918435i \(0.370546\pi\)
\(878\) 1.10029 + 2.33394i 0.0371329 + 0.0787667i
\(879\) 0 0
\(880\) −0.0317230 + 0.0391219i −0.00106938 + 0.00131880i
\(881\) −2.59611 + 1.49886i −0.0874651 + 0.0504980i −0.543095 0.839672i \(-0.682748\pi\)
0.455630 + 0.890169i \(0.349414\pi\)
\(882\) 0 0
\(883\) −17.0858 9.86450i −0.574984 0.331967i 0.184154 0.982897i \(-0.441046\pi\)
−0.759137 + 0.650931i \(0.774379\pi\)
\(884\) 16.4950 + 13.6065i 0.554785 + 0.457637i
\(885\) 0 0
\(886\) 2.02714 + 1.40677i 0.0681031 + 0.0472615i
\(887\) 8.08090 + 45.8290i 0.271330 + 1.53879i 0.750383 + 0.661003i \(0.229869\pi\)
−0.479053 + 0.877786i \(0.659020\pi\)
\(888\) 0 0
\(889\) −3.30822 2.77592i −0.110954 0.0931015i
\(890\) −4.30090 1.13309i −0.144166 0.0379813i
\(891\) 0 0
\(892\) −18.0497 + 31.8781i −0.604347 + 1.06736i
\(893\) −34.9869 + 41.6957i −1.17079 + 1.39529i
\(894\) 0 0
\(895\) −3.43831 + 0.606266i −0.114930 + 0.0202652i
\(896\) −4.59002 3.01694i −0.153342 0.100789i
\(897\) 0 0
\(898\) 11.8654 + 5.47238i 0.395952 + 0.182616i
\(899\) −12.6135 + 21.8472i −0.420683 + 0.728645i
\(900\) 0 0
\(901\) −12.2661 21.2454i −0.408642 0.707788i
\(902\) −0.0340117 0.370818i −0.00113247 0.0123469i
\(903\) 0 0
\(904\) 3.05306 40.8105i 0.101543 1.35734i
\(905\) 3.33336 + 3.97254i 0.110805 + 0.132052i
\(906\) 0 0
\(907\) 11.8969 + 32.6863i 0.395028 + 1.08533i 0.964675 + 0.263442i \(0.0848578\pi\)
−0.569647 + 0.821890i \(0.692920\pi\)
\(908\) −0.329198 39.2051i −0.0109248 1.30107i
\(909\) 0 0
\(910\) −0.631379 + 0.636702i −0.0209300 + 0.0211065i
\(911\) −5.19680 + 29.4725i −0.172178 + 0.976468i 0.769174 + 0.639040i \(0.220668\pi\)
−0.941351 + 0.337428i \(0.890443\pi\)
\(912\) 0 0
\(913\) −0.225259 0.0819874i −0.00745497 0.00271339i
\(914\) 3.23655 38.8730i 0.107056 1.28580i
\(915\) 0 0
\(916\) 3.96651 + 10.6196i 0.131057 + 0.350881i
\(917\) 9.43490i 0.311568i
\(918\) 0 0
\(919\) 52.7647i 1.74055i −0.492569 0.870273i \(-0.663942\pi\)
0.492569 0.870273i \(-0.336058\pi\)
\(920\) 5.59132 0.560220i 0.184340 0.0184699i
\(921\) 0 0
\(922\) 29.2225 + 2.43306i 0.962393 + 0.0801286i
\(923\) 13.7092 + 4.98973i 0.451242 + 0.164239i
\(924\) 0 0
\(925\) 5.72808 32.4856i 0.188338 1.06812i
\(926\) 9.62614 + 9.54565i 0.316334 + 0.313689i
\(927\) 0 0
\(928\) 28.6825 + 27.5029i 0.941550 + 0.902828i
\(929\) 19.0206 + 52.2588i 0.624047 + 1.71455i 0.696858 + 0.717209i \(0.254581\pi\)
−0.0728110 + 0.997346i \(0.523197\pi\)
\(930\) 0 0
\(931\) 32.9016 + 39.2106i 1.07831 + 1.28508i
\(932\) 2.73278 + 14.7720i 0.0895153 + 0.483872i
\(933\) 0 0
\(934\) −24.6379 + 2.25980i −0.806176 + 0.0739430i
\(935\) 0.0155887 + 0.0270003i 0.000509803 + 0.000883005i
\(936\) 0 0
\(937\) 9.12048 15.7971i 0.297953 0.516070i −0.677715 0.735325i \(-0.737029\pi\)
0.975667 + 0.219255i \(0.0703628\pi\)
\(938\) −3.20294 + 6.94470i −0.104580 + 0.226753i
\(939\) 0 0
\(940\) −3.30949 + 2.82468i −0.107944 + 0.0921310i
\(941\) −17.1627 + 3.02624i −0.559487 + 0.0986527i −0.446239 0.894914i \(-0.647237\pi\)
−0.113249 + 0.993567i \(0.536126\pi\)
\(942\) 0 0
\(943\) −26.7044 + 31.8250i −0.869613 + 1.03636i
\(944\) −8.95832 14.9315i −0.291568 0.485978i
\(945\) 0 0
\(946\) −0.0362807 + 0.137712i −0.00117959 + 0.00447739i
\(947\) −32.9582 27.6552i −1.07100 0.898673i −0.0758544 0.997119i \(-0.524168\pi\)
−0.995142 + 0.0984459i \(0.968613\pi\)
\(948\) 0 0
\(949\) 0.473098 + 2.68307i 0.0153574 + 0.0870962i
\(950\) 29.9481 43.1547i 0.971643 1.40012i
\(951\) 0 0
\(952\) −2.76033 + 1.98508i −0.0894628 + 0.0643368i
\(953\) −17.5809 10.1503i −0.569502 0.328802i 0.187449 0.982274i \(-0.439978\pi\)
−0.756950 + 0.653472i \(0.773312\pi\)
\(954\) 0 0
\(955\) −4.33625 + 2.50353i −0.140318 + 0.0810124i
\(956\) −12.7652 2.14049i −0.412855 0.0692283i
\(957\) 0 0
\(958\) 33.5105 15.7978i 1.08267 0.510404i
\(959\) 5.70407 4.78628i 0.184194 0.154557i
\(960\) 0 0
\(961\) −17.0118 + 6.19178i −0.548767 + 0.199735i
\(962\) 10.7878 + 39.5948i 0.347811 + 1.27659i
\(963\) 0 0
\(964\) 1.19604 0.703987i 0.0385217 0.0226739i
\(965\) 2.62204 + 0.462336i 0.0844064 + 0.0148831i
\(966\) 0 0
\(967\) 15.9777 43.8984i 0.513808 1.41168i −0.363430 0.931621i \(-0.618394\pi\)
0.877238 0.480055i \(-0.159383\pi\)
\(968\) 17.5203 25.7047i 0.563125 0.826181i
\(969\) 0 0
\(970\) −1.16373 + 0.822156i −0.0373652 + 0.0263978i
\(971\) 29.3788 0.942809 0.471405 0.881917i \(-0.343747\pi\)
0.471405 + 0.881917i \(0.343747\pi\)
\(972\) 0 0
\(973\) −4.33784 −0.139065
\(974\) −8.21184 + 5.80153i −0.263124 + 0.185893i
\(975\) 0 0
\(976\) 22.7571 19.7561i 0.728438 0.632378i
\(977\) −6.38707 + 17.5483i −0.204341 + 0.561421i −0.998956 0.0456927i \(-0.985451\pi\)
0.794615 + 0.607114i \(0.207673\pi\)
\(978\) 0 0
\(979\) −0.426335 0.0751744i −0.0136257 0.00240258i
\(980\) 2.07554 + 3.52623i 0.0663007 + 0.112641i
\(981\) 0 0
\(982\) −7.34331 26.9525i −0.234335 0.860089i
\(983\) 24.5887 8.94954i 0.784257 0.285446i 0.0813102 0.996689i \(-0.474090\pi\)
0.702946 + 0.711243i \(0.251867\pi\)
\(984\) 0 0
\(985\) 2.89556 2.42966i 0.0922602 0.0774155i
\(986\) 22.2492 10.4889i 0.708560 0.334035i
\(987\) 0 0
\(988\) −10.8070 + 64.4495i −0.343817 + 2.05041i
\(989\) 13.7596 7.94413i 0.437531 0.252609i
\(990\) 0 0
\(991\) 25.5875 + 14.7730i 0.812815 + 0.469279i 0.847932 0.530105i \(-0.177847\pi\)
−0.0351178 + 0.999383i \(0.511181\pi\)
\(992\) −2.19493 20.1958i −0.0696892 0.641216i
\(993\) 0 0
\(994\) −1.32256 + 1.90579i −0.0419491 + 0.0604481i
\(995\) 0.235623 + 1.33629i 0.00746975 + 0.0423631i
\(996\) 0 0
\(997\) 30.3335 + 25.4528i 0.960670 + 0.806098i 0.981062 0.193694i \(-0.0620469\pi\)
−0.0203917 + 0.999792i \(0.506491\pi\)
\(998\) 14.2410 54.0548i 0.450790 1.71107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.d.107.12 96
3.2 odd 2 972.2.l.a.107.5 96
4.3 odd 2 inner 972.2.l.d.107.3 96
9.2 odd 6 972.2.l.b.755.7 96
9.4 even 3 108.2.l.a.47.1 yes 96
9.5 odd 6 324.2.l.a.143.16 96
9.7 even 3 972.2.l.c.755.10 96
12.11 even 2 972.2.l.a.107.14 96
27.4 even 9 972.2.l.b.215.9 96
27.5 odd 18 inner 972.2.l.d.863.3 96
27.13 even 9 324.2.l.a.179.3 96
27.14 odd 18 108.2.l.a.23.14 yes 96
27.22 even 9 972.2.l.a.863.14 96
27.23 odd 18 972.2.l.c.215.8 96
36.7 odd 6 972.2.l.c.755.8 96
36.11 even 6 972.2.l.b.755.9 96
36.23 even 6 324.2.l.a.143.3 96
36.31 odd 6 108.2.l.a.47.14 yes 96
108.23 even 18 972.2.l.c.215.10 96
108.31 odd 18 972.2.l.b.215.7 96
108.59 even 18 inner 972.2.l.d.863.12 96
108.67 odd 18 324.2.l.a.179.16 96
108.95 even 18 108.2.l.a.23.1 96
108.103 odd 18 972.2.l.a.863.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.1 96 108.95 even 18
108.2.l.a.23.14 yes 96 27.14 odd 18
108.2.l.a.47.1 yes 96 9.4 even 3
108.2.l.a.47.14 yes 96 36.31 odd 6
324.2.l.a.143.3 96 36.23 even 6
324.2.l.a.143.16 96 9.5 odd 6
324.2.l.a.179.3 96 27.13 even 9
324.2.l.a.179.16 96 108.67 odd 18
972.2.l.a.107.5 96 3.2 odd 2
972.2.l.a.107.14 96 12.11 even 2
972.2.l.a.863.5 96 108.103 odd 18
972.2.l.a.863.14 96 27.22 even 9
972.2.l.b.215.7 96 108.31 odd 18
972.2.l.b.215.9 96 27.4 even 9
972.2.l.b.755.7 96 9.2 odd 6
972.2.l.b.755.9 96 36.11 even 6
972.2.l.c.215.8 96 27.23 odd 18
972.2.l.c.215.10 96 108.23 even 18
972.2.l.c.755.8 96 36.7 odd 6
972.2.l.c.755.10 96 9.7 even 3
972.2.l.d.107.3 96 4.3 odd 2 inner
972.2.l.d.107.12 96 1.1 even 1 trivial
972.2.l.d.863.3 96 27.5 odd 18 inner
972.2.l.d.863.12 96 108.59 even 18 inner