Properties

Label 324.2.l.a.143.16
Level $324$
Weight $2$
Character 324.143
Analytic conductor $2.587$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,2,Mod(35,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 143.16
Character \(\chi\) \(=\) 324.143
Dual form 324.2.l.a.179.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40830 - 0.129170i) q^{2} +(1.96663 - 0.363822i) q^{4} +(-0.297855 + 0.0525198i) q^{5} +(0.312070 - 0.371910i) q^{7} +(2.72261 - 0.766402i) q^{8} +(-0.412685 + 0.112438i) q^{10} +(-0.00722947 + 0.0410004i) q^{11} +(4.05761 + 1.47685i) q^{13} +(0.391449 - 0.564072i) q^{14} +(3.73527 - 1.43101i) q^{16} +(2.14427 - 1.23800i) q^{17} +(-6.55326 - 3.78353i) q^{19} +(-0.566662 + 0.211653i) q^{20} +(-0.00488525 + 0.0586748i) q^{22} +(-5.03199 + 4.22234i) q^{23} +(-4.61250 + 1.67881i) q^{25} +(5.90510 + 1.55572i) q^{26} +(0.478416 - 0.844947i) q^{28} +(2.40260 + 6.60109i) q^{29} +(-2.30836 - 2.75099i) q^{31} +(5.07554 - 2.49778i) q^{32} +(2.85987 - 2.02045i) q^{34} +(-0.0734187 + 0.127165i) q^{35} +(-3.36015 - 5.81994i) q^{37} +(-9.71770 - 4.48186i) q^{38} +(-0.770692 + 0.371267i) q^{40} +(-2.16312 + 5.94312i) q^{41} +(2.38200 + 0.420011i) q^{43} +(0.000699143 + 0.0832628i) q^{44} +(-6.54116 + 6.59631i) q^{46} +(-5.51016 - 4.62358i) q^{47} +(1.17461 + 6.66153i) q^{49} +(-6.27895 + 2.96008i) q^{50} +(8.51712 + 1.42817i) q^{52} -9.90799i q^{53} -0.0125918i q^{55} +(0.564613 - 1.25174i) q^{56} +(4.23625 + 8.98598i) q^{58} +(0.755918 + 4.28703i) q^{59} +(-5.77142 - 4.84280i) q^{61} +(-3.60621 - 3.57605i) q^{62} +(6.82526 - 4.17323i) q^{64} +(-1.28614 - 0.226781i) q^{65} +(-3.80965 + 10.4669i) q^{67} +(3.76658 - 3.21481i) q^{68} +(-0.0869698 + 0.188570i) q^{70} +(1.68932 + 2.92598i) q^{71} +(0.315477 - 0.546421i) q^{73} +(-5.48386 - 7.76221i) q^{74} +(-14.2644 - 5.05658i) q^{76} +(0.0129924 + 0.0154837i) q^{77} +(1.03548 + 2.84496i) q^{79} +(-1.03741 + 0.622407i) q^{80} +(-2.27865 + 8.64913i) q^{82} +(5.41059 - 1.96930i) q^{83} +(-0.573662 + 0.481360i) q^{85} +(3.40883 + 0.283818i) q^{86} +(0.0117397 + 0.117169i) q^{88} +(-9.00521 - 5.19916i) q^{89} +(1.81551 - 1.04819i) q^{91} +(-8.35988 + 10.1345i) q^{92} +(-8.35720 - 5.79964i) q^{94} +(2.15063 + 0.782765i) q^{95} +(-0.578459 + 3.28061i) q^{97} +(2.51468 + 9.22972i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} + 21 q^{14} - 6 q^{16} + 18 q^{17} + 27 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} + 24 q^{29} - 24 q^{32} - 12 q^{34} - 6 q^{37} - 18 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40830 0.129170i 0.995820 0.0913373i
\(3\) 0 0
\(4\) 1.96663 0.363822i 0.983315 0.181911i
\(5\) −0.297855 + 0.0525198i −0.133205 + 0.0234876i −0.239853 0.970809i \(-0.577099\pi\)
0.106648 + 0.994297i \(0.465988\pi\)
\(6\) 0 0
\(7\) 0.312070 0.371910i 0.117951 0.140569i −0.703838 0.710361i \(-0.748532\pi\)
0.821789 + 0.569792i \(0.192976\pi\)
\(8\) 2.72261 0.766402i 0.962589 0.270964i
\(9\) 0 0
\(10\) −0.412685 + 0.112438i −0.130503 + 0.0355559i
\(11\) −0.00722947 + 0.0410004i −0.00217977 + 0.0123621i −0.985878 0.167464i \(-0.946442\pi\)
0.983698 + 0.179826i \(0.0575534\pi\)
\(12\) 0 0
\(13\) 4.05761 + 1.47685i 1.12538 + 0.409604i 0.836612 0.547796i \(-0.184533\pi\)
0.288765 + 0.957400i \(0.406755\pi\)
\(14\) 0.391449 0.564072i 0.104619 0.150755i
\(15\) 0 0
\(16\) 3.73527 1.43101i 0.933817 0.357752i
\(17\) 2.14427 1.23800i 0.520062 0.300258i −0.216898 0.976194i \(-0.569594\pi\)
0.736960 + 0.675936i \(0.236261\pi\)
\(18\) 0 0
\(19\) −6.55326 3.78353i −1.50342 0.868001i −0.999992 0.00396479i \(-0.998738\pi\)
−0.503430 0.864036i \(-0.667929\pi\)
\(20\) −0.566662 + 0.211653i −0.126709 + 0.0473271i
\(21\) 0 0
\(22\) −0.00488525 + 0.0586748i −0.00104154 + 0.0125095i
\(23\) −5.03199 + 4.22234i −1.04924 + 0.880418i −0.993014 0.118000i \(-0.962352\pi\)
−0.0562281 + 0.998418i \(0.517907\pi\)
\(24\) 0 0
\(25\) −4.61250 + 1.67881i −0.922501 + 0.335763i
\(26\) 5.90510 + 1.55572i 1.15809 + 0.305103i
\(27\) 0 0
\(28\) 0.478416 0.844947i 0.0904122 0.159680i
\(29\) 2.40260 + 6.60109i 0.446152 + 1.22579i 0.935383 + 0.353637i \(0.115055\pi\)
−0.489231 + 0.872154i \(0.662722\pi\)
\(30\) 0 0
\(31\) −2.30836 2.75099i −0.414593 0.494092i 0.517819 0.855490i \(-0.326744\pi\)
−0.932412 + 0.361398i \(0.882300\pi\)
\(32\) 5.07554 2.49778i 0.897237 0.441549i
\(33\) 0 0
\(34\) 2.85987 2.02045i 0.490464 0.346504i
\(35\) −0.0734187 + 0.127165i −0.0124100 + 0.0214948i
\(36\) 0 0
\(37\) −3.36015 5.81994i −0.552405 0.956793i −0.998100 0.0616082i \(-0.980377\pi\)
0.445696 0.895184i \(-0.352956\pi\)
\(38\) −9.71770 4.48186i −1.57642 0.727054i
\(39\) 0 0
\(40\) −0.770692 + 0.371267i −0.121857 + 0.0587025i
\(41\) −2.16312 + 5.94312i −0.337823 + 0.928160i 0.648188 + 0.761480i \(0.275527\pi\)
−0.986011 + 0.166680i \(0.946695\pi\)
\(42\) 0 0
\(43\) 2.38200 + 0.420011i 0.363252 + 0.0640511i 0.352295 0.935889i \(-0.385401\pi\)
0.0109565 + 0.999940i \(0.496512\pi\)
\(44\) 0.000699143 0.0832628i 0.000105400 0.0125523i
\(45\) 0 0
\(46\) −6.54116 + 6.59631i −0.964441 + 0.972573i
\(47\) −5.51016 4.62358i −0.803740 0.674418i 0.145365 0.989378i \(-0.453564\pi\)
−0.949105 + 0.314960i \(0.898009\pi\)
\(48\) 0 0
\(49\) 1.17461 + 6.66153i 0.167801 + 0.951647i
\(50\) −6.27895 + 2.96008i −0.887977 + 0.418618i
\(51\) 0 0
\(52\) 8.51712 + 1.42817i 1.18111 + 0.198051i
\(53\) 9.90799i 1.36097i −0.732763 0.680484i \(-0.761770\pi\)
0.732763 0.680484i \(-0.238230\pi\)
\(54\) 0 0
\(55\) 0.0125918i 0.00169788i
\(56\) 0.564613 1.25174i 0.0754495 0.167271i
\(57\) 0 0
\(58\) 4.23625 + 8.98598i 0.556247 + 1.17992i
\(59\) 0.755918 + 4.28703i 0.0984122 + 0.558123i 0.993648 + 0.112531i \(0.0358958\pi\)
−0.895236 + 0.445592i \(0.852993\pi\)
\(60\) 0 0
\(61\) −5.77142 4.84280i −0.738955 0.620057i 0.193602 0.981080i \(-0.437983\pi\)
−0.932557 + 0.361024i \(0.882427\pi\)
\(62\) −3.60621 3.57605i −0.457989 0.454159i
\(63\) 0 0
\(64\) 6.82526 4.17323i 0.853157 0.521654i
\(65\) −1.28614 0.226781i −0.159526 0.0281287i
\(66\) 0 0
\(67\) −3.80965 + 10.4669i −0.465423 + 1.27874i 0.455932 + 0.890015i \(0.349306\pi\)
−0.921354 + 0.388724i \(0.872916\pi\)
\(68\) 3.76658 3.21481i 0.456765 0.389853i
\(69\) 0 0
\(70\) −0.0869698 + 0.188570i −0.0103949 + 0.0225385i
\(71\) 1.68932 + 2.92598i 0.200485 + 0.347250i 0.948685 0.316223i \(-0.102415\pi\)
−0.748200 + 0.663473i \(0.769082\pi\)
\(72\) 0 0
\(73\) 0.315477 0.546421i 0.0369237 0.0639538i −0.846973 0.531636i \(-0.821577\pi\)
0.883897 + 0.467682i \(0.154911\pi\)
\(74\) −5.48386 7.76221i −0.637486 0.902338i
\(75\) 0 0
\(76\) −14.2644 5.05658i −1.63624 0.580029i
\(77\) 0.0129924 + 0.0154837i 0.00148062 + 0.00176453i
\(78\) 0 0
\(79\) 1.03548 + 2.84496i 0.116501 + 0.320083i 0.984214 0.176982i \(-0.0566334\pi\)
−0.867714 + 0.497065i \(0.834411\pi\)
\(80\) −1.03741 + 0.622407i −0.115986 + 0.0695873i
\(81\) 0 0
\(82\) −2.27865 + 8.64913i −0.251635 + 0.955136i
\(83\) 5.41059 1.96930i 0.593890 0.216158i −0.0275495 0.999620i \(-0.508770\pi\)
0.621439 + 0.783462i \(0.286548\pi\)
\(84\) 0 0
\(85\) −0.573662 + 0.481360i −0.0622224 + 0.0522108i
\(86\) 3.40883 + 0.283818i 0.367584 + 0.0306049i
\(87\) 0 0
\(88\) 0.0117397 + 0.117169i 0.00125146 + 0.0124902i
\(89\) −9.00521 5.19916i −0.954550 0.551110i −0.0600588 0.998195i \(-0.519129\pi\)
−0.894491 + 0.447085i \(0.852462\pi\)
\(90\) 0 0
\(91\) 1.81551 1.04819i 0.190317 0.109880i
\(92\) −8.35988 + 10.1345i −0.871577 + 1.05660i
\(93\) 0 0
\(94\) −8.35720 5.79964i −0.861980 0.598187i
\(95\) 2.15063 + 0.782765i 0.220650 + 0.0803100i
\(96\) 0 0
\(97\) −0.578459 + 3.28061i −0.0587337 + 0.333095i −0.999989 0.00459941i \(-0.998536\pi\)
0.941256 + 0.337694i \(0.109647\pi\)
\(98\) 2.51468 + 9.22972i 0.254021 + 0.932343i
\(99\) 0 0
\(100\) −8.46030 + 4.97974i −0.846030 + 0.497974i
\(101\) 10.7344 12.7927i 1.06811 1.27292i 0.107742 0.994179i \(-0.465638\pi\)
0.960366 0.278743i \(-0.0899177\pi\)
\(102\) 0 0
\(103\) 15.6512 2.75973i 1.54216 0.271924i 0.663062 0.748565i \(-0.269257\pi\)
0.879098 + 0.476640i \(0.158146\pi\)
\(104\) 12.1792 + 0.911130i 1.19426 + 0.0893436i
\(105\) 0 0
\(106\) −1.27982 13.9534i −0.124307 1.35528i
\(107\) −1.00162 −0.0968302 −0.0484151 0.998827i \(-0.515417\pi\)
−0.0484151 + 0.998827i \(0.515417\pi\)
\(108\) 0 0
\(109\) 7.26618 0.695973 0.347987 0.937499i \(-0.386865\pi\)
0.347987 + 0.937499i \(0.386865\pi\)
\(110\) −0.00162649 0.0177331i −0.000155080 0.00169079i
\(111\) 0 0
\(112\) 0.633458 1.83576i 0.0598561 0.173463i
\(113\) −14.2492 + 2.51252i −1.34045 + 0.236358i −0.797456 0.603377i \(-0.793821\pi\)
−0.542997 + 0.839735i \(0.682710\pi\)
\(114\) 0 0
\(115\) 1.27704 1.52192i 0.119085 0.141920i
\(116\) 7.12665 + 12.1078i 0.661693 + 1.12418i
\(117\) 0 0
\(118\) 1.61832 + 5.93979i 0.148978 + 0.546802i
\(119\) 0.208739 1.18382i 0.0191351 0.108520i
\(120\) 0 0
\(121\) 10.3350 + 3.76163i 0.939545 + 0.341966i
\(122\) −8.75345 6.07462i −0.792500 0.549971i
\(123\) 0 0
\(124\) −5.54055 4.57035i −0.497556 0.410430i
\(125\) 2.59533 1.49841i 0.232133 0.134022i
\(126\) 0 0
\(127\) 7.70348 + 4.44760i 0.683573 + 0.394661i 0.801200 0.598397i \(-0.204195\pi\)
−0.117627 + 0.993058i \(0.537529\pi\)
\(128\) 9.07296 6.75879i 0.801944 0.597399i
\(129\) 0 0
\(130\) −1.84057 0.153245i −0.161428 0.0134405i
\(131\) 14.8870 12.4917i 1.30068 1.09140i 0.310657 0.950522i \(-0.399451\pi\)
0.990027 0.140881i \(-0.0449935\pi\)
\(132\) 0 0
\(133\) −3.45221 + 1.25650i −0.299344 + 0.108952i
\(134\) −4.01312 + 15.2327i −0.346681 + 1.31590i
\(135\) 0 0
\(136\) 4.88922 5.01396i 0.419247 0.429943i
\(137\) 5.24564 + 14.4123i 0.448165 + 1.23132i 0.934000 + 0.357274i \(0.116294\pi\)
−0.485834 + 0.874051i \(0.661484\pi\)
\(138\) 0 0
\(139\) −5.74324 6.84453i −0.487135 0.580545i 0.465351 0.885126i \(-0.345928\pi\)
−0.952486 + 0.304581i \(0.901484\pi\)
\(140\) −0.0981221 + 0.276798i −0.00829283 + 0.0233937i
\(141\) 0 0
\(142\) 2.75702 + 3.90246i 0.231364 + 0.327487i
\(143\) −0.0898857 + 0.155687i −0.00751662 + 0.0130192i
\(144\) 0 0
\(145\) −1.06231 1.83998i −0.0882203 0.152802i
\(146\) 0.373705 0.810277i 0.0309280 0.0670590i
\(147\) 0 0
\(148\) −8.72559 10.2232i −0.717239 0.840340i
\(149\) −0.588938 + 1.61809i −0.0482477 + 0.132559i −0.961476 0.274889i \(-0.911359\pi\)
0.913228 + 0.407448i \(0.133581\pi\)
\(150\) 0 0
\(151\) −0.593940 0.104728i −0.0483342 0.00852262i 0.149429 0.988772i \(-0.452257\pi\)
−0.197763 + 0.980250i \(0.563368\pi\)
\(152\) −20.7417 5.27866i −1.68238 0.428155i
\(153\) 0 0
\(154\) 0.0202972 + 0.0201275i 0.00163560 + 0.00162192i
\(155\) 0.832036 + 0.698161i 0.0668307 + 0.0560776i
\(156\) 0 0
\(157\) −1.80133 10.2158i −0.143762 0.815313i −0.968353 0.249584i \(-0.919706\pi\)
0.824592 0.565729i \(-0.191405\pi\)
\(158\) 1.82575 + 3.87281i 0.145249 + 0.308104i
\(159\) 0 0
\(160\) −1.38059 + 1.01054i −0.109145 + 0.0798902i
\(161\) 3.18911i 0.251337i
\(162\) 0 0
\(163\) 5.70430i 0.446795i 0.974727 + 0.223397i \(0.0717148\pi\)
−0.974727 + 0.223397i \(0.928285\pi\)
\(164\) −2.09182 + 12.4749i −0.163344 + 0.974127i
\(165\) 0 0
\(166\) 7.36538 3.47225i 0.571664 0.269499i
\(167\) −0.911752 5.17080i −0.0705535 0.400129i −0.999549 0.0300372i \(-0.990437\pi\)
0.928995 0.370092i \(-0.120674\pi\)
\(168\) 0 0
\(169\) 4.32450 + 3.62869i 0.332654 + 0.279130i
\(170\) −0.745712 + 0.752000i −0.0571935 + 0.0576758i
\(171\) 0 0
\(172\) 4.83733 0.0406182i 0.368843 0.00309711i
\(173\) 1.36617 + 0.240893i 0.103868 + 0.0183148i 0.225341 0.974280i \(-0.427650\pi\)
−0.121472 + 0.992595i \(0.538762\pi\)
\(174\) 0 0
\(175\) −0.815054 + 2.23934i −0.0616123 + 0.169278i
\(176\) 0.0316678 + 0.163493i 0.00238705 + 0.0123237i
\(177\) 0 0
\(178\) −13.3536 6.15878i −1.00090 0.461620i
\(179\) −5.77179 9.99703i −0.431403 0.747213i 0.565591 0.824686i \(-0.308648\pi\)
−0.996994 + 0.0774732i \(0.975315\pi\)
\(180\) 0 0
\(181\) 8.57298 14.8488i 0.637225 1.10371i −0.348814 0.937192i \(-0.613416\pi\)
0.986039 0.166514i \(-0.0532510\pi\)
\(182\) 2.42139 1.71067i 0.179486 0.126803i
\(183\) 0 0
\(184\) −10.4642 + 15.3523i −0.771427 + 1.13179i
\(185\) 1.30650 + 1.55702i 0.0960556 + 0.114475i
\(186\) 0 0
\(187\) 0.0352564 + 0.0968660i 0.00257820 + 0.00708355i
\(188\) −12.5186 7.08814i −0.913014 0.516956i
\(189\) 0 0
\(190\) 3.12985 + 0.824572i 0.227063 + 0.0598208i
\(191\) 15.5567 5.66216i 1.12564 0.409699i 0.288933 0.957349i \(-0.406700\pi\)
0.836708 + 0.547650i \(0.184477\pi\)
\(192\) 0 0
\(193\) −6.74355 + 5.65851i −0.485411 + 0.407308i −0.852378 0.522925i \(-0.824841\pi\)
0.366967 + 0.930234i \(0.380396\pi\)
\(194\) −0.390888 + 4.69480i −0.0280641 + 0.337067i
\(195\) 0 0
\(196\) 4.73363 + 12.6734i 0.338116 + 0.905244i
\(197\) 10.8232 + 6.24879i 0.771122 + 0.445208i 0.833275 0.552859i \(-0.186463\pi\)
−0.0621526 + 0.998067i \(0.519797\pi\)
\(198\) 0 0
\(199\) 3.88531 2.24318i 0.275422 0.159015i −0.355927 0.934514i \(-0.615835\pi\)
0.631349 + 0.775499i \(0.282501\pi\)
\(200\) −11.2714 + 8.10580i −0.797010 + 0.573166i
\(201\) 0 0
\(202\) 13.4648 19.4026i 0.947378 1.36516i
\(203\) 3.20479 + 1.16645i 0.224932 + 0.0818686i
\(204\) 0 0
\(205\) 0.332164 1.88379i 0.0231993 0.131570i
\(206\) 21.6852 5.90821i 1.51088 0.411644i
\(207\) 0 0
\(208\) 17.2696 0.290040i 1.19743 0.0201107i
\(209\) 0.202503 0.241333i 0.0140074 0.0166934i
\(210\) 0 0
\(211\) 22.1033 3.89740i 1.52165 0.268308i 0.650570 0.759446i \(-0.274530\pi\)
0.871082 + 0.491138i \(0.163419\pi\)
\(212\) −3.60475 19.4854i −0.247575 1.33826i
\(213\) 0 0
\(214\) −1.41058 + 0.129380i −0.0964254 + 0.00884421i
\(215\) −0.731549 −0.0498912
\(216\) 0 0
\(217\) −1.74349 −0.118356
\(218\) 10.2330 0.938575i 0.693064 0.0635683i
\(219\) 0 0
\(220\) −0.00458119 0.0247635i −0.000308864 0.00166955i
\(221\) 10.5289 1.85654i 0.708253 0.124884i
\(222\) 0 0
\(223\) −11.7737 + 14.0314i −0.788428 + 0.939612i −0.999281 0.0379061i \(-0.987931\pi\)
0.210854 + 0.977518i \(0.432376\pi\)
\(224\) 0.654974 2.66712i 0.0437623 0.178205i
\(225\) 0 0
\(226\) −19.7426 + 5.37896i −1.31326 + 0.357803i
\(227\) −3.40406 + 19.3054i −0.225936 + 1.28134i 0.634953 + 0.772551i \(0.281020\pi\)
−0.860888 + 0.508794i \(0.830092\pi\)
\(228\) 0 0
\(229\) −5.32626 1.93860i −0.351969 0.128106i 0.159984 0.987120i \(-0.448856\pi\)
−0.511953 + 0.859013i \(0.671078\pi\)
\(230\) 1.60188 2.30828i 0.105625 0.152204i
\(231\) 0 0
\(232\) 11.6004 + 16.1309i 0.761606 + 1.05904i
\(233\) −6.50499 + 3.75566i −0.426156 + 0.246041i −0.697708 0.716383i \(-0.745797\pi\)
0.271552 + 0.962424i \(0.412463\pi\)
\(234\) 0 0
\(235\) 1.88406 + 1.08776i 0.122902 + 0.0709577i
\(236\) 3.04633 + 8.15597i 0.198299 + 0.530909i
\(237\) 0 0
\(238\) 0.141053 1.69414i 0.00914313 0.109814i
\(239\) −4.95760 + 4.15992i −0.320680 + 0.269083i −0.788890 0.614535i \(-0.789344\pi\)
0.468209 + 0.883618i \(0.344899\pi\)
\(240\) 0 0
\(241\) 0.652071 0.237335i 0.0420036 0.0152881i −0.320933 0.947102i \(-0.603996\pi\)
0.362937 + 0.931814i \(0.381774\pi\)
\(242\) 15.0407 + 3.96253i 0.966852 + 0.254721i
\(243\) 0 0
\(244\) −13.1122 7.42422i −0.839420 0.475287i
\(245\) −0.699725 1.92248i −0.0447038 0.122823i
\(246\) 0 0
\(247\) −21.0029 25.0302i −1.33638 1.59264i
\(248\) −8.39312 5.72076i −0.532964 0.363269i
\(249\) 0 0
\(250\) 3.46146 2.44546i 0.218922 0.154664i
\(251\) 1.09113 1.88989i 0.0688715 0.119289i −0.829533 0.558457i \(-0.811393\pi\)
0.898405 + 0.439168i \(0.144727\pi\)
\(252\) 0 0
\(253\) −0.136739 0.236839i −0.00859670 0.0148899i
\(254\) 11.4233 + 5.26851i 0.716763 + 0.330576i
\(255\) 0 0
\(256\) 11.9044 10.6904i 0.744027 0.668149i
\(257\) 4.92162 13.5220i 0.307002 0.843481i −0.686235 0.727380i \(-0.740738\pi\)
0.993237 0.116102i \(-0.0370398\pi\)
\(258\) 0 0
\(259\) −3.21309 0.566555i −0.199652 0.0352040i
\(260\) −2.61187 + 0.0219314i −0.161981 + 0.00136013i
\(261\) 0 0
\(262\) 19.3518 19.5150i 1.19556 1.20564i
\(263\) 7.84733 + 6.58469i 0.483887 + 0.406029i 0.851829 0.523819i \(-0.175493\pi\)
−0.367943 + 0.929849i \(0.619938\pi\)
\(264\) 0 0
\(265\) 0.520366 + 2.95114i 0.0319658 + 0.181287i
\(266\) −4.69945 + 2.21546i −0.288142 + 0.135838i
\(267\) 0 0
\(268\) −3.68407 + 21.9706i −0.225041 + 1.34207i
\(269\) 3.15222i 0.192194i 0.995372 + 0.0960971i \(0.0306359\pi\)
−0.995372 + 0.0960971i \(0.969364\pi\)
\(270\) 0 0
\(271\) 3.33151i 0.202375i 0.994867 + 0.101188i \(0.0322642\pi\)
−0.994867 + 0.101188i \(0.967736\pi\)
\(272\) 6.23785 7.69271i 0.378225 0.466439i
\(273\) 0 0
\(274\) 9.24909 + 19.6193i 0.558758 + 1.18524i
\(275\) −0.0354861 0.201251i −0.00213989 0.0121359i
\(276\) 0 0
\(277\) 3.19860 + 2.68395i 0.192186 + 0.161263i 0.733803 0.679362i \(-0.237743\pi\)
−0.541618 + 0.840625i \(0.682188\pi\)
\(278\) −8.97233 8.89730i −0.538124 0.533625i
\(279\) 0 0
\(280\) −0.102431 + 0.402489i −0.00612145 + 0.0240533i
\(281\) −19.3295 3.40832i −1.15310 0.203323i −0.435773 0.900057i \(-0.643525\pi\)
−0.717330 + 0.696733i \(0.754636\pi\)
\(282\) 0 0
\(283\) −5.26641 + 14.4693i −0.313055 + 0.860113i 0.678980 + 0.734156i \(0.262422\pi\)
−0.992036 + 0.125956i \(0.959800\pi\)
\(284\) 4.38680 + 5.13971i 0.260309 + 0.304986i
\(285\) 0 0
\(286\) −0.106476 + 0.230864i −0.00629606 + 0.0136513i
\(287\) 1.53526 + 2.65916i 0.0906238 + 0.156965i
\(288\) 0 0
\(289\) −5.43473 + 9.41323i −0.319690 + 0.553720i
\(290\) −1.73373 2.45403i −0.101808 0.144106i
\(291\) 0 0
\(292\) 0.421625 1.18939i 0.0246738 0.0696036i
\(293\) −11.9699 14.2652i −0.699290 0.833382i 0.293156 0.956065i \(-0.405295\pi\)
−0.992446 + 0.122683i \(0.960850\pi\)
\(294\) 0 0
\(295\) −0.450307 1.23721i −0.0262179 0.0720331i
\(296\) −13.6088 13.2702i −0.790995 0.771317i
\(297\) 0 0
\(298\) −0.620393 + 2.35484i −0.0359384 + 0.136412i
\(299\) −26.6536 + 9.70110i −1.54142 + 0.561029i
\(300\) 0 0
\(301\) 0.899557 0.754818i 0.0518496 0.0435070i
\(302\) −0.849975 0.0707687i −0.0489106 0.00407228i
\(303\) 0 0
\(304\) −29.8924 4.75473i −1.71445 0.272702i
\(305\) 1.97339 + 1.13934i 0.112996 + 0.0652382i
\(306\) 0 0
\(307\) −17.7533 + 10.2499i −1.01323 + 0.584990i −0.912136 0.409887i \(-0.865568\pi\)
−0.101096 + 0.994877i \(0.532235\pi\)
\(308\) 0.0311845 + 0.0257238i 0.00177690 + 0.00146575i
\(309\) 0 0
\(310\) 1.26194 + 0.875747i 0.0716733 + 0.0497391i
\(311\) −18.8205 6.85012i −1.06722 0.388435i −0.252081 0.967706i \(-0.581115\pi\)
−0.815135 + 0.579272i \(0.803337\pi\)
\(312\) 0 0
\(313\) −3.06340 + 17.3734i −0.173154 + 0.982003i 0.767100 + 0.641528i \(0.221699\pi\)
−0.940253 + 0.340475i \(0.889412\pi\)
\(314\) −3.85640 14.1543i −0.217629 0.798774i
\(315\) 0 0
\(316\) 3.07146 + 5.21825i 0.172783 + 0.293549i
\(317\) −2.76189 + 3.29149i −0.155123 + 0.184868i −0.838009 0.545657i \(-0.816280\pi\)
0.682886 + 0.730525i \(0.260725\pi\)
\(318\) 0 0
\(319\) −0.288017 + 0.0507851i −0.0161258 + 0.00284342i
\(320\) −1.81376 + 1.60148i −0.101392 + 0.0895253i
\(321\) 0 0
\(322\) 0.411939 + 4.49123i 0.0229565 + 0.250287i
\(323\) −18.7360 −1.04250
\(324\) 0 0
\(325\) −21.1951 −1.17569
\(326\) 0.736827 + 8.03337i 0.0408090 + 0.444927i
\(327\) 0 0
\(328\) −1.33452 + 17.8387i −0.0736866 + 0.984975i
\(329\) −3.43911 + 0.606408i −0.189604 + 0.0334323i
\(330\) 0 0
\(331\) 12.9390 15.4201i 0.711190 0.847563i −0.282554 0.959252i \(-0.591181\pi\)
0.993743 + 0.111689i \(0.0356259\pi\)
\(332\) 9.92416 5.84137i 0.544659 0.320587i
\(333\) 0 0
\(334\) −1.95194 7.16428i −0.106805 0.392012i
\(335\) 0.585001 3.31770i 0.0319620 0.181266i
\(336\) 0 0
\(337\) −12.4122 4.51765i −0.676133 0.246092i −0.0189468 0.999820i \(-0.506031\pi\)
−0.657186 + 0.753728i \(0.728254\pi\)
\(338\) 6.55893 + 4.55169i 0.356759 + 0.247579i
\(339\) 0 0
\(340\) −0.953052 + 1.15537i −0.0516865 + 0.0626586i
\(341\) 0.129480 0.0747552i 0.00701173 0.00404822i
\(342\) 0 0
\(343\) 5.78720 + 3.34124i 0.312480 + 0.180410i
\(344\) 6.80717 0.682042i 0.367018 0.0367733i
\(345\) 0 0
\(346\) 1.95510 + 0.162781i 0.105107 + 0.00875117i
\(347\) −13.6769 + 11.4763i −0.734213 + 0.616078i −0.931277 0.364313i \(-0.881304\pi\)
0.197064 + 0.980391i \(0.436859\pi\)
\(348\) 0 0
\(349\) 12.2841 4.47105i 0.657554 0.239330i 0.00837388 0.999965i \(-0.497334\pi\)
0.649180 + 0.760635i \(0.275112\pi\)
\(350\) −0.858586 + 3.25895i −0.0458933 + 0.174198i
\(351\) 0 0
\(352\) 0.0657163 + 0.226157i 0.00350269 + 0.0120542i
\(353\) −7.34903 20.1913i −0.391149 1.07467i −0.966477 0.256751i \(-0.917348\pi\)
0.575328 0.817923i \(-0.304874\pi\)
\(354\) 0 0
\(355\) −0.656843 0.782795i −0.0348616 0.0415464i
\(356\) −19.6015 6.94853i −1.03888 0.368271i
\(357\) 0 0
\(358\) −9.41974 13.3333i −0.497849 0.704686i
\(359\) −9.46695 + 16.3972i −0.499647 + 0.865413i −1.00000 0.000407927i \(-0.999870\pi\)
0.500353 + 0.865821i \(0.333203\pi\)
\(360\) 0 0
\(361\) 19.1302 + 33.1344i 1.00685 + 1.74392i
\(362\) 10.1553 22.0190i 0.533752 1.15729i
\(363\) 0 0
\(364\) 3.18908 2.72191i 0.167153 0.142667i
\(365\) −0.0652682 + 0.179323i −0.00341629 + 0.00938619i
\(366\) 0 0
\(367\) −23.4580 4.13627i −1.22450 0.215912i −0.476236 0.879317i \(-0.657999\pi\)
−0.748260 + 0.663406i \(0.769110\pi\)
\(368\) −12.7536 + 22.9724i −0.664828 + 1.19752i
\(369\) 0 0
\(370\) 2.04106 + 2.02400i 0.106110 + 0.105223i
\(371\) −3.68488 3.09198i −0.191310 0.160528i
\(372\) 0 0
\(373\) −3.76380 21.3456i −0.194882 1.10523i −0.912587 0.408883i \(-0.865918\pi\)
0.717705 0.696348i \(-0.245193\pi\)
\(374\) 0.0621638 + 0.131863i 0.00321442 + 0.00681845i
\(375\) 0 0
\(376\) −18.5456 8.36521i −0.956415 0.431403i
\(377\) 30.3329i 1.56222i
\(378\) 0 0
\(379\) 33.6783i 1.72994i −0.501825 0.864969i \(-0.667338\pi\)
0.501825 0.864969i \(-0.332662\pi\)
\(380\) 4.51428 + 0.756963i 0.231578 + 0.0388314i
\(381\) 0 0
\(382\) 21.1771 9.98349i 1.08351 0.510800i
\(383\) −0.261068 1.48059i −0.0133400 0.0756548i 0.977411 0.211347i \(-0.0677851\pi\)
−0.990751 + 0.135693i \(0.956674\pi\)
\(384\) 0 0
\(385\) −0.00468303 0.00392953i −0.000238670 0.000200268i
\(386\) −8.76604 + 8.83996i −0.446180 + 0.449942i
\(387\) 0 0
\(388\) 0.0559413 + 6.66219i 0.00283999 + 0.338222i
\(389\) 3.80299 + 0.670570i 0.192819 + 0.0339993i 0.269224 0.963078i \(-0.413233\pi\)
−0.0764044 + 0.997077i \(0.524344\pi\)
\(390\) 0 0
\(391\) −5.56271 + 15.2834i −0.281318 + 0.772916i
\(392\) 8.30341 + 17.2366i 0.419386 + 0.870578i
\(393\) 0 0
\(394\) 16.0495 + 7.40214i 0.808563 + 0.372914i
\(395\) −0.457839 0.793000i −0.0230364 0.0399002i
\(396\) 0 0
\(397\) −9.80431 + 16.9816i −0.492064 + 0.852280i −0.999958 0.00913954i \(-0.997091\pi\)
0.507894 + 0.861419i \(0.330424\pi\)
\(398\) 5.18193 3.66095i 0.259747 0.183507i
\(399\) 0 0
\(400\) −14.8265 + 12.8713i −0.741327 + 0.643567i
\(401\) 13.9437 + 16.6175i 0.696316 + 0.829838i 0.992104 0.125416i \(-0.0400266\pi\)
−0.295788 + 0.955254i \(0.595582\pi\)
\(402\) 0 0
\(403\) −5.30360 14.5715i −0.264191 0.725859i
\(404\) 16.4562 29.0639i 0.818728 1.44598i
\(405\) 0 0
\(406\) 4.66398 + 1.22875i 0.231470 + 0.0609817i
\(407\) 0.262912 0.0956921i 0.0130321 0.00474328i
\(408\) 0 0
\(409\) −8.42462 + 7.06909i −0.416570 + 0.349544i −0.826857 0.562413i \(-0.809873\pi\)
0.410286 + 0.911957i \(0.365429\pi\)
\(410\) 0.224456 2.69586i 0.0110851 0.133139i
\(411\) 0 0
\(412\) 29.7761 11.1216i 1.46696 0.547923i
\(413\) 1.83029 + 1.05672i 0.0900626 + 0.0519976i
\(414\) 0 0
\(415\) −1.50814 + 0.870727i −0.0740319 + 0.0427423i
\(416\) 24.2834 2.63919i 1.19059 0.129397i
\(417\) 0 0
\(418\) 0.254012 0.366028i 0.0124241 0.0179030i
\(419\) 22.7569 + 8.28284i 1.11175 + 0.404643i 0.831635 0.555323i \(-0.187405\pi\)
0.280114 + 0.959967i \(0.409628\pi\)
\(420\) 0 0
\(421\) 6.35770 36.0563i 0.309855 1.75728i −0.289866 0.957067i \(-0.593611\pi\)
0.599721 0.800209i \(-0.295278\pi\)
\(422\) 30.6247 8.34381i 1.49078 0.406170i
\(423\) 0 0
\(424\) −7.59351 26.9756i −0.368773 1.31005i
\(425\) −7.81210 + 9.31010i −0.378942 + 0.451606i
\(426\) 0 0
\(427\) −3.60217 + 0.635160i −0.174321 + 0.0307375i
\(428\) −1.96981 + 0.364411i −0.0952146 + 0.0176145i
\(429\) 0 0
\(430\) −1.03024 + 0.0944945i −0.0496827 + 0.00455693i
\(431\) 38.5608 1.85741 0.928705 0.370820i \(-0.120923\pi\)
0.928705 + 0.370820i \(0.120923\pi\)
\(432\) 0 0
\(433\) −6.56251 −0.315374 −0.157687 0.987489i \(-0.550404\pi\)
−0.157687 + 0.987489i \(0.550404\pi\)
\(434\) −2.45536 + 0.225207i −0.117861 + 0.0108103i
\(435\) 0 0
\(436\) 14.2899 2.64360i 0.684361 0.126605i
\(437\) 48.9513 8.63143i 2.34166 0.412897i
\(438\) 0 0
\(439\) −1.17279 + 1.39768i −0.0559744 + 0.0667077i −0.793305 0.608824i \(-0.791641\pi\)
0.737331 + 0.675532i \(0.236086\pi\)
\(440\) −0.00965041 0.0342827i −0.000460065 0.00163437i
\(441\) 0 0
\(442\) 14.5881 3.97459i 0.693886 0.189052i
\(443\) 0.302973 1.71824i 0.0143947 0.0816362i −0.976764 0.214317i \(-0.931247\pi\)
0.991159 + 0.132681i \(0.0423585\pi\)
\(444\) 0 0
\(445\) 2.95530 + 1.07564i 0.140095 + 0.0509903i
\(446\) −14.7685 + 21.2813i −0.699310 + 1.00770i
\(447\) 0 0
\(448\) 0.577888 3.84072i 0.0273026 0.181457i
\(449\) −8.00158 + 4.61971i −0.377618 + 0.218018i −0.676781 0.736184i \(-0.736626\pi\)
0.299164 + 0.954202i \(0.403292\pi\)
\(450\) 0 0
\(451\) −0.228032 0.131654i −0.0107376 0.00619937i
\(452\) −27.1088 + 10.1254i −1.27509 + 0.476258i
\(453\) 0 0
\(454\) −2.30026 + 27.6275i −0.107957 + 1.29663i
\(455\) −0.485708 + 0.407557i −0.0227703 + 0.0191066i
\(456\) 0 0
\(457\) 25.9190 9.43376i 1.21244 0.441293i 0.344891 0.938643i \(-0.387916\pi\)
0.867550 + 0.497350i \(0.165694\pi\)
\(458\) −7.75140 2.04214i −0.362199 0.0954229i
\(459\) 0 0
\(460\) 1.95776 3.45767i 0.0912812 0.161215i
\(461\) −7.09177 19.4845i −0.330297 0.907483i −0.988034 0.154236i \(-0.950709\pi\)
0.657737 0.753247i \(-0.271514\pi\)
\(462\) 0 0
\(463\) −6.16175 7.34328i −0.286361 0.341271i 0.603618 0.797274i \(-0.293725\pi\)
−0.889979 + 0.456002i \(0.849281\pi\)
\(464\) 18.4206 + 21.2187i 0.855153 + 0.985053i
\(465\) 0 0
\(466\) −8.67587 + 6.12935i −0.401902 + 0.283937i
\(467\) 8.74737 15.1509i 0.404780 0.701099i −0.589516 0.807757i \(-0.700681\pi\)
0.994296 + 0.106657i \(0.0340148\pi\)
\(468\) 0 0
\(469\) 2.70388 + 4.68326i 0.124854 + 0.216253i
\(470\) 2.79383 + 1.28853i 0.128870 + 0.0594355i
\(471\) 0 0
\(472\) 5.34366 + 11.0926i 0.245962 + 0.510577i
\(473\) −0.0344412 + 0.0946266i −0.00158361 + 0.00435093i
\(474\) 0 0
\(475\) 36.5788 + 6.44983i 1.67835 + 0.295938i
\(476\) −0.0201866 2.40407i −0.000925251 0.110191i
\(477\) 0 0
\(478\) −6.44446 + 6.49880i −0.294763 + 0.297248i
\(479\) −20.0678 16.8388i −0.916919 0.769386i 0.0565037 0.998402i \(-0.482005\pi\)
−0.973423 + 0.229016i \(0.926449\pi\)
\(480\) 0 0
\(481\) −5.03898 28.5775i −0.229758 1.30302i
\(482\) 0.887657 0.418467i 0.0404317 0.0190607i
\(483\) 0 0
\(484\) 21.6937 + 3.63763i 0.986076 + 0.165347i
\(485\) 1.00752i 0.0457493i
\(486\) 0 0
\(487\) 7.10957i 0.322166i 0.986941 + 0.161083i \(0.0514986\pi\)
−0.986941 + 0.161083i \(0.948501\pi\)
\(488\) −19.4249 8.76184i −0.879323 0.396630i
\(489\) 0 0
\(490\) −1.23375 2.61705i −0.0557352 0.118226i
\(491\) −3.43007 19.4529i −0.154797 0.877897i −0.958971 0.283503i \(-0.908503\pi\)
0.804174 0.594393i \(-0.202608\pi\)
\(492\) 0 0
\(493\) 13.3239 + 11.1801i 0.600081 + 0.503527i
\(494\) −32.8115 32.5372i −1.47626 1.46392i
\(495\) 0 0
\(496\) −12.5590 6.97241i −0.563916 0.313071i
\(497\) 1.61539 + 0.284836i 0.0724600 + 0.0127767i
\(498\) 0 0
\(499\) −13.5189 + 37.1430i −0.605191 + 1.66275i 0.135400 + 0.990791i \(0.456768\pi\)
−0.740591 + 0.671956i \(0.765454\pi\)
\(500\) 4.55890 3.89106i 0.203880 0.174014i
\(501\) 0 0
\(502\) 1.29252 2.80248i 0.0576881 0.125081i
\(503\) 19.5426 + 33.8489i 0.871364 + 1.50925i 0.860587 + 0.509304i \(0.170097\pi\)
0.0107769 + 0.999942i \(0.496570\pi\)
\(504\) 0 0
\(505\) −2.52541 + 4.37413i −0.112379 + 0.194646i
\(506\) −0.223162 0.315878i −0.00992077 0.0140425i
\(507\) 0 0
\(508\) 16.7680 + 5.94410i 0.743961 + 0.263727i
\(509\) 9.47986 + 11.2977i 0.420187 + 0.500760i 0.934065 0.357104i \(-0.116236\pi\)
−0.513877 + 0.857864i \(0.671791\pi\)
\(510\) 0 0
\(511\) −0.104769 0.287850i −0.00463471 0.0127338i
\(512\) 15.3842 16.5930i 0.679891 0.733314i
\(513\) 0 0
\(514\) 5.18448 19.6788i 0.228677 0.867996i
\(515\) −4.51685 + 1.64400i −0.199036 + 0.0724432i
\(516\) 0 0
\(517\) 0.229404 0.192493i 0.0100892 0.00846582i
\(518\) −4.59819 0.382844i −0.202033 0.0168212i
\(519\) 0 0
\(520\) −3.67547 + 0.368262i −0.161180 + 0.0161494i
\(521\) 10.1293 + 5.84816i 0.443773 + 0.256213i 0.705197 0.709012i \(-0.250859\pi\)
−0.261424 + 0.965224i \(0.584192\pi\)
\(522\) 0 0
\(523\) 6.89969 3.98354i 0.301702 0.174188i −0.341505 0.939880i \(-0.610937\pi\)
0.643207 + 0.765692i \(0.277603\pi\)
\(524\) 24.7325 29.9827i 1.08044 1.30980i
\(525\) 0 0
\(526\) 11.9020 + 8.25959i 0.518950 + 0.360135i
\(527\) −8.35546 3.04114i −0.363969 0.132474i
\(528\) 0 0
\(529\) 3.49884 19.8429i 0.152124 0.862736i
\(530\) 1.11403 + 4.08888i 0.0483905 + 0.177610i
\(531\) 0 0
\(532\) −6.33207 + 3.72706i −0.274530 + 0.161589i
\(533\) −17.5542 + 20.9203i −0.760356 + 0.906157i
\(534\) 0 0
\(535\) 0.298337 0.0526049i 0.0128982 0.00227431i
\(536\) −2.35033 + 31.4171i −0.101519 + 1.35701i
\(537\) 0 0
\(538\) 0.407173 + 4.43928i 0.0175545 + 0.191391i
\(539\) −0.281617 −0.0121301
\(540\) 0 0
\(541\) 8.41220 0.361669 0.180834 0.983514i \(-0.442120\pi\)
0.180834 + 0.983514i \(0.442120\pi\)
\(542\) 0.430333 + 4.69178i 0.0184844 + 0.201529i
\(543\) 0 0
\(544\) 7.79110 11.6394i 0.334041 0.499036i
\(545\) −2.16426 + 0.381618i −0.0927069 + 0.0163467i
\(546\) 0 0
\(547\) 11.2369 13.3916i 0.480453 0.572582i −0.470309 0.882502i \(-0.655858\pi\)
0.950763 + 0.309920i \(0.100302\pi\)
\(548\) 15.5597 + 26.4351i 0.664679 + 1.12925i
\(549\) 0 0
\(550\) −0.0759708 0.278839i −0.00323941 0.0118897i
\(551\) 9.23054 52.3490i 0.393234 2.23014i
\(552\) 0 0
\(553\) 1.38121 + 0.502719i 0.0587350 + 0.0213778i
\(554\) 4.85129 + 3.36664i 0.206111 + 0.143035i
\(555\) 0 0
\(556\) −13.7850 11.3711i −0.584615 0.482243i
\(557\) −0.688812 + 0.397686i −0.0291859 + 0.0168505i −0.514522 0.857477i \(-0.672031\pi\)
0.485336 + 0.874328i \(0.338697\pi\)
\(558\) 0 0
\(559\) 9.04493 + 5.22209i 0.382560 + 0.220871i
\(560\) −0.0922646 + 0.580058i −0.00389889 + 0.0245119i
\(561\) 0 0
\(562\) −27.6621 2.30314i −1.16685 0.0971520i
\(563\) 4.79979 4.02750i 0.202287 0.169739i −0.536017 0.844207i \(-0.680072\pi\)
0.738304 + 0.674468i \(0.235627\pi\)
\(564\) 0 0
\(565\) 4.11224 1.49673i 0.173003 0.0629680i
\(566\) −5.54768 + 21.0575i −0.233187 + 0.885111i
\(567\) 0 0
\(568\) 6.84184 + 6.67163i 0.287077 + 0.279935i
\(569\) −1.85350 5.09244i −0.0777027 0.213486i 0.894759 0.446550i \(-0.147347\pi\)
−0.972462 + 0.233063i \(0.925125\pi\)
\(570\) 0 0
\(571\) 19.5951 + 23.3525i 0.820029 + 0.977273i 0.999979 0.00640314i \(-0.00203820\pi\)
−0.179950 + 0.983676i \(0.557594\pi\)
\(572\) −0.120130 + 0.338880i −0.00502287 + 0.0141693i
\(573\) 0 0
\(574\) 2.50560 + 3.54658i 0.104582 + 0.148032i
\(575\) 16.1215 27.9233i 0.672315 1.16448i
\(576\) 0 0
\(577\) −9.67484 16.7573i −0.402769 0.697616i 0.591290 0.806459i \(-0.298619\pi\)
−0.994059 + 0.108843i \(0.965286\pi\)
\(578\) −6.43783 + 13.9587i −0.267779 + 0.580605i
\(579\) 0 0
\(580\) −2.75860 3.23207i −0.114545 0.134204i
\(581\) 0.956081 2.62681i 0.0396649 0.108979i
\(582\) 0 0
\(583\) 0.406232 + 0.0716296i 0.0168244 + 0.00296659i
\(584\) 0.440143 1.72948i 0.0182132 0.0715662i
\(585\) 0 0
\(586\) −18.6999 18.5436i −0.772486 0.766027i
\(587\) 33.1376 + 27.8057i 1.36773 + 1.14767i 0.973508 + 0.228653i \(0.0734320\pi\)
0.394227 + 0.919013i \(0.371012\pi\)
\(588\) 0 0
\(589\) 4.71881 + 26.7617i 0.194435 + 1.10270i
\(590\) −0.793980 1.68420i −0.0326876 0.0693374i
\(591\) 0 0
\(592\) −20.8794 16.9306i −0.858139 0.695845i
\(593\) 32.7916i 1.34659i −0.739375 0.673294i \(-0.764879\pi\)
0.739375 0.673294i \(-0.235121\pi\)
\(594\) 0 0
\(595\) 0.363568i 0.0149048i
\(596\) −0.569525 + 3.39646i −0.0233286 + 0.139124i
\(597\) 0 0
\(598\) −36.2832 + 17.1049i −1.48373 + 0.699473i
\(599\) 6.52625 + 37.0122i 0.266655 + 1.51228i 0.764279 + 0.644885i \(0.223095\pi\)
−0.497624 + 0.867393i \(0.665794\pi\)
\(600\) 0 0
\(601\) 7.65033 + 6.41939i 0.312063 + 0.261852i 0.785344 0.619059i \(-0.212486\pi\)
−0.473281 + 0.880912i \(0.656930\pi\)
\(602\) 1.16935 1.17921i 0.0476591 0.0480609i
\(603\) 0 0
\(604\) −1.20616 + 0.0101279i −0.0490781 + 0.000412100i
\(605\) −3.27588 0.577627i −0.133184 0.0234839i
\(606\) 0 0
\(607\) 9.92909 27.2799i 0.403009 1.10726i −0.557783 0.829987i \(-0.688348\pi\)
0.960792 0.277271i \(-0.0894301\pi\)
\(608\) −42.7118 2.83487i −1.73219 0.114969i
\(609\) 0 0
\(610\) 2.92629 + 1.34963i 0.118482 + 0.0546447i
\(611\) −15.5298 26.8983i −0.628266 1.08819i
\(612\) 0 0
\(613\) −10.6465 + 18.4402i −0.430007 + 0.744794i −0.996873 0.0790155i \(-0.974822\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(614\) −23.6780 + 16.7281i −0.955566 + 0.675091i
\(615\) 0 0
\(616\) 0.0472399 + 0.0321987i 0.00190335 + 0.00129732i
\(617\) −1.59822 1.90469i −0.0643420 0.0766798i 0.732913 0.680322i \(-0.238160\pi\)
−0.797255 + 0.603642i \(0.793716\pi\)
\(618\) 0 0
\(619\) 4.56324 + 12.5374i 0.183412 + 0.503921i 0.996990 0.0775360i \(-0.0247053\pi\)
−0.813577 + 0.581457i \(0.802483\pi\)
\(620\) 1.89031 + 1.07031i 0.0759168 + 0.0429847i
\(621\) 0 0
\(622\) −27.3899 7.21598i −1.09823 0.289334i
\(623\) −4.74387 + 1.72663i −0.190059 + 0.0691759i
\(624\) 0 0
\(625\) 18.1064 15.1931i 0.724256 0.607723i
\(626\) −2.07006 + 24.8627i −0.0827364 + 0.993714i
\(627\) 0 0
\(628\) −7.25929 19.4354i −0.289677 0.775557i
\(629\) −14.4101 8.31969i −0.574570 0.331728i
\(630\) 0 0
\(631\) 33.1235 19.1238i 1.31862 0.761308i 0.335117 0.942176i \(-0.391224\pi\)
0.983507 + 0.180868i \(0.0578908\pi\)
\(632\) 4.99959 + 6.95213i 0.198873 + 0.276541i
\(633\) 0 0
\(634\) −3.46441 + 4.99216i −0.137589 + 0.198264i
\(635\) −2.52810 0.920154i −0.100325 0.0365152i
\(636\) 0 0
\(637\) −5.07197 + 28.7646i −0.200959 + 1.13969i
\(638\) −0.399055 + 0.108724i −0.0157987 + 0.00430443i
\(639\) 0 0
\(640\) −2.34745 + 2.48965i −0.0927913 + 0.0984120i
\(641\) −9.13644 + 10.8884i −0.360868 + 0.430065i −0.915679 0.401911i \(-0.868346\pi\)
0.554811 + 0.831976i \(0.312791\pi\)
\(642\) 0 0
\(643\) 0.627325 0.110614i 0.0247393 0.00436221i −0.161265 0.986911i \(-0.551557\pi\)
0.186004 + 0.982549i \(0.440446\pi\)
\(644\) 1.16027 + 6.27180i 0.0457210 + 0.247144i
\(645\) 0 0
\(646\) −26.3859 + 2.42013i −1.03814 + 0.0952189i
\(647\) 7.26586 0.285650 0.142825 0.989748i \(-0.454381\pi\)
0.142825 + 0.989748i \(0.454381\pi\)
\(648\) 0 0
\(649\) −0.181235 −0.00711408
\(650\) −29.8491 + 2.73778i −1.17078 + 0.107384i
\(651\) 0 0
\(652\) 2.07535 + 11.2182i 0.0812769 + 0.439340i
\(653\) −31.3669 + 5.53083i −1.22748 + 0.216438i −0.749543 0.661955i \(-0.769727\pi\)
−0.477938 + 0.878393i \(0.658616\pi\)
\(654\) 0 0
\(655\) −3.77810 + 4.50257i −0.147623 + 0.175930i
\(656\) 0.424819 + 25.2946i 0.0165864 + 0.987588i
\(657\) 0 0
\(658\) −4.76497 + 1.29824i −0.185758 + 0.0506105i
\(659\) −2.56367 + 14.5393i −0.0998663 + 0.566370i 0.893281 + 0.449499i \(0.148397\pi\)
−0.993147 + 0.116871i \(0.962714\pi\)
\(660\) 0 0
\(661\) −18.8308 6.85385i −0.732433 0.266584i −0.0512388 0.998686i \(-0.516317\pi\)
−0.681194 + 0.732103i \(0.738539\pi\)
\(662\) 16.2302 23.3874i 0.630803 0.908978i
\(663\) 0 0
\(664\) 13.2217 9.50832i 0.513101 0.368994i
\(665\) 0.962265 0.555564i 0.0373150 0.0215438i
\(666\) 0 0
\(667\) −39.9619 23.0720i −1.54733 0.893352i
\(668\) −3.67433 9.83734i −0.142164 0.380618i
\(669\) 0 0
\(670\) 0.395308 4.74789i 0.0152721 0.183427i
\(671\) 0.240281 0.201620i 0.00927594 0.00778344i
\(672\) 0 0
\(673\) −32.6670 + 11.8898i −1.25922 + 0.458319i −0.883508 0.468417i \(-0.844825\pi\)
−0.375713 + 0.926736i \(0.622602\pi\)
\(674\) −18.0636 4.75894i −0.695784 0.183307i
\(675\) 0 0
\(676\) 9.82490 + 5.56294i 0.377881 + 0.213959i
\(677\) −11.4934 31.5778i −0.441726 1.21363i −0.938356 0.345670i \(-0.887652\pi\)
0.496630 0.867962i \(-0.334571\pi\)
\(678\) 0 0
\(679\) 1.03957 + 1.23891i 0.0398951 + 0.0475451i
\(680\) −1.19295 + 1.75021i −0.0457474 + 0.0671176i
\(681\) 0 0
\(682\) 0.172691 0.122003i 0.00661267 0.00467173i
\(683\) −12.3153 + 21.3308i −0.471233 + 0.816200i −0.999459 0.0329044i \(-0.989524\pi\)
0.528225 + 0.849104i \(0.322858\pi\)
\(684\) 0 0
\(685\) −2.31937 4.01726i −0.0886185 0.153492i
\(686\) 8.58172 + 3.95794i 0.327652 + 0.151115i
\(687\) 0 0
\(688\) 9.49845 1.83981i 0.362125 0.0701420i
\(689\) 14.6326 40.2027i 0.557458 1.53160i
\(690\) 0 0
\(691\) 14.4784 + 2.55293i 0.550784 + 0.0971181i 0.442113 0.896960i \(-0.354229\pi\)
0.108672 + 0.994078i \(0.465340\pi\)
\(692\) 2.77440 0.0232961i 0.105467 0.000885586i
\(693\) 0 0
\(694\) −17.7788 + 17.9287i −0.674873 + 0.680564i
\(695\) 2.07012 + 1.73704i 0.0785243 + 0.0658897i
\(696\) 0 0
\(697\) 2.71925 + 15.4216i 0.102999 + 0.584135i
\(698\) 16.7222 7.88334i 0.632945 0.298389i
\(699\) 0 0
\(700\) −0.788188 + 4.70050i −0.0297907 + 0.177662i
\(701\) 32.3443i 1.22163i 0.791775 + 0.610813i \(0.209157\pi\)
−0.791775 + 0.610813i \(0.790843\pi\)
\(702\) 0 0
\(703\) 50.8528i 1.91795i
\(704\) 0.121761 + 0.310008i 0.00458905 + 0.0116839i
\(705\) 0 0
\(706\) −12.9578 27.4862i −0.487672 1.03446i
\(707\) −1.40787 7.98443i −0.0529484 0.300285i
\(708\) 0 0
\(709\) −30.0746 25.2356i −1.12947 0.947741i −0.130430 0.991458i \(-0.541636\pi\)
−0.999044 + 0.0437162i \(0.986080\pi\)
\(710\) −1.02615 1.01757i −0.0385106 0.0381886i
\(711\) 0 0
\(712\) −28.5024 7.25370i −1.06817 0.271844i
\(713\) 23.2312 + 4.09629i 0.870016 + 0.153407i
\(714\) 0 0
\(715\) 0.0185962 0.0510927i 0.000695460 0.00191076i
\(716\) −14.9881 17.5605i −0.560132 0.656268i
\(717\) 0 0
\(718\) −11.2143 + 24.3151i −0.418514 + 0.907432i
\(719\) 0.482259 + 0.835298i 0.0179852 + 0.0311514i 0.874878 0.484343i \(-0.160941\pi\)
−0.856893 + 0.515495i \(0.827608\pi\)
\(720\) 0 0
\(721\) 3.85790 6.68207i 0.143676 0.248853i
\(722\) 31.2211 + 44.1922i 1.16193 + 1.64467i
\(723\) 0 0
\(724\) 11.4575 32.3212i 0.425816 1.20121i
\(725\) −22.1640 26.4140i −0.823151 0.980993i
\(726\) 0 0
\(727\) 7.16819 + 19.6944i 0.265854 + 0.730427i 0.998745 + 0.0500812i \(0.0159480\pi\)
−0.732892 + 0.680345i \(0.761830\pi\)
\(728\) 4.13960 4.24521i 0.153424 0.157338i
\(729\) 0 0
\(730\) −0.0687541 + 0.260972i −0.00254470 + 0.00965899i
\(731\) 5.62763 2.04829i 0.208146 0.0757588i
\(732\) 0 0
\(733\) 1.37507 1.15382i 0.0507892 0.0426172i −0.617040 0.786932i \(-0.711668\pi\)
0.667829 + 0.744315i \(0.267224\pi\)
\(734\) −33.5702 2.79505i −1.23910 0.103167i
\(735\) 0 0
\(736\) −14.9936 + 33.9994i −0.552671 + 1.25324i
\(737\) −0.401606 0.231867i −0.0147934 0.00854095i
\(738\) 0 0
\(739\) −17.1448 + 9.89858i −0.630683 + 0.364125i −0.781017 0.624510i \(-0.785299\pi\)
0.150333 + 0.988635i \(0.451965\pi\)
\(740\) 3.13588 + 2.58675i 0.115277 + 0.0950910i
\(741\) 0 0
\(742\) −5.58882 3.87847i −0.205172 0.142383i
\(743\) −36.3877 13.2440i −1.33494 0.485877i −0.426721 0.904383i \(-0.640331\pi\)
−0.908214 + 0.418507i \(0.862554\pi\)
\(744\) 0 0
\(745\) 0.0904359 0.512888i 0.00331332 0.0187907i
\(746\) −8.05778 29.5748i −0.295016 1.08281i
\(747\) 0 0
\(748\) 0.104578 + 0.177673i 0.00382376 + 0.00649635i
\(749\) −0.312575 + 0.372512i −0.0114212 + 0.0136113i
\(750\) 0 0
\(751\) 22.7048 4.00346i 0.828508 0.146088i 0.256716 0.966487i \(-0.417359\pi\)
0.571792 + 0.820398i \(0.306248\pi\)
\(752\) −27.1983 9.38521i −0.991820 0.342243i
\(753\) 0 0
\(754\) 3.91811 + 42.7179i 0.142689 + 1.55569i
\(755\) 0.182408 0.00663851
\(756\) 0 0
\(757\) 33.3070 1.21056 0.605281 0.796012i \(-0.293061\pi\)
0.605281 + 0.796012i \(0.293061\pi\)
\(758\) −4.35024 47.4292i −0.158008 1.72271i
\(759\) 0 0
\(760\) 6.45525 + 0.482921i 0.234156 + 0.0175174i
\(761\) −15.6353 + 2.75693i −0.566780 + 0.0999386i −0.449693 0.893183i \(-0.648467\pi\)
−0.117087 + 0.993122i \(0.537356\pi\)
\(762\) 0 0
\(763\) 2.26755 2.70236i 0.0820909 0.0978322i
\(764\) 28.5342 16.7952i 1.03233 0.607630i
\(765\) 0 0
\(766\) −0.558912 2.05140i −0.0201943 0.0741201i
\(767\) −3.26407 + 18.5114i −0.117859 + 0.668409i
\(768\) 0 0
\(769\) 20.7088 + 7.53738i 0.746777 + 0.271805i 0.687249 0.726422i \(-0.258818\pi\)
0.0595284 + 0.998227i \(0.481040\pi\)
\(770\) −0.00710271 0.00492906i −0.000255964 0.000177631i
\(771\) 0 0
\(772\) −11.2034 + 13.5816i −0.403218 + 0.488814i
\(773\) 18.9410 10.9356i 0.681261 0.393326i −0.119069 0.992886i \(-0.537991\pi\)
0.800330 + 0.599560i \(0.204658\pi\)
\(774\) 0 0
\(775\) 15.2657 + 8.81366i 0.548360 + 0.316596i
\(776\) 0.939341 + 9.37516i 0.0337204 + 0.336549i
\(777\) 0 0
\(778\) 5.44238 + 0.453131i 0.195119 + 0.0162455i
\(779\) 36.6615 30.7626i 1.31353 1.10219i
\(780\) 0 0
\(781\) −0.132179 + 0.0481093i −0.00472975 + 0.00172149i
\(782\) −5.85981 + 22.2422i −0.209546 + 0.795380i
\(783\) 0 0
\(784\) 13.9202 + 23.2017i 0.497149 + 0.828633i
\(785\) 1.07307 + 2.94823i 0.0382994 + 0.105227i
\(786\) 0 0
\(787\) 2.17335 + 2.59010i 0.0774716 + 0.0923271i 0.803388 0.595456i \(-0.203029\pi\)
−0.725916 + 0.687783i \(0.758584\pi\)
\(788\) 23.5587 + 8.35133i 0.839244 + 0.297504i
\(789\) 0 0
\(790\) −0.747208 1.05764i −0.0265845 0.0376293i
\(791\) −3.51231 + 6.08351i −0.124884 + 0.216305i
\(792\) 0 0
\(793\) −16.2661 28.1737i −0.577625 1.00048i
\(794\) −11.6139 + 25.1816i −0.412162 + 0.893661i
\(795\) 0 0
\(796\) 6.82484 5.82507i 0.241900 0.206464i
\(797\) −16.3658 + 44.9646i −0.579705 + 1.59273i 0.208974 + 0.977921i \(0.432988\pi\)
−0.788679 + 0.614805i \(0.789235\pi\)
\(798\) 0 0
\(799\) −17.5393 3.09264i −0.620494 0.109410i
\(800\) −19.2177 + 20.0419i −0.679447 + 0.708588i
\(801\) 0 0
\(802\) 21.7835 + 21.6013i 0.769201 + 0.762769i
\(803\) 0.0201228 + 0.0168850i 0.000710117 + 0.000595859i
\(804\) 0 0
\(805\) −0.167491 0.949891i −0.00590330 0.0334793i
\(806\) −9.35128 19.8360i −0.329385 0.698695i
\(807\) 0 0
\(808\) 19.4212 43.0564i 0.683234 1.51472i
\(809\) 17.3637i 0.610473i −0.952277 0.305237i \(-0.901264\pi\)
0.952277 0.305237i \(-0.0987356\pi\)
\(810\) 0 0
\(811\) 13.7618i 0.483242i 0.970371 + 0.241621i \(0.0776791\pi\)
−0.970371 + 0.241621i \(0.922321\pi\)
\(812\) 6.72702 + 1.12800i 0.236072 + 0.0395850i
\(813\) 0 0
\(814\) 0.357899 0.168724i 0.0125444 0.00591377i
\(815\) −0.299589 1.69905i −0.0104941 0.0595152i
\(816\) 0 0
\(817\) −14.0208 11.7648i −0.490524 0.411599i
\(818\) −10.9513 + 11.0436i −0.382903 + 0.386131i
\(819\) 0 0
\(820\) −0.0321227 3.82557i −0.00112177 0.133595i
\(821\) 26.2703 + 4.63216i 0.916840 + 0.161664i 0.612108 0.790774i \(-0.290322\pi\)
0.304732 + 0.952438i \(0.401433\pi\)
\(822\) 0 0
\(823\) 15.0879 41.4538i 0.525932 1.44499i −0.337888 0.941186i \(-0.609712\pi\)
0.863820 0.503801i \(-0.168065\pi\)
\(824\) 40.4972 19.5088i 1.41079 0.679621i
\(825\) 0 0
\(826\) 2.71409 + 1.25176i 0.0944354 + 0.0435542i
\(827\) −5.67028 9.82121i −0.197175 0.341517i 0.750436 0.660943i \(-0.229843\pi\)
−0.947611 + 0.319426i \(0.896510\pi\)
\(828\) 0 0
\(829\) 14.5329 25.1717i 0.504747 0.874248i −0.495238 0.868757i \(-0.664919\pi\)
0.999985 0.00549015i \(-0.00174758\pi\)
\(830\) −2.01145 + 1.42105i −0.0698184 + 0.0493255i
\(831\) 0 0
\(832\) 33.8574 6.85347i 1.17380 0.237601i
\(833\) 10.7656 + 12.8300i 0.373007 + 0.444532i
\(834\) 0 0
\(835\) 0.543139 + 1.49226i 0.0187961 + 0.0516419i
\(836\) 0.310446 0.548289i 0.0107370 0.0189630i
\(837\) 0 0
\(838\) 33.1185 + 8.72523i 1.14406 + 0.301408i
\(839\) 11.0585 4.02496i 0.381781 0.138957i −0.143998 0.989578i \(-0.545996\pi\)
0.525779 + 0.850621i \(0.323774\pi\)
\(840\) 0 0
\(841\) −15.5866 + 13.0787i −0.537469 + 0.450990i
\(842\) 4.29615 51.5994i 0.148055 1.77823i
\(843\) 0 0
\(844\) 42.0510 15.7064i 1.44745 0.540637i
\(845\) −1.47865 0.853700i −0.0508672 0.0293682i
\(846\) 0 0
\(847\) 4.62422 2.66980i 0.158890 0.0917353i
\(848\) −14.1784 37.0090i −0.486888 1.27089i
\(849\) 0 0
\(850\) −9.79920 + 14.1205i −0.336110 + 0.484330i
\(851\) 41.4820 + 15.0982i 1.42198 + 0.517560i
\(852\) 0 0
\(853\) −7.59288 + 43.0614i −0.259975 + 1.47439i 0.522996 + 0.852335i \(0.324814\pi\)
−0.782971 + 0.622058i \(0.786297\pi\)
\(854\) −4.99090 + 1.35979i −0.170785 + 0.0465311i
\(855\) 0 0
\(856\) −2.72702 + 0.767643i −0.0932077 + 0.0262375i
\(857\) 2.62091 3.12348i 0.0895287 0.106696i −0.719420 0.694575i \(-0.755592\pi\)
0.808949 + 0.587879i \(0.200037\pi\)
\(858\) 0 0
\(859\) −38.3251 + 6.75775i −1.30764 + 0.230571i −0.783675 0.621171i \(-0.786657\pi\)
−0.523961 + 0.851743i \(0.675546\pi\)
\(860\) −1.43869 + 0.266154i −0.0490588 + 0.00907577i
\(861\) 0 0
\(862\) 54.3053 4.98092i 1.84965 0.169651i
\(863\) −48.5663 −1.65322 −0.826608 0.562778i \(-0.809732\pi\)
−0.826608 + 0.562778i \(0.809732\pi\)
\(864\) 0 0
\(865\) −0.419573 −0.0142659
\(866\) −9.24200 + 0.847683i −0.314056 + 0.0288054i
\(867\) 0 0
\(868\) −3.42880 + 0.634320i −0.116381 + 0.0215302i
\(869\) −0.124130 + 0.0218875i −0.00421083 + 0.000742483i
\(870\) 0 0
\(871\) −30.9161 + 36.8444i −1.04755 + 1.24842i
\(872\) 19.7830 5.56881i 0.669937 0.188584i
\(873\) 0 0
\(874\) 67.8233 18.4787i 2.29416 0.625052i
\(875\) 0.252648 1.43284i 0.00854107 0.0484388i
\(876\) 0 0
\(877\) 15.9919 + 5.82058i 0.540008 + 0.196547i 0.597602 0.801793i \(-0.296120\pi\)
−0.0575935 + 0.998340i \(0.518343\pi\)
\(878\) −1.47111 + 2.11985i −0.0496475 + 0.0715414i
\(879\) 0 0
\(880\) −0.0180190 0.0470339i −0.000607421 0.00158551i
\(881\) 2.59611 1.49886i 0.0874651 0.0504980i −0.455630 0.890169i \(-0.650586\pi\)
0.543095 + 0.839672i \(0.317252\pi\)
\(882\) 0 0
\(883\) −17.0858 9.86450i −0.574984 0.331967i 0.184154 0.982897i \(-0.441046\pi\)
−0.759137 + 0.650931i \(0.774379\pi\)
\(884\) 20.0311 7.48178i 0.673718 0.251640i
\(885\) 0 0
\(886\) 0.204731 2.45894i 0.00687807 0.0826098i
\(887\) −35.6487 + 29.9128i −1.19697 + 1.00437i −0.197254 + 0.980352i \(0.563202\pi\)
−0.999711 + 0.0240206i \(0.992353\pi\)
\(888\) 0 0
\(889\) 4.05813 1.47704i 0.136105 0.0495383i
\(890\) 4.30090 + 1.13309i 0.144166 + 0.0379813i
\(891\) 0 0
\(892\) −18.0497 + 31.8781i −0.604347 + 1.06736i
\(893\) 18.6161 + 51.1474i 0.622965 + 1.71158i
\(894\) 0 0
\(895\) 2.24419 + 2.67453i 0.0750152 + 0.0893996i
\(896\) 0.317733 5.48354i 0.0106147 0.183192i
\(897\) 0 0
\(898\) −10.6719 + 7.53952i −0.356126 + 0.251597i
\(899\) 12.6135 21.8472i 0.420683 0.728645i
\(900\) 0 0
\(901\) −12.2661 21.2454i −0.408642 0.707788i
\(902\) −0.338144 0.155954i −0.0112590 0.00519271i
\(903\) 0 0
\(904\) −36.8695 + 17.7612i −1.22626 + 0.590730i
\(905\) −1.77364 + 4.87305i −0.0589579 + 0.161986i
\(906\) 0 0
\(907\) −34.2556 6.04019i −1.13744 0.200561i −0.426954 0.904273i \(-0.640413\pi\)
−0.710485 + 0.703712i \(0.751524\pi\)
\(908\) 0.329198 + 39.2051i 0.0109248 + 1.30107i
\(909\) 0 0
\(910\) −0.631379 + 0.636702i −0.0209300 + 0.0211065i
\(911\) 22.9255 + 19.2368i 0.759557 + 0.637344i 0.938012 0.346604i \(-0.112665\pi\)
−0.178454 + 0.983948i \(0.557110\pi\)
\(912\) 0 0
\(913\) 0.0416261 + 0.236073i 0.00137762 + 0.00781289i
\(914\) 35.2833 16.6336i 1.16707 0.550189i
\(915\) 0 0
\(916\) −11.1801 1.87470i −0.369401 0.0619418i
\(917\) 9.43490i 0.311568i
\(918\) 0 0
\(919\) 52.7647i 1.74055i −0.492569 0.870273i \(-0.663942\pi\)
0.492569 0.870273i \(-0.336058\pi\)
\(920\) 2.31049 5.12233i 0.0761748 0.168878i
\(921\) 0 0
\(922\) −12.5042 26.5240i −0.411803 0.873521i
\(923\) 2.53335 + 14.3673i 0.0833862 + 0.472907i
\(924\) 0 0
\(925\) 25.2693 + 21.2034i 0.830849 + 0.697165i
\(926\) −9.62614 9.54565i −0.316334 0.313689i
\(927\) 0 0
\(928\) 28.6825 + 27.5029i 0.941550 + 0.902828i
\(929\) 54.7677 + 9.65703i 1.79687 + 0.316837i 0.969550 0.244892i \(-0.0787526\pi\)
0.827321 + 0.561729i \(0.189864\pi\)
\(930\) 0 0
\(931\) 17.5066 48.0989i 0.573755 1.57638i
\(932\) −11.4265 + 9.75265i −0.374288 + 0.319459i
\(933\) 0 0
\(934\) 10.3619 22.4669i 0.339051 0.735140i
\(935\) −0.0155887 0.0270003i −0.000509803 0.000883005i
\(936\) 0 0
\(937\) 9.12048 15.7971i 0.297953 0.516070i −0.677715 0.735325i \(-0.737029\pi\)
0.975667 + 0.219255i \(0.0703628\pi\)
\(938\) 4.41282 + 6.24618i 0.144084 + 0.203945i
\(939\) 0 0
\(940\) 4.10099 + 1.45376i 0.133760 + 0.0474165i
\(941\) −11.2021 13.3502i −0.365179 0.435204i 0.551899 0.833911i \(-0.313903\pi\)
−0.917078 + 0.398707i \(0.869459\pi\)
\(942\) 0 0
\(943\) −14.2091 39.0392i −0.462712 1.27129i
\(944\) 8.95832 + 14.9315i 0.291568 + 0.485978i
\(945\) 0 0
\(946\) −0.0362807 + 0.137712i −0.00117959 + 0.00447739i
\(947\) −40.4292 + 14.7150i −1.31377 + 0.478174i −0.901458 0.432868i \(-0.857502\pi\)
−0.412315 + 0.911042i \(0.635280\pi\)
\(948\) 0 0
\(949\) 2.08706 1.75125i 0.0677488 0.0568480i
\(950\) 52.3471 + 4.35841i 1.69837 + 0.141405i
\(951\) 0 0
\(952\) −0.338964 3.38306i −0.0109859 0.109645i
\(953\) 17.5809 + 10.1503i 0.569502 + 0.328802i 0.756950 0.653472i \(-0.226688\pi\)
−0.187449 + 0.982274i \(0.560022\pi\)
\(954\) 0 0
\(955\) −4.33625 + 2.50353i −0.140318 + 0.0810124i
\(956\) −8.23629 + 9.98471i −0.266381 + 0.322929i
\(957\) 0 0
\(958\) −30.4365 21.1220i −0.983360 0.682421i
\(959\) 6.99708 + 2.54673i 0.225947 + 0.0822382i
\(960\) 0 0
\(961\) 3.14365 17.8285i 0.101408 0.575113i
\(962\) −10.7878 39.5948i −0.347811 1.27659i
\(963\) 0 0
\(964\) 1.19604 0.703987i 0.0385217 0.0226739i
\(965\) 1.71141 2.03958i 0.0550923 0.0656565i
\(966\) 0 0
\(967\) −46.0060 + 8.11209i −1.47945 + 0.260867i −0.854359 0.519683i \(-0.826050\pi\)
−0.625093 + 0.780550i \(0.714939\pi\)
\(968\) 31.0211 + 2.32071i 0.997056 + 0.0745904i
\(969\) 0 0
\(970\) −0.130142 1.41890i −0.00417862 0.0455581i
\(971\) −29.3788 −0.942809 −0.471405 0.881917i \(-0.656253\pi\)
−0.471405 + 0.881917i \(0.656253\pi\)
\(972\) 0 0
\(973\) −4.33784 −0.139065
\(974\) 0.918347 + 10.0124i 0.0294257 + 0.320819i
\(975\) 0 0
\(976\) −28.4879 9.83020i −0.911875 0.314657i
\(977\) −18.3908 + 3.24280i −0.588375 + 0.103746i −0.459907 0.887967i \(-0.652117\pi\)
−0.128468 + 0.991714i \(0.541006\pi\)
\(978\) 0 0
\(979\) 0.278270 0.331630i 0.00889356 0.0105989i
\(980\) −2.07554 3.52623i −0.0663007 0.112641i
\(981\) 0 0
\(982\) −7.34331 26.9525i −0.234335 0.860089i
\(983\) 4.54380 25.7692i 0.144925 0.821909i −0.822503 0.568761i \(-0.807423\pi\)
0.967428 0.253148i \(-0.0814660\pi\)
\(984\) 0 0
\(985\) −3.55193 1.29280i −0.113174 0.0411919i
\(986\) 20.2083 + 14.0239i 0.643563 + 0.446613i
\(987\) 0 0
\(988\) −50.4114 41.5839i −1.60380 1.32296i
\(989\) −13.7596 + 7.94413i −0.437531 + 0.252609i
\(990\) 0 0
\(991\) 25.5875 + 14.7730i 0.812815 + 0.469279i 0.847932 0.530105i \(-0.177847\pi\)
−0.0351178 + 0.999383i \(0.511181\pi\)
\(992\) −18.5875 8.19701i −0.590154 0.260255i
\(993\) 0 0
\(994\) 2.31174 + 0.192475i 0.0733241 + 0.00610495i
\(995\) −1.03945 + 0.872198i −0.0329526 + 0.0276505i
\(996\) 0 0
\(997\) −37.2095 + 13.5431i −1.17844 + 0.428916i −0.855649 0.517556i \(-0.826842\pi\)
−0.322787 + 0.946472i \(0.604620\pi\)
\(998\) −14.2410 + 54.0548i −0.450790 + 1.71107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.2.l.a.143.16 96
3.2 odd 2 108.2.l.a.47.1 yes 96
4.3 odd 2 inner 324.2.l.a.143.3 96
9.2 odd 6 972.2.l.d.107.12 96
9.4 even 3 972.2.l.b.755.7 96
9.5 odd 6 972.2.l.c.755.10 96
9.7 even 3 972.2.l.a.107.5 96
12.11 even 2 108.2.l.a.47.14 yes 96
27.4 even 9 108.2.l.a.23.14 yes 96
27.5 odd 18 972.2.l.b.215.9 96
27.13 even 9 972.2.l.d.863.3 96
27.14 odd 18 972.2.l.a.863.14 96
27.22 even 9 972.2.l.c.215.8 96
27.23 odd 18 inner 324.2.l.a.179.3 96
36.7 odd 6 972.2.l.a.107.14 96
36.11 even 6 972.2.l.d.107.3 96
36.23 even 6 972.2.l.c.755.8 96
36.31 odd 6 972.2.l.b.755.9 96
108.23 even 18 inner 324.2.l.a.179.16 96
108.31 odd 18 108.2.l.a.23.1 96
108.59 even 18 972.2.l.b.215.7 96
108.67 odd 18 972.2.l.d.863.12 96
108.95 even 18 972.2.l.a.863.5 96
108.103 odd 18 972.2.l.c.215.10 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.1 96 108.31 odd 18
108.2.l.a.23.14 yes 96 27.4 even 9
108.2.l.a.47.1 yes 96 3.2 odd 2
108.2.l.a.47.14 yes 96 12.11 even 2
324.2.l.a.143.3 96 4.3 odd 2 inner
324.2.l.a.143.16 96 1.1 even 1 trivial
324.2.l.a.179.3 96 27.23 odd 18 inner
324.2.l.a.179.16 96 108.23 even 18 inner
972.2.l.a.107.5 96 9.7 even 3
972.2.l.a.107.14 96 36.7 odd 6
972.2.l.a.863.5 96 108.95 even 18
972.2.l.a.863.14 96 27.14 odd 18
972.2.l.b.215.7 96 108.59 even 18
972.2.l.b.215.9 96 27.5 odd 18
972.2.l.b.755.7 96 9.4 even 3
972.2.l.b.755.9 96 36.31 odd 6
972.2.l.c.215.8 96 27.22 even 9
972.2.l.c.215.10 96 108.103 odd 18
972.2.l.c.755.8 96 36.23 even 6
972.2.l.c.755.10 96 9.5 odd 6
972.2.l.d.107.3 96 36.11 even 6
972.2.l.d.107.12 96 9.2 odd 6
972.2.l.d.863.3 96 27.13 even 9
972.2.l.d.863.12 96 108.67 odd 18