Properties

Label 972.2.l.c.755.10
Level $972$
Weight $2$
Character 972.755
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 755.10
Character \(\chi\) \(=\) 972.755
Dual form 972.2.l.c.215.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.592286 - 1.28421i) q^{2} +(-1.29839 - 1.52124i) q^{4} +(-0.194411 - 0.231690i) q^{5} +(0.166049 + 0.456215i) q^{7} +(-2.72261 + 0.766402i) q^{8} +(-0.412685 + 0.112438i) q^{10} +(0.0318926 + 0.0267611i) q^{11} +(-0.749815 - 4.25241i) q^{13} +(0.684225 + 0.0569684i) q^{14} +(-0.628345 + 3.95034i) q^{16} +(-2.14427 + 1.23800i) q^{17} +(-6.55326 - 3.78353i) q^{19} +(-0.100034 + 0.596570i) q^{20} +(0.0532565 - 0.0251066i) q^{22} +(-6.17265 - 2.24666i) q^{23} +(0.852356 - 4.83395i) q^{25} +(-5.90510 - 1.55572i) q^{26} +(0.478416 - 0.844947i) q^{28} +(6.91801 + 1.21983i) q^{29} +(-1.22825 + 3.37459i) q^{31} +(4.70091 + 3.14666i) q^{32} +(0.319825 + 3.48694i) q^{34} +(0.0734187 - 0.127165i) q^{35} +(-3.36015 - 5.81994i) q^{37} +(-8.74026 + 6.17484i) q^{38} +(0.706873 + 0.481805i) q^{40} +(-6.22846 + 1.09825i) q^{41} +(-1.55474 + 1.85287i) q^{43} +(-0.000699143 - 0.0832628i) q^{44} +(-6.54116 + 6.59631i) q^{46} +(-6.75922 + 2.46015i) q^{47} +(5.18175 - 4.34801i) q^{49} +(-5.70297 - 3.95769i) q^{50} +(-5.49539 + 6.66196i) q^{52} +9.90799i q^{53} -0.0125918i q^{55} +(-0.801731 - 1.11484i) q^{56} +(5.66396 - 8.16169i) q^{58} +(-3.33471 + 2.79816i) q^{59} +(7.07970 - 2.57680i) q^{61} +(3.60621 + 3.57605i) q^{62} +(6.82526 - 4.17323i) q^{64} +(-0.839468 + 1.00044i) q^{65} +(10.9694 - 1.93421i) q^{67} +(4.66740 + 1.65455i) q^{68} +(-0.119822 - 0.169603i) q^{70} +(-1.68932 - 2.92598i) q^{71} +(0.315477 - 0.546421i) q^{73} +(-9.46420 + 0.868063i) q^{74} +(2.75306 + 14.8816i) q^{76} +(-0.00691309 + 0.0189936i) q^{77} +(-2.98154 - 0.525727i) q^{79} +(1.03741 - 0.622407i) q^{80} +(-2.27865 + 8.64913i) q^{82} +(0.999837 - 5.67036i) q^{83} +(0.703701 + 0.256126i) q^{85} +(1.45862 + 3.09404i) q^{86} +(-0.107341 - 0.0484176i) q^{88} +(9.00521 + 5.19916i) q^{89} +(1.81551 - 1.04819i) q^{91} +(4.59682 + 12.3071i) q^{92} +(-0.844035 + 10.1374i) q^{94} +(0.397420 + 2.25388i) q^{95} +(-2.55186 - 2.14126i) q^{97} +(-2.51468 - 9.22972i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} - 12 q^{14} + 3 q^{16} - 18 q^{17} + 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} - 6 q^{29} - 57 q^{32} - 3 q^{34} - 6 q^{37} + 45 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.592286 1.28421i 0.418810 0.908074i
\(3\) 0 0
\(4\) −1.29839 1.52124i −0.649197 0.760620i
\(5\) −0.194411 0.231690i −0.0869431 0.103615i 0.720819 0.693123i \(-0.243766\pi\)
−0.807762 + 0.589509i \(0.799321\pi\)
\(6\) 0 0
\(7\) 0.166049 + 0.456215i 0.0627605 + 0.172433i 0.967109 0.254361i \(-0.0818651\pi\)
−0.904349 + 0.426794i \(0.859643\pi\)
\(8\) −2.72261 + 0.766402i −0.962589 + 0.270964i
\(9\) 0 0
\(10\) −0.412685 + 0.112438i −0.130503 + 0.0355559i
\(11\) 0.0318926 + 0.0267611i 0.00961599 + 0.00806878i 0.647583 0.761995i \(-0.275780\pi\)
−0.637967 + 0.770064i \(0.720224\pi\)
\(12\) 0 0
\(13\) −0.749815 4.25241i −0.207961 1.17941i −0.892711 0.450629i \(-0.851200\pi\)
0.684750 0.728778i \(-0.259911\pi\)
\(14\) 0.684225 + 0.0569684i 0.182867 + 0.0152254i
\(15\) 0 0
\(16\) −0.628345 + 3.95034i −0.157086 + 0.987585i
\(17\) −2.14427 + 1.23800i −0.520062 + 0.300258i −0.736960 0.675936i \(-0.763739\pi\)
0.216898 + 0.976194i \(0.430406\pi\)
\(18\) 0 0
\(19\) −6.55326 3.78353i −1.50342 0.868001i −0.999992 0.00396479i \(-0.998738\pi\)
−0.503430 0.864036i \(-0.667929\pi\)
\(20\) −0.100034 + 0.596570i −0.0223683 + 0.133397i
\(21\) 0 0
\(22\) 0.0532565 0.0251066i 0.0113543 0.00535275i
\(23\) −6.17265 2.24666i −1.28709 0.468461i −0.394316 0.918975i \(-0.629019\pi\)
−0.892769 + 0.450514i \(0.851241\pi\)
\(24\) 0 0
\(25\) 0.852356 4.83395i 0.170471 0.966791i
\(26\) −5.90510 1.55572i −1.15809 0.305103i
\(27\) 0 0
\(28\) 0.478416 0.844947i 0.0904122 0.159680i
\(29\) 6.91801 + 1.21983i 1.28464 + 0.226517i 0.773950 0.633246i \(-0.218278\pi\)
0.510692 + 0.859764i \(0.329389\pi\)
\(30\) 0 0
\(31\) −1.22825 + 3.37459i −0.220600 + 0.606094i −0.999786 0.0206992i \(-0.993411\pi\)
0.779186 + 0.626793i \(0.215633\pi\)
\(32\) 4.70091 + 3.14666i 0.831011 + 0.556256i
\(33\) 0 0
\(34\) 0.319825 + 3.48694i 0.0548495 + 0.598006i
\(35\) 0.0734187 0.127165i 0.0124100 0.0214948i
\(36\) 0 0
\(37\) −3.36015 5.81994i −0.552405 0.956793i −0.998100 0.0616082i \(-0.980377\pi\)
0.445696 0.895184i \(-0.352956\pi\)
\(38\) −8.74026 + 6.17484i −1.41786 + 1.00169i
\(39\) 0 0
\(40\) 0.706873 + 0.481805i 0.111766 + 0.0761801i
\(41\) −6.22846 + 1.09825i −0.972722 + 0.171517i −0.637355 0.770571i \(-0.719971\pi\)
−0.335367 + 0.942088i \(0.608860\pi\)
\(42\) 0 0
\(43\) −1.55474 + 1.85287i −0.237096 + 0.282560i −0.871452 0.490481i \(-0.836821\pi\)
0.634356 + 0.773041i \(0.281265\pi\)
\(44\) −0.000699143 0.0832628i −0.000105400 0.0125523i
\(45\) 0 0
\(46\) −6.54116 + 6.59631i −0.964441 + 0.972573i
\(47\) −6.75922 + 2.46015i −0.985933 + 0.358850i −0.784144 0.620579i \(-0.786898\pi\)
−0.201789 + 0.979429i \(0.564675\pi\)
\(48\) 0 0
\(49\) 5.18175 4.34801i 0.740250 0.621144i
\(50\) −5.70297 3.95769i −0.806522 0.559702i
\(51\) 0 0
\(52\) −5.49539 + 6.66196i −0.762073 + 0.923847i
\(53\) 9.90799i 1.36097i 0.732763 + 0.680484i \(0.238230\pi\)
−0.732763 + 0.680484i \(0.761770\pi\)
\(54\) 0 0
\(55\) 0.0125918i 0.00169788i
\(56\) −0.801731 1.11484i −0.107136 0.148977i
\(57\) 0 0
\(58\) 5.66396 8.16169i 0.743715 1.07168i
\(59\) −3.33471 + 2.79816i −0.434143 + 0.364289i −0.833512 0.552501i \(-0.813674\pi\)
0.399369 + 0.916790i \(0.369229\pi\)
\(60\) 0 0
\(61\) 7.07970 2.57680i 0.906462 0.329925i 0.153623 0.988130i \(-0.450906\pi\)
0.752839 + 0.658204i \(0.228684\pi\)
\(62\) 3.60621 + 3.57605i 0.457989 + 0.454159i
\(63\) 0 0
\(64\) 6.82526 4.17323i 0.853157 0.521654i
\(65\) −0.839468 + 1.00044i −0.104123 + 0.124089i
\(66\) 0 0
\(67\) 10.9694 1.93421i 1.34013 0.236301i 0.542810 0.839856i \(-0.317361\pi\)
0.797322 + 0.603554i \(0.206249\pi\)
\(68\) 4.66740 + 1.65455i 0.566005 + 0.200643i
\(69\) 0 0
\(70\) −0.119822 0.169603i −0.0143214 0.0202715i
\(71\) −1.68932 2.92598i −0.200485 0.347250i 0.748200 0.663473i \(-0.230918\pi\)
−0.948685 + 0.316223i \(0.897585\pi\)
\(72\) 0 0
\(73\) 0.315477 0.546421i 0.0369237 0.0639538i −0.846973 0.531636i \(-0.821577\pi\)
0.883897 + 0.467682i \(0.154911\pi\)
\(74\) −9.46420 + 0.868063i −1.10019 + 0.100910i
\(75\) 0 0
\(76\) 2.75306 + 14.8816i 0.315798 + 1.70704i
\(77\) −0.00691309 + 0.0189936i −0.000787820 + 0.00216452i
\(78\) 0 0
\(79\) −2.98154 0.525727i −0.335450 0.0591489i 0.00338622 0.999994i \(-0.498922\pi\)
−0.338836 + 0.940845i \(0.610033\pi\)
\(80\) 1.03741 0.622407i 0.115986 0.0695873i
\(81\) 0 0
\(82\) −2.27865 + 8.64913i −0.251635 + 0.955136i
\(83\) 0.999837 5.67036i 0.109746 0.622403i −0.879471 0.475952i \(-0.842104\pi\)
0.989218 0.146451i \(-0.0467852\pi\)
\(84\) 0 0
\(85\) 0.703701 + 0.256126i 0.0763270 + 0.0277808i
\(86\) 1.45862 + 3.09404i 0.157287 + 0.333639i
\(87\) 0 0
\(88\) −0.107341 0.0484176i −0.0114426 0.00516133i
\(89\) 9.00521 + 5.19916i 0.954550 + 0.551110i 0.894491 0.447085i \(-0.147538\pi\)
0.0600588 + 0.998195i \(0.480871\pi\)
\(90\) 0 0
\(91\) 1.81551 1.04819i 0.190317 0.109880i
\(92\) 4.59682 + 12.3071i 0.479251 + 1.28311i
\(93\) 0 0
\(94\) −0.844035 + 10.1374i −0.0870556 + 1.04559i
\(95\) 0.397420 + 2.25388i 0.0407745 + 0.231244i
\(96\) 0 0
\(97\) −2.55186 2.14126i −0.259102 0.217412i 0.503978 0.863717i \(-0.331869\pi\)
−0.763080 + 0.646304i \(0.776314\pi\)
\(98\) −2.51468 9.22972i −0.254021 0.932343i
\(99\) 0 0
\(100\) −8.46030 + 4.97974i −0.846030 + 0.497974i
\(101\) −5.71163 15.6926i −0.568329 1.56147i −0.807113 0.590397i \(-0.798971\pi\)
0.238784 0.971073i \(-0.423251\pi\)
\(102\) 0 0
\(103\) −10.2156 12.1745i −1.00657 1.19959i −0.979807 0.199946i \(-0.935923\pi\)
−0.0267664 0.999642i \(-0.508521\pi\)
\(104\) 5.30051 + 11.0030i 0.519758 + 1.07893i
\(105\) 0 0
\(106\) 12.7240 + 5.86837i 1.23586 + 0.569986i
\(107\) 1.00162 0.0968302 0.0484151 0.998827i \(-0.484583\pi\)
0.0484151 + 0.998827i \(0.484583\pi\)
\(108\) 0 0
\(109\) 7.26618 0.695973 0.347987 0.937499i \(-0.386865\pi\)
0.347987 + 0.937499i \(0.386865\pi\)
\(110\) −0.0161706 0.00745798i −0.00154180 0.000711090i
\(111\) 0 0
\(112\) −1.90654 + 0.369288i −0.180151 + 0.0348945i
\(113\) −9.30051 11.0839i −0.874918 1.04269i −0.998730 0.0503815i \(-0.983956\pi\)
0.123812 0.992306i \(-0.460488\pi\)
\(114\) 0 0
\(115\) 0.679501 + 1.86691i 0.0633638 + 0.174091i
\(116\) −7.12665 12.1078i −0.661693 1.12418i
\(117\) 0 0
\(118\) 1.61832 + 5.93979i 0.148978 + 0.546802i
\(119\) −0.920846 0.772682i −0.0844138 0.0708316i
\(120\) 0 0
\(121\) −1.90983 10.8312i −0.173621 0.984653i
\(122\) 0.884054 10.6180i 0.0800385 0.961311i
\(123\) 0 0
\(124\) 6.72831 2.51308i 0.604221 0.225682i
\(125\) −2.59533 + 1.49841i −0.232133 + 0.134022i
\(126\) 0 0
\(127\) 7.70348 + 4.44760i 0.683573 + 0.394661i 0.801200 0.598397i \(-0.204195\pi\)
−0.117627 + 0.993058i \(0.537529\pi\)
\(128\) −1.31681 11.2368i −0.116390 0.993204i
\(129\) 0 0
\(130\) 0.787569 + 1.67060i 0.0690744 + 0.146521i
\(131\) 18.2616 + 6.64668i 1.59552 + 0.580723i 0.978505 0.206224i \(-0.0661176\pi\)
0.617020 + 0.786948i \(0.288340\pi\)
\(132\) 0 0
\(133\) 0.637942 3.61795i 0.0553166 0.313716i
\(134\) 4.01312 15.2327i 0.346681 1.31590i
\(135\) 0 0
\(136\) 4.88922 5.01396i 0.419247 0.429943i
\(137\) 15.1042 + 2.66328i 1.29044 + 0.227540i 0.776408 0.630231i \(-0.217040\pi\)
0.514033 + 0.857770i \(0.328151\pi\)
\(138\) 0 0
\(139\) −3.05591 + 8.39605i −0.259199 + 0.712144i 0.740018 + 0.672587i \(0.234817\pi\)
−0.999217 + 0.0395570i \(0.987405\pi\)
\(140\) −0.288775 + 0.0534227i −0.0244059 + 0.00451504i
\(141\) 0 0
\(142\) −4.75814 + 0.436420i −0.399294 + 0.0366235i
\(143\) 0.0898857 0.155687i 0.00751662 0.0130192i
\(144\) 0 0
\(145\) −1.06231 1.83998i −0.0882203 0.152802i
\(146\) −0.514868 0.728776i −0.0426108 0.0603139i
\(147\) 0 0
\(148\) −4.49074 + 12.6682i −0.369137 + 1.04132i
\(149\) −1.69578 + 0.299012i −0.138924 + 0.0244960i −0.242678 0.970107i \(-0.578026\pi\)
0.103754 + 0.994603i \(0.466915\pi\)
\(150\) 0 0
\(151\) 0.387667 0.462003i 0.0315479 0.0375973i −0.750040 0.661393i \(-0.769966\pi\)
0.781588 + 0.623795i \(0.214410\pi\)
\(152\) 20.7417 + 5.27866i 1.68238 + 0.428155i
\(153\) 0 0
\(154\) 0.0202972 + 0.0201275i 0.00163560 + 0.00162192i
\(155\) 1.02064 0.371484i 0.0819800 0.0298383i
\(156\) 0 0
\(157\) −7.94651 + 6.66791i −0.634201 + 0.532157i −0.902231 0.431253i \(-0.858072\pi\)
0.268031 + 0.963410i \(0.413627\pi\)
\(158\) −2.44107 + 3.51755i −0.194201 + 0.279841i
\(159\) 0 0
\(160\) −0.184858 1.70090i −0.0146143 0.134468i
\(161\) 3.18911i 0.251337i
\(162\) 0 0
\(163\) 5.70430i 0.446795i 0.974727 + 0.223397i \(0.0717148\pi\)
−0.974727 + 0.223397i \(0.928285\pi\)
\(164\) 9.75769 + 8.04903i 0.761947 + 0.628523i
\(165\) 0 0
\(166\) −6.68975 4.64248i −0.519225 0.360326i
\(167\) 4.02217 3.37500i 0.311245 0.261165i −0.473761 0.880653i \(-0.657104\pi\)
0.785006 + 0.619488i \(0.212660\pi\)
\(168\) 0 0
\(169\) −5.30479 + 1.93079i −0.408061 + 0.148522i
\(170\) 0.745712 0.752000i 0.0571935 0.0576758i
\(171\) 0 0
\(172\) 4.83733 0.0406182i 0.368843 0.00309711i
\(173\) 0.891706 1.06269i 0.0677952 0.0807951i −0.731081 0.682291i \(-0.760984\pi\)
0.798876 + 0.601496i \(0.205428\pi\)
\(174\) 0 0
\(175\) 2.34686 0.413814i 0.177406 0.0312814i
\(176\) −0.125755 + 0.109172i −0.00947914 + 0.00822911i
\(177\) 0 0
\(178\) 12.0105 8.48520i 0.900223 0.635992i
\(179\) 5.77179 + 9.99703i 0.431403 + 0.747213i 0.996994 0.0774732i \(-0.0246852\pi\)
−0.565591 + 0.824686i \(0.691352\pi\)
\(180\) 0 0
\(181\) 8.57298 14.8488i 0.637225 1.10371i −0.348814 0.937192i \(-0.613416\pi\)
0.986039 0.166514i \(-0.0532510\pi\)
\(182\) −0.270789 2.95232i −0.0200722 0.218841i
\(183\) 0 0
\(184\) 18.5276 + 1.38606i 1.36587 + 0.102182i
\(185\) −0.695173 + 1.90997i −0.0511101 + 0.140424i
\(186\) 0 0
\(187\) −0.101517 0.0179001i −0.00742363 0.00130899i
\(188\) 12.5186 + 7.08814i 0.913014 + 0.516956i
\(189\) 0 0
\(190\) 3.12985 + 0.824572i 0.227063 + 0.0598208i
\(191\) 2.87475 16.3035i 0.208010 1.17968i −0.684623 0.728898i \(-0.740033\pi\)
0.892633 0.450785i \(-0.148856\pi\)
\(192\) 0 0
\(193\) 8.27219 + 3.01083i 0.595445 + 0.216724i 0.622123 0.782920i \(-0.286271\pi\)
−0.0266776 + 0.999644i \(0.508493\pi\)
\(194\) −4.26126 + 2.00888i −0.305941 + 0.144229i
\(195\) 0 0
\(196\) −13.3423 2.23726i −0.953023 0.159805i
\(197\) −10.8232 6.24879i −0.771122 0.445208i 0.0621526 0.998067i \(-0.480203\pi\)
−0.833275 + 0.552859i \(0.813537\pi\)
\(198\) 0 0
\(199\) 3.88531 2.24318i 0.275422 0.159015i −0.355927 0.934514i \(-0.615835\pi\)
0.631349 + 0.775499i \(0.282501\pi\)
\(200\) 1.38411 + 13.8142i 0.0978716 + 0.976814i
\(201\) 0 0
\(202\) −23.5355 1.95956i −1.65595 0.137874i
\(203\) 0.592221 + 3.35865i 0.0415658 + 0.235731i
\(204\) 0 0
\(205\) 1.46533 + 1.22956i 0.102343 + 0.0858761i
\(206\) −21.6852 + 5.90821i −1.51088 + 0.411644i
\(207\) 0 0
\(208\) 17.2696 0.290040i 1.19743 0.0201107i
\(209\) −0.107749 0.296039i −0.00745319 0.0204775i
\(210\) 0 0
\(211\) −14.4269 17.1933i −0.993188 1.18363i −0.982985 0.183687i \(-0.941197\pi\)
−0.0102029 0.999948i \(-0.503248\pi\)
\(212\) 15.0724 12.8645i 1.03518 0.883536i
\(213\) 0 0
\(214\) 0.593245 1.28629i 0.0405534 0.0879290i
\(215\) 0.731549 0.0498912
\(216\) 0 0
\(217\) −1.74349 −0.118356
\(218\) 4.30366 9.33130i 0.291480 0.631995i
\(219\) 0 0
\(220\) −0.0191552 + 0.0163492i −0.00129144 + 0.00110226i
\(221\) 6.87228 + 8.19006i 0.462279 + 0.550923i
\(222\) 0 0
\(223\) −6.26467 17.2121i −0.419514 1.15260i −0.951982 0.306154i \(-0.900958\pi\)
0.532468 0.846450i \(-0.321265\pi\)
\(224\) −0.654974 + 2.66712i −0.0437623 + 0.178205i
\(225\) 0 0
\(226\) −19.7426 + 5.37896i −1.31326 + 0.357803i
\(227\) 15.0169 + 12.6007i 0.996709 + 0.836338i 0.986525 0.163610i \(-0.0523138\pi\)
0.0101841 + 0.999948i \(0.496758\pi\)
\(228\) 0 0
\(229\) 0.984254 + 5.58198i 0.0650413 + 0.368868i 0.999904 + 0.0138580i \(0.00441128\pi\)
−0.934863 + 0.355010i \(0.884478\pi\)
\(230\) 2.79997 + 0.233125i 0.184625 + 0.0153718i
\(231\) 0 0
\(232\) −19.7700 + 1.98084i −1.29796 + 0.130049i
\(233\) 6.50499 3.75566i 0.426156 0.246041i −0.271552 0.962424i \(-0.587537\pi\)
0.697708 + 0.716383i \(0.254203\pi\)
\(234\) 0 0
\(235\) 1.88406 + 1.08776i 0.122902 + 0.0709577i
\(236\) 8.58644 + 1.43979i 0.558930 + 0.0937224i
\(237\) 0 0
\(238\) −1.53769 + 0.724912i −0.0996737 + 0.0469891i
\(239\) −6.08140 2.21345i −0.393373 0.143176i 0.137758 0.990466i \(-0.456010\pi\)
−0.531131 + 0.847290i \(0.678233\pi\)
\(240\) 0 0
\(241\) −0.120498 + 0.683378i −0.00776195 + 0.0440202i −0.988443 0.151595i \(-0.951559\pi\)
0.980681 + 0.195615i \(0.0626703\pi\)
\(242\) −15.0407 3.96253i −0.966852 0.254721i
\(243\) 0 0
\(244\) −13.1122 7.42422i −0.839420 0.475287i
\(245\) −2.01478 0.355259i −0.128719 0.0226967i
\(246\) 0 0
\(247\) −11.1754 + 30.7041i −0.711073 + 1.95366i
\(248\) 0.757760 10.1290i 0.0481178 0.643195i
\(249\) 0 0
\(250\) 0.387102 + 4.22044i 0.0244825 + 0.266924i
\(251\) −1.09113 + 1.88989i −0.0688715 + 0.119289i −0.898405 0.439168i \(-0.855273\pi\)
0.829533 + 0.558457i \(0.188607\pi\)
\(252\) 0 0
\(253\) −0.136739 0.236839i −0.00859670 0.0148899i
\(254\) 10.2743 7.25863i 0.644668 0.455447i
\(255\) 0 0
\(256\) −15.2104 4.96436i −0.950648 0.310272i
\(257\) 14.1712 2.49877i 0.883977 0.155869i 0.286812 0.957987i \(-0.407405\pi\)
0.597166 + 0.802118i \(0.296294\pi\)
\(258\) 0 0
\(259\) 2.09720 2.49934i 0.130314 0.155302i
\(260\) 2.61187 0.0219314i 0.161981 0.00136013i
\(261\) 0 0
\(262\) 19.3518 19.5150i 1.19556 1.20564i
\(263\) 9.62617 3.50364i 0.593575 0.216044i −0.0277260 0.999616i \(-0.508827\pi\)
0.621301 + 0.783572i \(0.286604\pi\)
\(264\) 0 0
\(265\) 2.29558 1.92622i 0.141016 0.118327i
\(266\) −4.26836 2.96211i −0.261710 0.181619i
\(267\) 0 0
\(268\) −17.1851 14.1758i −1.04974 0.865925i
\(269\) 3.15222i 0.192194i −0.995372 0.0960971i \(-0.969364\pi\)
0.995372 0.0960971i \(-0.0306359\pi\)
\(270\) 0 0
\(271\) 3.33151i 0.202375i 0.994867 + 0.101188i \(0.0322642\pi\)
−0.994867 + 0.101188i \(0.967736\pi\)
\(272\) −3.54316 9.24849i −0.214836 0.560772i
\(273\) 0 0
\(274\) 12.3662 17.8196i 0.747072 1.07652i
\(275\) 0.156546 0.131358i 0.00944007 0.00792116i
\(276\) 0 0
\(277\) −3.92367 + 1.42810i −0.235750 + 0.0858061i −0.457194 0.889367i \(-0.651145\pi\)
0.221443 + 0.975173i \(0.428923\pi\)
\(278\) 8.97233 + 8.89730i 0.538124 + 0.533625i
\(279\) 0 0
\(280\) −0.102431 + 0.402489i −0.00612145 + 0.0240533i
\(281\) −12.6165 + 15.0357i −0.752635 + 0.896955i −0.997358 0.0726377i \(-0.976858\pi\)
0.244724 + 0.969593i \(0.421303\pi\)
\(282\) 0 0
\(283\) 15.1640 2.67383i 0.901407 0.158942i 0.296308 0.955092i \(-0.404245\pi\)
0.605099 + 0.796150i \(0.293133\pi\)
\(284\) −2.25772 + 6.36893i −0.133971 + 0.377927i
\(285\) 0 0
\(286\) −0.146696 0.207643i −0.00867433 0.0122782i
\(287\) −1.53526 2.65916i −0.0906238 0.156965i
\(288\) 0 0
\(289\) −5.43473 + 9.41323i −0.319690 + 0.553720i
\(290\) −2.99212 + 0.274439i −0.175703 + 0.0161156i
\(291\) 0 0
\(292\) −1.24085 + 0.229555i −0.0726153 + 0.0134337i
\(293\) 6.36906 17.4989i 0.372085 1.02229i −0.602469 0.798142i \(-0.705816\pi\)
0.974554 0.224152i \(-0.0719613\pi\)
\(294\) 0 0
\(295\) 1.29661 + 0.228627i 0.0754915 + 0.0133112i
\(296\) 13.6088 + 13.2702i 0.790995 + 0.771317i
\(297\) 0 0
\(298\) −0.620393 + 2.35484i −0.0359384 + 0.136412i
\(299\) −4.92538 + 27.9332i −0.284842 + 1.61542i
\(300\) 0 0
\(301\) −1.10347 0.401630i −0.0636030 0.0231496i
\(302\) −0.363700 0.771484i −0.0209286 0.0443939i
\(303\) 0 0
\(304\) 19.0639 23.5103i 1.09339 1.34841i
\(305\) −1.97339 1.13934i −0.112996 0.0652382i
\(306\) 0 0
\(307\) −17.7533 + 10.2499i −1.01323 + 0.584990i −0.912136 0.409887i \(-0.865568\pi\)
−0.101096 + 0.994877i \(0.532235\pi\)
\(308\) 0.0378697 0.0141447i 0.00215783 0.000805966i
\(309\) 0 0
\(310\) 0.127449 1.53075i 0.00723864 0.0869405i
\(311\) −3.47790 19.7241i −0.197213 1.11845i −0.909231 0.416292i \(-0.863330\pi\)
0.712018 0.702161i \(-0.247782\pi\)
\(312\) 0 0
\(313\) −13.5141 11.3397i −0.763863 0.640957i 0.175266 0.984521i \(-0.443921\pi\)
−0.939129 + 0.343564i \(0.888366\pi\)
\(314\) 3.85640 + 14.1543i 0.217629 + 0.798774i
\(315\) 0 0
\(316\) 3.07146 + 5.21825i 0.172783 + 0.293549i
\(317\) 1.46957 + 4.03761i 0.0825392 + 0.226775i 0.974096 0.226134i \(-0.0726087\pi\)
−0.891557 + 0.452908i \(0.850386\pi\)
\(318\) 0 0
\(319\) 0.187990 + 0.224037i 0.0105254 + 0.0125437i
\(320\) −2.29380 0.770020i −0.128227 0.0430455i
\(321\) 0 0
\(322\) −4.09549 1.88887i −0.228233 0.105262i
\(323\) 18.7360 1.04250
\(324\) 0 0
\(325\) −21.1951 −1.17569
\(326\) 7.32552 + 3.37858i 0.405723 + 0.187122i
\(327\) 0 0
\(328\) 16.1160 7.76360i 0.889857 0.428673i
\(329\) −2.24472 2.67515i −0.123755 0.147486i
\(330\) 0 0
\(331\) 6.88468 + 18.9155i 0.378416 + 1.03969i 0.972013 + 0.234927i \(0.0754852\pi\)
−0.593597 + 0.804763i \(0.702293\pi\)
\(332\) −9.92416 + 5.84137i −0.544659 + 0.320587i
\(333\) 0 0
\(334\) −1.95194 7.16428i −0.106805 0.392012i
\(335\) −2.58072 2.16548i −0.141000 0.118313i
\(336\) 0 0
\(337\) 2.29367 + 13.0081i 0.124944 + 0.708595i 0.981341 + 0.192276i \(0.0615869\pi\)
−0.856397 + 0.516319i \(0.827302\pi\)
\(338\) −0.662418 + 7.95605i −0.0360308 + 0.432752i
\(339\) 0 0
\(340\) −0.524051 1.40305i −0.0284207 0.0760911i
\(341\) −0.129480 + 0.0747552i −0.00701173 + 0.00404822i
\(342\) 0 0
\(343\) 5.78720 + 3.34124i 0.312480 + 0.180410i
\(344\) 2.81292 6.23620i 0.151662 0.336234i
\(345\) 0 0
\(346\) −0.836578 1.77456i −0.0449747 0.0954008i
\(347\) −16.7772 6.10639i −0.900645 0.327808i −0.150134 0.988666i \(-0.547971\pi\)
−0.750511 + 0.660858i \(0.770193\pi\)
\(348\) 0 0
\(349\) −2.27001 + 12.8739i −0.121511 + 0.689123i 0.861808 + 0.507234i \(0.169332\pi\)
−0.983319 + 0.181889i \(0.941779\pi\)
\(350\) 0.858586 3.25895i 0.0458933 0.174198i
\(351\) 0 0
\(352\) 0.0657163 + 0.226157i 0.00350269 + 0.0120542i
\(353\) −21.1607 3.73120i −1.12627 0.198592i −0.420678 0.907210i \(-0.638208\pi\)
−0.705592 + 0.708618i \(0.749319\pi\)
\(354\) 0 0
\(355\) −0.349499 + 0.960240i −0.0185495 + 0.0509642i
\(356\) −3.78314 20.4496i −0.200506 1.08383i
\(357\) 0 0
\(358\) 16.2568 1.49109i 0.859200 0.0788065i
\(359\) 9.46695 16.3972i 0.499647 0.865413i −0.500353 0.865821i \(-0.666797\pi\)
1.00000 0.000407927i \(0.000129847\pi\)
\(360\) 0 0
\(361\) 19.1302 + 33.1344i 1.00685 + 1.74392i
\(362\) −13.9914 19.8043i −0.735371 1.04089i
\(363\) 0 0
\(364\) −3.95179 1.40087i −0.207130 0.0734255i
\(365\) −0.187932 + 0.0331375i −0.00983682 + 0.00173450i
\(366\) 0 0
\(367\) 15.3111 18.2471i 0.799233 0.952489i −0.200396 0.979715i \(-0.564223\pi\)
0.999629 + 0.0272258i \(0.00866731\pi\)
\(368\) 12.7536 22.9724i 0.664828 1.19752i
\(369\) 0 0
\(370\) 2.04106 + 2.02400i 0.106110 + 0.105223i
\(371\) −4.52018 + 1.64521i −0.234676 + 0.0854151i
\(372\) 0 0
\(373\) −16.6039 + 13.9323i −0.859717 + 0.721388i −0.961907 0.273377i \(-0.911859\pi\)
0.102190 + 0.994765i \(0.467415\pi\)
\(374\) −0.0831144 + 0.119767i −0.00429774 + 0.00619299i
\(375\) 0 0
\(376\) 16.5173 11.8783i 0.851813 0.612578i
\(377\) 30.3329i 1.56222i
\(378\) 0 0
\(379\) 33.6783i 1.72994i −0.501825 0.864969i \(-0.667338\pi\)
0.501825 0.864969i \(-0.332662\pi\)
\(380\) 2.91269 3.53100i 0.149418 0.181136i
\(381\) 0 0
\(382\) −19.2345 13.3482i −0.984123 0.682951i
\(383\) 1.15170 0.966388i 0.0588490 0.0493801i −0.612889 0.790169i \(-0.709993\pi\)
0.671738 + 0.740789i \(0.265548\pi\)
\(384\) 0 0
\(385\) 0.00574459 0.00209086i 0.000292772 0.000106560i
\(386\) 8.76604 8.83996i 0.446180 0.449942i
\(387\) 0 0
\(388\) 0.0559413 + 6.66219i 0.00283999 + 0.338222i
\(389\) 2.48223 2.95820i 0.125854 0.149987i −0.699438 0.714693i \(-0.746566\pi\)
0.825292 + 0.564707i \(0.191011\pi\)
\(390\) 0 0
\(391\) 16.0172 2.82426i 0.810024 0.142829i
\(392\) −10.7756 + 15.8092i −0.544249 + 0.798487i
\(393\) 0 0
\(394\) −14.4352 + 10.1982i −0.727235 + 0.513779i
\(395\) 0.457839 + 0.793000i 0.0230364 + 0.0399002i
\(396\) 0 0
\(397\) −9.80431 + 16.9816i −0.492064 + 0.852280i −0.999958 0.00913954i \(-0.997091\pi\)
0.507894 + 0.861419i \(0.330424\pi\)
\(398\) −0.579506 6.31816i −0.0290480 0.316701i
\(399\) 0 0
\(400\) 18.5602 + 6.40449i 0.928009 + 0.320224i
\(401\) −7.41930 + 20.3844i −0.370502 + 1.01795i 0.604666 + 0.796479i \(0.293307\pi\)
−0.975168 + 0.221467i \(0.928915\pi\)
\(402\) 0 0
\(403\) 15.2711 + 2.69271i 0.760708 + 0.134133i
\(404\) −16.4562 + 29.0639i −0.818728 + 1.44598i
\(405\) 0 0
\(406\) 4.66398 + 1.22875i 0.231470 + 0.0609817i
\(407\) 0.0485842 0.275535i 0.00240823 0.0136577i
\(408\) 0 0
\(409\) 10.3343 + 3.76139i 0.510999 + 0.185989i 0.584635 0.811297i \(-0.301238\pi\)
−0.0736354 + 0.997285i \(0.523460\pi\)
\(410\) 2.44691 1.15354i 0.120844 0.0569694i
\(411\) 0 0
\(412\) −5.25644 + 31.3477i −0.258966 + 1.54439i
\(413\) −1.83029 1.05672i −0.0900626 0.0519976i
\(414\) 0 0
\(415\) −1.50814 + 0.870727i −0.0740319 + 0.0427423i
\(416\) 9.85608 22.3496i 0.483234 1.09578i
\(417\) 0 0
\(418\) −0.443995 0.0369669i −0.0217165 0.00180811i
\(419\) 4.20531 + 23.8495i 0.205443 + 1.16512i 0.896741 + 0.442555i \(0.145928\pi\)
−0.691298 + 0.722569i \(0.742961\pi\)
\(420\) 0 0
\(421\) 28.0468 + 23.5341i 1.36692 + 1.14698i 0.973777 + 0.227503i \(0.0730561\pi\)
0.393141 + 0.919478i \(0.371388\pi\)
\(422\) −30.6247 + 8.34381i −1.49078 + 0.406170i
\(423\) 0 0
\(424\) −7.59351 26.9756i −0.368773 1.31005i
\(425\) 4.15673 + 11.4205i 0.201631 + 0.553977i
\(426\) 0 0
\(427\) 2.35115 + 2.80199i 0.113780 + 0.135598i
\(428\) −1.30050 1.52370i −0.0628619 0.0736510i
\(429\) 0 0
\(430\) 0.433287 0.939463i 0.0208949 0.0453049i
\(431\) −38.5608 −1.85741 −0.928705 0.370820i \(-0.879077\pi\)
−0.928705 + 0.370820i \(0.879077\pi\)
\(432\) 0 0
\(433\) −6.56251 −0.315374 −0.157687 0.987489i \(-0.550404\pi\)
−0.157687 + 0.987489i \(0.550404\pi\)
\(434\) −1.03264 + 2.23901i −0.0495685 + 0.107476i
\(435\) 0 0
\(436\) −9.43436 11.0536i −0.451824 0.529372i
\(437\) 31.9507 + 38.0773i 1.52841 + 1.82149i
\(438\) 0 0
\(439\) −0.624030 1.71451i −0.0297833 0.0818291i 0.923910 0.382610i \(-0.124975\pi\)
−0.953693 + 0.300781i \(0.902753\pi\)
\(440\) 0.00965041 + 0.0342827i 0.000460065 + 0.00163437i
\(441\) 0 0
\(442\) 14.5881 3.97459i 0.693886 0.189052i
\(443\) −1.33656 1.12150i −0.0635017 0.0532843i 0.610484 0.792028i \(-0.290975\pi\)
−0.673986 + 0.738744i \(0.735419\pi\)
\(444\) 0 0
\(445\) −0.546118 3.09719i −0.0258885 0.146821i
\(446\) −25.8144 2.14930i −1.22235 0.101772i
\(447\) 0 0
\(448\) 3.03722 + 2.42083i 0.143495 + 0.114373i
\(449\) 8.00158 4.61971i 0.377618 0.218018i −0.299164 0.954202i \(-0.596708\pi\)
0.676781 + 0.736184i \(0.263374\pi\)
\(450\) 0 0
\(451\) −0.228032 0.131654i −0.0107376 0.00619937i
\(452\) −4.78558 + 28.5396i −0.225095 + 1.34239i
\(453\) 0 0
\(454\) 25.0763 11.8217i 1.17689 0.554819i
\(455\) −0.595808 0.216857i −0.0279319 0.0101664i
\(456\) 0 0
\(457\) −4.78964 + 27.1634i −0.224050 + 1.27065i 0.640443 + 0.768006i \(0.278751\pi\)
−0.864493 + 0.502645i \(0.832360\pi\)
\(458\) 7.75140 + 2.04214i 0.362199 + 0.0954229i
\(459\) 0 0
\(460\) 1.95776 3.45767i 0.0912812 0.161215i
\(461\) −20.4199 3.60059i −0.951052 0.167696i −0.323463 0.946241i \(-0.604847\pi\)
−0.627589 + 0.778545i \(0.715958\pi\)
\(462\) 0 0
\(463\) −3.27860 + 9.00787i −0.152369 + 0.418631i −0.992268 0.124112i \(-0.960392\pi\)
0.839899 + 0.542743i \(0.182614\pi\)
\(464\) −9.16565 + 26.5620i −0.425505 + 1.23311i
\(465\) 0 0
\(466\) −0.970240 10.5782i −0.0449455 0.490026i
\(467\) −8.74737 + 15.1509i −0.404780 + 0.701099i −0.994296 0.106657i \(-0.965985\pi\)
0.589516 + 0.807757i \(0.299319\pi\)
\(468\) 0 0
\(469\) 2.70388 + 4.68326i 0.124854 + 0.216253i
\(470\) 2.51281 1.77526i 0.115907 0.0818866i
\(471\) 0 0
\(472\) 6.93463 10.1740i 0.319192 0.468298i
\(473\) −0.0991696 + 0.0174863i −0.00455982 + 0.000804020i
\(474\) 0 0
\(475\) −23.8751 + 28.4533i −1.09547 + 1.30552i
\(476\) 0.0201866 + 2.40407i 0.000925251 + 0.110191i
\(477\) 0 0
\(478\) −6.44446 + 6.49880i −0.294763 + 0.297248i
\(479\) −24.6167 + 8.95976i −1.12477 + 0.409382i −0.836390 0.548135i \(-0.815338\pi\)
−0.288378 + 0.957517i \(0.593116\pi\)
\(480\) 0 0
\(481\) −22.2293 + 18.6526i −1.01357 + 0.850486i
\(482\) 0.806231 + 0.559500i 0.0367228 + 0.0254845i
\(483\) 0 0
\(484\) −13.9971 + 16.9684i −0.636233 + 0.771293i
\(485\) 1.00752i 0.0457493i
\(486\) 0 0
\(487\) 7.10957i 0.322166i 0.986941 + 0.161083i \(0.0514986\pi\)
−0.986941 + 0.161083i \(0.948501\pi\)
\(488\) −17.3004 + 12.4415i −0.783153 + 0.563201i
\(489\) 0 0
\(490\) −1.64955 + 2.37698i −0.0745192 + 0.107381i
\(491\) 15.1317 12.6970i 0.682883 0.573006i −0.233965 0.972245i \(-0.575170\pi\)
0.916847 + 0.399239i \(0.130726\pi\)
\(492\) 0 0
\(493\) −16.3442 + 5.94882i −0.736108 + 0.267921i
\(494\) 32.8115 + 32.5372i 1.47626 + 1.46392i
\(495\) 0 0
\(496\) −12.5590 6.97241i −0.563916 0.313071i
\(497\) 1.05437 1.25655i 0.0472949 0.0563639i
\(498\) 0 0
\(499\) 38.9262 6.86374i 1.74258 0.307263i 0.790350 0.612655i \(-0.209899\pi\)
0.952227 + 0.305392i \(0.0987875\pi\)
\(500\) 5.64921 + 2.00259i 0.252640 + 0.0895585i
\(501\) 0 0
\(502\) 1.78076 + 2.52060i 0.0794792 + 0.112500i
\(503\) −19.5426 33.8489i −0.871364 1.50925i −0.860587 0.509304i \(-0.829903\pi\)
−0.0107769 0.999942i \(-0.503430\pi\)
\(504\) 0 0
\(505\) −2.52541 + 4.37413i −0.112379 + 0.194646i
\(506\) −0.385139 + 0.0353252i −0.0171215 + 0.00157040i
\(507\) 0 0
\(508\) −3.23627 17.4936i −0.143586 0.776152i
\(509\) −5.04413 + 13.8586i −0.223577 + 0.614273i −0.999870 0.0160989i \(-0.994875\pi\)
0.776293 + 0.630372i \(0.217098\pi\)
\(510\) 0 0
\(511\) 0.301670 + 0.0531926i 0.0133451 + 0.00235310i
\(512\) −15.3842 + 16.5930i −0.679891 + 0.733314i
\(513\) 0 0
\(514\) 5.18448 19.6788i 0.228677 0.867996i
\(515\) −0.834679 + 4.73370i −0.0367804 + 0.208592i
\(516\) 0 0
\(517\) −0.281406 0.102423i −0.0123762 0.00450457i
\(518\) −1.96754 4.17357i −0.0864489 0.183376i
\(519\) 0 0
\(520\) 1.51881 3.36718i 0.0666042 0.147661i
\(521\) −10.1293 5.84816i −0.443773 0.256213i 0.261424 0.965224i \(-0.415808\pi\)
−0.705197 + 0.709012i \(0.749141\pi\)
\(522\) 0 0
\(523\) 6.89969 3.98354i 0.301702 0.174188i −0.341505 0.939880i \(-0.610937\pi\)
0.643207 + 0.765692i \(0.277603\pi\)
\(524\) −13.5996 36.4103i −0.594100 1.59059i
\(525\) 0 0
\(526\) 1.20204 14.4372i 0.0524113 0.629491i
\(527\) −1.54403 8.75661i −0.0672588 0.381444i
\(528\) 0 0
\(529\) 15.4351 + 12.9515i 0.671089 + 0.563111i
\(530\) −1.11403 4.08888i −0.0483905 0.177610i
\(531\) 0 0
\(532\) −6.33207 + 3.72706i −0.274530 + 0.161589i
\(533\) 9.34038 + 25.6625i 0.404577 + 1.11157i
\(534\) 0 0
\(535\) −0.194726 0.232065i −0.00841872 0.0100330i
\(536\) −28.3832 + 13.6731i −1.22597 + 0.590588i
\(537\) 0 0
\(538\) −4.04811 1.86702i −0.174527 0.0804928i
\(539\) 0.281617 0.0121301
\(540\) 0 0
\(541\) 8.41220 0.361669 0.180834 0.983514i \(-0.442120\pi\)
0.180834 + 0.983514i \(0.442120\pi\)
\(542\) 4.27836 + 1.97321i 0.183772 + 0.0847566i
\(543\) 0 0
\(544\) −13.9756 0.927588i −0.599198 0.0397700i
\(545\) −1.41262 1.68350i −0.0605101 0.0721132i
\(546\) 0 0
\(547\) 5.97901 + 16.4272i 0.255644 + 0.702376i 0.999424 + 0.0339508i \(0.0108090\pi\)
−0.743780 + 0.668425i \(0.766969\pi\)
\(548\) −15.5597 26.4351i −0.664679 1.12925i
\(549\) 0 0
\(550\) −0.0759708 0.278839i −0.00323941 0.0118897i
\(551\) −40.7203 34.1684i −1.73474 1.45562i
\(552\) 0 0
\(553\) −0.255237 1.44752i −0.0108538 0.0615549i
\(554\) −0.489955 + 5.88466i −0.0208162 + 0.250015i
\(555\) 0 0
\(556\) 16.7402 6.25261i 0.709943 0.265170i
\(557\) 0.688812 0.397686i 0.0291859 0.0168505i −0.485336 0.874328i \(-0.661303\pi\)
0.514522 + 0.857477i \(0.327969\pi\)
\(558\) 0 0
\(559\) 9.04493 + 5.22209i 0.382560 + 0.220871i
\(560\) 0.456212 + 0.369932i 0.0192785 + 0.0156325i
\(561\) 0 0
\(562\) 11.8365 + 25.1076i 0.499291 + 1.05910i
\(563\) 5.88781 + 2.14299i 0.248142 + 0.0903162i 0.463097 0.886308i \(-0.346738\pi\)
−0.214955 + 0.976624i \(0.568960\pi\)
\(564\) 0 0
\(565\) −0.759910 + 4.30967i −0.0319697 + 0.181309i
\(566\) 5.54768 21.0575i 0.233187 0.885111i
\(567\) 0 0
\(568\) 6.84184 + 6.67163i 0.287077 + 0.279935i
\(569\) −5.33693 0.941045i −0.223736 0.0394507i 0.0606563 0.998159i \(-0.480681\pi\)
−0.284392 + 0.958708i \(0.591792\pi\)
\(570\) 0 0
\(571\) 10.4263 28.6461i 0.436328 1.19880i −0.505535 0.862806i \(-0.668705\pi\)
0.941863 0.335996i \(-0.109073\pi\)
\(572\) −0.353544 + 0.0654048i −0.0147824 + 0.00273471i
\(573\) 0 0
\(574\) −4.32423 + 0.396621i −0.180490 + 0.0165547i
\(575\) −16.1215 + 27.9233i −0.672315 + 1.16448i
\(576\) 0 0
\(577\) −9.67484 16.7573i −0.402769 0.697616i 0.591290 0.806459i \(-0.298619\pi\)
−0.994059 + 0.108843i \(0.965286\pi\)
\(578\) 8.86966 + 12.5547i 0.368929 + 0.522205i
\(579\) 0 0
\(580\) −1.41975 + 4.00505i −0.0589520 + 0.166301i
\(581\) 2.75293 0.485415i 0.114211 0.0201384i
\(582\) 0 0
\(583\) −0.265149 + 0.315992i −0.0109813 + 0.0130871i
\(584\) −0.440143 + 1.72948i −0.0182132 + 0.0715662i
\(585\) 0 0
\(586\) −18.6999 18.5436i −0.772486 0.766027i
\(587\) 40.6493 14.7951i 1.67778 0.610660i 0.684773 0.728756i \(-0.259901\pi\)
0.993002 + 0.118096i \(0.0376791\pi\)
\(588\) 0 0
\(589\) 20.8169 17.4675i 0.857746 0.719734i
\(590\) 1.06157 1.52971i 0.0437041 0.0629770i
\(591\) 0 0
\(592\) 25.1021 9.61678i 1.03169 0.395247i
\(593\) 32.7916i 1.34659i 0.739375 + 0.673294i \(0.235121\pi\)
−0.739375 + 0.673294i \(0.764879\pi\)
\(594\) 0 0
\(595\) 0.363568i 0.0149048i
\(596\) 2.65666 + 2.19145i 0.108821 + 0.0897654i
\(597\) 0 0
\(598\) 32.9549 + 22.8697i 1.34763 + 0.935211i
\(599\) −28.7904 + 24.1580i −1.17634 + 0.987070i −0.176347 + 0.984328i \(0.556428\pi\)
−0.999996 + 0.00274159i \(0.999127\pi\)
\(600\) 0 0
\(601\) −9.38452 + 3.41569i −0.382802 + 0.139329i −0.526251 0.850329i \(-0.676403\pi\)
0.143449 + 0.989658i \(0.454181\pi\)
\(602\) −1.16935 + 1.17921i −0.0476591 + 0.0480609i
\(603\) 0 0
\(604\) −1.20616 + 0.0101279i −0.0490781 + 0.000412100i
\(605\) −2.13818 + 2.54819i −0.0869294 + 0.103598i
\(606\) 0 0
\(607\) −28.5897 + 5.04113i −1.16042 + 0.204613i −0.720520 0.693434i \(-0.756097\pi\)
−0.439899 + 0.898047i \(0.644986\pi\)
\(608\) −18.9008 38.4069i −0.766529 1.55761i
\(609\) 0 0
\(610\) −2.63196 + 1.85943i −0.106565 + 0.0752862i
\(611\) 15.5298 + 26.8983i 0.628266 + 1.08819i
\(612\) 0 0
\(613\) −10.6465 + 18.4402i −0.430007 + 0.744794i −0.996873 0.0790155i \(-0.974822\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(614\) 2.64796 + 28.8698i 0.106863 + 1.16509i
\(615\) 0 0
\(616\) 0.00426498 0.0570103i 0.000171841 0.00229701i
\(617\) 0.850396 2.33644i 0.0342357 0.0940617i −0.921397 0.388622i \(-0.872951\pi\)
0.955633 + 0.294561i \(0.0951733\pi\)
\(618\) 0 0
\(619\) −13.1393 2.31682i −0.528114 0.0931207i −0.0967674 0.995307i \(-0.530850\pi\)
−0.431347 + 0.902186i \(0.641961\pi\)
\(620\) −1.89031 1.07031i −0.0759168 0.0429847i
\(621\) 0 0
\(622\) −27.3899 7.21598i −1.09823 0.289334i
\(623\) −0.876632 + 4.97163i −0.0351215 + 0.199184i
\(624\) 0 0
\(625\) −22.2108 8.08407i −0.888432 0.323363i
\(626\) −22.5668 + 10.6386i −0.901950 + 0.425205i
\(627\) 0 0
\(628\) 20.4612 + 3.43097i 0.816491 + 0.136911i
\(629\) 14.4101 + 8.31969i 0.574570 + 0.331728i
\(630\) 0 0
\(631\) 33.1235 19.1238i 1.31862 0.761308i 0.335117 0.942176i \(-0.391224\pi\)
0.983507 + 0.180868i \(0.0578908\pi\)
\(632\) 8.52051 0.853710i 0.338928 0.0339588i
\(633\) 0 0
\(634\) 6.05554 + 0.504183i 0.240496 + 0.0200237i
\(635\) −0.467175 2.64948i −0.0185393 0.105141i
\(636\) 0 0
\(637\) −22.3749 18.7747i −0.886525 0.743882i
\(638\) 0.399055 0.108724i 0.0157987 0.00430443i
\(639\) 0 0
\(640\) −2.34745 + 2.48965i −0.0927913 + 0.0984120i
\(641\) 4.86140 + 13.3566i 0.192014 + 0.527553i 0.997918 0.0644923i \(-0.0205428\pi\)
−0.805905 + 0.592046i \(0.798321\pi\)
\(642\) 0 0
\(643\) −0.409458 0.487973i −0.0161474 0.0192438i 0.757910 0.652359i \(-0.226220\pi\)
−0.774058 + 0.633115i \(0.781776\pi\)
\(644\) −4.85140 + 4.14072i −0.191172 + 0.163167i
\(645\) 0 0
\(646\) 11.0971 24.0609i 0.436608 0.946665i
\(647\) −7.26586 −0.285650 −0.142825 0.989748i \(-0.545619\pi\)
−0.142825 + 0.989748i \(0.545619\pi\)
\(648\) 0 0
\(649\) −0.181235 −0.00711408
\(650\) −12.5535 + 27.2189i −0.492391 + 1.06761i
\(651\) 0 0
\(652\) 8.67761 7.40642i 0.339841 0.290058i
\(653\) −20.4733 24.3991i −0.801182 0.954811i 0.198498 0.980101i \(-0.436394\pi\)
−0.999680 + 0.0252900i \(0.991949\pi\)
\(654\) 0 0
\(655\) −2.01029 5.52322i −0.0785484 0.215810i
\(656\) −0.424819 25.2946i −0.0165864 0.987588i
\(657\) 0 0
\(658\) −4.76497 + 1.29824i −0.185758 + 0.0506105i
\(659\) 11.3095 + 9.48984i 0.440557 + 0.369672i 0.835918 0.548854i \(-0.184936\pi\)
−0.395360 + 0.918526i \(0.629380\pi\)
\(660\) 0 0
\(661\) 3.47979 + 19.7349i 0.135348 + 0.767598i 0.974617 + 0.223880i \(0.0718725\pi\)
−0.839268 + 0.543717i \(0.817016\pi\)
\(662\) 28.3692 + 2.36201i 1.10260 + 0.0918022i
\(663\) 0 0
\(664\) 1.62360 + 16.2045i 0.0630080 + 0.628856i
\(665\) −0.962265 + 0.555564i −0.0373150 + 0.0215438i
\(666\) 0 0
\(667\) −39.9619 23.0720i −1.54733 0.893352i
\(668\) −10.3566 1.73661i −0.400707 0.0671913i
\(669\) 0 0
\(670\) −4.30945 + 2.03160i −0.166489 + 0.0784876i
\(671\) 0.294748 + 0.107280i 0.0113786 + 0.00414148i
\(672\) 0 0
\(673\) 6.03662 34.2354i 0.232695 1.31968i −0.614720 0.788745i \(-0.710731\pi\)
0.847415 0.530932i \(-0.178158\pi\)
\(674\) 18.0636 + 4.75894i 0.695784 + 0.183307i
\(675\) 0 0
\(676\) 9.82490 + 5.56294i 0.377881 + 0.213959i
\(677\) −33.0938 5.83534i −1.27190 0.224270i −0.503363 0.864075i \(-0.667904\pi\)
−0.768537 + 0.639805i \(0.779015\pi\)
\(678\) 0 0
\(679\) 0.553144 1.51975i 0.0212277 0.0583227i
\(680\) −2.11220 0.158015i −0.0809992 0.00605960i
\(681\) 0 0
\(682\) 0.0193123 + 0.210556i 0.000739508 + 0.00806260i
\(683\) 12.3153 21.3308i 0.471233 0.816200i −0.528225 0.849104i \(-0.677142\pi\)
0.999459 + 0.0329044i \(0.0104757\pi\)
\(684\) 0 0
\(685\) −2.31937 4.01726i −0.0886185 0.153492i
\(686\) 7.71854 5.45301i 0.294695 0.208197i
\(687\) 0 0
\(688\) −6.34255 7.30600i −0.241807 0.278539i
\(689\) 42.1329 7.42916i 1.60514 0.283029i
\(690\) 0 0
\(691\) −9.45010 + 11.2622i −0.359499 + 0.428434i −0.915232 0.402926i \(-0.867993\pi\)
0.555733 + 0.831361i \(0.312438\pi\)
\(692\) −2.77440 + 0.0232961i −0.105467 + 0.000885586i
\(693\) 0 0
\(694\) −17.7788 + 17.9287i −0.674873 + 0.680564i
\(695\) 2.53938 0.924260i 0.0963243 0.0350592i
\(696\) 0 0
\(697\) 11.9959 10.0657i 0.454376 0.381267i
\(698\) 15.1883 + 10.5402i 0.574885 + 0.398952i
\(699\) 0 0
\(700\) −3.67665 3.03284i −0.138964 0.114631i
\(701\) 32.3443i 1.22163i −0.791775 0.610813i \(-0.790843\pi\)
0.791775 0.610813i \(-0.209157\pi\)
\(702\) 0 0
\(703\) 50.8528i 1.91795i
\(704\) 0.329356 + 0.0495560i 0.0124131 + 0.00186771i
\(705\) 0 0
\(706\) −17.3248 + 24.9648i −0.652029 + 0.939564i
\(707\) 6.21078 5.21147i 0.233581 0.195997i
\(708\) 0 0
\(709\) 36.8919 13.4276i 1.38551 0.504283i 0.461663 0.887056i \(-0.347253\pi\)
0.923842 + 0.382773i \(0.125031\pi\)
\(710\) 1.02615 + 1.01757i 0.0385106 + 0.0381886i
\(711\) 0 0
\(712\) −28.5024 7.25370i −1.06817 0.271844i
\(713\) 15.1631 18.0707i 0.567863 0.676752i
\(714\) 0 0
\(715\) −0.0535457 + 0.00944156i −0.00200250 + 0.000353094i
\(716\) 7.71383 21.7604i 0.288279 0.813223i
\(717\) 0 0
\(718\) −15.4504 21.8694i −0.576603 0.816160i
\(719\) −0.482259 0.835298i −0.0179852 0.0311514i 0.856893 0.515495i \(-0.172392\pi\)
−0.874878 + 0.484343i \(0.839059\pi\)
\(720\) 0 0
\(721\) 3.85790 6.68207i 0.143676 0.248853i
\(722\) 53.8821 4.94211i 2.00529 0.183926i
\(723\) 0 0
\(724\) −33.7198 + 6.23808i −1.25319 + 0.231836i
\(725\) 11.7932 32.4016i 0.437989 1.20337i
\(726\) 0 0
\(727\) −20.6400 3.63939i −0.765495 0.134977i −0.222751 0.974875i \(-0.571504\pi\)
−0.542744 + 0.839898i \(0.682615\pi\)
\(728\) −4.13960 + 4.24521i −0.153424 + 0.157338i
\(729\) 0 0
\(730\) −0.0687541 + 0.260972i −0.00254470 + 0.00965899i
\(731\) 1.03994 5.89782i 0.0384637 0.218139i
\(732\) 0 0
\(733\) −1.68677 0.613933i −0.0623022 0.0226761i 0.310681 0.950514i \(-0.399443\pi\)
−0.372983 + 0.927838i \(0.621665\pi\)
\(734\) −14.3645 30.4702i −0.530204 1.12467i
\(735\) 0 0
\(736\) −21.9476 29.9846i −0.808998 1.10525i
\(737\) 0.401606 + 0.231867i 0.0147934 + 0.00854095i
\(738\) 0 0
\(739\) −17.1448 + 9.89858i −0.630683 + 0.364125i −0.781017 0.624510i \(-0.785299\pi\)
0.150333 + 0.988635i \(0.451965\pi\)
\(740\) 3.80813 1.42237i 0.139990 0.0522874i
\(741\) 0 0
\(742\) −0.564442 + 6.77930i −0.0207213 + 0.248876i
\(743\) −6.72417 38.1347i −0.246686 1.39903i −0.816544 0.577283i \(-0.804113\pi\)
0.569858 0.821743i \(-0.306998\pi\)
\(744\) 0 0
\(745\) 0.398956 + 0.334764i 0.0146166 + 0.0122648i
\(746\) 8.05778 + 29.5748i 0.295016 + 1.08281i
\(747\) 0 0
\(748\) 0.104578 + 0.177673i 0.00382376 + 0.00649635i
\(749\) 0.166318 + 0.456954i 0.00607712 + 0.0166967i
\(750\) 0 0
\(751\) −14.8195 17.6612i −0.540770 0.644465i 0.424590 0.905386i \(-0.360418\pi\)
−0.965360 + 0.260921i \(0.915974\pi\)
\(752\) −5.47132 28.2470i −0.199518 1.03006i
\(753\) 0 0
\(754\) −38.9538 17.9658i −1.41861 0.654274i
\(755\) −0.182408 −0.00663851
\(756\) 0 0
\(757\) 33.3070 1.21056 0.605281 0.796012i \(-0.293061\pi\)
0.605281 + 0.796012i \(0.293061\pi\)
\(758\) −43.2500 19.9472i −1.57091 0.724515i
\(759\) 0 0
\(760\) −2.80940 5.83187i −0.101908 0.211544i
\(761\) −10.2052 12.1621i −0.369940 0.440877i 0.548673 0.836037i \(-0.315133\pi\)
−0.918612 + 0.395161i \(0.870689\pi\)
\(762\) 0 0
\(763\) 1.20654 + 3.31494i 0.0436797 + 0.120009i
\(764\) −28.5342 + 16.7952i −1.03233 + 0.607630i
\(765\) 0 0
\(766\) −0.558912 2.05140i −0.0201943 0.0741201i
\(767\) 14.3993 + 12.0825i 0.519930 + 0.436273i
\(768\) 0 0
\(769\) −3.82683 21.7030i −0.137999 0.782631i −0.972724 0.231964i \(-0.925485\pi\)
0.834725 0.550666i \(-0.185626\pi\)
\(770\) 0.000717337 0.00861565i 2.58510e−5 0.000310487i
\(771\) 0 0
\(772\) −6.16036 16.4932i −0.221716 0.593604i
\(773\) −18.9410 + 10.9356i −0.681261 + 0.393326i −0.800330 0.599560i \(-0.795342\pi\)
0.119069 + 0.992886i \(0.462009\pi\)
\(774\) 0 0
\(775\) 15.2657 + 8.81366i 0.548360 + 0.316596i
\(776\) 8.58879 + 3.87409i 0.308320 + 0.139072i
\(777\) 0 0
\(778\) −2.32877 4.93980i −0.0834903 0.177101i
\(779\) 44.9720 + 16.3685i 1.61129 + 0.586461i
\(780\) 0 0
\(781\) 0.0244257 0.138525i 0.000874022 0.00495682i
\(782\) 5.85981 22.2422i 0.209546 0.795380i
\(783\) 0 0
\(784\) 13.9202 + 23.2017i 0.497149 + 0.828633i
\(785\) 3.08977 + 0.544811i 0.110279 + 0.0194451i
\(786\) 0 0
\(787\) 1.15642 3.17723i 0.0412218 0.113256i −0.917374 0.398027i \(-0.869695\pi\)
0.958596 + 0.284771i \(0.0919174\pi\)
\(788\) 4.54689 + 24.5781i 0.161976 + 0.875559i
\(789\) 0 0
\(790\) 1.28955 0.118279i 0.0458802 0.00420816i
\(791\) 3.51231 6.08351i 0.124884 0.216305i
\(792\) 0 0
\(793\) −16.2661 28.1737i −0.577625 1.00048i
\(794\) 16.0009 + 22.6487i 0.567852 + 0.803774i
\(795\) 0 0
\(796\) −8.45708 2.99795i −0.299753 0.106260i
\(797\) −47.1233 + 8.30912i −1.66919 + 0.294324i −0.926776 0.375613i \(-0.877432\pi\)
−0.742418 + 0.669937i \(0.766321\pi\)
\(798\) 0 0
\(799\) 11.4479 13.6431i 0.404999 0.482659i
\(800\) 19.2177 20.0419i 0.679447 0.708588i
\(801\) 0 0
\(802\) 21.7835 + 21.6013i 0.769201 + 0.762769i
\(803\) 0.0246842 0.00898432i 0.000871087 0.000317050i
\(804\) 0 0
\(805\) −0.738884 + 0.619997i −0.0260422 + 0.0218520i
\(806\) 12.5029 18.0165i 0.440395 0.634603i
\(807\) 0 0
\(808\) 27.5774 + 38.3474i 0.970169 + 1.34906i
\(809\) 17.3637i 0.610473i 0.952277 + 0.305237i \(0.0987356\pi\)
−0.952277 + 0.305237i \(0.901264\pi\)
\(810\) 0 0
\(811\) 13.7618i 0.483242i 0.970371 + 0.241621i \(0.0776791\pi\)
−0.970371 + 0.241621i \(0.922321\pi\)
\(812\) 4.34038 5.26177i 0.152318 0.184652i
\(813\) 0 0
\(814\) −0.325069 0.225588i −0.0113937 0.00790684i
\(815\) 1.32163 1.10898i 0.0462946 0.0388458i
\(816\) 0 0
\(817\) 17.1990 6.25993i 0.601717 0.219007i
\(818\) 10.9513 11.0436i 0.382903 0.386131i
\(819\) 0 0
\(820\) −0.0321227 3.82557i −0.00112177 0.133595i
\(821\) 17.1467 20.4347i 0.598425 0.713175i −0.378777 0.925488i \(-0.623655\pi\)
0.977202 + 0.212313i \(0.0680997\pi\)
\(822\) 0 0
\(823\) −43.4440 + 7.66035i −1.51436 + 0.267023i −0.868214 0.496190i \(-0.834732\pi\)
−0.646148 + 0.763212i \(0.723621\pi\)
\(824\) 37.1437 + 25.3172i 1.29396 + 0.881965i
\(825\) 0 0
\(826\) −2.44110 + 1.72460i −0.0849368 + 0.0600064i
\(827\) 5.67028 + 9.82121i 0.197175 + 0.341517i 0.947611 0.319426i \(-0.103490\pi\)
−0.750436 + 0.660943i \(0.770157\pi\)
\(828\) 0 0
\(829\) 14.5329 25.1717i 0.504747 0.874248i −0.495238 0.868757i \(-0.664919\pi\)
0.999985 0.00549015i \(-0.00174758\pi\)
\(830\) 0.224944 + 2.45249i 0.00780793 + 0.0851273i
\(831\) 0 0
\(832\) −22.8640 25.8947i −0.792666 0.897736i
\(833\) −5.72827 + 15.7383i −0.198473 + 0.545299i
\(834\) 0 0
\(835\) −1.56391 0.275759i −0.0541212 0.00954303i
\(836\) −0.310446 + 0.548289i −0.0107370 + 0.0189630i
\(837\) 0 0
\(838\) 33.1185 + 8.72523i 1.14406 + 0.301408i
\(839\) 2.04353 11.5894i 0.0705503 0.400111i −0.928999 0.370083i \(-0.879329\pi\)
0.999549 0.0300279i \(-0.00955962\pi\)
\(840\) 0 0
\(841\) 19.1198 + 6.95904i 0.659304 + 0.239967i
\(842\) 46.8345 22.0791i 1.61402 0.760897i
\(843\) 0 0
\(844\) −7.42335 + 44.2704i −0.255522 + 1.52385i
\(845\) 1.47865 + 0.853700i 0.0508672 + 0.0293682i
\(846\) 0 0
\(847\) 4.62422 2.66980i 0.158890 0.0917353i
\(848\) −39.1399 6.22564i −1.34407 0.213789i
\(849\) 0 0
\(850\) 17.1283 + 1.42610i 0.587497 + 0.0489148i
\(851\) 7.66556 + 43.4735i 0.262772 + 1.49025i
\(852\) 0 0
\(853\) −33.4958 28.1063i −1.14687 0.962342i −0.147233 0.989102i \(-0.547037\pi\)
−0.999642 + 0.0267597i \(0.991481\pi\)
\(854\) 4.99090 1.35979i 0.170785 0.0465311i
\(855\) 0 0
\(856\) −2.72702 + 0.767643i −0.0932077 + 0.0262375i
\(857\) −1.39456 3.83152i −0.0476372 0.130882i 0.913593 0.406631i \(-0.133296\pi\)
−0.961230 + 0.275749i \(0.911074\pi\)
\(858\) 0 0
\(859\) 25.0149 + 29.8116i 0.853499 + 1.01716i 0.999611 + 0.0278919i \(0.00887943\pi\)
−0.146112 + 0.989268i \(0.546676\pi\)
\(860\) −0.949839 1.11286i −0.0323892 0.0379483i
\(861\) 0 0
\(862\) −22.8390 + 49.5202i −0.777901 + 1.68667i
\(863\) 48.5663 1.65322 0.826608 0.562778i \(-0.190268\pi\)
0.826608 + 0.562778i \(0.190268\pi\)
\(864\) 0 0
\(865\) −0.419573 −0.0142659
\(866\) −3.88689 + 8.42765i −0.132082 + 0.286383i
\(867\) 0 0
\(868\) 2.26374 + 2.65227i 0.0768362 + 0.0900238i
\(869\) −0.0810203 0.0965562i −0.00274843 0.00327545i
\(870\) 0 0
\(871\) −16.4501 45.1963i −0.557391 1.53142i
\(872\) −19.7830 + 5.56881i −0.669937 + 0.188584i
\(873\) 0 0
\(874\) 67.8233 18.4787i 2.29416 0.625052i
\(875\) −1.11455 0.935219i −0.0376787 0.0316162i
\(876\) 0 0
\(877\) −2.95518 16.7597i −0.0997895 0.565934i −0.993174 0.116641i \(-0.962787\pi\)
0.893385 0.449293i \(-0.148324\pi\)
\(878\) −2.57140 0.214094i −0.0867804 0.00722531i
\(879\) 0 0
\(880\) 0.0497421 + 0.00791203i 0.00167680 + 0.000266714i
\(881\) −2.59611 + 1.49886i −0.0874651 + 0.0504980i −0.543095 0.839672i \(-0.682748\pi\)
0.455630 + 0.890169i \(0.349414\pi\)
\(882\) 0 0
\(883\) −17.0858 9.86450i −0.574984 0.331967i 0.184154 0.982897i \(-0.441046\pi\)
−0.759137 + 0.650931i \(0.774379\pi\)
\(884\) 3.53613 21.0883i 0.118933 0.709277i
\(885\) 0 0
\(886\) −2.23187 + 1.05217i −0.0749812 + 0.0353483i
\(887\) −43.7296 15.9163i −1.46830 0.534416i −0.520658 0.853765i \(-0.674313\pi\)
−0.947637 + 0.319349i \(0.896536\pi\)
\(888\) 0 0
\(889\) −0.749912 + 4.25296i −0.0251512 + 0.142640i
\(890\) −4.30090 1.13309i −0.144166 0.0379813i
\(891\) 0 0
\(892\) −18.0497 + 31.8781i −0.604347 + 1.06736i
\(893\) 53.6030 + 9.45165i 1.79376 + 0.316287i
\(894\) 0 0
\(895\) 1.19411 3.28079i 0.0399147 0.109665i
\(896\) 4.90775 2.46661i 0.163957 0.0824035i
\(897\) 0 0
\(898\) −1.19346 13.0119i −0.0398263 0.434213i
\(899\) −12.6135 + 21.8472i −0.420683 + 0.728645i
\(900\) 0 0
\(901\) −12.2661 21.2454i −0.408642 0.707788i
\(902\) −0.304132 + 0.214864i −0.0101265 + 0.00715420i
\(903\) 0 0
\(904\) 33.8164 + 23.0493i 1.12472 + 0.766608i
\(905\) −5.10700 + 0.900503i −0.169763 + 0.0299337i
\(906\) 0 0
\(907\) 22.3588 26.6461i 0.742411 0.884771i −0.254190 0.967154i \(-0.581809\pi\)
0.996601 + 0.0823838i \(0.0262533\pi\)
\(908\) −0.329198 39.2051i −0.0109248 1.30107i
\(909\) 0 0
\(910\) −0.631379 + 0.636702i −0.0209300 + 0.0211065i
\(911\) 28.1223 10.2357i 0.931735 0.339124i 0.168838 0.985644i \(-0.445999\pi\)
0.762897 + 0.646520i \(0.223776\pi\)
\(912\) 0 0
\(913\) 0.183633 0.154086i 0.00607735 0.00509950i
\(914\) 32.0467 + 22.2394i 1.06001 + 0.735615i
\(915\) 0 0
\(916\) 7.21358 8.74490i 0.238344 0.288939i
\(917\) 9.43490i 0.311568i
\(918\) 0 0
\(919\) 52.7647i 1.74055i −0.492569 0.870273i \(-0.663942\pi\)
0.492569 0.870273i \(-0.336058\pi\)
\(920\) −3.28082 4.56211i −0.108166 0.150408i
\(921\) 0 0
\(922\) −16.7184 + 24.0909i −0.550590 + 0.793393i
\(923\) −11.1758 + 9.37762i −0.367856 + 0.308668i
\(924\) 0 0
\(925\) −30.9974 + 11.2821i −1.01919 + 0.370954i
\(926\) 9.62614 + 9.54565i 0.316334 + 0.313689i
\(927\) 0 0
\(928\) 28.6825 + 27.5029i 0.941550 + 0.902828i
\(929\) 35.7471 42.6017i 1.17282 1.39772i 0.272692 0.962101i \(-0.412086\pi\)
0.900132 0.435617i \(-0.143470\pi\)
\(930\) 0 0
\(931\) −50.4082 + 8.88832i −1.65206 + 0.291303i
\(932\) −14.1593 5.01933i −0.463803 0.164414i
\(933\) 0 0
\(934\) 14.2760 + 20.2071i 0.467125 + 0.661197i
\(935\) 0.0155887 + 0.0270003i 0.000509803 + 0.000883005i
\(936\) 0 0
\(937\) 9.12048 15.7971i 0.297953 0.516070i −0.677715 0.735325i \(-0.737029\pi\)
0.975667 + 0.219255i \(0.0703628\pi\)
\(938\) 7.61576 0.698523i 0.248663 0.0228076i
\(939\) 0 0
\(940\) −0.791503 4.27845i −0.0258160 0.139548i
\(941\) 5.96053 16.3764i 0.194308 0.533856i −0.803830 0.594859i \(-0.797208\pi\)
0.998138 + 0.0610030i \(0.0194299\pi\)
\(942\) 0 0
\(943\) 40.9134 + 7.21414i 1.33232 + 0.234925i
\(944\) −8.95832 14.9315i −0.291568 0.485978i
\(945\) 0 0
\(946\) −0.0362807 + 0.137712i −0.00117959 + 0.00447739i
\(947\) −7.47101 + 42.3702i −0.242775 + 1.37685i 0.582828 + 0.812596i \(0.301946\pi\)
−0.825603 + 0.564251i \(0.809165\pi\)
\(948\) 0 0
\(949\) −2.56016 0.931821i −0.0831063 0.0302482i
\(950\) 22.3991 + 47.5131i 0.726722 + 1.54153i
\(951\) 0 0
\(952\) 3.09929 + 1.39798i 0.100449 + 0.0453087i
\(953\) −17.5809 10.1503i −0.569502 0.328802i 0.187449 0.982274i \(-0.439978\pi\)
−0.756950 + 0.653472i \(0.773312\pi\)
\(954\) 0 0
\(955\) −4.33625 + 2.50353i −0.140318 + 0.0810124i
\(956\) 4.52886 + 12.1252i 0.146474 + 0.392157i
\(957\) 0 0
\(958\) −3.07394 + 36.9198i −0.0993143 + 1.19283i
\(959\) 1.29301 + 7.33301i 0.0417534 + 0.236795i
\(960\) 0 0
\(961\) 13.8681 + 11.6367i 0.447359 + 0.375379i
\(962\) 10.7878 + 39.5948i 0.347811 + 1.27659i
\(963\) 0 0
\(964\) 1.19604 0.703987i 0.0385217 0.0226739i
\(965\) −0.910624 2.50192i −0.0293140 0.0805396i
\(966\) 0 0
\(967\) 30.0283 + 35.7863i 0.965644 + 1.15081i 0.988523 + 0.151071i \(0.0482722\pi\)
−0.0228793 + 0.999738i \(0.507283\pi\)
\(968\) 13.5008 + 28.0254i 0.433931 + 0.900771i
\(969\) 0 0
\(970\) 1.29387 + 0.596743i 0.0415438 + 0.0191603i
\(971\) 29.3788 0.942809 0.471405 0.881917i \(-0.343747\pi\)
0.471405 + 0.881917i \(0.343747\pi\)
\(972\) 0 0
\(973\) −4.33784 −0.139065
\(974\) 9.13019 + 4.21090i 0.292550 + 0.134926i
\(975\) 0 0
\(976\) 5.73074 + 29.5863i 0.183436 + 0.947035i
\(977\) −12.0038 14.3055i −0.384035 0.457675i 0.539049 0.842275i \(-0.318784\pi\)
−0.923083 + 0.384600i \(0.874339\pi\)
\(978\) 0 0
\(979\) 0.148065 + 0.406804i 0.00473217 + 0.0130015i
\(980\) 2.07554 + 3.52623i 0.0663007 + 0.112641i
\(981\) 0 0
\(982\) −7.34331 26.9525i −0.234335 0.860089i
\(983\) −20.0449 16.8196i −0.639332 0.536463i 0.264481 0.964391i \(-0.414799\pi\)
−0.903813 + 0.427928i \(0.859244\pi\)
\(984\) 0 0
\(985\) 0.656370 + 3.72246i 0.0209137 + 0.118607i
\(986\) −2.04093 + 24.5129i −0.0649966 + 0.780648i
\(987\) 0 0
\(988\) 61.2184 22.8656i 1.94762 0.727452i
\(989\) 13.7596 7.94413i 0.437531 0.252609i
\(990\) 0 0
\(991\) 25.5875 + 14.7730i 0.812815 + 0.469279i 0.847932 0.530105i \(-0.177847\pi\)
−0.0351178 + 0.999383i \(0.511181\pi\)
\(992\) −16.3926 + 11.9987i −0.520465 + 0.380961i
\(993\) 0 0
\(994\) −0.989184 2.09827i −0.0313750 0.0665530i
\(995\) −1.27507 0.464087i −0.0404224 0.0147125i
\(996\) 0 0
\(997\) 6.87604 38.9959i 0.217766 1.23501i −0.658275 0.752778i \(-0.728714\pi\)
0.876041 0.482236i \(-0.160175\pi\)
\(998\) 14.2410 54.0548i 0.450790 1.71107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.c.755.10 96
3.2 odd 2 972.2.l.b.755.7 96
4.3 odd 2 inner 972.2.l.c.755.8 96
9.2 odd 6 324.2.l.a.143.16 96
9.4 even 3 972.2.l.d.107.12 96
9.5 odd 6 972.2.l.a.107.5 96
9.7 even 3 108.2.l.a.47.1 yes 96
12.11 even 2 972.2.l.b.755.9 96
27.4 even 9 972.2.l.a.863.14 96
27.5 odd 18 108.2.l.a.23.14 yes 96
27.13 even 9 972.2.l.b.215.9 96
27.14 odd 18 inner 972.2.l.c.215.8 96
27.22 even 9 324.2.l.a.179.3 96
27.23 odd 18 972.2.l.d.863.3 96
36.7 odd 6 108.2.l.a.47.14 yes 96
36.11 even 6 324.2.l.a.143.3 96
36.23 even 6 972.2.l.a.107.14 96
36.31 odd 6 972.2.l.d.107.3 96
108.23 even 18 972.2.l.d.863.12 96
108.31 odd 18 972.2.l.a.863.5 96
108.59 even 18 108.2.l.a.23.1 96
108.67 odd 18 972.2.l.b.215.7 96
108.95 even 18 inner 972.2.l.c.215.10 96
108.103 odd 18 324.2.l.a.179.16 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.1 96 108.59 even 18
108.2.l.a.23.14 yes 96 27.5 odd 18
108.2.l.a.47.1 yes 96 9.7 even 3
108.2.l.a.47.14 yes 96 36.7 odd 6
324.2.l.a.143.3 96 36.11 even 6
324.2.l.a.143.16 96 9.2 odd 6
324.2.l.a.179.3 96 27.22 even 9
324.2.l.a.179.16 96 108.103 odd 18
972.2.l.a.107.5 96 9.5 odd 6
972.2.l.a.107.14 96 36.23 even 6
972.2.l.a.863.5 96 108.31 odd 18
972.2.l.a.863.14 96 27.4 even 9
972.2.l.b.215.7 96 108.67 odd 18
972.2.l.b.215.9 96 27.13 even 9
972.2.l.b.755.7 96 3.2 odd 2
972.2.l.b.755.9 96 12.11 even 2
972.2.l.c.215.8 96 27.14 odd 18 inner
972.2.l.c.215.10 96 108.95 even 18 inner
972.2.l.c.755.8 96 4.3 odd 2 inner
972.2.l.c.755.10 96 1.1 even 1 trivial
972.2.l.d.107.3 96 36.31 odd 6
972.2.l.d.107.12 96 9.4 even 3
972.2.l.d.863.3 96 27.23 odd 18
972.2.l.d.863.12 96 108.23 even 18