Properties

Label 961.4.a.j.1.5
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 77 x^{12} + 54 x^{11} + 2250 x^{10} - 1046 x^{9} - 31002 x^{8} + 8912 x^{7} + \cdots - 79056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.60866\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60866 q^{2} +5.64879 q^{3} -5.41223 q^{4} +18.5767 q^{5} -9.08696 q^{6} +5.73537 q^{7} +21.5757 q^{8} +4.90882 q^{9} -29.8836 q^{10} -29.7657 q^{11} -30.5725 q^{12} -12.6657 q^{13} -9.22624 q^{14} +104.936 q^{15} +8.58999 q^{16} -106.259 q^{17} -7.89660 q^{18} +20.5651 q^{19} -100.542 q^{20} +32.3979 q^{21} +47.8828 q^{22} -157.885 q^{23} +121.876 q^{24} +220.095 q^{25} +20.3748 q^{26} -124.788 q^{27} -31.0411 q^{28} -239.395 q^{29} -168.806 q^{30} -186.424 q^{32} -168.140 q^{33} +170.934 q^{34} +106.545 q^{35} -26.5676 q^{36} -137.218 q^{37} -33.0823 q^{38} -71.5459 q^{39} +400.805 q^{40} -407.952 q^{41} -52.1171 q^{42} +87.0976 q^{43} +161.099 q^{44} +91.1899 q^{45} +253.983 q^{46} -374.775 q^{47} +48.5231 q^{48} -310.106 q^{49} -354.058 q^{50} -600.235 q^{51} +68.5496 q^{52} +192.225 q^{53} +200.742 q^{54} -552.950 q^{55} +123.744 q^{56} +116.168 q^{57} +385.104 q^{58} +513.548 q^{59} -567.938 q^{60} +261.365 q^{61} +28.1539 q^{63} +231.172 q^{64} -235.287 q^{65} +270.480 q^{66} +761.089 q^{67} +575.098 q^{68} -891.860 q^{69} -171.393 q^{70} -65.0388 q^{71} +105.911 q^{72} +687.167 q^{73} +220.736 q^{74} +1243.27 q^{75} -111.303 q^{76} -170.717 q^{77} +115.093 q^{78} +390.860 q^{79} +159.574 q^{80} -837.442 q^{81} +656.255 q^{82} -845.601 q^{83} -175.345 q^{84} -1973.95 q^{85} -140.110 q^{86} -1352.29 q^{87} -642.215 q^{88} +391.972 q^{89} -146.693 q^{90} -72.6425 q^{91} +854.510 q^{92} +602.883 q^{94} +382.033 q^{95} -1053.07 q^{96} +1655.15 q^{97} +498.853 q^{98} -146.115 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} + q^{3} + 43 q^{4} - 19 q^{6} + 5 q^{7} + 54 q^{8} + 107 q^{9} + 57 q^{10} - 79 q^{11} + 5 q^{12} - 47 q^{13} - 129 q^{14} - 228 q^{15} + 127 q^{16} - 143 q^{17} - 392 q^{18} + 47 q^{19}+ \cdots - 2002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60866 −0.568746 −0.284373 0.958714i \(-0.591785\pi\)
−0.284373 + 0.958714i \(0.591785\pi\)
\(3\) 5.64879 1.08711 0.543555 0.839374i \(-0.317078\pi\)
0.543555 + 0.839374i \(0.317078\pi\)
\(4\) −5.41223 −0.676528
\(5\) 18.5767 1.66155 0.830777 0.556605i \(-0.187896\pi\)
0.830777 + 0.556605i \(0.187896\pi\)
\(6\) −9.08696 −0.618289
\(7\) 5.73537 0.309681 0.154840 0.987939i \(-0.450514\pi\)
0.154840 + 0.987939i \(0.450514\pi\)
\(8\) 21.5757 0.953518
\(9\) 4.90882 0.181808
\(10\) −29.8836 −0.945002
\(11\) −29.7657 −0.815882 −0.407941 0.913008i \(-0.633753\pi\)
−0.407941 + 0.913008i \(0.633753\pi\)
\(12\) −30.5725 −0.735461
\(13\) −12.6657 −0.270218 −0.135109 0.990831i \(-0.543138\pi\)
−0.135109 + 0.990831i \(0.543138\pi\)
\(14\) −9.22624 −0.176130
\(15\) 104.936 1.80629
\(16\) 8.58999 0.134219
\(17\) −106.259 −1.51598 −0.757989 0.652267i \(-0.773818\pi\)
−0.757989 + 0.652267i \(0.773818\pi\)
\(18\) −7.89660 −0.103403
\(19\) 20.5651 0.248314 0.124157 0.992263i \(-0.460377\pi\)
0.124157 + 0.992263i \(0.460377\pi\)
\(20\) −100.542 −1.12409
\(21\) 32.3979 0.336657
\(22\) 47.8828 0.464030
\(23\) −157.885 −1.43136 −0.715681 0.698427i \(-0.753884\pi\)
−0.715681 + 0.698427i \(0.753884\pi\)
\(24\) 121.876 1.03658
\(25\) 220.095 1.76076
\(26\) 20.3748 0.153685
\(27\) −124.788 −0.889465
\(28\) −31.0411 −0.209508
\(29\) −239.395 −1.53291 −0.766457 0.642296i \(-0.777982\pi\)
−0.766457 + 0.642296i \(0.777982\pi\)
\(30\) −168.806 −1.02732
\(31\) 0 0
\(32\) −186.424 −1.02985
\(33\) −168.140 −0.886954
\(34\) 170.934 0.862206
\(35\) 106.545 0.514552
\(36\) −26.5676 −0.122998
\(37\) −137.218 −0.609689 −0.304844 0.952402i \(-0.598604\pi\)
−0.304844 + 0.952402i \(0.598604\pi\)
\(38\) −33.0823 −0.141228
\(39\) −71.5459 −0.293757
\(40\) 400.805 1.58432
\(41\) −407.952 −1.55394 −0.776968 0.629540i \(-0.783244\pi\)
−0.776968 + 0.629540i \(0.783244\pi\)
\(42\) −52.1171 −0.191472
\(43\) 87.0976 0.308890 0.154445 0.988001i \(-0.450641\pi\)
0.154445 + 0.988001i \(0.450641\pi\)
\(44\) 161.099 0.551967
\(45\) 91.1899 0.302084
\(46\) 253.983 0.814081
\(47\) −374.775 −1.16312 −0.581558 0.813505i \(-0.697557\pi\)
−0.581558 + 0.813505i \(0.697557\pi\)
\(48\) 48.5231 0.145910
\(49\) −310.106 −0.904098
\(50\) −354.058 −1.00143
\(51\) −600.235 −1.64803
\(52\) 68.5496 0.182810
\(53\) 192.225 0.498192 0.249096 0.968479i \(-0.419866\pi\)
0.249096 + 0.968479i \(0.419866\pi\)
\(54\) 200.742 0.505879
\(55\) −552.950 −1.35563
\(56\) 123.744 0.295287
\(57\) 116.168 0.269945
\(58\) 385.104 0.871838
\(59\) 513.548 1.13319 0.566596 0.823996i \(-0.308260\pi\)
0.566596 + 0.823996i \(0.308260\pi\)
\(60\) −567.938 −1.22201
\(61\) 261.365 0.548596 0.274298 0.961645i \(-0.411555\pi\)
0.274298 + 0.961645i \(0.411555\pi\)
\(62\) 0 0
\(63\) 28.1539 0.0563025
\(64\) 231.172 0.451507
\(65\) −235.287 −0.448982
\(66\) 270.480 0.504451
\(67\) 761.089 1.38779 0.693894 0.720077i \(-0.255893\pi\)
0.693894 + 0.720077i \(0.255893\pi\)
\(68\) 575.098 1.02560
\(69\) −891.860 −1.55605
\(70\) −171.393 −0.292649
\(71\) −65.0388 −0.108714 −0.0543569 0.998522i \(-0.517311\pi\)
−0.0543569 + 0.998522i \(0.517311\pi\)
\(72\) 105.911 0.173357
\(73\) 687.167 1.10174 0.550869 0.834592i \(-0.314297\pi\)
0.550869 + 0.834592i \(0.314297\pi\)
\(74\) 220.736 0.346758
\(75\) 1243.27 1.91414
\(76\) −111.303 −0.167992
\(77\) −170.717 −0.252663
\(78\) 115.093 0.167073
\(79\) 390.860 0.556648 0.278324 0.960487i \(-0.410221\pi\)
0.278324 + 0.960487i \(0.410221\pi\)
\(80\) 159.574 0.223012
\(81\) −837.442 −1.14875
\(82\) 656.255 0.883795
\(83\) −845.601 −1.11827 −0.559137 0.829075i \(-0.688867\pi\)
−0.559137 + 0.829075i \(0.688867\pi\)
\(84\) −175.345 −0.227758
\(85\) −1973.95 −2.51888
\(86\) −140.110 −0.175680
\(87\) −1352.29 −1.66645
\(88\) −642.215 −0.777959
\(89\) 391.972 0.466842 0.233421 0.972376i \(-0.425008\pi\)
0.233421 + 0.972376i \(0.425008\pi\)
\(90\) −146.693 −0.171809
\(91\) −72.6425 −0.0836813
\(92\) 854.510 0.968357
\(93\) 0 0
\(94\) 602.883 0.661518
\(95\) 382.033 0.412587
\(96\) −1053.07 −1.11957
\(97\) 1655.15 1.73252 0.866262 0.499590i \(-0.166516\pi\)
0.866262 + 0.499590i \(0.166516\pi\)
\(98\) 498.853 0.514202
\(99\) −146.115 −0.148334
\(100\) −1191.21 −1.19121
\(101\) −902.249 −0.888882 −0.444441 0.895808i \(-0.646598\pi\)
−0.444441 + 0.895808i \(0.646598\pi\)
\(102\) 965.572 0.937313
\(103\) 623.905 0.596847 0.298423 0.954434i \(-0.403539\pi\)
0.298423 + 0.954434i \(0.403539\pi\)
\(104\) −273.271 −0.257658
\(105\) 601.847 0.559374
\(106\) −309.225 −0.283345
\(107\) −207.076 −0.187092 −0.0935459 0.995615i \(-0.529820\pi\)
−0.0935459 + 0.995615i \(0.529820\pi\)
\(108\) 675.383 0.601748
\(109\) 616.385 0.541642 0.270821 0.962630i \(-0.412705\pi\)
0.270821 + 0.962630i \(0.412705\pi\)
\(110\) 889.506 0.771010
\(111\) −775.115 −0.662799
\(112\) 49.2668 0.0415650
\(113\) −1137.95 −0.947339 −0.473670 0.880703i \(-0.657071\pi\)
−0.473670 + 0.880703i \(0.657071\pi\)
\(114\) −186.875 −0.153530
\(115\) −2932.99 −2.37829
\(116\) 1295.66 1.03706
\(117\) −62.1736 −0.0491278
\(118\) −826.123 −0.644498
\(119\) −609.436 −0.469470
\(120\) 2264.07 1.72233
\(121\) −445.002 −0.334336
\(122\) −420.446 −0.312012
\(123\) −2304.44 −1.68930
\(124\) 0 0
\(125\) 1766.56 1.26405
\(126\) −45.2900 −0.0320218
\(127\) −1369.47 −0.956859 −0.478429 0.878126i \(-0.658794\pi\)
−0.478429 + 0.878126i \(0.658794\pi\)
\(128\) 1119.51 0.773062
\(129\) 491.996 0.335797
\(130\) 378.496 0.255356
\(131\) 2060.93 1.37454 0.687268 0.726403i \(-0.258810\pi\)
0.687268 + 0.726403i \(0.258810\pi\)
\(132\) 910.013 0.600049
\(133\) 117.949 0.0768982
\(134\) −1224.33 −0.789299
\(135\) −2318.16 −1.47789
\(136\) −2292.61 −1.44551
\(137\) 1657.62 1.03372 0.516861 0.856069i \(-0.327100\pi\)
0.516861 + 0.856069i \(0.327100\pi\)
\(138\) 1434.70 0.884996
\(139\) −1320.22 −0.805612 −0.402806 0.915285i \(-0.631965\pi\)
−0.402806 + 0.915285i \(0.631965\pi\)
\(140\) −576.643 −0.348109
\(141\) −2117.02 −1.26444
\(142\) 104.625 0.0618305
\(143\) 377.004 0.220466
\(144\) 42.1667 0.0244020
\(145\) −4447.18 −2.54702
\(146\) −1105.42 −0.626608
\(147\) −1751.72 −0.982854
\(148\) 742.654 0.412472
\(149\) −1505.59 −0.827806 −0.413903 0.910321i \(-0.635835\pi\)
−0.413903 + 0.910321i \(0.635835\pi\)
\(150\) −2000.00 −1.08866
\(151\) 614.323 0.331079 0.165539 0.986203i \(-0.447063\pi\)
0.165539 + 0.986203i \(0.447063\pi\)
\(152\) 443.707 0.236772
\(153\) −521.607 −0.275617
\(154\) 274.626 0.143701
\(155\) 0 0
\(156\) 387.222 0.198735
\(157\) −903.203 −0.459130 −0.229565 0.973293i \(-0.573730\pi\)
−0.229565 + 0.973293i \(0.573730\pi\)
\(158\) −628.759 −0.316591
\(159\) 1085.84 0.541590
\(160\) −3463.14 −1.71116
\(161\) −905.530 −0.443266
\(162\) 1347.16 0.653349
\(163\) 1804.72 0.867218 0.433609 0.901101i \(-0.357240\pi\)
0.433609 + 0.901101i \(0.357240\pi\)
\(164\) 2207.93 1.05128
\(165\) −3123.50 −1.47372
\(166\) 1360.28 0.636014
\(167\) 894.447 0.414457 0.207229 0.978293i \(-0.433556\pi\)
0.207229 + 0.978293i \(0.433556\pi\)
\(168\) 699.006 0.321009
\(169\) −2036.58 −0.926982
\(170\) 3175.40 1.43260
\(171\) 100.951 0.0451455
\(172\) −471.392 −0.208973
\(173\) 2236.39 0.982830 0.491415 0.870926i \(-0.336480\pi\)
0.491415 + 0.870926i \(0.336480\pi\)
\(174\) 2175.37 0.947784
\(175\) 1262.33 0.545274
\(176\) −255.687 −0.109507
\(177\) 2900.93 1.23190
\(178\) −630.548 −0.265515
\(179\) 2482.31 1.03652 0.518259 0.855224i \(-0.326580\pi\)
0.518259 + 0.855224i \(0.326580\pi\)
\(180\) −493.540 −0.204368
\(181\) −404.772 −0.166224 −0.0831118 0.996540i \(-0.526486\pi\)
−0.0831118 + 0.996540i \(0.526486\pi\)
\(182\) 116.857 0.0475934
\(183\) 1476.40 0.596384
\(184\) −3406.48 −1.36483
\(185\) −2549.06 −1.01303
\(186\) 0 0
\(187\) 3162.88 1.23686
\(188\) 2028.36 0.786881
\(189\) −715.708 −0.275450
\(190\) −614.560 −0.234657
\(191\) −426.809 −0.161690 −0.0808450 0.996727i \(-0.525762\pi\)
−0.0808450 + 0.996727i \(0.525762\pi\)
\(192\) 1305.84 0.490838
\(193\) 1246.77 0.464997 0.232499 0.972597i \(-0.425310\pi\)
0.232499 + 0.972597i \(0.425310\pi\)
\(194\) −2662.56 −0.985366
\(195\) −1329.09 −0.488092
\(196\) 1678.36 0.611648
\(197\) −2261.69 −0.817964 −0.408982 0.912542i \(-0.634116\pi\)
−0.408982 + 0.912542i \(0.634116\pi\)
\(198\) 235.048 0.0843643
\(199\) −1873.28 −0.667303 −0.333652 0.942696i \(-0.608281\pi\)
−0.333652 + 0.942696i \(0.608281\pi\)
\(200\) 4748.70 1.67892
\(201\) 4299.23 1.50868
\(202\) 1451.41 0.505548
\(203\) −1373.02 −0.474714
\(204\) 3248.61 1.11494
\(205\) −7578.42 −2.58195
\(206\) −1003.65 −0.339454
\(207\) −775.030 −0.260233
\(208\) −108.798 −0.0362683
\(209\) −612.137 −0.202595
\(210\) −968.166 −0.318142
\(211\) −2512.83 −0.819861 −0.409930 0.912117i \(-0.634447\pi\)
−0.409930 + 0.912117i \(0.634447\pi\)
\(212\) −1040.37 −0.337041
\(213\) −367.390 −0.118184
\(214\) 333.114 0.106408
\(215\) 1617.99 0.513237
\(216\) −2692.39 −0.848121
\(217\) 0 0
\(218\) −991.551 −0.308056
\(219\) 3881.66 1.19771
\(220\) 2992.69 0.917123
\(221\) 1345.85 0.409644
\(222\) 1246.89 0.376964
\(223\) −1232.15 −0.370005 −0.185002 0.982738i \(-0.559229\pi\)
−0.185002 + 0.982738i \(0.559229\pi\)
\(224\) −1069.21 −0.318926
\(225\) 1080.41 0.320121
\(226\) 1830.57 0.538795
\(227\) −5446.61 −1.59253 −0.796265 0.604949i \(-0.793194\pi\)
−0.796265 + 0.604949i \(0.793194\pi\)
\(228\) −628.728 −0.182625
\(229\) −3404.36 −0.982387 −0.491193 0.871051i \(-0.663439\pi\)
−0.491193 + 0.871051i \(0.663439\pi\)
\(230\) 4718.17 1.35264
\(231\) −964.347 −0.274673
\(232\) −5165.10 −1.46166
\(233\) −947.988 −0.266544 −0.133272 0.991079i \(-0.542548\pi\)
−0.133272 + 0.991079i \(0.542548\pi\)
\(234\) 100.016 0.0279412
\(235\) −6962.09 −1.93258
\(236\) −2779.44 −0.766636
\(237\) 2207.89 0.605138
\(238\) 980.372 0.267009
\(239\) 605.728 0.163938 0.0819692 0.996635i \(-0.473879\pi\)
0.0819692 + 0.996635i \(0.473879\pi\)
\(240\) 901.400 0.242438
\(241\) −4099.54 −1.09575 −0.547873 0.836562i \(-0.684562\pi\)
−0.547873 + 0.836562i \(0.684562\pi\)
\(242\) 715.855 0.190152
\(243\) −1361.24 −0.359357
\(244\) −1414.57 −0.371141
\(245\) −5760.75 −1.50221
\(246\) 3707.04 0.960782
\(247\) −260.472 −0.0670989
\(248\) 0 0
\(249\) −4776.62 −1.21569
\(250\) −2841.79 −0.718921
\(251\) −3453.13 −0.868364 −0.434182 0.900825i \(-0.642963\pi\)
−0.434182 + 0.900825i \(0.642963\pi\)
\(252\) −152.375 −0.0380902
\(253\) 4699.57 1.16782
\(254\) 2203.01 0.544209
\(255\) −11150.4 −2.73830
\(256\) −3650.28 −0.891183
\(257\) −2072.75 −0.503091 −0.251546 0.967845i \(-0.580939\pi\)
−0.251546 + 0.967845i \(0.580939\pi\)
\(258\) −791.453 −0.190983
\(259\) −786.996 −0.188809
\(260\) 1273.43 0.303749
\(261\) −1175.15 −0.278696
\(262\) −3315.33 −0.781762
\(263\) −4200.02 −0.984732 −0.492366 0.870388i \(-0.663868\pi\)
−0.492366 + 0.870388i \(0.663868\pi\)
\(264\) −3627.74 −0.845727
\(265\) 3570.92 0.827773
\(266\) −189.739 −0.0437355
\(267\) 2214.17 0.507509
\(268\) −4119.19 −0.938878
\(269\) 7976.66 1.80798 0.903988 0.427558i \(-0.140626\pi\)
0.903988 + 0.427558i \(0.140626\pi\)
\(270\) 3729.13 0.840546
\(271\) 2021.02 0.453020 0.226510 0.974009i \(-0.427268\pi\)
0.226510 + 0.974009i \(0.427268\pi\)
\(272\) −912.765 −0.203473
\(273\) −410.342 −0.0909708
\(274\) −2666.54 −0.587925
\(275\) −6551.29 −1.43657
\(276\) 4826.95 1.05271
\(277\) −448.555 −0.0972962 −0.0486481 0.998816i \(-0.515491\pi\)
−0.0486481 + 0.998816i \(0.515491\pi\)
\(278\) 2123.79 0.458188
\(279\) 0 0
\(280\) 2298.77 0.490634
\(281\) 6624.54 1.40636 0.703179 0.711013i \(-0.251763\pi\)
0.703179 + 0.711013i \(0.251763\pi\)
\(282\) 3405.56 0.719143
\(283\) 3657.77 0.768311 0.384156 0.923268i \(-0.374493\pi\)
0.384156 + 0.923268i \(0.374493\pi\)
\(284\) 352.004 0.0735480
\(285\) 2158.03 0.448528
\(286\) −606.469 −0.125389
\(287\) −2339.76 −0.481225
\(288\) −915.120 −0.187236
\(289\) 6378.00 1.29819
\(290\) 7153.98 1.44861
\(291\) 9349.58 1.88344
\(292\) −3719.10 −0.745356
\(293\) −2188.60 −0.436381 −0.218190 0.975906i \(-0.570015\pi\)
−0.218190 + 0.975906i \(0.570015\pi\)
\(294\) 2817.92 0.558994
\(295\) 9540.06 1.88286
\(296\) −2960.57 −0.581349
\(297\) 3714.42 0.725698
\(298\) 2421.98 0.470811
\(299\) 1999.73 0.386780
\(300\) −6728.87 −1.29497
\(301\) 499.537 0.0956573
\(302\) −988.235 −0.188300
\(303\) −5096.61 −0.966313
\(304\) 176.654 0.0333284
\(305\) 4855.31 0.911522
\(306\) 839.086 0.156756
\(307\) −7153.62 −1.32990 −0.664949 0.746889i \(-0.731547\pi\)
−0.664949 + 0.746889i \(0.731547\pi\)
\(308\) 923.962 0.170934
\(309\) 3524.31 0.648838
\(310\) 0 0
\(311\) −8173.52 −1.49028 −0.745141 0.666906i \(-0.767618\pi\)
−0.745141 + 0.666906i \(0.767618\pi\)
\(312\) −1543.65 −0.280102
\(313\) −681.663 −0.123099 −0.0615493 0.998104i \(-0.519604\pi\)
−0.0615493 + 0.998104i \(0.519604\pi\)
\(314\) 1452.94 0.261128
\(315\) 523.008 0.0935497
\(316\) −2115.42 −0.376588
\(317\) 412.811 0.0731413 0.0365707 0.999331i \(-0.488357\pi\)
0.0365707 + 0.999331i \(0.488357\pi\)
\(318\) −1746.74 −0.308027
\(319\) 7125.76 1.25068
\(320\) 4294.41 0.750203
\(321\) −1169.73 −0.203389
\(322\) 1456.69 0.252105
\(323\) −2185.23 −0.376439
\(324\) 4532.42 0.777164
\(325\) −2787.66 −0.475789
\(326\) −2903.17 −0.493227
\(327\) 3481.83 0.588824
\(328\) −8801.83 −1.48171
\(329\) −2149.47 −0.360195
\(330\) 5024.63 0.838173
\(331\) 2885.87 0.479219 0.239610 0.970869i \(-0.422981\pi\)
0.239610 + 0.970869i \(0.422981\pi\)
\(332\) 4576.58 0.756544
\(333\) −673.578 −0.110846
\(334\) −1438.86 −0.235721
\(335\) 14138.6 2.30589
\(336\) 278.298 0.0451857
\(337\) 4259.18 0.688464 0.344232 0.938885i \(-0.388139\pi\)
0.344232 + 0.938885i \(0.388139\pi\)
\(338\) 3276.16 0.527217
\(339\) −6428.04 −1.02986
\(340\) 10683.5 1.70409
\(341\) 0 0
\(342\) −162.395 −0.0256763
\(343\) −3745.80 −0.589663
\(344\) 1879.19 0.294532
\(345\) −16567.8 −2.58546
\(346\) −3597.58 −0.558980
\(347\) −8297.48 −1.28367 −0.641833 0.766845i \(-0.721826\pi\)
−0.641833 + 0.766845i \(0.721826\pi\)
\(348\) 7318.90 1.12740
\(349\) 12620.9 1.93576 0.967880 0.251414i \(-0.0808956\pi\)
0.967880 + 0.251414i \(0.0808956\pi\)
\(350\) −2030.65 −0.310123
\(351\) 1580.53 0.240349
\(352\) 5549.03 0.840240
\(353\) −9739.76 −1.46854 −0.734271 0.678857i \(-0.762476\pi\)
−0.734271 + 0.678857i \(0.762476\pi\)
\(354\) −4666.59 −0.700640
\(355\) −1208.21 −0.180634
\(356\) −2121.44 −0.315832
\(357\) −3442.57 −0.510365
\(358\) −3993.19 −0.589515
\(359\) 2321.86 0.341345 0.170673 0.985328i \(-0.445406\pi\)
0.170673 + 0.985328i \(0.445406\pi\)
\(360\) 1967.48 0.288043
\(361\) −6436.07 −0.938340
\(362\) 651.139 0.0945389
\(363\) −2513.72 −0.363460
\(364\) 393.158 0.0566128
\(365\) 12765.3 1.83060
\(366\) −2375.01 −0.339191
\(367\) 8909.60 1.26724 0.633620 0.773644i \(-0.281568\pi\)
0.633620 + 0.773644i \(0.281568\pi\)
\(368\) −1356.23 −0.192115
\(369\) −2002.56 −0.282518
\(370\) 4100.56 0.576157
\(371\) 1102.48 0.154281
\(372\) 0 0
\(373\) 11560.2 1.60473 0.802363 0.596837i \(-0.203576\pi\)
0.802363 + 0.596837i \(0.203576\pi\)
\(374\) −5087.99 −0.703459
\(375\) 9978.92 1.37416
\(376\) −8086.01 −1.10905
\(377\) 3032.10 0.414221
\(378\) 1151.33 0.156661
\(379\) 6038.09 0.818353 0.409177 0.912455i \(-0.365816\pi\)
0.409177 + 0.912455i \(0.365816\pi\)
\(380\) −2067.65 −0.279127
\(381\) −7735.86 −1.04021
\(382\) 686.589 0.0919605
\(383\) −7950.97 −1.06077 −0.530386 0.847756i \(-0.677953\pi\)
−0.530386 + 0.847756i \(0.677953\pi\)
\(384\) 6323.90 0.840403
\(385\) −3171.37 −0.419814
\(386\) −2005.62 −0.264465
\(387\) 427.547 0.0561587
\(388\) −8958.03 −1.17210
\(389\) 725.844 0.0946061 0.0473030 0.998881i \(-0.484937\pi\)
0.0473030 + 0.998881i \(0.484937\pi\)
\(390\) 2138.05 0.277601
\(391\) 16776.7 2.16991
\(392\) −6690.73 −0.862074
\(393\) 11641.8 1.49427
\(394\) 3638.29 0.465214
\(395\) 7260.91 0.924901
\(396\) 790.805 0.100352
\(397\) 1393.81 0.176205 0.0881027 0.996111i \(-0.471920\pi\)
0.0881027 + 0.996111i \(0.471920\pi\)
\(398\) 3013.47 0.379526
\(399\) 666.268 0.0835968
\(400\) 1890.62 0.236327
\(401\) 2022.70 0.251892 0.125946 0.992037i \(-0.459803\pi\)
0.125946 + 0.992037i \(0.459803\pi\)
\(402\) −6915.99 −0.858055
\(403\) 0 0
\(404\) 4883.17 0.601354
\(405\) −15556.9 −1.90872
\(406\) 2208.71 0.269992
\(407\) 4084.39 0.497434
\(408\) −12950.5 −1.57143
\(409\) 10828.1 1.30909 0.654544 0.756024i \(-0.272861\pi\)
0.654544 + 0.756024i \(0.272861\pi\)
\(410\) 12191.1 1.46847
\(411\) 9363.54 1.12377
\(412\) −3376.72 −0.403784
\(413\) 2945.39 0.350928
\(414\) 1246.76 0.148007
\(415\) −15708.5 −1.85807
\(416\) 2361.19 0.278285
\(417\) −7457.67 −0.875788
\(418\) 984.717 0.115225
\(419\) 9395.30 1.09544 0.547721 0.836661i \(-0.315495\pi\)
0.547721 + 0.836661i \(0.315495\pi\)
\(420\) −3257.33 −0.378432
\(421\) 5761.53 0.666983 0.333492 0.942753i \(-0.391773\pi\)
0.333492 + 0.942753i \(0.391773\pi\)
\(422\) 4042.28 0.466292
\(423\) −1839.70 −0.211464
\(424\) 4147.39 0.475035
\(425\) −23387.1 −2.66928
\(426\) 591.005 0.0672166
\(427\) 1499.03 0.169890
\(428\) 1120.74 0.126573
\(429\) 2129.61 0.239671
\(430\) −2602.79 −0.291901
\(431\) 2805.92 0.313588 0.156794 0.987631i \(-0.449884\pi\)
0.156794 + 0.987631i \(0.449884\pi\)
\(432\) −1071.93 −0.119383
\(433\) 482.115 0.0535080 0.0267540 0.999642i \(-0.491483\pi\)
0.0267540 + 0.999642i \(0.491483\pi\)
\(434\) 0 0
\(435\) −25121.2 −2.76889
\(436\) −3336.01 −0.366436
\(437\) −3246.93 −0.355427
\(438\) −6244.26 −0.681192
\(439\) −10402.9 −1.13099 −0.565493 0.824753i \(-0.691314\pi\)
−0.565493 + 0.824753i \(0.691314\pi\)
\(440\) −11930.3 −1.29262
\(441\) −1522.25 −0.164372
\(442\) −2165.00 −0.232984
\(443\) −12269.5 −1.31590 −0.657949 0.753063i \(-0.728576\pi\)
−0.657949 + 0.753063i \(0.728576\pi\)
\(444\) 4195.10 0.448402
\(445\) 7281.56 0.775684
\(446\) 1982.11 0.210439
\(447\) −8504.79 −0.899916
\(448\) 1325.85 0.139823
\(449\) 13903.3 1.46133 0.730665 0.682736i \(-0.239210\pi\)
0.730665 + 0.682736i \(0.239210\pi\)
\(450\) −1738.00 −0.182067
\(451\) 12143.0 1.26783
\(452\) 6158.84 0.640902
\(453\) 3470.18 0.359919
\(454\) 8761.72 0.905744
\(455\) −1349.46 −0.139041
\(456\) 2506.41 0.257397
\(457\) −833.763 −0.0853431 −0.0426715 0.999089i \(-0.513587\pi\)
−0.0426715 + 0.999089i \(0.513587\pi\)
\(458\) 5476.45 0.558728
\(459\) 13259.9 1.34841
\(460\) 15874.0 1.60898
\(461\) −12564.6 −1.26940 −0.634700 0.772759i \(-0.718876\pi\)
−0.634700 + 0.772759i \(0.718876\pi\)
\(462\) 1551.30 0.156219
\(463\) 15637.2 1.56960 0.784798 0.619751i \(-0.212766\pi\)
0.784798 + 0.619751i \(0.212766\pi\)
\(464\) −2056.40 −0.205746
\(465\) 0 0
\(466\) 1524.99 0.151596
\(467\) −5700.71 −0.564877 −0.282438 0.959285i \(-0.591143\pi\)
−0.282438 + 0.959285i \(0.591143\pi\)
\(468\) 336.498 0.0332364
\(469\) 4365.13 0.429772
\(470\) 11199.6 1.09915
\(471\) −5102.00 −0.499125
\(472\) 11080.1 1.08052
\(473\) −2592.52 −0.252018
\(474\) −3551.73 −0.344169
\(475\) 4526.29 0.437222
\(476\) 3298.40 0.317609
\(477\) 943.600 0.0905754
\(478\) −974.408 −0.0932393
\(479\) −4950.41 −0.472213 −0.236107 0.971727i \(-0.575871\pi\)
−0.236107 + 0.971727i \(0.575871\pi\)
\(480\) −19562.6 −1.86022
\(481\) 1737.96 0.164749
\(482\) 6594.75 0.623201
\(483\) −5115.15 −0.481878
\(484\) 2408.45 0.226188
\(485\) 30747.2 2.87868
\(486\) 2189.77 0.204383
\(487\) 1748.10 0.162657 0.0813286 0.996687i \(-0.474084\pi\)
0.0813286 + 0.996687i \(0.474084\pi\)
\(488\) 5639.12 0.523096
\(489\) 10194.5 0.942762
\(490\) 9267.06 0.854374
\(491\) −2786.18 −0.256087 −0.128043 0.991769i \(-0.540870\pi\)
−0.128043 + 0.991769i \(0.540870\pi\)
\(492\) 12472.1 1.14286
\(493\) 25437.9 2.32386
\(494\) 419.010 0.0381622
\(495\) −2714.33 −0.246465
\(496\) 0 0
\(497\) −373.022 −0.0336666
\(498\) 7683.94 0.691417
\(499\) −10742.9 −0.963763 −0.481881 0.876237i \(-0.660046\pi\)
−0.481881 + 0.876237i \(0.660046\pi\)
\(500\) −9561.02 −0.855163
\(501\) 5052.54 0.450561
\(502\) 5554.89 0.493879
\(503\) −6736.98 −0.597191 −0.298595 0.954380i \(-0.596518\pi\)
−0.298595 + 0.954380i \(0.596518\pi\)
\(504\) 607.439 0.0536855
\(505\) −16760.8 −1.47693
\(506\) −7559.98 −0.664194
\(507\) −11504.2 −1.00773
\(508\) 7411.90 0.647342
\(509\) −2563.94 −0.223271 −0.111635 0.993749i \(-0.535609\pi\)
−0.111635 + 0.993749i \(0.535609\pi\)
\(510\) 17937.2 1.55740
\(511\) 3941.16 0.341187
\(512\) −3084.06 −0.266206
\(513\) −2566.29 −0.220867
\(514\) 3334.34 0.286131
\(515\) 11590.1 0.991693
\(516\) −2662.79 −0.227176
\(517\) 11155.4 0.948966
\(518\) 1266.01 0.107384
\(519\) 12632.9 1.06844
\(520\) −5076.48 −0.428112
\(521\) −8379.49 −0.704630 −0.352315 0.935882i \(-0.614605\pi\)
−0.352315 + 0.935882i \(0.614605\pi\)
\(522\) 1890.41 0.158507
\(523\) −4054.85 −0.339017 −0.169509 0.985529i \(-0.554218\pi\)
−0.169509 + 0.985529i \(0.554218\pi\)
\(524\) −11154.2 −0.929913
\(525\) 7130.62 0.592773
\(526\) 6756.39 0.560062
\(527\) 0 0
\(528\) −1444.32 −0.119046
\(529\) 12760.7 1.04880
\(530\) −5744.38 −0.470793
\(531\) 2520.92 0.206023
\(532\) −638.365 −0.0520238
\(533\) 5167.00 0.419902
\(534\) −3561.83 −0.288644
\(535\) −3846.80 −0.310863
\(536\) 16421.0 1.32328
\(537\) 14022.1 1.12681
\(538\) −12831.7 −1.02828
\(539\) 9230.51 0.737637
\(540\) 12546.4 0.999837
\(541\) −679.415 −0.0539932 −0.0269966 0.999636i \(-0.508594\pi\)
−0.0269966 + 0.999636i \(0.508594\pi\)
\(542\) −3251.13 −0.257653
\(543\) −2286.47 −0.180703
\(544\) 19809.2 1.56124
\(545\) 11450.4 0.899967
\(546\) 660.099 0.0517393
\(547\) −12582.2 −0.983499 −0.491749 0.870737i \(-0.663642\pi\)
−0.491749 + 0.870737i \(0.663642\pi\)
\(548\) −8971.41 −0.699342
\(549\) 1282.99 0.0997392
\(550\) 10538.8 0.817045
\(551\) −4923.19 −0.380644
\(552\) −19242.5 −1.48372
\(553\) 2241.73 0.172383
\(554\) 721.571 0.0553368
\(555\) −14399.1 −1.10128
\(556\) 7145.36 0.545019
\(557\) 19595.0 1.49060 0.745301 0.666729i \(-0.232306\pi\)
0.745301 + 0.666729i \(0.232306\pi\)
\(558\) 0 0
\(559\) −1103.15 −0.0834676
\(560\) 915.217 0.0690624
\(561\) 17866.4 1.34460
\(562\) −10656.6 −0.799861
\(563\) 12653.0 0.947178 0.473589 0.880746i \(-0.342958\pi\)
0.473589 + 0.880746i \(0.342958\pi\)
\(564\) 11457.8 0.855427
\(565\) −21139.4 −1.57406
\(566\) −5884.10 −0.436974
\(567\) −4803.04 −0.355747
\(568\) −1403.25 −0.103661
\(569\) 14145.5 1.04220 0.521098 0.853497i \(-0.325523\pi\)
0.521098 + 0.853497i \(0.325523\pi\)
\(570\) −3471.52 −0.255098
\(571\) 13098.0 0.959956 0.479978 0.877281i \(-0.340645\pi\)
0.479978 + 0.877281i \(0.340645\pi\)
\(572\) −2040.43 −0.149151
\(573\) −2410.95 −0.175775
\(574\) 3763.86 0.273695
\(575\) −34749.8 −2.52029
\(576\) 1134.78 0.0820876
\(577\) −19434.7 −1.40221 −0.701106 0.713057i \(-0.747310\pi\)
−0.701106 + 0.713057i \(0.747310\pi\)
\(578\) −10260.0 −0.738340
\(579\) 7042.74 0.505503
\(580\) 24069.1 1.72313
\(581\) −4849.83 −0.346308
\(582\) −15040.3 −1.07120
\(583\) −5721.73 −0.406466
\(584\) 14826.1 1.05053
\(585\) −1154.98 −0.0816285
\(586\) 3520.71 0.248190
\(587\) 19515.3 1.37220 0.686099 0.727508i \(-0.259321\pi\)
0.686099 + 0.727508i \(0.259321\pi\)
\(588\) 9480.71 0.664928
\(589\) 0 0
\(590\) −15346.7 −1.07087
\(591\) −12775.8 −0.889217
\(592\) −1178.70 −0.0818316
\(593\) −8820.42 −0.610812 −0.305406 0.952222i \(-0.598792\pi\)
−0.305406 + 0.952222i \(0.598792\pi\)
\(594\) −5975.22 −0.412738
\(595\) −11321.3 −0.780049
\(596\) 8148.62 0.560034
\(597\) −10581.8 −0.725432
\(598\) −3216.87 −0.219979
\(599\) 19530.0 1.33218 0.666088 0.745873i \(-0.267968\pi\)
0.666088 + 0.745873i \(0.267968\pi\)
\(600\) 26824.4 1.82517
\(601\) −2810.51 −0.190754 −0.0953769 0.995441i \(-0.530406\pi\)
−0.0953769 + 0.995441i \(0.530406\pi\)
\(602\) −803.584 −0.0544047
\(603\) 3736.05 0.252311
\(604\) −3324.86 −0.223984
\(605\) −8266.68 −0.555518
\(606\) 8198.70 0.549586
\(607\) −12087.0 −0.808228 −0.404114 0.914709i \(-0.632420\pi\)
−0.404114 + 0.914709i \(0.632420\pi\)
\(608\) −3833.83 −0.255727
\(609\) −7755.89 −0.516067
\(610\) −7810.52 −0.518424
\(611\) 4746.78 0.314295
\(612\) 2823.05 0.186463
\(613\) 7328.04 0.482833 0.241417 0.970422i \(-0.422388\pi\)
0.241417 + 0.970422i \(0.422388\pi\)
\(614\) 11507.7 0.756374
\(615\) −42808.9 −2.80686
\(616\) −3683.34 −0.240919
\(617\) −10474.7 −0.683462 −0.341731 0.939798i \(-0.611013\pi\)
−0.341731 + 0.939798i \(0.611013\pi\)
\(618\) −5669.40 −0.369024
\(619\) −12512.8 −0.812488 −0.406244 0.913765i \(-0.633162\pi\)
−0.406244 + 0.913765i \(0.633162\pi\)
\(620\) 0 0
\(621\) 19702.2 1.27315
\(622\) 13148.4 0.847592
\(623\) 2248.11 0.144572
\(624\) −614.578 −0.0394276
\(625\) 5305.01 0.339520
\(626\) 1096.56 0.0700118
\(627\) −3457.83 −0.220243
\(628\) 4888.34 0.310615
\(629\) 14580.7 0.924275
\(630\) −841.340 −0.0532060
\(631\) −23147.4 −1.46035 −0.730176 0.683260i \(-0.760562\pi\)
−0.730176 + 0.683260i \(0.760562\pi\)
\(632\) 8433.06 0.530774
\(633\) −14194.5 −0.891279
\(634\) −664.072 −0.0415988
\(635\) −25440.3 −1.58987
\(636\) −5876.81 −0.366401
\(637\) 3927.70 0.244303
\(638\) −11462.9 −0.711317
\(639\) −319.264 −0.0197651
\(640\) 20796.9 1.28448
\(641\) 5539.74 0.341352 0.170676 0.985327i \(-0.445405\pi\)
0.170676 + 0.985327i \(0.445405\pi\)
\(642\) 1881.69 0.115677
\(643\) −16867.6 −1.03451 −0.517257 0.855830i \(-0.673047\pi\)
−0.517257 + 0.855830i \(0.673047\pi\)
\(644\) 4900.93 0.299882
\(645\) 9139.68 0.557945
\(646\) 3515.29 0.214098
\(647\) −7747.78 −0.470783 −0.235392 0.971901i \(-0.575637\pi\)
−0.235392 + 0.971901i \(0.575637\pi\)
\(648\) −18068.4 −1.09536
\(649\) −15286.1 −0.924551
\(650\) 4484.39 0.270603
\(651\) 0 0
\(652\) −9767.55 −0.586698
\(653\) 18202.3 1.09083 0.545413 0.838168i \(-0.316373\pi\)
0.545413 + 0.838168i \(0.316373\pi\)
\(654\) −5601.06 −0.334891
\(655\) 38285.4 2.28387
\(656\) −3504.31 −0.208567
\(657\) 3373.18 0.200305
\(658\) 3457.76 0.204859
\(659\) −9616.62 −0.568453 −0.284226 0.958757i \(-0.591737\pi\)
−0.284226 + 0.958757i \(0.591737\pi\)
\(660\) 16905.1 0.997014
\(661\) −27579.0 −1.62284 −0.811422 0.584461i \(-0.801306\pi\)
−0.811422 + 0.584461i \(0.801306\pi\)
\(662\) −4642.36 −0.272554
\(663\) 7602.40 0.445329
\(664\) −18244.4 −1.06629
\(665\) 2191.10 0.127770
\(666\) 1083.56 0.0630434
\(667\) 37796.9 2.19415
\(668\) −4840.95 −0.280392
\(669\) −6960.17 −0.402236
\(670\) −22744.1 −1.31146
\(671\) −7779.72 −0.447590
\(672\) −6039.73 −0.346708
\(673\) 10510.7 0.602018 0.301009 0.953621i \(-0.402677\pi\)
0.301009 + 0.953621i \(0.402677\pi\)
\(674\) −6851.56 −0.391561
\(675\) −27465.3 −1.56614
\(676\) 11022.4 0.627130
\(677\) 3790.93 0.215210 0.107605 0.994194i \(-0.465682\pi\)
0.107605 + 0.994194i \(0.465682\pi\)
\(678\) 10340.5 0.585730
\(679\) 9492.89 0.536530
\(680\) −42589.2 −2.40180
\(681\) −30766.7 −1.73125
\(682\) 0 0
\(683\) 22371.3 1.25331 0.626657 0.779295i \(-0.284423\pi\)
0.626657 + 0.779295i \(0.284423\pi\)
\(684\) −546.367 −0.0305422
\(685\) 30793.2 1.71759
\(686\) 6025.71 0.335368
\(687\) −19230.5 −1.06796
\(688\) 748.168 0.0414588
\(689\) −2434.67 −0.134620
\(690\) 26652.0 1.47047
\(691\) 9526.95 0.524490 0.262245 0.965001i \(-0.415537\pi\)
0.262245 + 0.965001i \(0.415537\pi\)
\(692\) −12103.8 −0.664912
\(693\) −838.021 −0.0459362
\(694\) 13347.8 0.730079
\(695\) −24525.5 −1.33857
\(696\) −29176.6 −1.58899
\(697\) 43348.6 2.35573
\(698\) −20302.6 −1.10095
\(699\) −5354.98 −0.289763
\(700\) −6832.00 −0.368894
\(701\) 7511.61 0.404721 0.202361 0.979311i \(-0.435139\pi\)
0.202361 + 0.979311i \(0.435139\pi\)
\(702\) −2542.53 −0.136698
\(703\) −2821.91 −0.151394
\(704\) −6880.99 −0.368376
\(705\) −39327.4 −2.10093
\(706\) 15667.9 0.835227
\(707\) −5174.73 −0.275270
\(708\) −15700.5 −0.833418
\(709\) −22804.6 −1.20796 −0.603981 0.796999i \(-0.706420\pi\)
−0.603981 + 0.796999i \(0.706420\pi\)
\(710\) 1943.59 0.102735
\(711\) 1918.66 0.101203
\(712\) 8457.06 0.445143
\(713\) 0 0
\(714\) 5537.92 0.290268
\(715\) 7003.50 0.366316
\(716\) −13434.8 −0.701234
\(717\) 3421.63 0.178219
\(718\) −3735.07 −0.194139
\(719\) −16160.7 −0.838237 −0.419119 0.907931i \(-0.637661\pi\)
−0.419119 + 0.907931i \(0.637661\pi\)
\(720\) 783.320 0.0405453
\(721\) 3578.33 0.184832
\(722\) 10353.4 0.533677
\(723\) −23157.4 −1.19120
\(724\) 2190.72 0.112455
\(725\) −52689.7 −2.69910
\(726\) 4043.71 0.206717
\(727\) 8834.93 0.450715 0.225357 0.974276i \(-0.427645\pi\)
0.225357 + 0.974276i \(0.427645\pi\)
\(728\) −1567.31 −0.0797917
\(729\) 14921.5 0.758093
\(730\) −20535.0 −1.04114
\(731\) −9254.92 −0.468270
\(732\) −7990.59 −0.403471
\(733\) −30752.6 −1.54962 −0.774812 0.632191i \(-0.782156\pi\)
−0.774812 + 0.632191i \(0.782156\pi\)
\(734\) −14332.5 −0.720738
\(735\) −32541.3 −1.63306
\(736\) 29433.5 1.47409
\(737\) −22654.4 −1.13227
\(738\) 3221.44 0.160681
\(739\) −23308.8 −1.16025 −0.580126 0.814527i \(-0.696997\pi\)
−0.580126 + 0.814527i \(0.696997\pi\)
\(740\) 13796.1 0.685344
\(741\) −1471.35 −0.0729439
\(742\) −1773.52 −0.0877465
\(743\) −39284.5 −1.93971 −0.969857 0.243675i \(-0.921647\pi\)
−0.969857 + 0.243675i \(0.921647\pi\)
\(744\) 0 0
\(745\) −27969.0 −1.37544
\(746\) −18596.3 −0.912681
\(747\) −4150.90 −0.203311
\(748\) −17118.2 −0.836770
\(749\) −1187.66 −0.0579387
\(750\) −16052.7 −0.781547
\(751\) −970.904 −0.0471755 −0.0235878 0.999722i \(-0.507509\pi\)
−0.0235878 + 0.999722i \(0.507509\pi\)
\(752\) −3219.31 −0.156112
\(753\) −19506.0 −0.944007
\(754\) −4877.61 −0.235586
\(755\) 11412.1 0.550106
\(756\) 3873.57 0.186350
\(757\) 31228.7 1.49937 0.749687 0.661792i \(-0.230204\pi\)
0.749687 + 0.661792i \(0.230204\pi\)
\(758\) −9713.21 −0.465435
\(759\) 26546.9 1.26955
\(760\) 8242.62 0.393410
\(761\) −8553.03 −0.407421 −0.203710 0.979031i \(-0.565300\pi\)
−0.203710 + 0.979031i \(0.565300\pi\)
\(762\) 12444.3 0.591616
\(763\) 3535.20 0.167736
\(764\) 2309.99 0.109388
\(765\) −9689.76 −0.457953
\(766\) 12790.4 0.603310
\(767\) −6504.45 −0.306209
\(768\) −20619.7 −0.968814
\(769\) −27359.6 −1.28298 −0.641491 0.767131i \(-0.721684\pi\)
−0.641491 + 0.767131i \(0.721684\pi\)
\(770\) 5101.65 0.238767
\(771\) −11708.5 −0.546915
\(772\) −6747.80 −0.314584
\(773\) −28544.1 −1.32815 −0.664075 0.747666i \(-0.731175\pi\)
−0.664075 + 0.747666i \(0.731175\pi\)
\(774\) −687.775 −0.0319400
\(775\) 0 0
\(776\) 35710.9 1.65199
\(777\) −4445.57 −0.205256
\(778\) −1167.63 −0.0538068
\(779\) −8389.60 −0.385865
\(780\) 7193.33 0.330208
\(781\) 1935.93 0.0886977
\(782\) −26988.0 −1.23413
\(783\) 29873.7 1.36347
\(784\) −2663.80 −0.121347
\(785\) −16778.6 −0.762870
\(786\) −18727.6 −0.849861
\(787\) −7238.19 −0.327844 −0.163922 0.986473i \(-0.552415\pi\)
−0.163922 + 0.986473i \(0.552415\pi\)
\(788\) 12240.8 0.553376
\(789\) −23725.0 −1.07051
\(790\) −11680.3 −0.526033
\(791\) −6526.57 −0.293373
\(792\) −3152.52 −0.141439
\(793\) −3310.37 −0.148240
\(794\) −2242.17 −0.100216
\(795\) 20171.4 0.899881
\(796\) 10138.6 0.451450
\(797\) −2382.93 −0.105907 −0.0529533 0.998597i \(-0.516863\pi\)
−0.0529533 + 0.998597i \(0.516863\pi\)
\(798\) −1071.80 −0.0475453
\(799\) 39823.2 1.76326
\(800\) −41030.9 −1.81333
\(801\) 1924.12 0.0848757
\(802\) −3253.83 −0.143263
\(803\) −20454.0 −0.898888
\(804\) −23268.4 −1.02066
\(805\) −16821.8 −0.736510
\(806\) 0 0
\(807\) 45058.5 1.96547
\(808\) −19466.6 −0.847566
\(809\) −36709.0 −1.59533 −0.797664 0.603103i \(-0.793931\pi\)
−0.797664 + 0.603103i \(0.793931\pi\)
\(810\) 25025.8 1.08557
\(811\) 12820.2 0.555089 0.277545 0.960713i \(-0.410479\pi\)
0.277545 + 0.960713i \(0.410479\pi\)
\(812\) 7431.09 0.321158
\(813\) 11416.3 0.492483
\(814\) −6570.38 −0.282914
\(815\) 33525.8 1.44093
\(816\) −5156.02 −0.221197
\(817\) 1791.18 0.0767017
\(818\) −17418.7 −0.744538
\(819\) −356.589 −0.0152140
\(820\) 41016.1 1.74676
\(821\) −2939.24 −0.124945 −0.0624726 0.998047i \(-0.519899\pi\)
−0.0624726 + 0.998047i \(0.519899\pi\)
\(822\) −15062.7 −0.639139
\(823\) −4934.62 −0.209004 −0.104502 0.994525i \(-0.533325\pi\)
−0.104502 + 0.994525i \(0.533325\pi\)
\(824\) 13461.2 0.569104
\(825\) −37006.9 −1.56171
\(826\) −4738.12 −0.199589
\(827\) −27381.1 −1.15131 −0.575656 0.817692i \(-0.695253\pi\)
−0.575656 + 0.817692i \(0.695253\pi\)
\(828\) 4194.64 0.176055
\(829\) −41744.9 −1.74893 −0.874464 0.485091i \(-0.838786\pi\)
−0.874464 + 0.485091i \(0.838786\pi\)
\(830\) 25269.6 1.05677
\(831\) −2533.79 −0.105772
\(832\) −2927.95 −0.122005
\(833\) 32951.5 1.37059
\(834\) 11996.8 0.498101
\(835\) 16615.9 0.688643
\(836\) 3313.02 0.137061
\(837\) 0 0
\(838\) −15113.8 −0.623028
\(839\) 42250.8 1.73857 0.869285 0.494312i \(-0.164580\pi\)
0.869285 + 0.494312i \(0.164580\pi\)
\(840\) 12985.3 0.533374
\(841\) 32920.9 1.34983
\(842\) −9268.32 −0.379344
\(843\) 37420.6 1.52887
\(844\) 13600.0 0.554659
\(845\) −37833.0 −1.54023
\(846\) 2959.45 0.120269
\(847\) −2552.25 −0.103538
\(848\) 1651.21 0.0668667
\(849\) 20662.0 0.835239
\(850\) 37621.8 1.51814
\(851\) 21664.7 0.872685
\(852\) 1988.40 0.0799547
\(853\) −22191.9 −0.890782 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(854\) −2411.42 −0.0966241
\(855\) 1875.33 0.0750117
\(856\) −4467.81 −0.178395
\(857\) −5645.37 −0.225020 −0.112510 0.993651i \(-0.535889\pi\)
−0.112510 + 0.993651i \(0.535889\pi\)
\(858\) −3425.82 −0.136312
\(859\) 4986.57 0.198067 0.0990336 0.995084i \(-0.468425\pi\)
0.0990336 + 0.995084i \(0.468425\pi\)
\(860\) −8756.93 −0.347219
\(861\) −13216.8 −0.523144
\(862\) −4513.77 −0.178352
\(863\) −8031.29 −0.316788 −0.158394 0.987376i \(-0.550632\pi\)
−0.158394 + 0.987376i \(0.550632\pi\)
\(864\) 23263.5 0.916019
\(865\) 41544.8 1.63302
\(866\) −775.558 −0.0304325
\(867\) 36028.0 1.41127
\(868\) 0 0
\(869\) −11634.2 −0.454159
\(870\) 40411.3 1.57479
\(871\) −9639.73 −0.375005
\(872\) 13298.9 0.516465
\(873\) 8124.82 0.314987
\(874\) 5223.20 0.202148
\(875\) 10131.9 0.391451
\(876\) −21008.4 −0.810284
\(877\) −2908.50 −0.111987 −0.0559937 0.998431i \(-0.517833\pi\)
−0.0559937 + 0.998431i \(0.517833\pi\)
\(878\) 16734.7 0.643244
\(879\) −12363.0 −0.474394
\(880\) −4749.84 −0.181951
\(881\) −15888.0 −0.607583 −0.303792 0.952739i \(-0.598253\pi\)
−0.303792 + 0.952739i \(0.598253\pi\)
\(882\) 2448.78 0.0934861
\(883\) 5411.05 0.206225 0.103112 0.994670i \(-0.467120\pi\)
0.103112 + 0.994670i \(0.467120\pi\)
\(884\) −7284.02 −0.277136
\(885\) 53889.8 2.04688
\(886\) 19737.4 0.748411
\(887\) 16007.5 0.605952 0.302976 0.952998i \(-0.402020\pi\)
0.302976 + 0.952998i \(0.402020\pi\)
\(888\) −16723.6 −0.631991
\(889\) −7854.44 −0.296321
\(890\) −11713.5 −0.441167
\(891\) 24927.1 0.937248
\(892\) 6668.69 0.250319
\(893\) −7707.29 −0.288818
\(894\) 13681.3 0.511824
\(895\) 46113.3 1.72223
\(896\) 6420.83 0.239403
\(897\) 11296.0 0.420472
\(898\) −22365.6 −0.831125
\(899\) 0 0
\(900\) −5847.41 −0.216571
\(901\) −20425.7 −0.755248
\(902\) −19533.9 −0.721073
\(903\) 2821.78 0.103990
\(904\) −24552.0 −0.903306
\(905\) −7519.34 −0.276189
\(906\) −5582.33 −0.204703
\(907\) −19923.2 −0.729371 −0.364686 0.931131i \(-0.618824\pi\)
−0.364686 + 0.931131i \(0.618824\pi\)
\(908\) 29478.3 1.07739
\(909\) −4428.98 −0.161606
\(910\) 2170.82 0.0790790
\(911\) 49450.6 1.79843 0.899217 0.437504i \(-0.144137\pi\)
0.899217 + 0.437504i \(0.144137\pi\)
\(912\) 997.884 0.0362316
\(913\) 25169.9 0.912380
\(914\) 1341.24 0.0485385
\(915\) 27426.6 0.990925
\(916\) 18425.2 0.664612
\(917\) 11820.2 0.425668
\(918\) −21330.6 −0.766902
\(919\) 47332.9 1.69898 0.849492 0.527601i \(-0.176908\pi\)
0.849492 + 0.527601i \(0.176908\pi\)
\(920\) −63281.2 −2.26774
\(921\) −40409.3 −1.44575
\(922\) 20212.2 0.721966
\(923\) 823.761 0.0293764
\(924\) 5219.26 0.185824
\(925\) −30201.0 −1.07352
\(926\) −25154.9 −0.892702
\(927\) 3062.64 0.108512
\(928\) 44628.8 1.57868
\(929\) 10066.1 0.355500 0.177750 0.984076i \(-0.443118\pi\)
0.177750 + 0.984076i \(0.443118\pi\)
\(930\) 0 0
\(931\) −6377.37 −0.224500
\(932\) 5130.73 0.180325
\(933\) −46170.5 −1.62010
\(934\) 9170.48 0.321271
\(935\) 58756.0 2.05511
\(936\) −1341.44 −0.0468443
\(937\) −28847.1 −1.00576 −0.502879 0.864357i \(-0.667726\pi\)
−0.502879 + 0.864357i \(0.667726\pi\)
\(938\) −7021.99 −0.244431
\(939\) −3850.57 −0.133822
\(940\) 37680.4 1.30745
\(941\) 3695.91 0.128037 0.0640186 0.997949i \(-0.479608\pi\)
0.0640186 + 0.997949i \(0.479608\pi\)
\(942\) 8207.37 0.283875
\(943\) 64409.6 2.22425
\(944\) 4411.38 0.152095
\(945\) −13295.5 −0.457675
\(946\) 4170.48 0.143334
\(947\) −21714.1 −0.745103 −0.372551 0.928012i \(-0.621517\pi\)
−0.372551 + 0.928012i \(0.621517\pi\)
\(948\) −11949.6 −0.409393
\(949\) −8703.45 −0.297709
\(950\) −7281.25 −0.248668
\(951\) 2331.88 0.0795127
\(952\) −13149.0 −0.447648
\(953\) 41677.6 1.41665 0.708327 0.705885i \(-0.249450\pi\)
0.708327 + 0.705885i \(0.249450\pi\)
\(954\) −1517.93 −0.0515144
\(955\) −7928.72 −0.268657
\(956\) −3278.34 −0.110909
\(957\) 40251.9 1.35962
\(958\) 7963.51 0.268569
\(959\) 9507.06 0.320124
\(960\) 24258.2 0.815553
\(961\) 0 0
\(962\) −2795.78 −0.0937002
\(963\) −1016.50 −0.0340148
\(964\) 22187.6 0.741303
\(965\) 23160.9 0.772618
\(966\) 8228.51 0.274066
\(967\) 19584.9 0.651300 0.325650 0.945490i \(-0.394417\pi\)
0.325650 + 0.945490i \(0.394417\pi\)
\(968\) −9601.21 −0.318796
\(969\) −12343.9 −0.409230
\(970\) −49461.7 −1.63724
\(971\) 1010.41 0.0333941 0.0166971 0.999861i \(-0.494685\pi\)
0.0166971 + 0.999861i \(0.494685\pi\)
\(972\) 7367.36 0.243115
\(973\) −7571.98 −0.249483
\(974\) −2812.10 −0.0925106
\(975\) −15746.9 −0.517235
\(976\) 2245.12 0.0736318
\(977\) −16406.3 −0.537239 −0.268620 0.963246i \(-0.586567\pi\)
−0.268620 + 0.963246i \(0.586567\pi\)
\(978\) −16399.4 −0.536192
\(979\) −11667.3 −0.380888
\(980\) 31178.5 1.01629
\(981\) 3025.72 0.0984749
\(982\) 4482.00 0.145648
\(983\) −12466.3 −0.404490 −0.202245 0.979335i \(-0.564824\pi\)
−0.202245 + 0.979335i \(0.564824\pi\)
\(984\) −49719.7 −1.61078
\(985\) −42014.9 −1.35909
\(986\) −40920.8 −1.32169
\(987\) −12141.9 −0.391572
\(988\) 1409.73 0.0453943
\(989\) −13751.4 −0.442133
\(990\) 4366.43 0.140176
\(991\) −3191.96 −0.102317 −0.0511585 0.998691i \(-0.516291\pi\)
−0.0511585 + 0.998691i \(0.516291\pi\)
\(992\) 0 0
\(993\) 16301.6 0.520964
\(994\) 600.063 0.0191477
\(995\) −34799.5 −1.10876
\(996\) 25852.1 0.822446
\(997\) 29381.1 0.933310 0.466655 0.884439i \(-0.345459\pi\)
0.466655 + 0.884439i \(0.345459\pi\)
\(998\) 17281.6 0.548136
\(999\) 17123.2 0.542297
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.j.1.5 14
31.15 odd 10 31.4.d.a.8.3 yes 28
31.29 odd 10 31.4.d.a.4.3 28
31.30 odd 2 961.4.a.i.1.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.d.a.4.3 28 31.29 odd 10
31.4.d.a.8.3 yes 28 31.15 odd 10
961.4.a.i.1.5 14 31.30 odd 2
961.4.a.j.1.5 14 1.1 even 1 trivial