Properties

Label 2-31e2-1.1-c3-0-190
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $56.7008$
Root an. cond. $7.52999$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.60·2-s + 5.64·3-s − 5.41·4-s + 18.5·5-s − 9.08·6-s + 5.73·7-s + 21.5·8-s + 4.90·9-s − 29.8·10-s − 29.7·11-s − 30.5·12-s − 12.6·13-s − 9.22·14-s + 104.·15-s + 8.58·16-s − 106.·17-s − 7.89·18-s + 20.5·19-s − 100.·20-s + 32.3·21-s + 47.8·22-s − 157.·23-s + 121.·24-s + 220.·25-s + 20.3·26-s − 124.·27-s − 31.0·28-s + ⋯
L(s)  = 1  − 0.568·2-s + 1.08·3-s − 0.676·4-s + 1.66·5-s − 0.618·6-s + 0.309·7-s + 0.953·8-s + 0.181·9-s − 0.945·10-s − 0.815·11-s − 0.735·12-s − 0.270·13-s − 0.176·14-s + 1.80·15-s + 0.134·16-s − 1.51·17-s − 0.103·18-s + 0.248·19-s − 1.12·20-s + 0.336·21-s + 0.464·22-s − 1.43·23-s + 1.03·24-s + 1.76·25-s + 0.153·26-s − 0.889·27-s − 0.209·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(56.7008\)
Root analytic conductor: \(7.52999\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + 1.60T + 8T^{2} \)
3 \( 1 - 5.64T + 27T^{2} \)
5 \( 1 - 18.5T + 125T^{2} \)
7 \( 1 - 5.73T + 343T^{2} \)
11 \( 1 + 29.7T + 1.33e3T^{2} \)
13 \( 1 + 12.6T + 2.19e3T^{2} \)
17 \( 1 + 106.T + 4.91e3T^{2} \)
19 \( 1 - 20.5T + 6.85e3T^{2} \)
23 \( 1 + 157.T + 1.21e4T^{2} \)
29 \( 1 + 239.T + 2.43e4T^{2} \)
37 \( 1 + 137.T + 5.06e4T^{2} \)
41 \( 1 + 407.T + 6.89e4T^{2} \)
43 \( 1 - 87.0T + 7.95e4T^{2} \)
47 \( 1 + 374.T + 1.03e5T^{2} \)
53 \( 1 - 192.T + 1.48e5T^{2} \)
59 \( 1 - 513.T + 2.05e5T^{2} \)
61 \( 1 - 261.T + 2.26e5T^{2} \)
67 \( 1 - 761.T + 3.00e5T^{2} \)
71 \( 1 + 65.0T + 3.57e5T^{2} \)
73 \( 1 - 687.T + 3.89e5T^{2} \)
79 \( 1 - 390.T + 4.93e5T^{2} \)
83 \( 1 + 845.T + 5.71e5T^{2} \)
89 \( 1 - 391.T + 7.04e5T^{2} \)
97 \( 1 - 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.260529772888385309137039546325, −8.520779645425943260114533910722, −7.952864203582581232548479273558, −6.82453933741223809040403873414, −5.62586091406580100320637872950, −4.92774640863577932620364362741, −3.65811766280388286219784685705, −2.25540911494470576374578964415, −1.83879586756413126722153354020, 0, 1.83879586756413126722153354020, 2.25540911494470576374578964415, 3.65811766280388286219784685705, 4.92774640863577932620364362741, 5.62586091406580100320637872950, 6.82453933741223809040403873414, 7.952864203582581232548479273558, 8.520779645425943260114533910722, 9.260529772888385309137039546325

Graph of the $Z$-function along the critical line