Properties

Label 961.4.a.i.1.5
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 77 x^{12} + 54 x^{11} + 2250 x^{10} - 1046 x^{9} - 31002 x^{8} + 8912 x^{7} + \cdots - 79056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.60866\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60866 q^{2} -5.64879 q^{3} -5.41223 q^{4} +18.5767 q^{5} +9.08696 q^{6} +5.73537 q^{7} +21.5757 q^{8} +4.90882 q^{9} -29.8836 q^{10} +29.7657 q^{11} +30.5725 q^{12} +12.6657 q^{13} -9.22624 q^{14} -104.936 q^{15} +8.58999 q^{16} +106.259 q^{17} -7.89660 q^{18} +20.5651 q^{19} -100.542 q^{20} -32.3979 q^{21} -47.8828 q^{22} +157.885 q^{23} -121.876 q^{24} +220.095 q^{25} -20.3748 q^{26} +124.788 q^{27} -31.0411 q^{28} +239.395 q^{29} +168.806 q^{30} -186.424 q^{32} -168.140 q^{33} -170.934 q^{34} +106.545 q^{35} -26.5676 q^{36} +137.218 q^{37} -33.0823 q^{38} -71.5459 q^{39} +400.805 q^{40} -407.952 q^{41} +52.1171 q^{42} -87.0976 q^{43} -161.099 q^{44} +91.1899 q^{45} -253.983 q^{46} -374.775 q^{47} -48.5231 q^{48} -310.106 q^{49} -354.058 q^{50} -600.235 q^{51} -68.5496 q^{52} -192.225 q^{53} -200.742 q^{54} +552.950 q^{55} +123.744 q^{56} -116.168 q^{57} -385.104 q^{58} +513.548 q^{59} +567.938 q^{60} -261.365 q^{61} +28.1539 q^{63} +231.172 q^{64} +235.287 q^{65} +270.480 q^{66} +761.089 q^{67} -575.098 q^{68} -891.860 q^{69} -171.393 q^{70} -65.0388 q^{71} +105.911 q^{72} -687.167 q^{73} -220.736 q^{74} -1243.27 q^{75} -111.303 q^{76} +170.717 q^{77} +115.093 q^{78} -390.860 q^{79} +159.574 q^{80} -837.442 q^{81} +656.255 q^{82} +845.601 q^{83} +175.345 q^{84} +1973.95 q^{85} +140.110 q^{86} -1352.29 q^{87} +642.215 q^{88} -391.972 q^{89} -146.693 q^{90} +72.6425 q^{91} -854.510 q^{92} +602.883 q^{94} +382.033 q^{95} +1053.07 q^{96} +1655.15 q^{97} +498.853 q^{98} +146.115 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} - q^{3} + 43 q^{4} + 19 q^{6} + 5 q^{7} + 54 q^{8} + 107 q^{9} + 57 q^{10} + 79 q^{11} - 5 q^{12} + 47 q^{13} - 129 q^{14} + 228 q^{15} + 127 q^{16} + 143 q^{17} - 392 q^{18} + 47 q^{19}+ \cdots + 2002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60866 −0.568746 −0.284373 0.958714i \(-0.591785\pi\)
−0.284373 + 0.958714i \(0.591785\pi\)
\(3\) −5.64879 −1.08711 −0.543555 0.839374i \(-0.682922\pi\)
−0.543555 + 0.839374i \(0.682922\pi\)
\(4\) −5.41223 −0.676528
\(5\) 18.5767 1.66155 0.830777 0.556605i \(-0.187896\pi\)
0.830777 + 0.556605i \(0.187896\pi\)
\(6\) 9.08696 0.618289
\(7\) 5.73537 0.309681 0.154840 0.987939i \(-0.450514\pi\)
0.154840 + 0.987939i \(0.450514\pi\)
\(8\) 21.5757 0.953518
\(9\) 4.90882 0.181808
\(10\) −29.8836 −0.945002
\(11\) 29.7657 0.815882 0.407941 0.913008i \(-0.366247\pi\)
0.407941 + 0.913008i \(0.366247\pi\)
\(12\) 30.5725 0.735461
\(13\) 12.6657 0.270218 0.135109 0.990831i \(-0.456862\pi\)
0.135109 + 0.990831i \(0.456862\pi\)
\(14\) −9.22624 −0.176130
\(15\) −104.936 −1.80629
\(16\) 8.58999 0.134219
\(17\) 106.259 1.51598 0.757989 0.652267i \(-0.226182\pi\)
0.757989 + 0.652267i \(0.226182\pi\)
\(18\) −7.89660 −0.103403
\(19\) 20.5651 0.248314 0.124157 0.992263i \(-0.460377\pi\)
0.124157 + 0.992263i \(0.460377\pi\)
\(20\) −100.542 −1.12409
\(21\) −32.3979 −0.336657
\(22\) −47.8828 −0.464030
\(23\) 157.885 1.43136 0.715681 0.698427i \(-0.246116\pi\)
0.715681 + 0.698427i \(0.246116\pi\)
\(24\) −121.876 −1.03658
\(25\) 220.095 1.76076
\(26\) −20.3748 −0.153685
\(27\) 124.788 0.889465
\(28\) −31.0411 −0.209508
\(29\) 239.395 1.53291 0.766457 0.642296i \(-0.222018\pi\)
0.766457 + 0.642296i \(0.222018\pi\)
\(30\) 168.806 1.02732
\(31\) 0 0
\(32\) −186.424 −1.02985
\(33\) −168.140 −0.886954
\(34\) −170.934 −0.862206
\(35\) 106.545 0.514552
\(36\) −26.5676 −0.122998
\(37\) 137.218 0.609689 0.304844 0.952402i \(-0.401396\pi\)
0.304844 + 0.952402i \(0.401396\pi\)
\(38\) −33.0823 −0.141228
\(39\) −71.5459 −0.293757
\(40\) 400.805 1.58432
\(41\) −407.952 −1.55394 −0.776968 0.629540i \(-0.783244\pi\)
−0.776968 + 0.629540i \(0.783244\pi\)
\(42\) 52.1171 0.191472
\(43\) −87.0976 −0.308890 −0.154445 0.988001i \(-0.549359\pi\)
−0.154445 + 0.988001i \(0.549359\pi\)
\(44\) −161.099 −0.551967
\(45\) 91.1899 0.302084
\(46\) −253.983 −0.814081
\(47\) −374.775 −1.16312 −0.581558 0.813505i \(-0.697557\pi\)
−0.581558 + 0.813505i \(0.697557\pi\)
\(48\) −48.5231 −0.145910
\(49\) −310.106 −0.904098
\(50\) −354.058 −1.00143
\(51\) −600.235 −1.64803
\(52\) −68.5496 −0.182810
\(53\) −192.225 −0.498192 −0.249096 0.968479i \(-0.580134\pi\)
−0.249096 + 0.968479i \(0.580134\pi\)
\(54\) −200.742 −0.505879
\(55\) 552.950 1.35563
\(56\) 123.744 0.295287
\(57\) −116.168 −0.269945
\(58\) −385.104 −0.871838
\(59\) 513.548 1.13319 0.566596 0.823996i \(-0.308260\pi\)
0.566596 + 0.823996i \(0.308260\pi\)
\(60\) 567.938 1.22201
\(61\) −261.365 −0.548596 −0.274298 0.961645i \(-0.588445\pi\)
−0.274298 + 0.961645i \(0.588445\pi\)
\(62\) 0 0
\(63\) 28.1539 0.0563025
\(64\) 231.172 0.451507
\(65\) 235.287 0.448982
\(66\) 270.480 0.504451
\(67\) 761.089 1.38779 0.693894 0.720077i \(-0.255893\pi\)
0.693894 + 0.720077i \(0.255893\pi\)
\(68\) −575.098 −1.02560
\(69\) −891.860 −1.55605
\(70\) −171.393 −0.292649
\(71\) −65.0388 −0.108714 −0.0543569 0.998522i \(-0.517311\pi\)
−0.0543569 + 0.998522i \(0.517311\pi\)
\(72\) 105.911 0.173357
\(73\) −687.167 −1.10174 −0.550869 0.834592i \(-0.685703\pi\)
−0.550869 + 0.834592i \(0.685703\pi\)
\(74\) −220.736 −0.346758
\(75\) −1243.27 −1.91414
\(76\) −111.303 −0.167992
\(77\) 170.717 0.252663
\(78\) 115.093 0.167073
\(79\) −390.860 −0.556648 −0.278324 0.960487i \(-0.589779\pi\)
−0.278324 + 0.960487i \(0.589779\pi\)
\(80\) 159.574 0.223012
\(81\) −837.442 −1.14875
\(82\) 656.255 0.883795
\(83\) 845.601 1.11827 0.559137 0.829075i \(-0.311133\pi\)
0.559137 + 0.829075i \(0.311133\pi\)
\(84\) 175.345 0.227758
\(85\) 1973.95 2.51888
\(86\) 140.110 0.175680
\(87\) −1352.29 −1.66645
\(88\) 642.215 0.777959
\(89\) −391.972 −0.466842 −0.233421 0.972376i \(-0.574992\pi\)
−0.233421 + 0.972376i \(0.574992\pi\)
\(90\) −146.693 −0.171809
\(91\) 72.6425 0.0836813
\(92\) −854.510 −0.968357
\(93\) 0 0
\(94\) 602.883 0.661518
\(95\) 382.033 0.412587
\(96\) 1053.07 1.11957
\(97\) 1655.15 1.73252 0.866262 0.499590i \(-0.166516\pi\)
0.866262 + 0.499590i \(0.166516\pi\)
\(98\) 498.853 0.514202
\(99\) 146.115 0.148334
\(100\) −1191.21 −1.19121
\(101\) −902.249 −0.888882 −0.444441 0.895808i \(-0.646598\pi\)
−0.444441 + 0.895808i \(0.646598\pi\)
\(102\) 965.572 0.937313
\(103\) 623.905 0.596847 0.298423 0.954434i \(-0.403539\pi\)
0.298423 + 0.954434i \(0.403539\pi\)
\(104\) 273.271 0.257658
\(105\) −601.847 −0.559374
\(106\) 309.225 0.283345
\(107\) −207.076 −0.187092 −0.0935459 0.995615i \(-0.529820\pi\)
−0.0935459 + 0.995615i \(0.529820\pi\)
\(108\) −675.383 −0.601748
\(109\) 616.385 0.541642 0.270821 0.962630i \(-0.412705\pi\)
0.270821 + 0.962630i \(0.412705\pi\)
\(110\) −889.506 −0.771010
\(111\) −775.115 −0.662799
\(112\) 49.2668 0.0415650
\(113\) −1137.95 −0.947339 −0.473670 0.880703i \(-0.657071\pi\)
−0.473670 + 0.880703i \(0.657071\pi\)
\(114\) 186.875 0.153530
\(115\) 2932.99 2.37829
\(116\) −1295.66 −1.03706
\(117\) 62.1736 0.0491278
\(118\) −826.123 −0.644498
\(119\) 609.436 0.469470
\(120\) −2264.07 −1.72233
\(121\) −445.002 −0.334336
\(122\) 420.446 0.312012
\(123\) 2304.44 1.68930
\(124\) 0 0
\(125\) 1766.56 1.26405
\(126\) −45.2900 −0.0320218
\(127\) 1369.47 0.956859 0.478429 0.878126i \(-0.341206\pi\)
0.478429 + 0.878126i \(0.341206\pi\)
\(128\) 1119.51 0.773062
\(129\) 491.996 0.335797
\(130\) −378.496 −0.255356
\(131\) 2060.93 1.37454 0.687268 0.726403i \(-0.258810\pi\)
0.687268 + 0.726403i \(0.258810\pi\)
\(132\) 910.013 0.600049
\(133\) 117.949 0.0768982
\(134\) −1224.33 −0.789299
\(135\) 2318.16 1.47789
\(136\) 2292.61 1.44551
\(137\) −1657.62 −1.03372 −0.516861 0.856069i \(-0.672900\pi\)
−0.516861 + 0.856069i \(0.672900\pi\)
\(138\) 1434.70 0.884996
\(139\) 1320.22 0.805612 0.402806 0.915285i \(-0.368035\pi\)
0.402806 + 0.915285i \(0.368035\pi\)
\(140\) −576.643 −0.348109
\(141\) 2117.02 1.26444
\(142\) 104.625 0.0618305
\(143\) 377.004 0.220466
\(144\) 42.1667 0.0244020
\(145\) 4447.18 2.54702
\(146\) 1105.42 0.626608
\(147\) 1751.72 0.982854
\(148\) −742.654 −0.412472
\(149\) −1505.59 −0.827806 −0.413903 0.910321i \(-0.635835\pi\)
−0.413903 + 0.910321i \(0.635835\pi\)
\(150\) 2000.00 1.08866
\(151\) −614.323 −0.331079 −0.165539 0.986203i \(-0.552937\pi\)
−0.165539 + 0.986203i \(0.552937\pi\)
\(152\) 443.707 0.236772
\(153\) 521.607 0.275617
\(154\) −274.626 −0.143701
\(155\) 0 0
\(156\) 387.222 0.198735
\(157\) −903.203 −0.459130 −0.229565 0.973293i \(-0.573730\pi\)
−0.229565 + 0.973293i \(0.573730\pi\)
\(158\) 628.759 0.316591
\(159\) 1085.84 0.541590
\(160\) −3463.14 −1.71116
\(161\) 905.530 0.443266
\(162\) 1347.16 0.653349
\(163\) 1804.72 0.867218 0.433609 0.901101i \(-0.357240\pi\)
0.433609 + 0.901101i \(0.357240\pi\)
\(164\) 2207.93 1.05128
\(165\) −3123.50 −1.47372
\(166\) −1360.28 −0.636014
\(167\) −894.447 −0.414457 −0.207229 0.978293i \(-0.566444\pi\)
−0.207229 + 0.978293i \(0.566444\pi\)
\(168\) −699.006 −0.321009
\(169\) −2036.58 −0.926982
\(170\) −3175.40 −1.43260
\(171\) 100.951 0.0451455
\(172\) 471.392 0.208973
\(173\) 2236.39 0.982830 0.491415 0.870926i \(-0.336480\pi\)
0.491415 + 0.870926i \(0.336480\pi\)
\(174\) 2175.37 0.947784
\(175\) 1262.33 0.545274
\(176\) 255.687 0.109507
\(177\) −2900.93 −1.23190
\(178\) 630.548 0.265515
\(179\) −2482.31 −1.03652 −0.518259 0.855224i \(-0.673420\pi\)
−0.518259 + 0.855224i \(0.673420\pi\)
\(180\) −493.540 −0.204368
\(181\) 404.772 0.166224 0.0831118 0.996540i \(-0.473514\pi\)
0.0831118 + 0.996540i \(0.473514\pi\)
\(182\) −116.857 −0.0475934
\(183\) 1476.40 0.596384
\(184\) 3406.48 1.36483
\(185\) 2549.06 1.01303
\(186\) 0 0
\(187\) 3162.88 1.23686
\(188\) 2028.36 0.786881
\(189\) 715.708 0.275450
\(190\) −614.560 −0.234657
\(191\) −426.809 −0.161690 −0.0808450 0.996727i \(-0.525762\pi\)
−0.0808450 + 0.996727i \(0.525762\pi\)
\(192\) −1305.84 −0.490838
\(193\) 1246.77 0.464997 0.232499 0.972597i \(-0.425310\pi\)
0.232499 + 0.972597i \(0.425310\pi\)
\(194\) −2662.56 −0.985366
\(195\) −1329.09 −0.488092
\(196\) 1678.36 0.611648
\(197\) 2261.69 0.817964 0.408982 0.912542i \(-0.365884\pi\)
0.408982 + 0.912542i \(0.365884\pi\)
\(198\) −235.048 −0.0843643
\(199\) 1873.28 0.667303 0.333652 0.942696i \(-0.391719\pi\)
0.333652 + 0.942696i \(0.391719\pi\)
\(200\) 4748.70 1.67892
\(201\) −4299.23 −1.50868
\(202\) 1451.41 0.505548
\(203\) 1373.02 0.474714
\(204\) 3248.61 1.11494
\(205\) −7578.42 −2.58195
\(206\) −1003.65 −0.339454
\(207\) 775.030 0.260233
\(208\) 108.798 0.0362683
\(209\) 612.137 0.202595
\(210\) 968.166 0.318142
\(211\) −2512.83 −0.819861 −0.409930 0.912117i \(-0.634447\pi\)
−0.409930 + 0.912117i \(0.634447\pi\)
\(212\) 1040.37 0.337041
\(213\) 367.390 0.118184
\(214\) 333.114 0.106408
\(215\) −1617.99 −0.513237
\(216\) 2692.39 0.848121
\(217\) 0 0
\(218\) −991.551 −0.308056
\(219\) 3881.66 1.19771
\(220\) −2992.69 −0.917123
\(221\) 1345.85 0.409644
\(222\) 1246.89 0.376964
\(223\) 1232.15 0.370005 0.185002 0.982738i \(-0.440771\pi\)
0.185002 + 0.982738i \(0.440771\pi\)
\(224\) −1069.21 −0.318926
\(225\) 1080.41 0.320121
\(226\) 1830.57 0.538795
\(227\) −5446.61 −1.59253 −0.796265 0.604949i \(-0.793194\pi\)
−0.796265 + 0.604949i \(0.793194\pi\)
\(228\) 628.728 0.182625
\(229\) 3404.36 0.982387 0.491193 0.871051i \(-0.336561\pi\)
0.491193 + 0.871051i \(0.336561\pi\)
\(230\) −4718.17 −1.35264
\(231\) −964.347 −0.274673
\(232\) 5165.10 1.46166
\(233\) −947.988 −0.266544 −0.133272 0.991079i \(-0.542548\pi\)
−0.133272 + 0.991079i \(0.542548\pi\)
\(234\) −100.016 −0.0279412
\(235\) −6962.09 −1.93258
\(236\) −2779.44 −0.766636
\(237\) 2207.89 0.605138
\(238\) −980.372 −0.267009
\(239\) −605.728 −0.163938 −0.0819692 0.996635i \(-0.526121\pi\)
−0.0819692 + 0.996635i \(0.526121\pi\)
\(240\) −901.400 −0.242438
\(241\) 4099.54 1.09575 0.547873 0.836562i \(-0.315438\pi\)
0.547873 + 0.836562i \(0.315438\pi\)
\(242\) 715.855 0.190152
\(243\) 1361.24 0.359357
\(244\) 1414.57 0.371141
\(245\) −5760.75 −1.50221
\(246\) −3707.04 −0.960782
\(247\) 260.472 0.0670989
\(248\) 0 0
\(249\) −4776.62 −1.21569
\(250\) −2841.79 −0.718921
\(251\) 3453.13 0.868364 0.434182 0.900825i \(-0.357037\pi\)
0.434182 + 0.900825i \(0.357037\pi\)
\(252\) −152.375 −0.0380902
\(253\) 4699.57 1.16782
\(254\) −2203.01 −0.544209
\(255\) −11150.4 −2.73830
\(256\) −3650.28 −0.891183
\(257\) −2072.75 −0.503091 −0.251546 0.967845i \(-0.580939\pi\)
−0.251546 + 0.967845i \(0.580939\pi\)
\(258\) −791.453 −0.190983
\(259\) 786.996 0.188809
\(260\) −1273.43 −0.303749
\(261\) 1175.15 0.278696
\(262\) −3315.33 −0.781762
\(263\) 4200.02 0.984732 0.492366 0.870388i \(-0.336132\pi\)
0.492366 + 0.870388i \(0.336132\pi\)
\(264\) −3627.74 −0.845727
\(265\) −3570.92 −0.827773
\(266\) −189.739 −0.0437355
\(267\) 2214.17 0.507509
\(268\) −4119.19 −0.938878
\(269\) −7976.66 −1.80798 −0.903988 0.427558i \(-0.859374\pi\)
−0.903988 + 0.427558i \(0.859374\pi\)
\(270\) −3729.13 −0.840546
\(271\) −2021.02 −0.453020 −0.226510 0.974009i \(-0.572732\pi\)
−0.226510 + 0.974009i \(0.572732\pi\)
\(272\) 912.765 0.203473
\(273\) −410.342 −0.0909708
\(274\) 2666.54 0.587925
\(275\) 6551.29 1.43657
\(276\) 4826.95 1.05271
\(277\) 448.555 0.0972962 0.0486481 0.998816i \(-0.484509\pi\)
0.0486481 + 0.998816i \(0.484509\pi\)
\(278\) −2123.79 −0.458188
\(279\) 0 0
\(280\) 2298.77 0.490634
\(281\) 6624.54 1.40636 0.703179 0.711013i \(-0.251763\pi\)
0.703179 + 0.711013i \(0.251763\pi\)
\(282\) −3405.56 −0.719143
\(283\) 3657.77 0.768311 0.384156 0.923268i \(-0.374493\pi\)
0.384156 + 0.923268i \(0.374493\pi\)
\(284\) 352.004 0.0735480
\(285\) −2158.03 −0.448528
\(286\) −606.469 −0.125389
\(287\) −2339.76 −0.481225
\(288\) −915.120 −0.187236
\(289\) 6378.00 1.29819
\(290\) −7153.98 −1.44861
\(291\) −9349.58 −1.88344
\(292\) 3719.10 0.745356
\(293\) −2188.60 −0.436381 −0.218190 0.975906i \(-0.570015\pi\)
−0.218190 + 0.975906i \(0.570015\pi\)
\(294\) −2817.92 −0.558994
\(295\) 9540.06 1.88286
\(296\) 2960.57 0.581349
\(297\) 3714.42 0.725698
\(298\) 2421.98 0.470811
\(299\) 1999.73 0.386780
\(300\) 6728.87 1.29497
\(301\) −499.537 −0.0956573
\(302\) 988.235 0.188300
\(303\) 5096.61 0.966313
\(304\) 176.654 0.0333284
\(305\) −4855.31 −0.911522
\(306\) −839.086 −0.156756
\(307\) −7153.62 −1.32990 −0.664949 0.746889i \(-0.731547\pi\)
−0.664949 + 0.746889i \(0.731547\pi\)
\(308\) −923.962 −0.170934
\(309\) −3524.31 −0.648838
\(310\) 0 0
\(311\) −8173.52 −1.49028 −0.745141 0.666906i \(-0.767618\pi\)
−0.745141 + 0.666906i \(0.767618\pi\)
\(312\) −1543.65 −0.280102
\(313\) 681.663 0.123099 0.0615493 0.998104i \(-0.480396\pi\)
0.0615493 + 0.998104i \(0.480396\pi\)
\(314\) 1452.94 0.261128
\(315\) 523.008 0.0935497
\(316\) 2115.42 0.376588
\(317\) 412.811 0.0731413 0.0365707 0.999331i \(-0.488357\pi\)
0.0365707 + 0.999331i \(0.488357\pi\)
\(318\) −1746.74 −0.308027
\(319\) 7125.76 1.25068
\(320\) 4294.41 0.750203
\(321\) 1169.73 0.203389
\(322\) −1456.69 −0.252105
\(323\) 2185.23 0.376439
\(324\) 4532.42 0.777164
\(325\) 2787.66 0.475789
\(326\) −2903.17 −0.493227
\(327\) −3481.83 −0.588824
\(328\) −8801.83 −1.48171
\(329\) −2149.47 −0.360195
\(330\) 5024.63 0.838173
\(331\) −2885.87 −0.479219 −0.239610 0.970869i \(-0.577019\pi\)
−0.239610 + 0.970869i \(0.577019\pi\)
\(332\) −4576.58 −0.756544
\(333\) 673.578 0.110846
\(334\) 1438.86 0.235721
\(335\) 14138.6 2.30589
\(336\) −278.298 −0.0451857
\(337\) −4259.18 −0.688464 −0.344232 0.938885i \(-0.611861\pi\)
−0.344232 + 0.938885i \(0.611861\pi\)
\(338\) 3276.16 0.527217
\(339\) 6428.04 1.02986
\(340\) −10683.5 −1.70409
\(341\) 0 0
\(342\) −162.395 −0.0256763
\(343\) −3745.80 −0.589663
\(344\) −1879.19 −0.294532
\(345\) −16567.8 −2.58546
\(346\) −3597.58 −0.558980
\(347\) 8297.48 1.28367 0.641833 0.766845i \(-0.278174\pi\)
0.641833 + 0.766845i \(0.278174\pi\)
\(348\) 7318.90 1.12740
\(349\) 12620.9 1.93576 0.967880 0.251414i \(-0.0808956\pi\)
0.967880 + 0.251414i \(0.0808956\pi\)
\(350\) −2030.65 −0.310123
\(351\) 1580.53 0.240349
\(352\) −5549.03 −0.840240
\(353\) 9739.76 1.46854 0.734271 0.678857i \(-0.237524\pi\)
0.734271 + 0.678857i \(0.237524\pi\)
\(354\) 4666.59 0.700640
\(355\) −1208.21 −0.180634
\(356\) 2121.44 0.315832
\(357\) −3442.57 −0.510365
\(358\) 3993.19 0.589515
\(359\) 2321.86 0.341345 0.170673 0.985328i \(-0.445406\pi\)
0.170673 + 0.985328i \(0.445406\pi\)
\(360\) 1967.48 0.288043
\(361\) −6436.07 −0.938340
\(362\) −651.139 −0.0945389
\(363\) 2513.72 0.363460
\(364\) −393.158 −0.0566128
\(365\) −12765.3 −1.83060
\(366\) −2375.01 −0.339191
\(367\) −8909.60 −1.26724 −0.633620 0.773644i \(-0.718432\pi\)
−0.633620 + 0.773644i \(0.718432\pi\)
\(368\) 1356.23 0.192115
\(369\) −2002.56 −0.282518
\(370\) −4100.56 −0.576157
\(371\) −1102.48 −0.154281
\(372\) 0 0
\(373\) 11560.2 1.60473 0.802363 0.596837i \(-0.203576\pi\)
0.802363 + 0.596837i \(0.203576\pi\)
\(374\) −5087.99 −0.703459
\(375\) −9978.92 −1.37416
\(376\) −8086.01 −1.10905
\(377\) 3032.10 0.414221
\(378\) −1151.33 −0.156661
\(379\) 6038.09 0.818353 0.409177 0.912455i \(-0.365816\pi\)
0.409177 + 0.912455i \(0.365816\pi\)
\(380\) −2067.65 −0.279127
\(381\) −7735.86 −1.04021
\(382\) 686.589 0.0919605
\(383\) 7950.97 1.06077 0.530386 0.847756i \(-0.322047\pi\)
0.530386 + 0.847756i \(0.322047\pi\)
\(384\) −6323.90 −0.840403
\(385\) 3171.37 0.419814
\(386\) −2005.62 −0.264465
\(387\) −427.547 −0.0561587
\(388\) −8958.03 −1.17210
\(389\) −725.844 −0.0946061 −0.0473030 0.998881i \(-0.515063\pi\)
−0.0473030 + 0.998881i \(0.515063\pi\)
\(390\) 2138.05 0.277601
\(391\) 16776.7 2.16991
\(392\) −6690.73 −0.862074
\(393\) −11641.8 −1.49427
\(394\) −3638.29 −0.465214
\(395\) −7260.91 −0.924901
\(396\) −790.805 −0.100352
\(397\) 1393.81 0.176205 0.0881027 0.996111i \(-0.471920\pi\)
0.0881027 + 0.996111i \(0.471920\pi\)
\(398\) −3013.47 −0.379526
\(399\) −666.268 −0.0835968
\(400\) 1890.62 0.236327
\(401\) −2022.70 −0.251892 −0.125946 0.992037i \(-0.540197\pi\)
−0.125946 + 0.992037i \(0.540197\pi\)
\(402\) 6915.99 0.858055
\(403\) 0 0
\(404\) 4883.17 0.601354
\(405\) −15556.9 −1.90872
\(406\) −2208.71 −0.269992
\(407\) 4084.39 0.497434
\(408\) −12950.5 −1.57143
\(409\) −10828.1 −1.30909 −0.654544 0.756024i \(-0.727139\pi\)
−0.654544 + 0.756024i \(0.727139\pi\)
\(410\) 12191.1 1.46847
\(411\) 9363.54 1.12377
\(412\) −3376.72 −0.403784
\(413\) 2945.39 0.350928
\(414\) −1246.76 −0.148007
\(415\) 15708.5 1.85807
\(416\) −2361.19 −0.278285
\(417\) −7457.67 −0.875788
\(418\) −984.717 −0.115225
\(419\) 9395.30 1.09544 0.547721 0.836661i \(-0.315495\pi\)
0.547721 + 0.836661i \(0.315495\pi\)
\(420\) 3257.33 0.378432
\(421\) 5761.53 0.666983 0.333492 0.942753i \(-0.391773\pi\)
0.333492 + 0.942753i \(0.391773\pi\)
\(422\) 4042.28 0.466292
\(423\) −1839.70 −0.211464
\(424\) −4147.39 −0.475035
\(425\) 23387.1 2.66928
\(426\) −591.005 −0.0672166
\(427\) −1499.03 −0.169890
\(428\) 1120.74 0.126573
\(429\) −2129.61 −0.239671
\(430\) 2602.79 0.291901
\(431\) 2805.92 0.313588 0.156794 0.987631i \(-0.449884\pi\)
0.156794 + 0.987631i \(0.449884\pi\)
\(432\) 1071.93 0.119383
\(433\) −482.115 −0.0535080 −0.0267540 0.999642i \(-0.508517\pi\)
−0.0267540 + 0.999642i \(0.508517\pi\)
\(434\) 0 0
\(435\) −25121.2 −2.76889
\(436\) −3336.01 −0.366436
\(437\) 3246.93 0.355427
\(438\) −6244.26 −0.681192
\(439\) −10402.9 −1.13099 −0.565493 0.824753i \(-0.691314\pi\)
−0.565493 + 0.824753i \(0.691314\pi\)
\(440\) 11930.3 1.29262
\(441\) −1522.25 −0.164372
\(442\) −2165.00 −0.232984
\(443\) −12269.5 −1.31590 −0.657949 0.753063i \(-0.728576\pi\)
−0.657949 + 0.753063i \(0.728576\pi\)
\(444\) 4195.10 0.448402
\(445\) −7281.56 −0.775684
\(446\) −1982.11 −0.210439
\(447\) 8504.79 0.899916
\(448\) 1325.85 0.139823
\(449\) −13903.3 −1.46133 −0.730665 0.682736i \(-0.760790\pi\)
−0.730665 + 0.682736i \(0.760790\pi\)
\(450\) −1738.00 −0.182067
\(451\) −12143.0 −1.26783
\(452\) 6158.84 0.640902
\(453\) 3470.18 0.359919
\(454\) 8761.72 0.905744
\(455\) 1349.46 0.139041
\(456\) −2506.41 −0.257397
\(457\) 833.763 0.0853431 0.0426715 0.999089i \(-0.486413\pi\)
0.0426715 + 0.999089i \(0.486413\pi\)
\(458\) −5476.45 −0.558728
\(459\) 13259.9 1.34841
\(460\) −15874.0 −1.60898
\(461\) 12564.6 1.26940 0.634700 0.772759i \(-0.281124\pi\)
0.634700 + 0.772759i \(0.281124\pi\)
\(462\) 1551.30 0.156219
\(463\) −15637.2 −1.56960 −0.784798 0.619751i \(-0.787234\pi\)
−0.784798 + 0.619751i \(0.787234\pi\)
\(464\) 2056.40 0.205746
\(465\) 0 0
\(466\) 1524.99 0.151596
\(467\) −5700.71 −0.564877 −0.282438 0.959285i \(-0.591143\pi\)
−0.282438 + 0.959285i \(0.591143\pi\)
\(468\) −336.498 −0.0332364
\(469\) 4365.13 0.429772
\(470\) 11199.6 1.09915
\(471\) 5102.00 0.499125
\(472\) 11080.1 1.08052
\(473\) −2592.52 −0.252018
\(474\) −3551.73 −0.344169
\(475\) 4526.29 0.437222
\(476\) −3298.40 −0.317609
\(477\) −943.600 −0.0905754
\(478\) 974.408 0.0932393
\(479\) −4950.41 −0.472213 −0.236107 0.971727i \(-0.575871\pi\)
−0.236107 + 0.971727i \(0.575871\pi\)
\(480\) 19562.6 1.86022
\(481\) 1737.96 0.164749
\(482\) −6594.75 −0.623201
\(483\) −5115.15 −0.481878
\(484\) 2408.45 0.226188
\(485\) 30747.2 2.87868
\(486\) −2189.77 −0.204383
\(487\) −1748.10 −0.162657 −0.0813286 0.996687i \(-0.525916\pi\)
−0.0813286 + 0.996687i \(0.525916\pi\)
\(488\) −5639.12 −0.523096
\(489\) −10194.5 −0.942762
\(490\) 9267.06 0.854374
\(491\) 2786.18 0.256087 0.128043 0.991769i \(-0.459130\pi\)
0.128043 + 0.991769i \(0.459130\pi\)
\(492\) −12472.1 −1.14286
\(493\) 25437.9 2.32386
\(494\) −419.010 −0.0381622
\(495\) 2714.33 0.246465
\(496\) 0 0
\(497\) −373.022 −0.0336666
\(498\) 7683.94 0.691417
\(499\) 10742.9 0.963763 0.481881 0.876237i \(-0.339954\pi\)
0.481881 + 0.876237i \(0.339954\pi\)
\(500\) −9561.02 −0.855163
\(501\) 5052.54 0.450561
\(502\) −5554.89 −0.493879
\(503\) −6736.98 −0.597191 −0.298595 0.954380i \(-0.596518\pi\)
−0.298595 + 0.954380i \(0.596518\pi\)
\(504\) 607.439 0.0536855
\(505\) −16760.8 −1.47693
\(506\) −7559.98 −0.664194
\(507\) 11504.2 1.00773
\(508\) −7411.90 −0.647342
\(509\) 2563.94 0.223271 0.111635 0.993749i \(-0.464391\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(510\) 17937.2 1.55740
\(511\) −3941.16 −0.341187
\(512\) −3084.06 −0.266206
\(513\) 2566.29 0.220867
\(514\) 3334.34 0.286131
\(515\) 11590.1 0.991693
\(516\) −2662.79 −0.227176
\(517\) −11155.4 −0.948966
\(518\) −1266.01 −0.107384
\(519\) −12632.9 −1.06844
\(520\) 5076.48 0.428112
\(521\) −8379.49 −0.704630 −0.352315 0.935882i \(-0.614605\pi\)
−0.352315 + 0.935882i \(0.614605\pi\)
\(522\) −1890.41 −0.158507
\(523\) 4054.85 0.339017 0.169509 0.985529i \(-0.445782\pi\)
0.169509 + 0.985529i \(0.445782\pi\)
\(524\) −11154.2 −0.929913
\(525\) −7130.62 −0.592773
\(526\) −6756.39 −0.560062
\(527\) 0 0
\(528\) −1444.32 −0.119046
\(529\) 12760.7 1.04880
\(530\) 5744.38 0.470793
\(531\) 2520.92 0.206023
\(532\) −638.365 −0.0520238
\(533\) −5167.00 −0.419902
\(534\) −3561.83 −0.288644
\(535\) −3846.80 −0.310863
\(536\) 16421.0 1.32328
\(537\) 14022.1 1.12681
\(538\) 12831.7 1.02828
\(539\) −9230.51 −0.737637
\(540\) −12546.4 −0.999837
\(541\) −679.415 −0.0539932 −0.0269966 0.999636i \(-0.508594\pi\)
−0.0269966 + 0.999636i \(0.508594\pi\)
\(542\) 3251.13 0.257653
\(543\) −2286.47 −0.180703
\(544\) −19809.2 −1.56124
\(545\) 11450.4 0.899967
\(546\) 660.099 0.0517393
\(547\) −12582.2 −0.983499 −0.491749 0.870737i \(-0.663642\pi\)
−0.491749 + 0.870737i \(0.663642\pi\)
\(548\) 8971.41 0.699342
\(549\) −1282.99 −0.0997392
\(550\) −10538.8 −0.817045
\(551\) 4923.19 0.380644
\(552\) −19242.5 −1.48372
\(553\) −2241.73 −0.172383
\(554\) −721.571 −0.0553368
\(555\) −14399.1 −1.10128
\(556\) −7145.36 −0.545019
\(557\) −19595.0 −1.49060 −0.745301 0.666729i \(-0.767694\pi\)
−0.745301 + 0.666729i \(0.767694\pi\)
\(558\) 0 0
\(559\) −1103.15 −0.0834676
\(560\) 915.217 0.0690624
\(561\) −17866.4 −1.34460
\(562\) −10656.6 −0.799861
\(563\) 12653.0 0.947178 0.473589 0.880746i \(-0.342958\pi\)
0.473589 + 0.880746i \(0.342958\pi\)
\(564\) −11457.8 −0.855427
\(565\) −21139.4 −1.57406
\(566\) −5884.10 −0.436974
\(567\) −4803.04 −0.355747
\(568\) −1403.25 −0.103661
\(569\) −14145.5 −1.04220 −0.521098 0.853497i \(-0.674477\pi\)
−0.521098 + 0.853497i \(0.674477\pi\)
\(570\) 3471.52 0.255098
\(571\) −13098.0 −0.959956 −0.479978 0.877281i \(-0.659355\pi\)
−0.479978 + 0.877281i \(0.659355\pi\)
\(572\) −2040.43 −0.149151
\(573\) 2410.95 0.175775
\(574\) 3763.86 0.273695
\(575\) 34749.8 2.52029
\(576\) 1134.78 0.0820876
\(577\) −19434.7 −1.40221 −0.701106 0.713057i \(-0.747310\pi\)
−0.701106 + 0.713057i \(0.747310\pi\)
\(578\) −10260.0 −0.738340
\(579\) −7042.74 −0.505503
\(580\) −24069.1 −1.72313
\(581\) 4849.83 0.346308
\(582\) 15040.3 1.07120
\(583\) −5721.73 −0.406466
\(584\) −14826.1 −1.05053
\(585\) 1154.98 0.0816285
\(586\) 3520.71 0.248190
\(587\) −19515.3 −1.37220 −0.686099 0.727508i \(-0.740679\pi\)
−0.686099 + 0.727508i \(0.740679\pi\)
\(588\) −9480.71 −0.664928
\(589\) 0 0
\(590\) −15346.7 −1.07087
\(591\) −12775.8 −0.889217
\(592\) 1178.70 0.0818316
\(593\) −8820.42 −0.610812 −0.305406 0.952222i \(-0.598792\pi\)
−0.305406 + 0.952222i \(0.598792\pi\)
\(594\) −5975.22 −0.412738
\(595\) 11321.3 0.780049
\(596\) 8148.62 0.560034
\(597\) −10581.8 −0.725432
\(598\) −3216.87 −0.219979
\(599\) 19530.0 1.33218 0.666088 0.745873i \(-0.267968\pi\)
0.666088 + 0.745873i \(0.267968\pi\)
\(600\) −26824.4 −1.82517
\(601\) 2810.51 0.190754 0.0953769 0.995441i \(-0.469594\pi\)
0.0953769 + 0.995441i \(0.469594\pi\)
\(602\) 803.584 0.0544047
\(603\) 3736.05 0.252311
\(604\) 3324.86 0.223984
\(605\) −8266.68 −0.555518
\(606\) −8198.70 −0.549586
\(607\) −12087.0 −0.808228 −0.404114 0.914709i \(-0.632420\pi\)
−0.404114 + 0.914709i \(0.632420\pi\)
\(608\) −3833.83 −0.255727
\(609\) −7755.89 −0.516067
\(610\) 7810.52 0.518424
\(611\) −4746.78 −0.314295
\(612\) −2823.05 −0.186463
\(613\) −7328.04 −0.482833 −0.241417 0.970422i \(-0.577612\pi\)
−0.241417 + 0.970422i \(0.577612\pi\)
\(614\) 11507.7 0.756374
\(615\) 42808.9 2.80686
\(616\) 3683.34 0.240919
\(617\) −10474.7 −0.683462 −0.341731 0.939798i \(-0.611013\pi\)
−0.341731 + 0.939798i \(0.611013\pi\)
\(618\) 5669.40 0.369024
\(619\) 12512.8 0.812488 0.406244 0.913765i \(-0.366838\pi\)
0.406244 + 0.913765i \(0.366838\pi\)
\(620\) 0 0
\(621\) 19702.2 1.27315
\(622\) 13148.4 0.847592
\(623\) −2248.11 −0.144572
\(624\) −614.578 −0.0394276
\(625\) 5305.01 0.339520
\(626\) −1096.56 −0.0700118
\(627\) −3457.83 −0.220243
\(628\) 4888.34 0.310615
\(629\) 14580.7 0.924275
\(630\) −841.340 −0.0532060
\(631\) 23147.4 1.46035 0.730176 0.683260i \(-0.239438\pi\)
0.730176 + 0.683260i \(0.239438\pi\)
\(632\) −8433.06 −0.530774
\(633\) 14194.5 0.891279
\(634\) −664.072 −0.0415988
\(635\) 25440.3 1.58987
\(636\) −5876.81 −0.366401
\(637\) −3927.70 −0.244303
\(638\) −11462.9 −0.711317
\(639\) −319.264 −0.0197651
\(640\) 20796.9 1.28448
\(641\) −5539.74 −0.341352 −0.170676 0.985327i \(-0.554595\pi\)
−0.170676 + 0.985327i \(0.554595\pi\)
\(642\) −1881.69 −0.115677
\(643\) 16867.6 1.03451 0.517257 0.855830i \(-0.326953\pi\)
0.517257 + 0.855830i \(0.326953\pi\)
\(644\) −4900.93 −0.299882
\(645\) 9139.68 0.557945
\(646\) −3515.29 −0.214098
\(647\) 7747.78 0.470783 0.235392 0.971901i \(-0.424363\pi\)
0.235392 + 0.971901i \(0.424363\pi\)
\(648\) −18068.4 −1.09536
\(649\) 15286.1 0.924551
\(650\) −4484.39 −0.270603
\(651\) 0 0
\(652\) −9767.55 −0.586698
\(653\) 18202.3 1.09083 0.545413 0.838168i \(-0.316373\pi\)
0.545413 + 0.838168i \(0.316373\pi\)
\(654\) 5601.06 0.334891
\(655\) 38285.4 2.28387
\(656\) −3504.31 −0.208567
\(657\) −3373.18 −0.200305
\(658\) 3457.76 0.204859
\(659\) −9616.62 −0.568453 −0.284226 0.958757i \(-0.591737\pi\)
−0.284226 + 0.958757i \(0.591737\pi\)
\(660\) 16905.1 0.997014
\(661\) −27579.0 −1.62284 −0.811422 0.584461i \(-0.801306\pi\)
−0.811422 + 0.584461i \(0.801306\pi\)
\(662\) 4642.36 0.272554
\(663\) −7602.40 −0.445329
\(664\) 18244.4 1.06629
\(665\) 2191.10 0.127770
\(666\) −1083.56 −0.0630434
\(667\) 37796.9 2.19415
\(668\) 4840.95 0.280392
\(669\) −6960.17 −0.402236
\(670\) −22744.1 −1.31146
\(671\) −7779.72 −0.447590
\(672\) 6039.73 0.346708
\(673\) −10510.7 −0.602018 −0.301009 0.953621i \(-0.597323\pi\)
−0.301009 + 0.953621i \(0.597323\pi\)
\(674\) 6851.56 0.391561
\(675\) 27465.3 1.56614
\(676\) 11022.4 0.627130
\(677\) −3790.93 −0.215210 −0.107605 0.994194i \(-0.534318\pi\)
−0.107605 + 0.994194i \(0.534318\pi\)
\(678\) −10340.5 −0.585730
\(679\) 9492.89 0.536530
\(680\) 42589.2 2.40180
\(681\) 30766.7 1.73125
\(682\) 0 0
\(683\) 22371.3 1.25331 0.626657 0.779295i \(-0.284423\pi\)
0.626657 + 0.779295i \(0.284423\pi\)
\(684\) −546.367 −0.0305422
\(685\) −30793.2 −1.71759
\(686\) 6025.71 0.335368
\(687\) −19230.5 −1.06796
\(688\) −748.168 −0.0414588
\(689\) −2434.67 −0.134620
\(690\) 26652.0 1.47047
\(691\) 9526.95 0.524490 0.262245 0.965001i \(-0.415537\pi\)
0.262245 + 0.965001i \(0.415537\pi\)
\(692\) −12103.8 −0.664912
\(693\) 838.021 0.0459362
\(694\) −13347.8 −0.730079
\(695\) 24525.5 1.33857
\(696\) −29176.6 −1.58899
\(697\) −43348.6 −2.35573
\(698\) −20302.6 −1.10095
\(699\) 5354.98 0.289763
\(700\) −6832.00 −0.368894
\(701\) 7511.61 0.404721 0.202361 0.979311i \(-0.435139\pi\)
0.202361 + 0.979311i \(0.435139\pi\)
\(702\) −2542.53 −0.136698
\(703\) 2821.91 0.151394
\(704\) 6880.99 0.368376
\(705\) 39327.4 2.10093
\(706\) −15667.9 −0.835227
\(707\) −5174.73 −0.275270
\(708\) 15700.5 0.833418
\(709\) 22804.6 1.20796 0.603981 0.796999i \(-0.293580\pi\)
0.603981 + 0.796999i \(0.293580\pi\)
\(710\) 1943.59 0.102735
\(711\) −1918.66 −0.101203
\(712\) −8457.06 −0.445143
\(713\) 0 0
\(714\) 5537.92 0.290268
\(715\) 7003.50 0.366316
\(716\) 13434.8 0.701234
\(717\) 3421.63 0.178219
\(718\) −3735.07 −0.194139
\(719\) 16160.7 0.838237 0.419119 0.907931i \(-0.362339\pi\)
0.419119 + 0.907931i \(0.362339\pi\)
\(720\) 783.320 0.0405453
\(721\) 3578.33 0.184832
\(722\) 10353.4 0.533677
\(723\) −23157.4 −1.19120
\(724\) −2190.72 −0.112455
\(725\) 52689.7 2.69910
\(726\) −4043.71 −0.206717
\(727\) 8834.93 0.450715 0.225357 0.974276i \(-0.427645\pi\)
0.225357 + 0.974276i \(0.427645\pi\)
\(728\) 1567.31 0.0797917
\(729\) 14921.5 0.758093
\(730\) 20535.0 1.04114
\(731\) −9254.92 −0.468270
\(732\) −7990.59 −0.403471
\(733\) −30752.6 −1.54962 −0.774812 0.632191i \(-0.782156\pi\)
−0.774812 + 0.632191i \(0.782156\pi\)
\(734\) 14332.5 0.720738
\(735\) 32541.3 1.63306
\(736\) −29433.5 −1.47409
\(737\) 22654.4 1.13227
\(738\) 3221.44 0.160681
\(739\) 23308.8 1.16025 0.580126 0.814527i \(-0.303003\pi\)
0.580126 + 0.814527i \(0.303003\pi\)
\(740\) −13796.1 −0.685344
\(741\) −1471.35 −0.0729439
\(742\) 1773.52 0.0877465
\(743\) 39284.5 1.93971 0.969857 0.243675i \(-0.0783531\pi\)
0.969857 + 0.243675i \(0.0783531\pi\)
\(744\) 0 0
\(745\) −27969.0 −1.37544
\(746\) −18596.3 −0.912681
\(747\) 4150.90 0.203311
\(748\) −17118.2 −0.836770
\(749\) −1187.66 −0.0579387
\(750\) 16052.7 0.781547
\(751\) −970.904 −0.0471755 −0.0235878 0.999722i \(-0.507509\pi\)
−0.0235878 + 0.999722i \(0.507509\pi\)
\(752\) −3219.31 −0.156112
\(753\) −19506.0 −0.944007
\(754\) −4877.61 −0.235586
\(755\) −11412.1 −0.550106
\(756\) −3873.57 −0.186350
\(757\) −31228.7 −1.49937 −0.749687 0.661792i \(-0.769796\pi\)
−0.749687 + 0.661792i \(0.769796\pi\)
\(758\) −9713.21 −0.465435
\(759\) −26546.9 −1.26955
\(760\) 8242.62 0.393410
\(761\) 8553.03 0.407421 0.203710 0.979031i \(-0.434700\pi\)
0.203710 + 0.979031i \(0.434700\pi\)
\(762\) 12444.3 0.591616
\(763\) 3535.20 0.167736
\(764\) 2309.99 0.109388
\(765\) 9689.76 0.457953
\(766\) −12790.4 −0.603310
\(767\) 6504.45 0.306209
\(768\) 20619.7 0.968814
\(769\) −27359.6 −1.28298 −0.641491 0.767131i \(-0.721684\pi\)
−0.641491 + 0.767131i \(0.721684\pi\)
\(770\) −5101.65 −0.238767
\(771\) 11708.5 0.546915
\(772\) −6747.80 −0.314584
\(773\) 28544.1 1.32815 0.664075 0.747666i \(-0.268825\pi\)
0.664075 + 0.747666i \(0.268825\pi\)
\(774\) 687.775 0.0319400
\(775\) 0 0
\(776\) 35710.9 1.65199
\(777\) −4445.57 −0.205256
\(778\) 1167.63 0.0538068
\(779\) −8389.60 −0.385865
\(780\) 7193.33 0.330208
\(781\) −1935.93 −0.0886977
\(782\) −26988.0 −1.23413
\(783\) 29873.7 1.36347
\(784\) −2663.80 −0.121347
\(785\) −16778.6 −0.762870
\(786\) 18727.6 0.849861
\(787\) 7238.19 0.327844 0.163922 0.986473i \(-0.447585\pi\)
0.163922 + 0.986473i \(0.447585\pi\)
\(788\) −12240.8 −0.553376
\(789\) −23725.0 −1.07051
\(790\) 11680.3 0.526033
\(791\) −6526.57 −0.293373
\(792\) 3152.52 0.141439
\(793\) −3310.37 −0.148240
\(794\) −2242.17 −0.100216
\(795\) 20171.4 0.899881
\(796\) −10138.6 −0.451450
\(797\) 2382.93 0.105907 0.0529533 0.998597i \(-0.483137\pi\)
0.0529533 + 0.998597i \(0.483137\pi\)
\(798\) 1071.80 0.0475453
\(799\) −39823.2 −1.76326
\(800\) −41030.9 −1.81333
\(801\) −1924.12 −0.0848757
\(802\) 3253.83 0.143263
\(803\) −20454.0 −0.898888
\(804\) 23268.4 1.02066
\(805\) 16821.8 0.736510
\(806\) 0 0
\(807\) 45058.5 1.96547
\(808\) −19466.6 −0.847566
\(809\) 36709.0 1.59533 0.797664 0.603103i \(-0.206069\pi\)
0.797664 + 0.603103i \(0.206069\pi\)
\(810\) 25025.8 1.08557
\(811\) 12820.2 0.555089 0.277545 0.960713i \(-0.410479\pi\)
0.277545 + 0.960713i \(0.410479\pi\)
\(812\) −7431.09 −0.321158
\(813\) 11416.3 0.492483
\(814\) −6570.38 −0.282914
\(815\) 33525.8 1.44093
\(816\) −5156.02 −0.221197
\(817\) −1791.18 −0.0767017
\(818\) 17418.7 0.744538
\(819\) 356.589 0.0152140
\(820\) 41016.1 1.74676
\(821\) 2939.24 0.124945 0.0624726 0.998047i \(-0.480101\pi\)
0.0624726 + 0.998047i \(0.480101\pi\)
\(822\) −15062.7 −0.639139
\(823\) 4934.62 0.209004 0.104502 0.994525i \(-0.466675\pi\)
0.104502 + 0.994525i \(0.466675\pi\)
\(824\) 13461.2 0.569104
\(825\) −37006.9 −1.56171
\(826\) −4738.12 −0.199589
\(827\) 27381.1 1.15131 0.575656 0.817692i \(-0.304747\pi\)
0.575656 + 0.817692i \(0.304747\pi\)
\(828\) −4194.64 −0.176055
\(829\) 41744.9 1.74893 0.874464 0.485091i \(-0.161214\pi\)
0.874464 + 0.485091i \(0.161214\pi\)
\(830\) −25269.6 −1.05677
\(831\) −2533.79 −0.105772
\(832\) 2927.95 0.122005
\(833\) −32951.5 −1.37059
\(834\) 11996.8 0.498101
\(835\) −16615.9 −0.688643
\(836\) −3313.02 −0.137061
\(837\) 0 0
\(838\) −15113.8 −0.623028
\(839\) 42250.8 1.73857 0.869285 0.494312i \(-0.164580\pi\)
0.869285 + 0.494312i \(0.164580\pi\)
\(840\) −12985.3 −0.533374
\(841\) 32920.9 1.34983
\(842\) −9268.32 −0.379344
\(843\) −37420.6 −1.52887
\(844\) 13600.0 0.554659
\(845\) −37833.0 −1.54023
\(846\) 2959.45 0.120269
\(847\) −2552.25 −0.103538
\(848\) −1651.21 −0.0668667
\(849\) −20662.0 −0.835239
\(850\) −37621.8 −1.51814
\(851\) 21664.7 0.872685
\(852\) −1988.40 −0.0799547
\(853\) −22191.9 −0.890782 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(854\) 2411.42 0.0966241
\(855\) 1875.33 0.0750117
\(856\) −4467.81 −0.178395
\(857\) −5645.37 −0.225020 −0.112510 0.993651i \(-0.535889\pi\)
−0.112510 + 0.993651i \(0.535889\pi\)
\(858\) 3425.82 0.136312
\(859\) −4986.57 −0.198067 −0.0990336 0.995084i \(-0.531575\pi\)
−0.0990336 + 0.995084i \(0.531575\pi\)
\(860\) 8756.93 0.347219
\(861\) 13216.8 0.523144
\(862\) −4513.77 −0.178352
\(863\) 8031.29 0.316788 0.158394 0.987376i \(-0.449368\pi\)
0.158394 + 0.987376i \(0.449368\pi\)
\(864\) −23263.5 −0.916019
\(865\) 41544.8 1.63302
\(866\) 775.558 0.0304325
\(867\) −36028.0 −1.41127
\(868\) 0 0
\(869\) −11634.2 −0.454159
\(870\) 40411.3 1.57479
\(871\) 9639.73 0.375005
\(872\) 13298.9 0.516465
\(873\) 8124.82 0.314987
\(874\) −5223.20 −0.202148
\(875\) 10131.9 0.391451
\(876\) −21008.4 −0.810284
\(877\) −2908.50 −0.111987 −0.0559937 0.998431i \(-0.517833\pi\)
−0.0559937 + 0.998431i \(0.517833\pi\)
\(878\) 16734.7 0.643244
\(879\) 12363.0 0.474394
\(880\) 4749.84 0.181951
\(881\) 15888.0 0.607583 0.303792 0.952739i \(-0.401747\pi\)
0.303792 + 0.952739i \(0.401747\pi\)
\(882\) 2448.78 0.0934861
\(883\) −5411.05 −0.206225 −0.103112 0.994670i \(-0.532880\pi\)
−0.103112 + 0.994670i \(0.532880\pi\)
\(884\) −7284.02 −0.277136
\(885\) −53889.8 −2.04688
\(886\) 19737.4 0.748411
\(887\) 16007.5 0.605952 0.302976 0.952998i \(-0.402020\pi\)
0.302976 + 0.952998i \(0.402020\pi\)
\(888\) −16723.6 −0.631991
\(889\) 7854.44 0.296321
\(890\) 11713.5 0.441167
\(891\) −24927.1 −0.937248
\(892\) −6668.69 −0.250319
\(893\) −7707.29 −0.288818
\(894\) −13681.3 −0.511824
\(895\) −46113.3 −1.72223
\(896\) 6420.83 0.239403
\(897\) −11296.0 −0.420472
\(898\) 22365.6 0.831125
\(899\) 0 0
\(900\) −5847.41 −0.216571
\(901\) −20425.7 −0.755248
\(902\) 19533.9 0.721073
\(903\) 2821.78 0.103990
\(904\) −24552.0 −0.903306
\(905\) 7519.34 0.276189
\(906\) −5582.33 −0.204703
\(907\) −19923.2 −0.729371 −0.364686 0.931131i \(-0.618824\pi\)
−0.364686 + 0.931131i \(0.618824\pi\)
\(908\) 29478.3 1.07739
\(909\) −4428.98 −0.161606
\(910\) −2170.82 −0.0790790
\(911\) −49450.6 −1.79843 −0.899217 0.437504i \(-0.855863\pi\)
−0.899217 + 0.437504i \(0.855863\pi\)
\(912\) −997.884 −0.0362316
\(913\) 25169.9 0.912380
\(914\) −1341.24 −0.0485385
\(915\) 27426.6 0.990925
\(916\) −18425.2 −0.664612
\(917\) 11820.2 0.425668
\(918\) −21330.6 −0.766902
\(919\) 47332.9 1.69898 0.849492 0.527601i \(-0.176908\pi\)
0.849492 + 0.527601i \(0.176908\pi\)
\(920\) 63281.2 2.26774
\(921\) 40409.3 1.44575
\(922\) −20212.2 −0.721966
\(923\) −823.761 −0.0293764
\(924\) 5219.26 0.185824
\(925\) 30201.0 1.07352
\(926\) 25154.9 0.892702
\(927\) 3062.64 0.108512
\(928\) −44628.8 −1.57868
\(929\) −10066.1 −0.355500 −0.177750 0.984076i \(-0.556882\pi\)
−0.177750 + 0.984076i \(0.556882\pi\)
\(930\) 0 0
\(931\) −6377.37 −0.224500
\(932\) 5130.73 0.180325
\(933\) 46170.5 1.62010
\(934\) 9170.48 0.321271
\(935\) 58756.0 2.05511
\(936\) 1341.44 0.0468443
\(937\) −28847.1 −1.00576 −0.502879 0.864357i \(-0.667726\pi\)
−0.502879 + 0.864357i \(0.667726\pi\)
\(938\) −7021.99 −0.244431
\(939\) −3850.57 −0.133822
\(940\) 37680.4 1.30745
\(941\) −3695.91 −0.128037 −0.0640186 0.997949i \(-0.520392\pi\)
−0.0640186 + 0.997949i \(0.520392\pi\)
\(942\) −8207.37 −0.283875
\(943\) −64409.6 −2.22425
\(944\) 4411.38 0.152095
\(945\) 13295.5 0.457675
\(946\) 4170.48 0.143334
\(947\) 21714.1 0.745103 0.372551 0.928012i \(-0.378483\pi\)
0.372551 + 0.928012i \(0.378483\pi\)
\(948\) −11949.6 −0.409393
\(949\) −8703.45 −0.297709
\(950\) −7281.25 −0.248668
\(951\) −2331.88 −0.0795127
\(952\) 13149.0 0.447648
\(953\) −41677.6 −1.41665 −0.708327 0.705885i \(-0.750550\pi\)
−0.708327 + 0.705885i \(0.750550\pi\)
\(954\) 1517.93 0.0515144
\(955\) −7928.72 −0.268657
\(956\) 3278.34 0.110909
\(957\) −40251.9 −1.35962
\(958\) 7963.51 0.268569
\(959\) −9507.06 −0.320124
\(960\) −24258.2 −0.815553
\(961\) 0 0
\(962\) −2795.78 −0.0937002
\(963\) −1016.50 −0.0340148
\(964\) −22187.6 −0.741303
\(965\) 23160.9 0.772618
\(966\) 8228.51 0.274066
\(967\) −19584.9 −0.651300 −0.325650 0.945490i \(-0.605583\pi\)
−0.325650 + 0.945490i \(0.605583\pi\)
\(968\) −9601.21 −0.318796
\(969\) −12343.9 −0.409230
\(970\) −49461.7 −1.63724
\(971\) 1010.41 0.0333941 0.0166971 0.999861i \(-0.494685\pi\)
0.0166971 + 0.999861i \(0.494685\pi\)
\(972\) −7367.36 −0.243115
\(973\) 7571.98 0.249483
\(974\) 2812.10 0.0925106
\(975\) −15746.9 −0.517235
\(976\) −2245.12 −0.0736318
\(977\) −16406.3 −0.537239 −0.268620 0.963246i \(-0.586567\pi\)
−0.268620 + 0.963246i \(0.586567\pi\)
\(978\) 16399.4 0.536192
\(979\) −11667.3 −0.380888
\(980\) 31178.5 1.01629
\(981\) 3025.72 0.0984749
\(982\) −4482.00 −0.145648
\(983\) 12466.3 0.404490 0.202245 0.979335i \(-0.435176\pi\)
0.202245 + 0.979335i \(0.435176\pi\)
\(984\) 49719.7 1.61078
\(985\) 42014.9 1.35909
\(986\) −40920.8 −1.32169
\(987\) 12141.9 0.391572
\(988\) −1409.73 −0.0453943
\(989\) −13751.4 −0.442133
\(990\) −4366.43 −0.140176
\(991\) 3191.96 0.102317 0.0511585 0.998691i \(-0.483709\pi\)
0.0511585 + 0.998691i \(0.483709\pi\)
\(992\) 0 0
\(993\) 16301.6 0.520964
\(994\) 600.063 0.0191477
\(995\) 34799.5 1.10876
\(996\) 25852.1 0.822446
\(997\) 29381.1 0.933310 0.466655 0.884439i \(-0.345459\pi\)
0.466655 + 0.884439i \(0.345459\pi\)
\(998\) −17281.6 −0.548136
\(999\) 17123.2 0.542297
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.i.1.5 14
31.2 even 5 31.4.d.a.4.3 28
31.16 even 5 31.4.d.a.8.3 yes 28
31.30 odd 2 961.4.a.j.1.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.d.a.4.3 28 31.2 even 5
31.4.d.a.8.3 yes 28 31.16 even 5
961.4.a.i.1.5 14 1.1 even 1 trivial
961.4.a.j.1.5 14 31.30 odd 2