Properties

Label 961.2.g.l.846.1
Level $961$
Weight $2$
Character 961.846
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,12,-14,-3,-11,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 846.1
Root \(2.16544i\) of defining polynomial
Character \(\chi\) \(=\) 961.846
Dual form 961.2.g.l.844.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.571745 + 1.75965i) q^{2} +(0.488442 + 0.103822i) q^{3} +(-1.15144 - 0.836573i) q^{4} +(-0.603681 - 1.04561i) q^{5} +(-0.461954 + 0.800128i) q^{6} +(3.41030 - 1.51837i) q^{7} +(-0.863288 + 0.627215i) q^{8} +(-2.51284 - 1.11879i) q^{9} +(2.18505 - 0.464447i) q^{10} +(-0.194058 + 1.84634i) q^{11} +(-0.475560 - 0.528162i) q^{12} +(3.46909 - 3.85281i) q^{13} +(0.721967 + 6.86906i) q^{14} +(-0.186307 - 0.573393i) q^{15} +(-1.48972 - 4.58490i) q^{16} +(-0.592413 - 5.63643i) q^{17} +(3.40538 - 3.78206i) q^{18} +(-0.962535 - 1.06900i) q^{19} +(-0.179621 + 1.70898i) q^{20} +(1.82338 - 0.387571i) q^{21} +(-3.13796 - 1.39711i) q^{22} +(-2.86762 + 2.08345i) q^{23} +(-0.486785 + 0.216731i) q^{24} +(1.77114 - 3.06770i) q^{25} +(4.79617 + 8.30721i) q^{26} +(-2.32318 - 1.68789i) q^{27} +(-5.19700 - 1.10466i) q^{28} +(-0.424157 + 1.30542i) q^{29} +1.11549 q^{30} +6.78540 q^{32} +(-0.286476 + 0.881683i) q^{33} +(10.2569 + 2.18016i) q^{34} +(-3.64635 - 2.64923i) q^{35} +(1.95745 + 3.39040i) q^{36} +(2.25141 - 3.89955i) q^{37} +(2.43140 - 1.08253i) q^{38} +(2.09445 - 1.52171i) q^{39} +(1.17697 + 0.524021i) q^{40} +(4.61599 - 0.981158i) q^{41} +(-0.360518 + 3.43010i) q^{42} +(-4.38897 - 4.87445i) q^{43} +(1.76804 - 1.96361i) q^{44} +(0.347141 + 3.30283i) q^{45} +(-2.02659 - 6.23721i) q^{46} +(-1.30682 - 4.02199i) q^{47} +(-0.251633 - 2.39412i) q^{48} +(4.64083 - 5.15416i) q^{49} +(4.38545 + 4.87053i) q^{50} +(0.295824 - 2.81458i) q^{51} +(-7.21762 + 1.53415i) q^{52} +(11.8426 + 5.27265i) q^{53} +(4.29836 - 3.12294i) q^{54} +(2.04769 - 0.911691i) q^{55} +(-1.99173 + 3.44978i) q^{56} +(-0.359157 - 0.622078i) q^{57} +(-2.05458 - 1.49274i) q^{58} +(2.13389 + 0.453572i) q^{59} +(-0.265164 + 0.816089i) q^{60} +2.68087 q^{61} -10.2683 q^{63} +(-0.900071 + 2.77013i) q^{64} +(-6.12274 - 1.30143i) q^{65} +(-1.38766 - 1.00820i) q^{66} +(-1.44150 - 2.49675i) q^{67} +(-4.03315 + 6.98563i) q^{68} +(-1.61697 + 0.719924i) q^{69} +(6.74649 - 4.90161i) q^{70} +(8.22340 + 3.66129i) q^{71} +(2.87102 - 0.610255i) q^{72} +(-0.439443 + 4.18102i) q^{73} +(5.57462 + 6.19124i) q^{74} +(1.18359 - 1.31451i) q^{75} +(0.214006 + 2.03613i) q^{76} +(2.14162 + 6.59123i) q^{77} +(1.48018 + 4.55554i) q^{78} +(1.17403 + 11.1702i) q^{79} +(-3.89468 + 4.32548i) q^{80} +(4.56212 + 5.06675i) q^{81} +(-0.912672 + 8.68350i) q^{82} +(-10.2485 + 2.17838i) q^{83} +(-2.42375 - 1.07912i) q^{84} +(-5.53585 + 4.02203i) q^{85} +(11.0867 - 4.93612i) q^{86} +(-0.342708 + 0.593587i) q^{87} +(-0.990524 - 1.71564i) q^{88} +(-2.18575 - 1.58804i) q^{89} +(-6.01030 - 1.27753i) q^{90} +(5.98067 - 18.4066i) q^{91} +5.04486 q^{92} +7.82446 q^{94} +(-0.536692 + 1.65177i) q^{95} +(3.31428 + 0.704471i) q^{96} +(6.70942 + 4.87468i) q^{97} +(6.41615 + 11.1131i) q^{98} +(2.55330 - 4.42244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 12 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} + 17 q^{8} - 10 q^{9} - 2 q^{10} + 7 q^{11} - 5 q^{12} + 7 q^{13} - 6 q^{14} - 14 q^{15} - 2 q^{16} + 6 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571745 + 1.75965i −0.404285 + 1.24426i 0.517206 + 0.855861i \(0.326972\pi\)
−0.921491 + 0.388400i \(0.873028\pi\)
\(3\) 0.488442 + 0.103822i 0.282002 + 0.0599414i 0.346741 0.937961i \(-0.387288\pi\)
−0.0647390 + 0.997902i \(0.520621\pi\)
\(4\) −1.15144 0.836573i −0.575722 0.418287i
\(5\) −0.603681 1.04561i −0.269974 0.467609i 0.698881 0.715238i \(-0.253682\pi\)
−0.968855 + 0.247629i \(0.920349\pi\)
\(6\) −0.461954 + 0.800128i −0.188592 + 0.326651i
\(7\) 3.41030 1.51837i 1.28897 0.573888i 0.356220 0.934402i \(-0.384065\pi\)
0.932754 + 0.360514i \(0.117399\pi\)
\(8\) −0.863288 + 0.627215i −0.305218 + 0.221754i
\(9\) −2.51284 1.11879i −0.837613 0.372929i
\(10\) 2.18505 0.464447i 0.690974 0.146871i
\(11\) −0.194058 + 1.84634i −0.0585107 + 0.556692i 0.925521 + 0.378697i \(0.123628\pi\)
−0.984031 + 0.177995i \(0.943039\pi\)
\(12\) −0.475560 0.528162i −0.137282 0.152467i
\(13\) 3.46909 3.85281i 0.962152 1.06858i −0.0354505 0.999371i \(-0.511287\pi\)
0.997602 0.0692065i \(-0.0220467\pi\)
\(14\) 0.721967 + 6.86906i 0.192954 + 1.83583i
\(15\) −0.186307 0.573393i −0.0481042 0.148049i
\(16\) −1.48972 4.58490i −0.372431 1.14622i
\(17\) −0.592413 5.63643i −0.143681 1.36703i −0.794252 0.607589i \(-0.792137\pi\)
0.650571 0.759446i \(-0.274530\pi\)
\(18\) 3.40538 3.78206i 0.802656 0.891440i
\(19\) −0.962535 1.06900i −0.220821 0.245246i 0.622548 0.782582i \(-0.286098\pi\)
−0.843369 + 0.537335i \(0.819431\pi\)
\(20\) −0.179621 + 1.70898i −0.0401645 + 0.382139i
\(21\) 1.82338 0.387571i 0.397893 0.0845748i
\(22\) −3.13796 1.39711i −0.669015 0.297865i
\(23\) −2.86762 + 2.08345i −0.597940 + 0.434429i −0.845147 0.534534i \(-0.820487\pi\)
0.247207 + 0.968963i \(0.420487\pi\)
\(24\) −0.486785 + 0.216731i −0.0993645 + 0.0442399i
\(25\) 1.77114 3.06770i 0.354228 0.613541i
\(26\) 4.79617 + 8.30721i 0.940606 + 1.62918i
\(27\) −2.32318 1.68789i −0.447096 0.324835i
\(28\) −5.19700 1.10466i −0.982140 0.208760i
\(29\) −0.424157 + 1.30542i −0.0787641 + 0.242411i −0.982684 0.185292i \(-0.940677\pi\)
0.903919 + 0.427703i \(0.140677\pi\)
\(30\) 1.11549 0.203660
\(31\) 0 0
\(32\) 6.78540 1.19950
\(33\) −0.286476 + 0.881683i −0.0498691 + 0.153481i
\(34\) 10.2569 + 2.18016i 1.75904 + 0.373895i
\(35\) −3.64635 2.64923i −0.616345 0.447801i
\(36\) 1.95745 + 3.39040i 0.326241 + 0.565066i
\(37\) 2.25141 3.89955i 0.370129 0.641082i −0.619456 0.785031i \(-0.712647\pi\)
0.989585 + 0.143949i \(0.0459801\pi\)
\(38\) 2.43140 1.08253i 0.394425 0.175609i
\(39\) 2.09445 1.52171i 0.335381 0.243669i
\(40\) 1.17697 + 0.524021i 0.186095 + 0.0828550i
\(41\) 4.61599 0.981158i 0.720896 0.153231i 0.167168 0.985928i \(-0.446538\pi\)
0.553728 + 0.832697i \(0.313205\pi\)
\(42\) −0.360518 + 3.43010i −0.0556291 + 0.529275i
\(43\) −4.38897 4.87445i −0.669312 0.743347i 0.308868 0.951105i \(-0.400050\pi\)
−0.978180 + 0.207758i \(0.933383\pi\)
\(44\) 1.76804 1.96361i 0.266543 0.296026i
\(45\) 0.347141 + 3.30283i 0.0517488 + 0.492357i
\(46\) −2.02659 6.23721i −0.298805 0.919627i
\(47\) −1.30682 4.02199i −0.190620 0.586667i 0.809380 0.587285i \(-0.199803\pi\)
−1.00000 0.000618100i \(0.999803\pi\)
\(48\) −0.251633 2.39412i −0.0363200 0.345562i
\(49\) 4.64083 5.15416i 0.662975 0.736308i
\(50\) 4.38545 + 4.87053i 0.620196 + 0.688797i
\(51\) 0.295824 2.81458i 0.0414236 0.394119i
\(52\) −7.21762 + 1.53415i −1.00090 + 0.212749i
\(53\) 11.8426 + 5.27265i 1.62670 + 0.724254i 0.998550 0.0538363i \(-0.0171449\pi\)
0.628152 + 0.778091i \(0.283812\pi\)
\(54\) 4.29836 3.12294i 0.584933 0.424979i
\(55\) 2.04769 0.911691i 0.276111 0.122932i
\(56\) −1.99173 + 3.44978i −0.266156 + 0.460996i
\(57\) −0.359157 0.622078i −0.0475715 0.0823963i
\(58\) −2.05458 1.49274i −0.269779 0.196006i
\(59\) 2.13389 + 0.453572i 0.277808 + 0.0590500i 0.344709 0.938710i \(-0.387978\pi\)
−0.0669005 + 0.997760i \(0.521311\pi\)
\(60\) −0.265164 + 0.816089i −0.0342325 + 0.105357i
\(61\) 2.68087 0.343251 0.171625 0.985162i \(-0.445098\pi\)
0.171625 + 0.985162i \(0.445098\pi\)
\(62\) 0 0
\(63\) −10.2683 −1.29368
\(64\) −0.900071 + 2.77013i −0.112509 + 0.346267i
\(65\) −6.12274 1.30143i −0.759433 0.161422i
\(66\) −1.38766 1.00820i −0.170809 0.124100i
\(67\) −1.44150 2.49675i −0.176107 0.305027i 0.764437 0.644699i \(-0.223017\pi\)
−0.940544 + 0.339672i \(0.889684\pi\)
\(68\) −4.03315 + 6.98563i −0.489092 + 0.847132i
\(69\) −1.61697 + 0.719924i −0.194661 + 0.0866686i
\(70\) 6.74649 4.90161i 0.806360 0.585855i
\(71\) 8.22340 + 3.66129i 0.975938 + 0.434516i 0.831820 0.555045i \(-0.187299\pi\)
0.144118 + 0.989561i \(0.453966\pi\)
\(72\) 2.87102 0.610255i 0.338353 0.0719192i
\(73\) −0.439443 + 4.18102i −0.0514329 + 0.489352i 0.938238 + 0.345991i \(0.112457\pi\)
−0.989671 + 0.143360i \(0.954209\pi\)
\(74\) 5.57462 + 6.19124i 0.648036 + 0.719717i
\(75\) 1.18359 1.31451i 0.136670 0.151787i
\(76\) 0.214006 + 2.03613i 0.0245481 + 0.233560i
\(77\) 2.14162 + 6.59123i 0.244060 + 0.751140i
\(78\) 1.48018 + 4.55554i 0.167598 + 0.515813i
\(79\) 1.17403 + 11.1702i 0.132089 + 1.25674i 0.836903 + 0.547351i \(0.184364\pi\)
−0.704814 + 0.709392i \(0.748970\pi\)
\(80\) −3.89468 + 4.32548i −0.435438 + 0.483603i
\(81\) 4.56212 + 5.06675i 0.506902 + 0.562972i
\(82\) −0.912672 + 8.68350i −0.100788 + 0.958932i
\(83\) −10.2485 + 2.17838i −1.12492 + 0.239108i −0.732558 0.680704i \(-0.761674\pi\)
−0.392358 + 0.919813i \(0.628341\pi\)
\(84\) −2.42375 1.07912i −0.264452 0.117742i
\(85\) −5.53585 + 4.02203i −0.600448 + 0.436251i
\(86\) 11.0867 4.93612i 1.19551 0.532275i
\(87\) −0.342708 + 0.593587i −0.0367421 + 0.0636392i
\(88\) −0.990524 1.71564i −0.105590 0.182888i
\(89\) −2.18575 1.58804i −0.231689 0.168332i 0.465884 0.884846i \(-0.345737\pi\)
−0.697573 + 0.716514i \(0.745737\pi\)
\(90\) −6.01030 1.27753i −0.633542 0.134663i
\(91\) 5.98067 18.4066i 0.626944 1.92954i
\(92\) 5.04486 0.525963
\(93\) 0 0
\(94\) 7.82446 0.807031
\(95\) −0.536692 + 1.65177i −0.0550635 + 0.169468i
\(96\) 3.31428 + 0.704471i 0.338262 + 0.0718998i
\(97\) 6.70942 + 4.87468i 0.681239 + 0.494949i 0.873768 0.486342i \(-0.161669\pi\)
−0.192530 + 0.981291i \(0.561669\pi\)
\(98\) 6.41615 + 11.1131i 0.648129 + 1.12259i
\(99\) 2.55330 4.42244i 0.256616 0.444472i
\(100\) −4.60573 + 2.05060i −0.460573 + 0.205060i
\(101\) −1.29317 + 0.939541i −0.128675 + 0.0934879i −0.650261 0.759711i \(-0.725341\pi\)
0.521586 + 0.853199i \(0.325341\pi\)
\(102\) 4.78353 + 2.12977i 0.473640 + 0.210878i
\(103\) −17.9078 + 3.80641i −1.76451 + 0.375057i −0.972032 0.234849i \(-0.924540\pi\)
−0.792474 + 0.609906i \(0.791207\pi\)
\(104\) −0.578278 + 5.50195i −0.0567048 + 0.539511i
\(105\) −1.50598 1.67256i −0.146969 0.163225i
\(106\) −16.0490 + 17.8242i −1.55881 + 1.73124i
\(107\) −1.20995 11.5119i −0.116970 1.11289i −0.882767 0.469812i \(-0.844322\pi\)
0.765797 0.643083i \(-0.222345\pi\)
\(108\) 1.26297 + 3.88702i 0.121529 + 0.374029i
\(109\) 0.430552 + 1.32510i 0.0412394 + 0.126922i 0.969557 0.244867i \(-0.0787444\pi\)
−0.928317 + 0.371789i \(0.878744\pi\)
\(110\) 0.433500 + 4.12448i 0.0413326 + 0.393254i
\(111\) 1.50454 1.67096i 0.142805 0.158601i
\(112\) −12.0420 13.3740i −1.13786 1.26372i
\(113\) 0.340299 3.23773i 0.0320126 0.304580i −0.966786 0.255586i \(-0.917732\pi\)
0.998799 0.0489943i \(-0.0156016\pi\)
\(114\) 1.29999 0.276321i 0.121755 0.0258798i
\(115\) 3.90959 + 1.74066i 0.364571 + 0.162318i
\(116\) 1.58047 1.14828i 0.146743 0.106615i
\(117\) −13.0277 + 5.80032i −1.20442 + 0.536240i
\(118\) −2.01817 + 3.49557i −0.185787 + 0.321793i
\(119\) −10.5785 18.3224i −0.969726 1.67961i
\(120\) 0.520477 + 0.378149i 0.0475129 + 0.0345201i
\(121\) 7.38831 + 1.57043i 0.671665 + 0.142767i
\(122\) −1.53278 + 4.71740i −0.138771 + 0.427093i
\(123\) 2.35651 0.212479
\(124\) 0 0
\(125\) −10.3136 −0.922478
\(126\) 5.87084 18.0686i 0.523016 1.60968i
\(127\) 9.38184 + 1.99417i 0.832504 + 0.176954i 0.604398 0.796682i \(-0.293414\pi\)
0.228105 + 0.973636i \(0.426747\pi\)
\(128\) 6.61915 + 4.80909i 0.585056 + 0.425068i
\(129\) −1.63769 2.83656i −0.144190 0.249745i
\(130\) 5.79071 10.0298i 0.507879 0.879672i
\(131\) −10.4986 + 4.67429i −0.917269 + 0.408395i −0.810399 0.585878i \(-0.800750\pi\)
−0.106870 + 0.994273i \(0.534083\pi\)
\(132\) 1.06745 0.775550i 0.0929099 0.0675030i
\(133\) −4.90567 2.18415i −0.425376 0.189390i
\(134\) 5.21758 1.10903i 0.450730 0.0958057i
\(135\) −0.362408 + 3.44808i −0.0311911 + 0.296763i
\(136\) 4.04668 + 4.49429i 0.347000 + 0.385382i
\(137\) 10.5641 11.7326i 0.902548 1.00238i −0.0974262 0.995243i \(-0.531061\pi\)
0.999975 0.00713873i \(-0.00227235\pi\)
\(138\) −0.342316 3.25692i −0.0291399 0.277248i
\(139\) 3.15460 + 9.70886i 0.267570 + 0.823494i 0.991090 + 0.133192i \(0.0425226\pi\)
−0.723521 + 0.690303i \(0.757477\pi\)
\(140\) 1.98229 + 6.10087i 0.167534 + 0.515618i
\(141\) −0.220738 2.10018i −0.0185895 0.176867i
\(142\) −11.1443 + 12.3770i −0.935208 + 1.03865i
\(143\) 6.44040 + 7.15278i 0.538573 + 0.598146i
\(144\) −1.38609 + 13.1878i −0.115508 + 1.09898i
\(145\) 1.62101 0.344557i 0.134618 0.0286139i
\(146\) −7.10589 3.16374i −0.588087 0.261833i
\(147\) 2.80189 2.03569i 0.231096 0.167901i
\(148\) −5.85463 + 2.60665i −0.481247 + 0.214265i
\(149\) −1.91033 + 3.30879i −0.156501 + 0.271067i −0.933604 0.358305i \(-0.883355\pi\)
0.777104 + 0.629372i \(0.216688\pi\)
\(150\) 1.63637 + 2.83428i 0.133609 + 0.231418i
\(151\) −7.17402 5.21223i −0.583814 0.424166i 0.256283 0.966602i \(-0.417502\pi\)
−0.840097 + 0.542436i \(0.817502\pi\)
\(152\) 1.50144 + 0.319141i 0.121783 + 0.0258857i
\(153\) −4.81733 + 14.8262i −0.389458 + 1.19863i
\(154\) −12.8227 −1.03328
\(155\) 0 0
\(156\) −3.68467 −0.295010
\(157\) −1.59982 + 4.92372i −0.127679 + 0.392956i −0.994380 0.105873i \(-0.966236\pi\)
0.866701 + 0.498829i \(0.166236\pi\)
\(158\) −20.3269 4.32061i −1.61712 0.343729i
\(159\) 5.23700 + 3.80490i 0.415321 + 0.301748i
\(160\) −4.09621 7.09485i −0.323834 0.560897i
\(161\) −6.61602 + 11.4593i −0.521416 + 0.903119i
\(162\) −11.5241 + 5.13085i −0.905417 + 0.403118i
\(163\) −0.448015 + 0.325502i −0.0350912 + 0.0254953i −0.605193 0.796079i \(-0.706904\pi\)
0.570101 + 0.821574i \(0.306904\pi\)
\(164\) −6.13586 2.73186i −0.479130 0.213323i
\(165\) 1.09483 0.232714i 0.0852326 0.0181168i
\(166\) 2.02633 19.2792i 0.157274 1.49636i
\(167\) −1.33693 1.48481i −0.103454 0.114898i 0.689194 0.724577i \(-0.257965\pi\)
−0.792648 + 0.609679i \(0.791298\pi\)
\(168\) −1.33101 + 1.47823i −0.102689 + 0.114048i
\(169\) −1.45072 13.8027i −0.111594 1.06175i
\(170\) −3.91228 12.0407i −0.300058 0.923483i
\(171\) 1.22271 + 3.76311i 0.0935028 + 0.287772i
\(172\) 0.975825 + 9.28435i 0.0744060 + 0.707925i
\(173\) −2.71506 + 3.01538i −0.206422 + 0.229255i −0.837462 0.546495i \(-0.815962\pi\)
0.631040 + 0.775750i \(0.282628\pi\)
\(174\) −0.848564 0.942426i −0.0643295 0.0714451i
\(175\) 1.38223 13.1510i 0.104487 0.994125i
\(176\) 8.75437 1.86080i 0.659886 0.140263i
\(177\) 0.995190 + 0.443087i 0.0748030 + 0.0333045i
\(178\) 4.04409 2.93820i 0.303117 0.220227i
\(179\) 3.62117 1.61225i 0.270659 0.120505i −0.266920 0.963719i \(-0.586006\pi\)
0.537579 + 0.843214i \(0.319339\pi\)
\(180\) 2.36334 4.09343i 0.176153 0.305106i
\(181\) 3.19871 + 5.54033i 0.237758 + 0.411809i 0.960071 0.279757i \(-0.0902541\pi\)
−0.722312 + 0.691567i \(0.756921\pi\)
\(182\) 28.9698 + 21.0478i 2.14738 + 1.56016i
\(183\) 1.30945 + 0.278333i 0.0967975 + 0.0205749i
\(184\) 1.16881 3.59723i 0.0861659 0.265191i
\(185\) −5.43652 −0.399701
\(186\) 0 0
\(187\) 10.5217 0.769425
\(188\) −1.85995 + 5.72434i −0.135651 + 0.417491i
\(189\) −10.4856 2.22878i −0.762714 0.162120i
\(190\) −2.59968 1.88878i −0.188601 0.137027i
\(191\) −5.81282 10.0681i −0.420601 0.728502i 0.575398 0.817874i \(-0.304847\pi\)
−0.995998 + 0.0893720i \(0.971514\pi\)
\(192\) −0.727233 + 1.25960i −0.0524835 + 0.0909041i
\(193\) 12.3726 5.50865i 0.890602 0.396521i 0.0901566 0.995928i \(-0.471263\pi\)
0.800445 + 0.599406i \(0.204597\pi\)
\(194\) −12.4138 + 9.01917i −0.891260 + 0.647538i
\(195\) −2.85549 1.27135i −0.204486 0.0910430i
\(196\) −9.65548 + 2.05234i −0.689677 + 0.146595i
\(197\) 2.44642 23.2761i 0.174300 1.65835i −0.461977 0.886892i \(-0.652860\pi\)
0.636277 0.771461i \(-0.280474\pi\)
\(198\) 6.32212 + 7.02143i 0.449294 + 0.498991i
\(199\) −4.41490 + 4.90324i −0.312964 + 0.347582i −0.879020 0.476785i \(-0.841802\pi\)
0.566056 + 0.824367i \(0.308469\pi\)
\(200\) 0.395107 + 3.75920i 0.0279383 + 0.265815i
\(201\) −0.444873 1.36918i −0.0313789 0.0965744i
\(202\) −0.913902 2.81270i −0.0643019 0.197901i
\(203\) 0.535602 + 5.09591i 0.0375919 + 0.357663i
\(204\) −2.69522 + 2.99335i −0.188703 + 0.209576i
\(205\) −3.81249 4.23420i −0.266276 0.295729i
\(206\) 3.54072 33.6877i 0.246694 2.34714i
\(207\) 9.53681 2.02711i 0.662854 0.140894i
\(208\) −22.8327 10.1658i −1.58317 0.704871i
\(209\) 2.16053 1.56972i 0.149447 0.108580i
\(210\) 3.80417 1.69372i 0.262512 0.116878i
\(211\) 9.68254 16.7707i 0.666574 1.15454i −0.312283 0.949989i \(-0.601094\pi\)
0.978856 0.204550i \(-0.0655731\pi\)
\(212\) −9.22510 15.9783i −0.633582 1.09740i
\(213\) 3.63654 + 2.64210i 0.249171 + 0.181034i
\(214\) 20.9486 + 4.45277i 1.43202 + 0.304385i
\(215\) −2.44721 + 7.53175i −0.166899 + 0.513661i
\(216\) 3.06424 0.208495
\(217\) 0 0
\(218\) −2.57788 −0.174596
\(219\) −0.648723 + 1.99656i −0.0438366 + 0.134915i
\(220\) −3.12050 0.663283i −0.210384 0.0447185i
\(221\) −23.7712 17.2708i −1.59903 1.16176i
\(222\) 2.08009 + 3.60283i 0.139607 + 0.241806i
\(223\) 3.52986 6.11389i 0.236377 0.409416i −0.723295 0.690539i \(-0.757373\pi\)
0.959672 + 0.281123i \(0.0907067\pi\)
\(224\) 23.1403 10.3027i 1.54612 0.688379i
\(225\) −7.88270 + 5.72712i −0.525513 + 0.381808i
\(226\) 5.50271 + 2.44996i 0.366035 + 0.162969i
\(227\) 8.82270 1.87532i 0.585583 0.124470i 0.0944130 0.995533i \(-0.469903\pi\)
0.491170 + 0.871064i \(0.336569\pi\)
\(228\) −0.106865 + 1.01675i −0.00707729 + 0.0673359i
\(229\) −12.0135 13.3423i −0.793872 0.881684i 0.201330 0.979523i \(-0.435473\pi\)
−0.995202 + 0.0978395i \(0.968807\pi\)
\(230\) −5.29825 + 5.88430i −0.349356 + 0.387999i
\(231\) 0.361746 + 3.44178i 0.0238011 + 0.226453i
\(232\) −0.452611 1.39299i −0.0297154 0.0914545i
\(233\) 4.21725 + 12.9793i 0.276281 + 0.850305i 0.988878 + 0.148731i \(0.0475190\pi\)
−0.712597 + 0.701574i \(0.752481\pi\)
\(234\) −2.75800 26.2406i −0.180296 1.71540i
\(235\) −3.41651 + 3.79442i −0.222868 + 0.247520i
\(236\) −2.07760 2.30741i −0.135241 0.150200i
\(237\) −0.586258 + 5.57788i −0.0380816 + 0.362322i
\(238\) 38.2893 8.13864i 2.48192 0.527549i
\(239\) 8.99955 + 4.00686i 0.582132 + 0.259182i 0.676606 0.736345i \(-0.263450\pi\)
−0.0944736 + 0.995527i \(0.530117\pi\)
\(240\) −2.35140 + 1.70840i −0.151783 + 0.110276i
\(241\) 6.09318 2.71286i 0.392496 0.174751i −0.200993 0.979593i \(-0.564417\pi\)
0.593489 + 0.804842i \(0.297750\pi\)
\(242\) −6.98765 + 12.1030i −0.449183 + 0.778008i
\(243\) 6.00971 + 10.4091i 0.385523 + 0.667746i
\(244\) −3.08688 2.24275i −0.197617 0.143577i
\(245\) −8.19079 1.74101i −0.523291 0.111229i
\(246\) −1.34732 + 4.14663i −0.0859021 + 0.264380i
\(247\) −7.45779 −0.474528
\(248\) 0 0
\(249\) −5.23195 −0.331562
\(250\) 5.89676 18.1484i 0.372944 1.14780i
\(251\) −28.6773 6.09555i −1.81010 0.384748i −0.826183 0.563402i \(-0.809492\pi\)
−0.983912 + 0.178654i \(0.942826\pi\)
\(252\) 11.8233 + 8.59016i 0.744801 + 0.541129i
\(253\) −3.29027 5.69891i −0.206857 0.358288i
\(254\) −8.87307 + 15.3686i −0.556746 + 0.964312i
\(255\) −3.12152 + 1.38979i −0.195477 + 0.0870320i
\(256\) −16.9596 + 12.3219i −1.05998 + 0.770118i
\(257\) −21.8780 9.74073i −1.36471 0.607610i −0.411919 0.911221i \(-0.635141\pi\)
−0.952796 + 0.303610i \(0.901808\pi\)
\(258\) 5.92769 1.25997i 0.369042 0.0784423i
\(259\) 1.75704 16.7171i 0.109177 1.03875i
\(260\) 5.96126 + 6.62065i 0.369701 + 0.410595i
\(261\) 2.52633 2.80577i 0.156376 0.173673i
\(262\) −2.22258 21.1464i −0.137311 1.30643i
\(263\) −1.21883 3.75119i −0.0751566 0.231308i 0.906420 0.422378i \(-0.138804\pi\)
−0.981577 + 0.191070i \(0.938804\pi\)
\(264\) −0.305694 0.940828i −0.0188141 0.0579040i
\(265\) −1.63602 15.5657i −0.100500 0.956191i
\(266\) 6.64813 7.38350i 0.407623 0.452711i
\(267\) −0.902740 1.00259i −0.0552468 0.0613578i
\(268\) −0.428908 + 4.08079i −0.0261997 + 0.249274i
\(269\) 12.4736 2.65134i 0.760527 0.161655i 0.188706 0.982034i \(-0.439571\pi\)
0.571821 + 0.820379i \(0.306237\pi\)
\(270\) −5.86021 2.60913i −0.356641 0.158787i
\(271\) −2.68805 + 1.95298i −0.163287 + 0.118635i −0.666428 0.745569i \(-0.732178\pi\)
0.503141 + 0.864204i \(0.332178\pi\)
\(272\) −24.9599 + 11.1129i −1.51342 + 0.673817i
\(273\) 4.83221 8.36964i 0.292459 0.506554i
\(274\) 14.6053 + 25.2971i 0.882337 + 1.52825i
\(275\) 5.32032 + 3.86544i 0.320827 + 0.233095i
\(276\) 2.46412 + 0.523766i 0.148323 + 0.0315270i
\(277\) −6.49451 + 19.9880i −0.390217 + 1.20096i 0.542407 + 0.840116i \(0.317513\pi\)
−0.932624 + 0.360849i \(0.882487\pi\)
\(278\) −18.8878 −1.13282
\(279\) 0 0
\(280\) 4.80948 0.287421
\(281\) −2.89451 + 8.90839i −0.172672 + 0.531430i −0.999519 0.0309964i \(-0.990132\pi\)
0.826847 + 0.562426i \(0.190132\pi\)
\(282\) 3.82180 + 0.812348i 0.227585 + 0.0483746i
\(283\) 8.19788 + 5.95611i 0.487313 + 0.354054i 0.804150 0.594426i \(-0.202621\pi\)
−0.316837 + 0.948480i \(0.602621\pi\)
\(284\) −6.40585 11.0953i −0.380117 0.658382i
\(285\) −0.433632 + 0.751074i −0.0256862 + 0.0444898i
\(286\) −16.2687 + 7.24328i −0.961986 + 0.428304i
\(287\) 14.2522 10.3548i 0.841278 0.611225i
\(288\) −17.0506 7.59142i −1.00472 0.447329i
\(289\) −14.7899 + 3.14368i −0.869992 + 0.184923i
\(290\) −0.320506 + 3.04942i −0.0188208 + 0.179068i
\(291\) 2.77107 + 3.07758i 0.162443 + 0.180411i
\(292\) 4.00372 4.44659i 0.234300 0.260217i
\(293\) 2.22333 + 21.1536i 0.129888 + 1.23581i 0.844220 + 0.535997i \(0.180064\pi\)
−0.714331 + 0.699808i \(0.753269\pi\)
\(294\) 1.98014 + 6.09424i 0.115484 + 0.355423i
\(295\) −0.813929 2.50502i −0.0473888 0.145848i
\(296\) 0.502246 + 4.77855i 0.0291925 + 0.277748i
\(297\) 3.56725 3.96183i 0.206993 0.229889i
\(298\) −4.73010 5.25331i −0.274007 0.304316i
\(299\) −1.92089 + 18.2761i −0.111088 + 1.05693i
\(300\) −2.46253 + 0.523426i −0.142174 + 0.0302200i
\(301\) −22.3689 9.95929i −1.28932 0.574044i
\(302\) 13.2734 9.64371i 0.763800 0.554933i
\(303\) −0.729183 + 0.324653i −0.0418904 + 0.0186508i
\(304\) −3.46736 + 6.00565i −0.198867 + 0.344447i
\(305\) −1.61839 2.80314i −0.0926688 0.160507i
\(306\) −23.3347 16.9536i −1.33396 0.969175i
\(307\) −15.8863 3.37674i −0.906680 0.192721i −0.269107 0.963110i \(-0.586728\pi\)
−0.637573 + 0.770390i \(0.720062\pi\)
\(308\) 3.04809 9.38105i 0.173681 0.534535i
\(309\) −9.14210 −0.520076
\(310\) 0 0
\(311\) −10.3858 −0.588924 −0.294462 0.955663i \(-0.595141\pi\)
−0.294462 + 0.955663i \(0.595141\pi\)
\(312\) −0.853677 + 2.62735i −0.0483299 + 0.148744i
\(313\) 31.3434 + 6.66226i 1.77164 + 0.376573i 0.973997 0.226561i \(-0.0727484\pi\)
0.797640 + 0.603134i \(0.206082\pi\)
\(314\) −7.74935 5.63023i −0.437321 0.317732i
\(315\) 6.19876 + 10.7366i 0.349261 + 0.604937i
\(316\) 7.99283 13.8440i 0.449632 0.778786i
\(317\) 23.1261 10.2964i 1.29889 0.578304i 0.363395 0.931635i \(-0.381618\pi\)
0.935498 + 0.353331i \(0.114951\pi\)
\(318\) −9.68952 + 7.03985i −0.543361 + 0.394775i
\(319\) −2.32794 1.03647i −0.130340 0.0580310i
\(320\) 3.43982 0.731157i 0.192292 0.0408729i
\(321\) 0.604192 5.74850i 0.0337227 0.320850i
\(322\) −16.3817 18.1937i −0.912915 1.01389i
\(323\) −5.45514 + 6.05855i −0.303532 + 0.337107i
\(324\) −1.01432 9.65063i −0.0563512 0.536146i
\(325\) −5.67505 17.4660i −0.314795 0.968839i
\(326\) −0.316619 0.974453i −0.0175359 0.0539700i
\(327\) 0.0727254 + 0.691936i 0.00402173 + 0.0382642i
\(328\) −3.36953 + 3.74224i −0.186051 + 0.206631i
\(329\) −10.5635 11.7320i −0.582385 0.646804i
\(330\) −0.216470 + 2.05958i −0.0119163 + 0.113376i
\(331\) −32.1961 + 6.84349i −1.76966 + 0.376152i −0.973455 0.228879i \(-0.926494\pi\)
−0.796202 + 0.605031i \(0.793161\pi\)
\(332\) 13.6229 + 6.06532i 0.747655 + 0.332877i
\(333\) −10.0202 + 7.28010i −0.549103 + 0.398947i
\(334\) 3.37712 1.50359i 0.184788 0.0822729i
\(335\) −1.74041 + 3.01448i −0.0950888 + 0.164699i
\(336\) −4.49330 7.78262i −0.245130 0.424577i
\(337\) 3.19618 + 2.32216i 0.174107 + 0.126496i 0.671426 0.741072i \(-0.265682\pi\)
−0.497319 + 0.867568i \(0.665682\pi\)
\(338\) 25.1174 + 5.33887i 1.36621 + 0.290396i
\(339\) 0.502363 1.54611i 0.0272846 0.0839734i
\(340\) 9.73895 0.528169
\(341\) 0 0
\(342\) −7.32083 −0.395865
\(343\) −0.0742848 + 0.228625i −0.00401100 + 0.0123446i
\(344\) 6.84628 + 1.45522i 0.369126 + 0.0784603i
\(345\) 1.72889 + 1.25611i 0.0930804 + 0.0676269i
\(346\) −3.75369 6.50159i −0.201800 0.349527i
\(347\) −6.84222 + 11.8511i −0.367310 + 0.636199i −0.989144 0.146950i \(-0.953054\pi\)
0.621834 + 0.783149i \(0.286388\pi\)
\(348\) 0.891187 0.396782i 0.0477727 0.0212698i
\(349\) 2.99733 2.17769i 0.160443 0.116569i −0.504667 0.863314i \(-0.668385\pi\)
0.665110 + 0.746745i \(0.268385\pi\)
\(350\) 22.3509 + 9.95128i 1.19471 + 0.531918i
\(351\) −14.5624 + 3.09534i −0.777286 + 0.165217i
\(352\) −1.31676 + 12.5282i −0.0701836 + 0.667753i
\(353\) 10.3658 + 11.5124i 0.551717 + 0.612744i 0.952911 0.303249i \(-0.0980715\pi\)
−0.401194 + 0.915993i \(0.631405\pi\)
\(354\) −1.34867 + 1.49785i −0.0716812 + 0.0796100i
\(355\) −1.13604 10.8087i −0.0602947 0.573666i
\(356\) 1.18826 + 3.65708i 0.0629775 + 0.193825i
\(357\) −3.26470 10.0477i −0.172786 0.531782i
\(358\) 0.766608 + 7.29379i 0.0405165 + 0.385489i
\(359\) −3.59281 + 3.99022i −0.189621 + 0.210596i −0.830458 0.557082i \(-0.811921\pi\)
0.640836 + 0.767677i \(0.278588\pi\)
\(360\) −2.37127 2.63356i −0.124977 0.138801i
\(361\) 1.76975 16.8380i 0.0931445 0.886211i
\(362\) −11.5779 + 2.46096i −0.608520 + 0.129345i
\(363\) 3.44572 + 1.53413i 0.180853 + 0.0805211i
\(364\) −22.2849 + 16.1909i −1.16804 + 0.848634i
\(365\) 4.63698 2.06452i 0.242711 0.108062i
\(366\) −1.23844 + 2.14504i −0.0647344 + 0.112123i
\(367\) −7.36045 12.7487i −0.384212 0.665475i 0.607447 0.794360i \(-0.292194\pi\)
−0.991660 + 0.128885i \(0.958860\pi\)
\(368\) 13.8244 + 10.0440i 0.720645 + 0.523579i
\(369\) −12.6969 2.69882i −0.660976 0.140495i
\(370\) 3.10831 9.56638i 0.161593 0.497333i
\(371\) 48.3926 2.51242
\(372\) 0 0
\(373\) 23.8449 1.23464 0.617320 0.786712i \(-0.288218\pi\)
0.617320 + 0.786712i \(0.288218\pi\)
\(374\) −6.01574 + 18.5146i −0.311067 + 0.957365i
\(375\) −5.03761 1.07078i −0.260141 0.0552947i
\(376\) 3.65081 + 2.65247i 0.188276 + 0.136791i
\(377\) 3.55811 + 6.16282i 0.183252 + 0.317402i
\(378\) 9.91696 17.1767i 0.510073 0.883473i
\(379\) −20.2141 + 8.99989i −1.03833 + 0.462294i −0.853837 0.520541i \(-0.825730\pi\)
−0.184491 + 0.982834i \(0.559064\pi\)
\(380\) 1.99980 1.45294i 0.102587 0.0745341i
\(381\) 4.37545 + 1.94808i 0.224161 + 0.0998030i
\(382\) 21.0398 4.47214i 1.07649 0.228815i
\(383\) −2.48763 + 23.6682i −0.127112 + 1.20939i 0.726012 + 0.687682i \(0.241372\pi\)
−0.853124 + 0.521708i \(0.825295\pi\)
\(384\) 2.73378 + 3.03618i 0.139508 + 0.154939i
\(385\) 5.59897 6.21829i 0.285350 0.316913i
\(386\) 2.61931 + 24.9211i 0.133319 + 1.26845i
\(387\) 5.57531 + 17.1590i 0.283409 + 0.872243i
\(388\) −3.64750 11.2258i −0.185174 0.569906i
\(389\) 1.78267 + 16.9610i 0.0903850 + 0.859956i 0.941960 + 0.335724i \(0.108981\pi\)
−0.851575 + 0.524232i \(0.824352\pi\)
\(390\) 3.86974 4.29778i 0.195952 0.217627i
\(391\) 13.4420 + 14.9289i 0.679792 + 0.754986i
\(392\) −0.773601 + 7.36032i −0.0390727 + 0.371752i
\(393\) −5.61327 + 1.19314i −0.283152 + 0.0601858i
\(394\) 39.5591 + 17.6128i 1.99296 + 0.887321i
\(395\) 10.9709 7.97079i 0.552004 0.401054i
\(396\) −6.63968 + 2.95618i −0.333656 + 0.148553i
\(397\) 5.01075 8.67887i 0.251482 0.435580i −0.712452 0.701721i \(-0.752415\pi\)
0.963934 + 0.266141i \(0.0857486\pi\)
\(398\) −6.10380 10.5721i −0.305956 0.529931i
\(399\) −2.16938 1.57614i −0.108605 0.0789059i
\(400\) −16.7036 3.55046i −0.835181 0.177523i
\(401\) 8.82347 27.1559i 0.440623 1.35610i −0.446590 0.894739i \(-0.647362\pi\)
0.887213 0.461360i \(-0.152638\pi\)
\(402\) 2.66363 0.132850
\(403\) 0 0
\(404\) 2.27501 0.113186
\(405\) 2.54376 7.82888i 0.126400 0.389020i
\(406\) −9.27326 1.97109i −0.460224 0.0978236i
\(407\) 6.76299 + 4.91360i 0.335229 + 0.243558i
\(408\) 1.50996 + 2.61533i 0.0747543 + 0.129478i
\(409\) −11.5051 + 19.9274i −0.568891 + 0.985349i 0.427785 + 0.903881i \(0.359294\pi\)
−0.996676 + 0.0814681i \(0.974039\pi\)
\(410\) 9.63048 4.28776i 0.475615 0.211758i
\(411\) 6.37803 4.63391i 0.314605 0.228574i
\(412\) 23.8041 + 10.5983i 1.17275 + 0.522140i
\(413\) 7.96589 1.69320i 0.391976 0.0833170i
\(414\) −1.88562 + 17.9404i −0.0926730 + 0.881725i
\(415\) 8.46454 + 9.40082i 0.415508 + 0.461468i
\(416\) 23.5391 26.1429i 1.15410 1.28176i
\(417\) 0.532850 + 5.06973i 0.0260938 + 0.248266i
\(418\) 1.52688 + 4.69926i 0.0746822 + 0.229848i
\(419\) 10.3647 + 31.8994i 0.506351 + 1.55839i 0.798488 + 0.602011i \(0.205634\pi\)
−0.292137 + 0.956377i \(0.594366\pi\)
\(420\) 0.334833 + 3.18573i 0.0163382 + 0.155448i
\(421\) 6.04042 6.70857i 0.294392 0.326956i −0.577745 0.816217i \(-0.696067\pi\)
0.872137 + 0.489262i \(0.162734\pi\)
\(422\) 23.9745 + 26.6264i 1.16706 + 1.29615i
\(423\) −1.21592 + 11.5687i −0.0591198 + 0.562488i
\(424\) −13.5306 + 2.87602i −0.657105 + 0.139672i
\(425\) −18.3401 8.16555i −0.889627 0.396088i
\(426\) −6.72834 + 4.88843i −0.325989 + 0.236845i
\(427\) 9.14259 4.07055i 0.442441 0.196987i
\(428\) −8.23733 + 14.2675i −0.398167 + 0.689645i
\(429\) 2.40315 + 4.16237i 0.116025 + 0.200961i
\(430\) −11.8541 8.61248i −0.571654 0.415331i
\(431\) −11.0597 2.35081i −0.532726 0.113234i −0.0663088 0.997799i \(-0.521122\pi\)
−0.466418 + 0.884565i \(0.654456\pi\)
\(432\) −4.27791 + 13.1660i −0.205821 + 0.633452i
\(433\) −9.10433 −0.437526 −0.218763 0.975778i \(-0.570202\pi\)
−0.218763 + 0.975778i \(0.570202\pi\)
\(434\) 0 0
\(435\) 0.827544 0.0396777
\(436\) 0.612788 1.88597i 0.0293472 0.0903215i
\(437\) 4.98740 + 1.06010i 0.238580 + 0.0507117i
\(438\) −3.14235 2.28305i −0.150147 0.109088i
\(439\) 19.8026 + 34.2992i 0.945128 + 1.63701i 0.755495 + 0.655155i \(0.227397\pi\)
0.189633 + 0.981855i \(0.439270\pi\)
\(440\) −1.19592 + 2.07140i −0.0570133 + 0.0987499i
\(441\) −17.4281 + 7.75947i −0.829908 + 0.369499i
\(442\) 43.9817 31.9546i 2.09200 1.51992i
\(443\) 23.0746 + 10.2735i 1.09631 + 0.488108i 0.873534 0.486762i \(-0.161822\pi\)
0.222774 + 0.974870i \(0.428489\pi\)
\(444\) −3.13027 + 0.665360i −0.148556 + 0.0315766i
\(445\) −0.340969 + 3.24410i −0.0161635 + 0.153785i
\(446\) 8.74013 + 9.70690i 0.413857 + 0.459635i
\(447\) −1.27661 + 1.41782i −0.0603817 + 0.0670607i
\(448\) 1.13656 + 10.8136i 0.0536974 + 0.510896i
\(449\) −0.566090 1.74225i −0.0267154 0.0822217i 0.936810 0.349839i \(-0.113764\pi\)
−0.963525 + 0.267617i \(0.913764\pi\)
\(450\) −5.57083 17.1452i −0.262611 0.808235i
\(451\) 0.915782 + 8.71308i 0.0431225 + 0.410283i
\(452\) −3.10043 + 3.44338i −0.145832 + 0.161963i
\(453\) −2.96295 3.29069i −0.139212 0.154610i
\(454\) −1.74442 + 16.5971i −0.0818699 + 0.778940i
\(455\) −22.8565 + 4.85829i −1.07153 + 0.227760i
\(456\) 0.700233 + 0.311764i 0.0327914 + 0.0145997i
\(457\) 29.0877 21.1334i 1.36066 0.988581i 0.362262 0.932076i \(-0.382004\pi\)
0.998402 0.0565045i \(-0.0179955\pi\)
\(458\) 30.3464 13.5111i 1.41800 0.631332i
\(459\) −8.13739 + 14.0944i −0.379821 + 0.657869i
\(460\) −3.04549 5.27494i −0.141997 0.245945i
\(461\) −1.08144 0.785711i −0.0503676 0.0365942i 0.562317 0.826922i \(-0.309910\pi\)
−0.612684 + 0.790328i \(0.709910\pi\)
\(462\) −6.26316 1.33128i −0.291389 0.0619366i
\(463\) 3.63608 11.1907i 0.168983 0.520076i −0.830325 0.557280i \(-0.811845\pi\)
0.999308 + 0.0372039i \(0.0118451\pi\)
\(464\) 6.61711 0.307192
\(465\) 0 0
\(466\) −25.2503 −1.16970
\(467\) 3.39883 10.4605i 0.157279 0.484055i −0.841106 0.540871i \(-0.818095\pi\)
0.998385 + 0.0568157i \(0.0180947\pi\)
\(468\) 19.8531 + 4.21991i 0.917710 + 0.195065i
\(469\) −8.70693 6.32596i −0.402049 0.292106i
\(470\) −4.72348 8.18130i −0.217878 0.377375i
\(471\) −1.29261 + 2.23886i −0.0595602 + 0.103161i
\(472\) −2.12664 + 0.946843i −0.0978867 + 0.0435820i
\(473\) 9.85161 7.15761i 0.452977 0.329107i
\(474\) −9.47992 4.22073i −0.435427 0.193865i
\(475\) −4.98417 + 1.05942i −0.228689 + 0.0486094i
\(476\) −3.14755 + 29.9469i −0.144268 + 1.37261i
\(477\) −23.8595 26.4986i −1.09245 1.21329i
\(478\) −12.1961 + 13.5452i −0.557837 + 0.619541i
\(479\) 0.0702175 + 0.668075i 0.00320832 + 0.0305251i 0.996009 0.0892536i \(-0.0284482\pi\)
−0.992801 + 0.119779i \(0.961781\pi\)
\(480\) −1.26417 3.89070i −0.0577010 0.177585i
\(481\) −7.21391 22.2021i −0.328926 1.01233i
\(482\) 1.28994 + 12.2729i 0.0587550 + 0.559017i
\(483\) −4.42127 + 4.91032i −0.201175 + 0.223427i
\(484\) −7.19345 7.98913i −0.326975 0.363142i
\(485\) 1.04664 9.95816i 0.0475257 0.452177i
\(486\) −21.7524 + 4.62362i −0.986711 + 0.209732i
\(487\) 22.4508 + 9.99576i 1.01734 + 0.452951i 0.846524 0.532351i \(-0.178691\pi\)
0.170821 + 0.985302i \(0.445358\pi\)
\(488\) −2.31437 + 1.68148i −0.104766 + 0.0761172i
\(489\) −0.252623 + 0.112475i −0.0114240 + 0.00508630i
\(490\) 7.74661 13.4175i 0.349956 0.606142i
\(491\) 4.31714 + 7.47751i 0.194830 + 0.337455i 0.946845 0.321691i \(-0.104251\pi\)
−0.752015 + 0.659146i \(0.770918\pi\)
\(492\) −2.71339 1.97139i −0.122329 0.0888772i
\(493\) 7.60920 + 1.61738i 0.342701 + 0.0728433i
\(494\) 4.26395 13.1231i 0.191844 0.590436i
\(495\) −6.16551 −0.277119
\(496\) 0 0
\(497\) 33.6035 1.50732
\(498\) 2.99134 9.20641i 0.134045 0.412549i
\(499\) 30.4169 + 6.46530i 1.36165 + 0.289427i 0.830105 0.557606i \(-0.188280\pi\)
0.531540 + 0.847033i \(0.321613\pi\)
\(500\) 11.8756 + 8.62809i 0.531091 + 0.385860i
\(501\) −0.498856 0.864044i −0.0222873 0.0386027i
\(502\) 27.1221 46.9769i 1.21052 2.09668i
\(503\) −15.1140 + 6.72920i −0.673901 + 0.300040i −0.715010 0.699115i \(-0.753578\pi\)
0.0411086 + 0.999155i \(0.486911\pi\)
\(504\) 8.86447 6.44042i 0.394855 0.286879i
\(505\) 1.76305 + 0.784960i 0.0784547 + 0.0349303i
\(506\) 11.9093 2.53140i 0.529433 0.112534i
\(507\) 0.724425 6.89244i 0.0321728 0.306104i
\(508\) −9.13440 10.1448i −0.405273 0.450102i
\(509\) −20.6742 + 22.9610i −0.916367 + 1.01773i 0.0834081 + 0.996515i \(0.473419\pi\)
−0.999775 + 0.0212130i \(0.993247\pi\)
\(510\) −0.660831 6.28739i −0.0292621 0.278410i
\(511\) 4.84968 + 14.9258i 0.214537 + 0.660278i
\(512\) −6.92906 21.3254i −0.306224 0.942460i
\(513\) 0.431783 + 4.10814i 0.0190637 + 0.181379i
\(514\) 29.6490 32.9285i 1.30776 1.45241i
\(515\) 14.7906 + 16.4266i 0.651751 + 0.723843i
\(516\) −0.487283 + 4.63618i −0.0214514 + 0.204097i
\(517\) 7.67955 1.63234i 0.337746 0.0717902i
\(518\) 28.4117 + 12.6497i 1.24834 + 0.555796i
\(519\) −1.63921 + 1.19096i −0.0719534 + 0.0522772i
\(520\) 6.10197 2.71677i 0.267589 0.119138i
\(521\) 7.36097 12.7496i 0.322490 0.558569i −0.658511 0.752571i \(-0.728813\pi\)
0.981001 + 0.194002i \(0.0621468\pi\)
\(522\) 3.49277 + 6.04965i 0.152874 + 0.264786i
\(523\) −24.5610 17.8446i −1.07398 0.780290i −0.0973541 0.995250i \(-0.531038\pi\)
−0.976623 + 0.214960i \(0.931038\pi\)
\(524\) 15.9990 + 3.40069i 0.698918 + 0.148560i
\(525\) 2.04050 6.28002i 0.0890548 0.274082i
\(526\) 7.29764 0.318192
\(527\) 0 0
\(528\) 4.46920 0.194497
\(529\) −3.22490 + 9.92522i −0.140213 + 0.431531i
\(530\) 28.3255 + 6.02077i 1.23038 + 0.261526i
\(531\) −4.85466 3.52712i −0.210674 0.153064i
\(532\) 3.82141 + 6.61888i 0.165679 + 0.286965i
\(533\) 12.2330 21.1883i 0.529872 0.917765i
\(534\) 2.28035 1.01528i 0.0986805 0.0439354i
\(535\) −11.3065 + 8.21462i −0.488821 + 0.355149i
\(536\) 2.81043 + 1.25128i 0.121392 + 0.0540472i
\(537\) 1.93612 0.411535i 0.0835497 0.0177590i
\(538\) −2.46627 + 23.4650i −0.106329 + 1.01165i
\(539\) 8.61574 + 9.56875i 0.371106 + 0.412155i
\(540\) 3.30186 3.66709i 0.142090 0.157806i
\(541\) 2.83282 + 26.9525i 0.121793 + 1.15878i 0.869216 + 0.494432i \(0.164624\pi\)
−0.747424 + 0.664347i \(0.768710\pi\)
\(542\) −1.89969 5.84664i −0.0815986 0.251135i
\(543\) 0.987180 + 3.03823i 0.0423639 + 0.130383i
\(544\) −4.01976 38.2454i −0.172346 1.63976i
\(545\) 1.12562 1.25013i 0.0482162 0.0535495i
\(546\) 11.9649 + 13.2883i 0.512048 + 0.568687i
\(547\) −3.43508 + 32.6826i −0.146873 + 1.39741i 0.634298 + 0.773089i \(0.281289\pi\)
−0.781171 + 0.624317i \(0.785377\pi\)
\(548\) −21.9791 + 4.67180i −0.938900 + 0.199569i
\(549\) −6.73661 2.99933i −0.287511 0.128008i
\(550\) −9.84368 + 7.15186i −0.419736 + 0.304956i
\(551\) 1.80377 0.803089i 0.0768431 0.0342127i
\(552\) 0.944367 1.63569i 0.0401949 0.0696197i
\(553\) 20.9642 + 36.3111i 0.891489 + 1.54410i
\(554\) −31.4588 22.8561i −1.33655 0.971064i
\(555\) −2.65543 0.564429i −0.112717 0.0239587i
\(556\) 4.48982 13.8183i 0.190411 0.586025i
\(557\) 3.79343 0.160733 0.0803663 0.996765i \(-0.474391\pi\)
0.0803663 + 0.996765i \(0.474391\pi\)
\(558\) 0 0
\(559\) −34.0061 −1.43830
\(560\) −6.71438 + 20.6647i −0.283734 + 0.873245i
\(561\) 5.13926 + 1.09238i 0.216980 + 0.0461204i
\(562\) −14.0207 10.1867i −0.591429 0.429698i
\(563\) 4.48909 + 7.77534i 0.189193 + 0.327691i 0.944981 0.327124i \(-0.106080\pi\)
−0.755789 + 0.654816i \(0.772746\pi\)
\(564\) −1.50279 + 2.60291i −0.0632789 + 0.109602i
\(565\) −3.59082 + 1.59874i −0.151067 + 0.0672593i
\(566\) −15.1678 + 11.0200i −0.637549 + 0.463206i
\(567\) 23.2514 + 10.3522i 0.976467 + 0.434751i
\(568\) −9.39558 + 1.99709i −0.394230 + 0.0837961i
\(569\) 0.992559 9.44356i 0.0416102 0.395895i −0.953818 0.300384i \(-0.902885\pi\)
0.995428 0.0955104i \(-0.0304483\pi\)
\(570\) −1.07370 1.19246i −0.0449723 0.0499468i
\(571\) −4.28803 + 4.76234i −0.179449 + 0.199298i −0.826158 0.563439i \(-0.809478\pi\)
0.646709 + 0.762737i \(0.276145\pi\)
\(572\) −1.43193 13.6239i −0.0598719 0.569644i
\(573\) −1.79394 5.52118i −0.0749429 0.230651i
\(574\) 10.0722 + 30.9991i 0.420407 + 1.29388i
\(575\) 1.31245 + 12.4871i 0.0547328 + 0.520748i
\(576\) 5.36093 5.95391i 0.223372 0.248080i
\(577\) 5.26953 + 5.85240i 0.219373 + 0.243639i 0.842779 0.538260i \(-0.180918\pi\)
−0.623406 + 0.781899i \(0.714251\pi\)
\(578\) 2.92425 27.8224i 0.121633 1.15726i
\(579\) 6.61523 1.40611i 0.274920 0.0584360i
\(580\) −2.15475 0.959358i −0.0894712 0.0398352i
\(581\) −31.6428 + 22.9899i −1.31277 + 0.953781i
\(582\) −6.99982 + 3.11652i −0.290152 + 0.129184i
\(583\) −12.0332 + 20.8422i −0.498366 + 0.863196i
\(584\) −2.24303 3.88505i −0.0928174 0.160764i
\(585\) 13.9294 + 10.1203i 0.575912 + 0.418424i
\(586\) −38.4941 8.18217i −1.59018 0.338002i
\(587\) −14.2389 + 43.8227i −0.587701 + 1.80876i 0.000443412 1.00000i \(0.499859\pi\)
−0.588144 + 0.808756i \(0.700141\pi\)
\(588\) −4.92922 −0.203278
\(589\) 0 0
\(590\) 4.87331 0.200631
\(591\) 3.61149 11.1150i 0.148557 0.457211i
\(592\) −21.2330 4.51322i −0.872672 0.185492i
\(593\) −6.95156 5.05060i −0.285466 0.207403i 0.435832 0.900028i \(-0.356454\pi\)
−0.721298 + 0.692625i \(0.756454\pi\)
\(594\) 4.93188 + 8.54227i 0.202358 + 0.350494i
\(595\) −12.7720 + 22.1218i −0.523602 + 0.906905i
\(596\) 4.96769 2.21176i 0.203485 0.0905971i
\(597\) −2.66549 + 1.93659i −0.109091 + 0.0792594i
\(598\) −31.0612 13.8294i −1.27019 0.565524i
\(599\) 24.8519 5.28244i 1.01542 0.215835i 0.330000 0.943981i \(-0.392951\pi\)
0.685422 + 0.728146i \(0.259618\pi\)
\(600\) −0.197299 + 1.87717i −0.00805468 + 0.0766352i
\(601\) 16.8390 + 18.7016i 0.686878 + 0.762855i 0.981230 0.192842i \(-0.0617705\pi\)
−0.294352 + 0.955697i \(0.595104\pi\)
\(602\) 30.3142 33.6673i 1.23551 1.37218i
\(603\) 0.828922 + 7.88667i 0.0337563 + 0.321170i
\(604\) 3.90007 + 12.0032i 0.158692 + 0.488403i
\(605\) −2.81813 8.67330i −0.114573 0.352620i
\(606\) −0.154369 1.46873i −0.00627082 0.0596629i
\(607\) 6.28113 6.97590i 0.254943 0.283143i −0.602064 0.798448i \(-0.705655\pi\)
0.857007 + 0.515305i \(0.172321\pi\)
\(608\) −6.53118 7.25361i −0.264874 0.294173i
\(609\) −0.267455 + 2.54467i −0.0108378 + 0.103115i
\(610\) 5.85785 1.24512i 0.237177 0.0504136i
\(611\) −20.0294 8.91768i −0.810304 0.360771i
\(612\) 17.9501 13.0415i 0.725590 0.527172i
\(613\) −10.4929 + 4.67176i −0.423806 + 0.188691i −0.607546 0.794284i \(-0.707846\pi\)
0.183740 + 0.982975i \(0.441179\pi\)
\(614\) 15.0248 26.0237i 0.606352 1.05023i
\(615\) −1.42258 2.46398i −0.0573639 0.0993572i
\(616\) −5.98295 4.34687i −0.241060 0.175140i
\(617\) 2.20415 + 0.468506i 0.0887357 + 0.0188613i 0.252066 0.967710i \(-0.418890\pi\)
−0.163330 + 0.986572i \(0.552223\pi\)
\(618\) 5.22695 16.0869i 0.210259 0.647110i
\(619\) −23.6684 −0.951314 −0.475657 0.879631i \(-0.657790\pi\)
−0.475657 + 0.879631i \(0.657790\pi\)
\(620\) 0 0
\(621\) 10.1786 0.408455
\(622\) 5.93803 18.2754i 0.238093 0.732776i
\(623\) −9.86529 2.09693i −0.395245 0.0840118i
\(624\) −10.0970 7.33594i −0.404205 0.293672i
\(625\) −2.62956 4.55454i −0.105183 0.182182i
\(626\) −29.6437 + 51.3444i −1.18480 + 2.05214i
\(627\) 1.21827 0.542407i 0.0486528 0.0216616i
\(628\) 5.96115 4.33103i 0.237876 0.172827i
\(629\) −23.3133 10.3798i −0.929562 0.413868i
\(630\) −22.4367 + 4.76907i −0.893900 + 0.190004i
\(631\) −3.62734 + 34.5119i −0.144402 + 1.37390i 0.646949 + 0.762534i \(0.276045\pi\)
−0.791351 + 0.611362i \(0.790622\pi\)
\(632\) −8.01963 8.90670i −0.319004 0.354290i
\(633\) 6.47052 7.18624i 0.257180 0.285627i
\(634\) 4.89584 + 46.5808i 0.194439 + 1.84996i
\(635\) −3.57852 11.0136i −0.142009 0.437059i
\(636\) −2.84703 8.76226i −0.112892 0.347446i
\(637\) −3.75858 35.7605i −0.148920 1.41688i
\(638\) 3.15481 3.50377i 0.124900 0.138716i
\(639\) −16.5679 18.4005i −0.655415 0.727912i
\(640\) 1.03256 9.82418i 0.0408156 0.388335i
\(641\) 25.8160 5.48736i 1.01967 0.216738i 0.332400 0.943139i \(-0.392142\pi\)
0.687271 + 0.726401i \(0.258808\pi\)
\(642\) 9.76991 + 4.34984i 0.385588 + 0.171675i
\(643\) 9.33144 6.77969i 0.367996 0.267365i −0.388383 0.921498i \(-0.626966\pi\)
0.756379 + 0.654133i \(0.226966\pi\)
\(644\) 17.2045 7.65994i 0.677953 0.301844i
\(645\) −1.97728 + 3.42475i −0.0778554 + 0.134849i
\(646\) −7.54198 13.0631i −0.296735 0.513961i
\(647\) 34.8256 + 25.3023i 1.36914 + 0.994736i 0.997804 + 0.0662355i \(0.0210989\pi\)
0.371332 + 0.928500i \(0.378901\pi\)
\(648\) −7.11637 1.51263i −0.279557 0.0594217i
\(649\) −1.25154 + 3.85186i −0.0491274 + 0.151199i
\(650\) 33.9787 1.33276
\(651\) 0 0
\(652\) 0.788169 0.0308671
\(653\) −14.7595 + 45.4249i −0.577582 + 1.77762i 0.0496311 + 0.998768i \(0.484195\pi\)
−0.627213 + 0.778848i \(0.715805\pi\)
\(654\) −1.25915 0.267640i −0.0492365 0.0104655i
\(655\) 11.2253 + 8.15565i 0.438608 + 0.318668i
\(656\) −11.3751 19.7022i −0.444121 0.769241i
\(657\) 5.78193 10.0146i 0.225574 0.390706i
\(658\) 26.6838 11.8804i 1.04024 0.463146i
\(659\) 18.4987 13.4401i 0.720607 0.523552i −0.165971 0.986131i \(-0.553076\pi\)
0.886578 + 0.462579i \(0.153076\pi\)
\(660\) −1.45532 0.647951i −0.0566483 0.0252214i
\(661\) 19.4694 4.13835i 0.757273 0.160963i 0.186933 0.982373i \(-0.440145\pi\)
0.570339 + 0.821409i \(0.306812\pi\)
\(662\) 6.36581 60.5666i 0.247414 2.35399i
\(663\) −9.81779 10.9038i −0.381291 0.423467i
\(664\) 7.48107 8.30857i 0.290322 0.322435i
\(665\) 0.677705 + 6.44793i 0.0262803 + 0.250040i
\(666\) −7.08143 21.7944i −0.274400 0.844516i
\(667\) −1.50346 4.62717i −0.0582141 0.179165i
\(668\) 0.297246 + 2.82811i 0.0115008 + 0.109423i
\(669\) 2.35889 2.61981i 0.0911998 0.101288i
\(670\) −4.30936 4.78603i −0.166485 0.184901i
\(671\) −0.520245 + 4.94980i −0.0200838 + 0.191085i
\(672\) 12.3723 2.62982i 0.477273 0.101448i
\(673\) −15.9204 7.08821i −0.613686 0.273230i 0.0762642 0.997088i \(-0.475701\pi\)
−0.689950 + 0.723857i \(0.742367\pi\)
\(674\) −5.91359 + 4.29648i −0.227783 + 0.165494i
\(675\) −9.29262 + 4.13734i −0.357673 + 0.159246i
\(676\) −9.87655 + 17.1067i −0.379867 + 0.657949i
\(677\) 15.9129 + 27.5619i 0.611581 + 1.05929i 0.990974 + 0.134054i \(0.0427996\pi\)
−0.379393 + 0.925236i \(0.623867\pi\)
\(678\) 2.43340 + 1.76797i 0.0934540 + 0.0678983i
\(679\) 30.2827 + 6.43679i 1.16214 + 0.247021i
\(680\) 2.25635 6.94434i 0.0865272 0.266303i
\(681\) 4.50408 0.172597
\(682\) 0 0
\(683\) 19.9935 0.765031 0.382515 0.923949i \(-0.375058\pi\)
0.382515 + 0.923949i \(0.375058\pi\)
\(684\) 1.74023 5.35589i 0.0665395 0.204788i
\(685\) −18.6450 3.96311i −0.712387 0.151423i
\(686\) −0.359828 0.261431i −0.0137383 0.00998147i
\(687\) −4.48266 7.76420i −0.171024 0.296223i
\(688\) −15.8105 + 27.3846i −0.602770 + 1.04403i
\(689\) 61.3974 27.3359i 2.33906 1.04141i
\(690\) −3.19881 + 2.32407i −0.121777 + 0.0884758i
\(691\) −13.0267 5.79988i −0.495561 0.220638i 0.143710 0.989620i \(-0.454097\pi\)
−0.639270 + 0.768982i \(0.720764\pi\)
\(692\) 5.64883 1.20070i 0.214736 0.0456436i
\(693\) 1.99264 18.9587i 0.0756942 0.720182i
\(694\) −16.9417 18.8157i −0.643100 0.714235i
\(695\) 8.24726 9.15952i 0.312837 0.347440i
\(696\) −0.0764515 0.727388i −0.00289789 0.0275716i
\(697\) −8.26480 25.4364i −0.313052 0.963473i
\(698\) 2.11826 + 6.51934i 0.0801773 + 0.246760i
\(699\) 0.712344 + 6.77750i 0.0269433 + 0.256349i
\(700\) −12.5934 + 13.9863i −0.475984 + 0.528634i
\(701\) −31.1448 34.5898i −1.17632 1.30644i −0.942519 0.334153i \(-0.891550\pi\)
−0.233802 0.972284i \(-0.575117\pi\)
\(702\) 2.87928 27.3946i 0.108672 1.03394i
\(703\) −6.33569 + 1.34669i −0.238955 + 0.0507915i
\(704\) −4.93994 2.19940i −0.186181 0.0828932i
\(705\) −2.06271 + 1.49865i −0.0776861 + 0.0564423i
\(706\) −26.1844 + 11.6581i −0.985464 + 0.438757i
\(707\) −2.98353 + 5.16762i −0.112207 + 0.194348i
\(708\) −0.775231 1.34274i −0.0291350 0.0504632i
\(709\) 17.9815 + 13.0643i 0.675309 + 0.490640i 0.871798 0.489866i \(-0.162954\pi\)
−0.196489 + 0.980506i \(0.562954\pi\)
\(710\) 19.6690 + 4.18078i 0.738166 + 0.156902i
\(711\) 9.54690 29.3823i 0.358037 1.10192i
\(712\) 2.88297 0.108044
\(713\) 0 0
\(714\) 19.5471 0.731531
\(715\) 3.59105 11.0521i 0.134298 0.413326i
\(716\) −5.51834 1.17296i −0.206230 0.0438355i
\(717\) 3.97976 + 2.89147i 0.148627 + 0.107984i
\(718\) −4.96722 8.60348i −0.185375 0.321079i
\(719\) 22.0457 38.1842i 0.822165 1.42403i −0.0819018 0.996640i \(-0.526099\pi\)
0.904067 0.427391i \(-0.140567\pi\)
\(720\) 14.6260 6.51191i 0.545079 0.242685i
\(721\) −55.2914 + 40.1716i −2.05916 + 1.49607i
\(722\) 28.6172 + 12.7412i 1.06502 + 0.474178i
\(723\) 3.25782 0.692471i 0.121160 0.0257533i
\(724\) 0.951754 9.05533i 0.0353717 0.336539i
\(725\) 3.25341 + 3.61327i 0.120828 + 0.134194i
\(726\) −4.66961 + 5.18613i −0.173306 + 0.192475i
\(727\) −4.07768 38.7965i −0.151233 1.43888i −0.762258 0.647273i \(-0.775909\pi\)
0.611025 0.791611i \(-0.290757\pi\)
\(728\) 6.38186 + 19.6414i 0.236528 + 0.727957i
\(729\) −4.46591 13.7447i −0.165404 0.509062i
\(730\) 0.981658 + 9.33985i 0.0363328 + 0.345683i
\(731\) −24.8744 + 27.6258i −0.920013 + 1.02178i
\(732\) −1.27492 1.41594i −0.0471222 0.0523345i
\(733\) −0.711951 + 6.77377i −0.0262965 + 0.250195i 0.973474 + 0.228796i \(0.0734787\pi\)
−0.999771 + 0.0213991i \(0.993188\pi\)
\(734\) 26.6415 5.66283i 0.983356 0.209019i
\(735\) −3.81998 1.70076i −0.140902 0.0627336i
\(736\) −19.4580 + 14.1370i −0.717230 + 0.521098i
\(737\) 4.88958 2.17698i 0.180110 0.0801902i
\(738\) 12.0084 20.7991i 0.442035 0.765627i
\(739\) −16.6002 28.7524i −0.610649 1.05767i −0.991131 0.132887i \(-0.957575\pi\)
0.380482 0.924788i \(-0.375758\pi\)
\(740\) 6.25985 + 4.54805i 0.230117 + 0.167190i
\(741\) −3.64270 0.774280i −0.133818 0.0284439i
\(742\) −27.6682 + 85.1540i −1.01573 + 3.12610i
\(743\) −22.5011 −0.825484 −0.412742 0.910848i \(-0.635429\pi\)
−0.412742 + 0.910848i \(0.635429\pi\)
\(744\) 0 0
\(745\) 4.61293 0.169005
\(746\) −13.6332 + 41.9586i −0.499146 + 1.53621i
\(747\) 28.1899 + 5.99195i 1.03142 + 0.219234i
\(748\) −12.1152 8.80219i −0.442975 0.321840i
\(749\) −21.6055 37.4218i −0.789448 1.36736i
\(750\) 4.76442 8.25222i 0.173972 0.301328i
\(751\) 5.85996 2.60902i 0.213833 0.0952046i −0.297025 0.954870i \(-0.595994\pi\)
0.510858 + 0.859665i \(0.329328\pi\)
\(752\) −16.4936 + 11.9833i −0.601460 + 0.436986i
\(753\) −13.3744 5.95465i −0.487389 0.216999i
\(754\) −12.8787 + 2.73746i −0.469016 + 0.0996925i
\(755\) −1.11912 + 10.6477i −0.0407290 + 0.387510i
\(756\) 10.2090 + 11.3383i 0.371299 + 0.412369i
\(757\) 17.3130 19.2280i 0.629252 0.698855i −0.341244 0.939975i \(-0.610848\pi\)
0.970495 + 0.241120i \(0.0775148\pi\)
\(758\) −4.27936 40.7154i −0.155433 1.47885i
\(759\) −1.01544 3.12519i −0.0368580 0.113437i
\(760\) −0.572695 1.76257i −0.0207738 0.0639352i
\(761\) −4.67583 44.4875i −0.169499 1.61267i −0.666897 0.745150i \(-0.732378\pi\)
0.497398 0.867522i \(-0.334289\pi\)
\(762\) −5.92958 + 6.58546i −0.214806 + 0.238566i
\(763\) 3.48030 + 3.86526i 0.125995 + 0.139932i
\(764\) −1.72956 + 16.4557i −0.0625734 + 0.595346i
\(765\) 18.4105 3.91328i 0.665634 0.141485i
\(766\) −40.2255 17.9096i −1.45341 0.647098i
\(767\) 9.15016 6.64798i 0.330393 0.240045i
\(768\) −9.56308 + 4.25776i −0.345078 + 0.153639i
\(769\) −6.34376 + 10.9877i −0.228762 + 0.396227i −0.957441 0.288628i \(-0.906801\pi\)
0.728680 + 0.684855i \(0.240134\pi\)
\(770\) 7.74083 + 13.4075i 0.278960 + 0.483173i
\(771\) −9.67486 7.02920i −0.348432 0.253150i
\(772\) −18.8548 4.00771i −0.678598 0.144241i
\(773\) −2.84535 + 8.75710i −0.102340 + 0.314971i −0.989097 0.147265i \(-0.952953\pi\)
0.886757 + 0.462236i \(0.152953\pi\)
\(774\) −33.3816 −1.19988
\(775\) 0 0
\(776\) −8.84964 −0.317683
\(777\) 2.59381 7.98293i 0.0930524 0.286386i
\(778\) −30.8646 6.56048i −1.10655 0.235205i
\(779\) −5.49191 3.99011i −0.196768 0.142960i
\(780\) 2.22436 + 3.85271i 0.0796450 + 0.137949i
\(781\) −8.35581 + 14.4727i −0.298994 + 0.517873i
\(782\) −33.9550 + 15.1178i −1.21423 + 0.540610i
\(783\) 3.18880 2.31680i 0.113959 0.0827958i
\(784\) −30.5448 13.5994i −1.09089 0.485694i
\(785\) 6.11405 1.29958i 0.218220 0.0463841i
\(786\) 1.10985 10.5596i 0.0395872 0.376647i
\(787\) 31.2854 + 34.7460i 1.11521 + 1.23856i 0.968402 + 0.249395i \(0.0802318\pi\)
0.146803 + 0.989166i \(0.453102\pi\)
\(788\) −22.2891 + 24.7545i −0.794015 + 0.881843i
\(789\) −0.205876 1.95878i −0.00732938 0.0697344i
\(790\) 7.75328 + 23.8621i 0.275849 + 0.848977i
\(791\) −3.75553 11.5583i −0.133531 0.410967i
\(792\) 0.569592 + 5.41931i 0.0202396 + 0.192567i
\(793\) 9.30019 10.3289i 0.330259 0.366790i
\(794\) 12.4069 + 13.7793i 0.440305 + 0.489008i
\(795\) 0.816952 7.77278i 0.0289743 0.275672i
\(796\) 9.18543 1.95242i 0.325569 0.0692018i
\(797\) 0.328857 + 0.146417i 0.0116487 + 0.00518634i 0.412553 0.910934i \(-0.364637\pi\)
−0.400904 + 0.916120i \(0.631304\pi\)
\(798\) 4.01380 2.91619i 0.142087 0.103232i
\(799\) −21.8955 + 9.74849i −0.774606 + 0.344877i
\(800\) 12.0179 20.8156i 0.424896 0.735942i
\(801\) 3.71576 + 6.43588i 0.131290 + 0.227401i
\(802\) 42.7400 + 31.0525i 1.50920 + 1.09650i
\(803\) −7.63431 1.62272i −0.269409 0.0572646i
\(804\) −0.633171 + 1.94870i −0.0223302 + 0.0687254i
\(805\) 15.9759 0.563075
\(806\) 0 0
\(807\) 6.36789 0.224160
\(808\) 0.527081 1.62219i 0.0185426 0.0570684i
\(809\) −28.0935 5.97145i −0.987713 0.209945i −0.314391 0.949294i \(-0.601800\pi\)
−0.673323 + 0.739349i \(0.735133\pi\)
\(810\) 12.3217 + 8.95225i 0.432941 + 0.314550i
\(811\) 9.95675 + 17.2456i 0.349629 + 0.605575i 0.986183 0.165657i \(-0.0529744\pi\)
−0.636555 + 0.771232i \(0.719641\pi\)
\(812\) 3.64639 6.31573i 0.127963 0.221639i
\(813\) −1.51572 + 0.674842i −0.0531586 + 0.0236677i
\(814\) −12.5129 + 9.09117i −0.438578 + 0.318646i
\(815\) 0.610804 + 0.271947i 0.0213955 + 0.00952590i
\(816\) −13.3452 + 2.83662i −0.467177 + 0.0993015i
\(817\) −0.986262 + 9.38366i −0.0345049 + 0.328293i
\(818\) −28.4873 31.6384i −0.996037 1.10621i
\(819\) −35.6215 + 39.5617i −1.24472 + 1.38240i
\(820\) 0.847651 + 8.06486i 0.0296013 + 0.281637i
\(821\) −14.2250 43.7800i −0.496456 1.52793i −0.814676 0.579917i \(-0.803085\pi\)
0.318220 0.948017i \(-0.396915\pi\)
\(822\) 4.50745 + 13.8725i 0.157216 + 0.483860i
\(823\) −1.38296 13.1580i −0.0482069 0.458658i −0.991823 0.127618i \(-0.959267\pi\)
0.943616 0.331041i \(-0.107400\pi\)
\(824\) 13.0721 14.5181i 0.455389 0.505761i
\(825\) 2.19735 + 2.44041i 0.0765020 + 0.0849641i
\(826\) −1.57501 + 14.9853i −0.0548018 + 0.521404i
\(827\) 11.1584 2.37179i 0.388015 0.0824751i −0.00977360 0.999952i \(-0.503111\pi\)
0.397789 + 0.917477i \(0.369778\pi\)
\(828\) −12.6769 5.64413i −0.440554 0.196147i
\(829\) 34.8386 25.3118i 1.21000 0.879114i 0.214766 0.976666i \(-0.431101\pi\)
0.995230 + 0.0975520i \(0.0311012\pi\)
\(830\) −21.3817 + 9.51975i −0.742170 + 0.330435i
\(831\) −5.24738 + 9.08873i −0.182030 + 0.315285i
\(832\) 7.55038 + 13.0776i 0.261762 + 0.453386i
\(833\) −31.8003 23.1043i −1.10182 0.800516i
\(834\) −9.22561 1.96096i −0.319457 0.0679026i
\(835\) −0.745446 + 2.29425i −0.0257972 + 0.0793957i
\(836\) −3.80091 −0.131457
\(837\) 0 0
\(838\) −62.0578 −2.14375
\(839\) 13.4023 41.2479i 0.462697 1.42404i −0.399159 0.916882i \(-0.630698\pi\)
0.861856 0.507153i \(-0.169302\pi\)
\(840\) 2.34915 + 0.499328i 0.0810535 + 0.0172285i
\(841\) 21.9373 + 15.9384i 0.756458 + 0.549599i
\(842\) 8.35115 + 14.4646i 0.287800 + 0.498484i
\(843\) −2.33868 + 4.05072i −0.0805486 + 0.139514i
\(844\) −25.1788 + 11.2103i −0.866689 + 0.385875i
\(845\) −13.5564 + 9.84931i −0.466355 + 0.338827i
\(846\) −19.6616 8.75391i −0.675980 0.300966i
\(847\) 27.5809 5.86250i 0.947690 0.201438i
\(848\) 6.53241 62.1518i 0.224324 2.13430i
\(849\) 3.38582 + 3.76033i 0.116201 + 0.129054i
\(850\) 24.8544 27.6036i 0.852499 0.946796i
\(851\) 1.66833 + 15.8731i 0.0571897 + 0.544124i
\(852\) −1.97696 6.08446i −0.0677295 0.208450i
\(853\) 2.08658 + 6.42185i 0.0714433 + 0.219880i 0.980402 0.197005i \(-0.0631217\pi\)
−0.908959 + 0.416885i \(0.863122\pi\)
\(854\) 1.93550 + 18.4151i 0.0662316 + 0.630151i
\(855\) 3.19660 3.55018i 0.109321 0.121414i
\(856\) 8.26495 + 9.17916i 0.282490 + 0.313737i
\(857\) 2.59713 24.7100i 0.0887162 0.844078i −0.856173 0.516689i \(-0.827164\pi\)
0.944889 0.327389i \(-0.106169\pi\)
\(858\) −8.69831 + 1.84888i −0.296956 + 0.0631198i
\(859\) −1.45973 0.649912i −0.0498052 0.0221747i 0.381683 0.924293i \(-0.375345\pi\)
−0.431488 + 0.902119i \(0.642011\pi\)
\(860\) 9.11869 6.62511i 0.310945 0.225915i
\(861\) 8.03641 3.57804i 0.273880 0.121939i
\(862\) 10.4599 18.1171i 0.356266 0.617072i
\(863\) −15.3856 26.6487i −0.523734 0.907133i −0.999618 0.0276255i \(-0.991205\pi\)
0.475885 0.879508i \(-0.342128\pi\)
\(864\) −15.7637 11.4530i −0.536292 0.389639i
\(865\) 4.79193 + 1.01856i 0.162930 + 0.0346319i
\(866\) 5.20536 16.0204i 0.176885 0.544397i
\(867\) −7.55038 −0.256424
\(868\) 0 0
\(869\) −20.8518 −0.707348
\(870\) −0.473144 + 1.45619i −0.0160411 + 0.0493694i
\(871\) −14.6202 3.10762i −0.495387 0.105298i
\(872\) −1.20281 0.873895i −0.0407324 0.0295938i
\(873\) −11.4060 19.7557i −0.386033 0.668630i
\(874\) −4.71693 + 8.16997i −0.159553 + 0.276353i
\(875\) −35.1726 + 15.6598i −1.18905 + 0.529399i
\(876\) 2.41724 1.75623i 0.0816710 0.0593374i
\(877\) 7.61062 + 3.38847i 0.256992 + 0.114420i 0.531189 0.847253i \(-0.321745\pi\)
−0.274197 + 0.961674i \(0.588412\pi\)
\(878\) −71.6766 + 15.2353i −2.41897 + 0.514168i
\(879\) −1.11023 + 10.5631i −0.0374471 + 0.356286i
\(880\) −7.23051 8.03029i −0.243740 0.270701i
\(881\) −14.6295 + 16.2477i −0.492879 + 0.547398i −0.937347 0.348397i \(-0.886726\pi\)
0.444468 + 0.895795i \(0.353393\pi\)
\(882\) −3.68955 35.1037i −0.124234 1.18200i
\(883\) 3.85357 + 11.8601i 0.129683 + 0.399123i 0.994725 0.102576i \(-0.0327085\pi\)
−0.865042 + 0.501699i \(0.832708\pi\)
\(884\) 12.9229 + 39.7727i 0.434646 + 1.33770i
\(885\) −0.137483 1.30806i −0.00462143 0.0439699i
\(886\) −31.2705 + 34.7295i −1.05055 + 1.16676i
\(887\) −16.5556 18.3868i −0.555882 0.617369i 0.398060 0.917359i \(-0.369683\pi\)
−0.953942 + 0.299990i \(0.903017\pi\)
\(888\) −0.250799 + 2.38619i −0.00841625 + 0.0800753i
\(889\) 35.0228 7.44433i 1.17463 0.249675i
\(890\) −5.51354 2.45478i −0.184814 0.0822846i
\(891\) −10.2403 + 7.43998i −0.343062 + 0.249249i
\(892\) −9.17915 + 4.08682i −0.307341 + 0.136837i
\(893\) −3.04165 + 5.26830i −0.101785 + 0.176297i
\(894\) −1.76497 3.05702i −0.0590295 0.102242i
\(895\) −3.87181 2.81303i −0.129420 0.0940293i
\(896\) 29.8753 + 6.35018i 0.998063 + 0.212145i
\(897\) −2.83570 + 8.72738i −0.0946812 + 0.291399i
\(898\) 3.38940 0.113106
\(899\) 0 0
\(900\) 13.8676 0.462255
\(901\) 22.7032 69.8734i 0.756354 2.32782i
\(902\) −15.8556 3.37021i −0.527933 0.112216i
\(903\) −9.89194 7.18692i −0.329183 0.239166i
\(904\) 1.73698 + 3.00853i 0.0577710 + 0.100062i
\(905\) 3.86200 6.68918i 0.128377 0.222356i
\(906\) 7.48453 3.33233i 0.248657 0.110709i
\(907\) 25.4366 18.4808i 0.844609 0.613644i −0.0790457 0.996871i \(-0.525187\pi\)
0.923654 + 0.383227i \(0.125187\pi\)
\(908\) −11.7277 5.22151i −0.389197 0.173282i
\(909\) 4.30067 0.914136i 0.142644 0.0303200i
\(910\) 4.51918 42.9971i 0.149809 1.42534i
\(911\) −5.60989 6.23041i −0.185864 0.206423i 0.643011 0.765857i \(-0.277685\pi\)
−0.828875 + 0.559434i \(0.811018\pi\)
\(912\) −2.31712 + 2.57342i −0.0767276 + 0.0852146i
\(913\) −2.03323 19.3449i −0.0672901 0.640223i
\(914\) 20.5567 + 63.2671i 0.679956 + 2.09269i
\(915\) −0.499465 1.53719i −0.0165118 0.0508181i
\(916\) 2.67102 + 25.4130i 0.0882529 + 0.839671i
\(917\) −28.7062 + 31.8815i −0.947963 + 1.05282i
\(918\) −20.1487 22.3774i −0.665005 0.738563i
\(919\) 4.19556 39.9181i 0.138399 1.31678i −0.676186 0.736731i \(-0.736368\pi\)
0.814584 0.580045i \(-0.196965\pi\)
\(920\) −4.46687 + 0.949463i −0.147268 + 0.0313029i
\(921\) −7.40897 3.29869i −0.244134 0.108695i
\(922\) 2.00088 1.45373i 0.0658956 0.0478759i
\(923\) 42.6340 18.9819i 1.40331 0.624796i
\(924\) 2.46277 4.26565i 0.0810193 0.140329i
\(925\) −7.97511 13.8133i −0.262220 0.454178i
\(926\) 17.6128 + 12.7965i 0.578793 + 0.420518i
\(927\) 49.2579 + 10.4701i 1.61784 + 0.343883i
\(928\) −2.87808 + 8.85781i −0.0944775 + 0.290772i
\(929\) −54.6187 −1.79198 −0.895991 0.444072i \(-0.853533\pi\)
−0.895991 + 0.444072i \(0.853533\pi\)
\(930\) 0 0
\(931\) −9.97677 −0.326975
\(932\) 6.00225 18.4730i 0.196610 0.605104i
\(933\) −5.07286 1.07827i −0.166078 0.0353010i
\(934\) 16.4636 + 11.9615i 0.538705 + 0.391392i
\(935\) −6.35176 11.0016i −0.207725 0.359790i
\(936\) 7.60864 13.1785i 0.248696 0.430754i
\(937\) −12.2323 + 5.44615i −0.399611 + 0.177918i −0.596694 0.802469i \(-0.703520\pi\)
0.197084 + 0.980387i \(0.436853\pi\)
\(938\) 16.1096 11.7043i 0.525998 0.382160i
\(939\) 14.6178 + 6.50826i 0.477033 + 0.212389i
\(940\) 7.10822 1.51090i 0.231845 0.0492801i
\(941\) −4.00884 + 38.1416i −0.130685 + 1.24338i 0.710915 + 0.703278i \(0.248281\pi\)
−0.841599 + 0.540102i \(0.818386\pi\)
\(942\) −3.20057 3.55459i −0.104280 0.115815i
\(943\) −11.1927 + 12.4308i −0.364485 + 0.404801i
\(944\) −1.09932 10.4593i −0.0357799 0.340423i
\(945\) 3.99952 + 12.3093i 0.130104 + 0.400420i
\(946\) 6.96229 + 21.4277i 0.226363 + 0.696675i
\(947\) 4.54568 + 43.2493i 0.147715 + 1.40541i 0.777617 + 0.628738i \(0.216428\pi\)
−0.629902 + 0.776674i \(0.716905\pi\)
\(948\) 5.34134 5.93216i 0.173479 0.192668i
\(949\) 14.5842 + 16.1974i 0.473424 + 0.525791i
\(950\) 0.985469 9.37611i 0.0319728 0.304201i
\(951\) 12.3648 2.62821i 0.400955 0.0852257i
\(952\) 20.6244 + 9.18256i 0.668440 + 0.297608i
\(953\) −32.5345 + 23.6377i −1.05390 + 0.765700i −0.972949 0.231018i \(-0.925794\pi\)
−0.0809464 + 0.996718i \(0.525794\pi\)
\(954\) 60.2699 26.8339i 1.95131 0.868779i
\(955\) −7.01817 + 12.1558i −0.227103 + 0.393353i
\(956\) −7.01045 12.1424i −0.226734 0.392715i
\(957\) −1.02946 0.747945i −0.0332776 0.0241776i
\(958\) −1.21573 0.258410i −0.0392783 0.00834886i
\(959\) 18.2123 56.0517i 0.588106 1.81001i
\(960\) 1.75607 0.0566768
\(961\) 0 0
\(962\) 43.1925 1.39258
\(963\) −9.83894 + 30.2811i −0.317055 + 0.975796i
\(964\) −9.28546 1.97369i −0.299064 0.0635681i
\(965\) −13.2290 9.61143i −0.425856 0.309403i
\(966\) −6.11260 10.5873i −0.196670 0.340642i
\(967\) 21.9360 37.9943i 0.705414 1.22181i −0.261128 0.965304i \(-0.584094\pi\)
0.966542 0.256509i \(-0.0825723\pi\)
\(968\) −7.36324 + 3.27833i −0.236663 + 0.105369i
\(969\) −3.29353 + 2.39289i −0.105803 + 0.0768707i
\(970\) 16.9245 + 7.53526i 0.543412 + 0.241943i
\(971\) −50.3926 + 10.7113i −1.61718 + 0.343741i −0.925583 0.378545i \(-0.876424\pi\)
−0.691594 + 0.722287i \(0.743091\pi\)
\(972\) 1.78815 17.0131i 0.0573549 0.545695i
\(973\) 25.4997 + 28.3203i 0.817484 + 0.907908i
\(974\) −30.4252 + 33.7906i −0.974886 + 1.08272i
\(975\) −0.958585 9.12033i −0.0306993 0.292084i
\(976\) −3.99376 12.2915i −0.127837 0.393442i
\(977\) 4.44223 + 13.6718i 0.142119 + 0.437399i 0.996629 0.0820365i \(-0.0261424\pi\)
−0.854510 + 0.519435i \(0.826142\pi\)
\(978\) −0.0534808 0.508836i −0.00171013 0.0162708i
\(979\) 3.35622 3.72746i 0.107265 0.119130i
\(980\) 7.97476 + 8.85687i 0.254744 + 0.282922i
\(981\) 0.400601 3.81146i 0.0127902 0.121691i
\(982\) −15.6261 + 3.32143i −0.498649 + 0.105991i
\(983\) 49.0338 + 21.8312i 1.56393 + 0.696308i 0.992261 0.124173i \(-0.0396277\pi\)
0.571674 + 0.820481i \(0.306294\pi\)
\(984\) −2.03434 + 1.47804i −0.0648525 + 0.0471181i
\(985\) −25.8145 + 11.4933i −0.822517 + 0.366208i
\(986\) −7.19655 + 12.4648i −0.229185 + 0.396960i
\(987\) −3.94163 6.82711i −0.125464 0.217309i
\(988\) 8.58723 + 6.23898i 0.273196 + 0.198489i
\(989\) 22.7416 + 4.83387i 0.723140 + 0.153708i
\(990\) 3.52510 10.8491i 0.112035 0.344808i
\(991\) 35.5382 1.12891 0.564453 0.825465i \(-0.309087\pi\)
0.564453 + 0.825465i \(0.309087\pi\)
\(992\) 0 0
\(993\) −16.4364 −0.521594
\(994\) −19.2126 + 59.1304i −0.609388 + 1.87550i
\(995\) 7.79205 + 1.65625i 0.247025 + 0.0525067i
\(996\) 6.02430 + 4.37691i 0.190887 + 0.138688i
\(997\) 15.2613 + 26.4333i 0.483329 + 0.837151i 0.999817 0.0191440i \(-0.00609410\pi\)
−0.516488 + 0.856295i \(0.672761\pi\)
\(998\) −28.7674 + 49.8265i −0.910615 + 1.57723i
\(999\) −11.8124 + 5.25924i −0.373729 + 0.166395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.l.846.1 16
31.2 even 5 961.2.c.i.439.2 16
31.3 odd 30 961.2.g.t.732.2 16
31.4 even 5 961.2.g.j.547.1 16
31.5 even 3 961.2.d.n.628.2 16
31.6 odd 6 961.2.g.k.448.1 16
31.7 even 15 inner 961.2.g.l.844.1 16
31.8 even 5 961.2.g.n.235.2 16
31.9 even 15 961.2.d.q.388.3 16
31.10 even 15 961.2.a.j.1.2 8
31.11 odd 30 961.2.d.o.531.2 16
31.12 odd 30 961.2.c.j.521.2 16
31.13 odd 30 961.2.d.p.374.3 16
31.14 even 15 961.2.g.m.338.2 16
31.15 odd 10 961.2.g.s.816.2 16
31.16 even 5 961.2.g.m.816.2 16
31.17 odd 30 961.2.g.s.338.2 16
31.18 even 15 961.2.d.q.374.3 16
31.19 even 15 961.2.c.i.521.2 16
31.20 even 15 961.2.d.n.531.2 16
31.21 odd 30 961.2.a.i.1.2 8
31.22 odd 30 961.2.d.p.388.3 16
31.23 odd 10 961.2.g.t.235.2 16
31.24 odd 30 31.2.g.a.7.1 16
31.25 even 3 961.2.g.j.448.1 16
31.26 odd 6 961.2.d.o.628.2 16
31.27 odd 10 961.2.g.k.547.1 16
31.28 even 15 961.2.g.n.732.2 16
31.29 odd 10 961.2.c.j.439.2 16
31.30 odd 2 31.2.g.a.9.1 yes 16
93.41 odd 30 8649.2.a.be.1.7 8
93.83 even 30 8649.2.a.bf.1.7 8
93.86 even 30 279.2.y.c.100.2 16
93.92 even 2 279.2.y.c.226.2 16
124.55 even 30 496.2.bg.c.193.1 16
124.123 even 2 496.2.bg.c.257.1 16
155.24 odd 30 775.2.bl.a.751.2 16
155.92 even 4 775.2.ck.a.474.1 32
155.117 even 60 775.2.ck.a.224.4 32
155.123 even 4 775.2.ck.a.474.4 32
155.148 even 60 775.2.ck.a.224.1 32
155.154 odd 2 775.2.bl.a.226.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.1 16 31.24 odd 30
31.2.g.a.9.1 yes 16 31.30 odd 2
279.2.y.c.100.2 16 93.86 even 30
279.2.y.c.226.2 16 93.92 even 2
496.2.bg.c.193.1 16 124.55 even 30
496.2.bg.c.257.1 16 124.123 even 2
775.2.bl.a.226.2 16 155.154 odd 2
775.2.bl.a.751.2 16 155.24 odd 30
775.2.ck.a.224.1 32 155.148 even 60
775.2.ck.a.224.4 32 155.117 even 60
775.2.ck.a.474.1 32 155.92 even 4
775.2.ck.a.474.4 32 155.123 even 4
961.2.a.i.1.2 8 31.21 odd 30
961.2.a.j.1.2 8 31.10 even 15
961.2.c.i.439.2 16 31.2 even 5
961.2.c.i.521.2 16 31.19 even 15
961.2.c.j.439.2 16 31.29 odd 10
961.2.c.j.521.2 16 31.12 odd 30
961.2.d.n.531.2 16 31.20 even 15
961.2.d.n.628.2 16 31.5 even 3
961.2.d.o.531.2 16 31.11 odd 30
961.2.d.o.628.2 16 31.26 odd 6
961.2.d.p.374.3 16 31.13 odd 30
961.2.d.p.388.3 16 31.22 odd 30
961.2.d.q.374.3 16 31.18 even 15
961.2.d.q.388.3 16 31.9 even 15
961.2.g.j.448.1 16 31.25 even 3
961.2.g.j.547.1 16 31.4 even 5
961.2.g.k.448.1 16 31.6 odd 6
961.2.g.k.547.1 16 31.27 odd 10
961.2.g.l.844.1 16 31.7 even 15 inner
961.2.g.l.846.1 16 1.1 even 1 trivial
961.2.g.m.338.2 16 31.14 even 15
961.2.g.m.816.2 16 31.16 even 5
961.2.g.n.235.2 16 31.8 even 5
961.2.g.n.732.2 16 31.28 even 15
961.2.g.s.338.2 16 31.17 odd 30
961.2.g.s.816.2 16 31.15 odd 10
961.2.g.t.235.2 16 31.23 odd 10
961.2.g.t.732.2 16 31.3 odd 30
8649.2.a.be.1.7 8 93.41 odd 30
8649.2.a.bf.1.7 8 93.83 even 30