Properties

Label 961.2.g.k.448.1
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,3,-14,-3,11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.1
Root \(2.16544i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.k.547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.571745 + 1.75965i) q^{2} +(0.334133 - 0.371093i) q^{3} +(-1.15144 - 0.836573i) q^{4} +(-0.603681 + 1.04561i) q^{5} +(0.461954 + 0.800128i) q^{6} +(-0.390209 + 3.71259i) q^{7} +(-0.863288 + 0.627215i) q^{8} +(0.287521 + 2.73558i) q^{9} +(-1.49475 - 1.66009i) q^{10} +(-1.69601 + 0.755111i) q^{11} +(-0.695182 + 0.147765i) q^{12} +(5.07118 + 1.07791i) q^{13} +(-6.30977 - 2.80929i) q^{14} +(0.186307 + 0.573393i) q^{15} +(-1.48972 - 4.58490i) q^{16} +(-5.17750 - 2.30517i) q^{17} +(-4.97805 - 1.05812i) q^{18} +(1.40705 - 0.299078i) q^{19} +(1.56983 - 0.698933i) q^{20} +(1.24733 + 1.38530i) q^{21} +(-0.359048 - 3.41611i) q^{22} +(2.86762 - 2.08345i) q^{23} +(-0.0556982 + 0.529933i) q^{24} +(1.77114 + 3.06770i) q^{25} +(-4.79617 + 8.30721i) q^{26} +(2.32318 + 1.68789i) q^{27} +(3.55516 - 3.94840i) q^{28} +(0.424157 - 1.30542i) q^{29} -1.11549 q^{30} +6.78540 q^{32} +(-0.286476 + 0.881683i) q^{33} +(7.01650 - 7.79262i) q^{34} +(-3.64635 - 2.64923i) q^{35} +(1.95745 - 3.39040i) q^{36} +(-2.25141 - 3.89955i) q^{37} +(-0.278202 + 2.64692i) q^{38} +(2.09445 - 1.52171i) q^{39} +(-0.134670 - 1.28130i) q^{40} +(-3.15770 - 3.50698i) q^{41} +(-3.15081 + 1.40283i) q^{42} +(-6.41589 + 1.36374i) q^{43} +(2.58456 + 0.549365i) q^{44} +(-3.03391 - 1.35078i) q^{45} +(2.02659 + 6.23721i) q^{46} +(-1.30682 - 4.02199i) q^{47} +(-2.19919 - 0.979142i) q^{48} +(-6.78405 - 1.44199i) q^{49} +(-6.41073 + 1.36264i) q^{50} +(-2.58541 + 1.15110i) q^{51} +(-4.93742 - 5.48357i) q^{52} +(1.35503 + 12.8923i) q^{53} +(-4.29836 + 3.12294i) q^{54} +(0.234298 - 2.22920i) q^{55} +(-1.99173 - 3.44978i) q^{56} +(0.359157 - 0.622078i) q^{57} +(2.05458 + 1.49274i) q^{58} +(-1.45975 + 1.62121i) q^{59} +(0.265164 - 0.816089i) q^{60} -2.68087 q^{61} -10.2683 q^{63} +(-0.900071 + 2.77013i) q^{64} +(-4.18844 + 4.65174i) q^{65} +(-1.38766 - 1.00820i) q^{66} +(-1.44150 + 2.49675i) q^{67} +(4.03315 + 6.98563i) q^{68} +(0.185015 - 1.76030i) q^{69} +(6.74649 - 4.90161i) q^{70} +(-0.940927 - 8.95232i) q^{71} +(-1.96401 - 2.18125i) q^{72} +(-3.84059 + 1.70994i) q^{73} +(8.14908 - 1.73214i) q^{74} +(1.73020 + 0.367765i) q^{75} +(-1.87034 - 0.832730i) q^{76} +(-2.14162 - 6.59123i) q^{77} +(1.48018 + 4.55554i) q^{78} +(10.2607 + 4.56834i) q^{79} +(5.69331 + 1.21015i) q^{80} +(-6.66899 + 1.41754i) q^{81} +(7.97647 - 3.55135i) q^{82} +(-7.01077 - 7.78625i) q^{83} +(-0.277327 - 2.63859i) q^{84} +(5.53585 - 4.02203i) q^{85} +(1.26855 - 12.0694i) q^{86} +(-0.342708 - 0.593587i) q^{87} +(0.990524 - 1.71564i) q^{88} +(2.18575 + 1.58804i) q^{89} +(4.11152 - 4.56631i) q^{90} +(-5.98067 + 18.4066i) q^{91} -5.04486 q^{92} +7.82446 q^{94} +(-0.536692 + 1.65177i) q^{95} +(2.26723 - 2.51801i) q^{96} +(6.70942 + 4.87468i) q^{97} +(6.41615 - 11.1131i) q^{98} +(-2.55330 - 4.42244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 3 q^{3} - 14 q^{4} - 3 q^{5} + 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} - 7 q^{11} - 10 q^{12} + 8 q^{13} - 21 q^{14} + 14 q^{15} - 2 q^{16} + 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571745 + 1.75965i −0.404285 + 1.24426i 0.517206 + 0.855861i \(0.326972\pi\)
−0.921491 + 0.388400i \(0.873028\pi\)
\(3\) 0.334133 0.371093i 0.192912 0.214250i −0.638927 0.769267i \(-0.720621\pi\)
0.831839 + 0.555017i \(0.187288\pi\)
\(4\) −1.15144 0.836573i −0.575722 0.418287i
\(5\) −0.603681 + 1.04561i −0.269974 + 0.467609i −0.968855 0.247629i \(-0.920349\pi\)
0.698881 + 0.715238i \(0.253682\pi\)
\(6\) 0.461954 + 0.800128i 0.188592 + 0.326651i
\(7\) −0.390209 + 3.71259i −0.147485 + 1.40323i 0.631106 + 0.775697i \(0.282601\pi\)
−0.778591 + 0.627531i \(0.784065\pi\)
\(8\) −0.863288 + 0.627215i −0.305218 + 0.221754i
\(9\) 0.287521 + 2.73558i 0.0958402 + 0.911859i
\(10\) −1.49475 1.66009i −0.472681 0.524966i
\(11\) −1.69601 + 0.755111i −0.511365 + 0.227674i −0.646164 0.763199i \(-0.723628\pi\)
0.134799 + 0.990873i \(0.456961\pi\)
\(12\) −0.695182 + 0.147765i −0.200682 + 0.0426562i
\(13\) 5.07118 + 1.07791i 1.40649 + 0.298959i 0.847756 0.530387i \(-0.177953\pi\)
0.558736 + 0.829346i \(0.311287\pi\)
\(14\) −6.30977 2.80929i −1.68636 0.750814i
\(15\) 0.186307 + 0.573393i 0.0481042 + 0.148049i
\(16\) −1.48972 4.58490i −0.372431 1.14622i
\(17\) −5.17750 2.30517i −1.25573 0.559086i −0.332414 0.943134i \(-0.607863\pi\)
−0.923313 + 0.384048i \(0.874530\pi\)
\(18\) −4.97805 1.05812i −1.17334 0.249401i
\(19\) 1.40705 0.299078i 0.322800 0.0686132i −0.0436619 0.999046i \(-0.513902\pi\)
0.366462 + 0.930433i \(0.380569\pi\)
\(20\) 1.56983 0.698933i 0.351025 0.156286i
\(21\) 1.24733 + 1.38530i 0.272191 + 0.302298i
\(22\) −0.359048 3.41611i −0.0765492 0.728317i
\(23\) 2.86762 2.08345i 0.597940 0.434429i −0.247207 0.968963i \(-0.579513\pi\)
0.845147 + 0.534534i \(0.179513\pi\)
\(24\) −0.0556982 + 0.529933i −0.0113694 + 0.108172i
\(25\) 1.77114 + 3.06770i 0.354228 + 0.613541i
\(26\) −4.79617 + 8.30721i −0.940606 + 1.62918i
\(27\) 2.32318 + 1.68789i 0.447096 + 0.324835i
\(28\) 3.55516 3.94840i 0.671862 0.746178i
\(29\) 0.424157 1.30542i 0.0787641 0.242411i −0.903919 0.427703i \(-0.859323\pi\)
0.982684 + 0.185292i \(0.0593230\pi\)
\(30\) −1.11549 −0.203660
\(31\) 0 0
\(32\) 6.78540 1.19950
\(33\) −0.286476 + 0.881683i −0.0498691 + 0.153481i
\(34\) 7.01650 7.79262i 1.20332 1.33642i
\(35\) −3.64635 2.64923i −0.616345 0.447801i
\(36\) 1.95745 3.39040i 0.326241 0.565066i
\(37\) −2.25141 3.89955i −0.370129 0.641082i 0.619456 0.785031i \(-0.287353\pi\)
−0.989585 + 0.143949i \(0.954020\pi\)
\(38\) −0.278202 + 2.64692i −0.0451303 + 0.429386i
\(39\) 2.09445 1.52171i 0.335381 0.243669i
\(40\) −0.134670 1.28130i −0.0212931 0.202591i
\(41\) −3.15770 3.50698i −0.493150 0.547699i 0.444273 0.895892i \(-0.353462\pi\)
−0.937423 + 0.348193i \(0.886795\pi\)
\(42\) −3.15081 + 1.40283i −0.486180 + 0.216461i
\(43\) −6.41589 + 1.36374i −0.978413 + 0.207968i −0.669247 0.743040i \(-0.733383\pi\)
−0.309166 + 0.951008i \(0.600050\pi\)
\(44\) 2.58456 + 0.549365i 0.389637 + 0.0828200i
\(45\) −3.03391 1.35078i −0.452268 0.201363i
\(46\) 2.02659 + 6.23721i 0.298805 + 0.919627i
\(47\) −1.30682 4.02199i −0.190620 0.586667i 0.809380 0.587285i \(-0.199803\pi\)
−1.00000 0.000618100i \(0.999803\pi\)
\(48\) −2.19919 0.979142i −0.317426 0.141327i
\(49\) −6.78405 1.44199i −0.969149 0.205999i
\(50\) −6.41073 + 1.36264i −0.906614 + 0.192707i
\(51\) −2.58541 + 1.15110i −0.362029 + 0.161186i
\(52\) −4.93742 5.48357i −0.684698 0.760434i
\(53\) 1.35503 + 12.8923i 0.186128 + 1.77089i 0.545899 + 0.837851i \(0.316188\pi\)
−0.359770 + 0.933041i \(0.617145\pi\)
\(54\) −4.29836 + 3.12294i −0.584933 + 0.424979i
\(55\) 0.234298 2.22920i 0.0315928 0.300585i
\(56\) −1.99173 3.44978i −0.266156 0.460996i
\(57\) 0.359157 0.622078i 0.0475715 0.0823963i
\(58\) 2.05458 + 1.49274i 0.269779 + 0.196006i
\(59\) −1.45975 + 1.62121i −0.190043 + 0.211064i −0.830635 0.556817i \(-0.812022\pi\)
0.640592 + 0.767881i \(0.278689\pi\)
\(60\) 0.265164 0.816089i 0.0342325 0.105357i
\(61\) −2.68087 −0.343251 −0.171625 0.985162i \(-0.554902\pi\)
−0.171625 + 0.985162i \(0.554902\pi\)
\(62\) 0 0
\(63\) −10.2683 −1.29368
\(64\) −0.900071 + 2.77013i −0.112509 + 0.346267i
\(65\) −4.18844 + 4.65174i −0.519512 + 0.576977i
\(66\) −1.38766 1.00820i −0.170809 0.124100i
\(67\) −1.44150 + 2.49675i −0.176107 + 0.305027i −0.940544 0.339672i \(-0.889684\pi\)
0.764437 + 0.644699i \(0.223017\pi\)
\(68\) 4.03315 + 6.98563i 0.489092 + 0.847132i
\(69\) 0.185015 1.76030i 0.0222732 0.211916i
\(70\) 6.74649 4.90161i 0.806360 0.585855i
\(71\) −0.940927 8.95232i −0.111667 1.06245i −0.896593 0.442855i \(-0.853966\pi\)
0.784926 0.619590i \(-0.212701\pi\)
\(72\) −1.96401 2.18125i −0.231461 0.257063i
\(73\) −3.84059 + 1.70994i −0.449507 + 0.200134i −0.618989 0.785400i \(-0.712457\pi\)
0.169481 + 0.985533i \(0.445791\pi\)
\(74\) 8.14908 1.73214i 0.947311 0.201357i
\(75\) 1.73020 + 0.367765i 0.199786 + 0.0424659i
\(76\) −1.87034 0.832730i −0.214543 0.0955207i
\(77\) −2.14162 6.59123i −0.244060 0.751140i
\(78\) 1.48018 + 4.55554i 0.167598 + 0.515813i
\(79\) 10.2607 + 4.56834i 1.15442 + 0.513979i 0.892471 0.451104i \(-0.148970\pi\)
0.261944 + 0.965083i \(0.415636\pi\)
\(80\) 5.69331 + 1.21015i 0.636532 + 0.135299i
\(81\) −6.66899 + 1.41754i −0.740999 + 0.157504i
\(82\) 7.97647 3.55135i 0.880853 0.392181i
\(83\) −7.01077 7.78625i −0.769532 0.854652i 0.223228 0.974766i \(-0.428341\pi\)
−0.992760 + 0.120114i \(0.961674\pi\)
\(84\) −0.277327 2.63859i −0.0302588 0.287893i
\(85\) 5.53585 4.02203i 0.600448 0.436251i
\(86\) 1.26855 12.0694i 0.136791 1.30148i
\(87\) −0.342708 0.593587i −0.0367421 0.0636392i
\(88\) 0.990524 1.71564i 0.105590 0.182888i
\(89\) 2.18575 + 1.58804i 0.231689 + 0.168332i 0.697573 0.716514i \(-0.254263\pi\)
−0.465884 + 0.884846i \(0.654263\pi\)
\(90\) 4.11152 4.56631i 0.433393 0.481331i
\(91\) −5.98067 + 18.4066i −0.626944 + 1.92954i
\(92\) −5.04486 −0.525963
\(93\) 0 0
\(94\) 7.82446 0.807031
\(95\) −0.536692 + 1.65177i −0.0550635 + 0.169468i
\(96\) 2.26723 2.51801i 0.231398 0.256994i
\(97\) 6.70942 + 4.87468i 0.681239 + 0.494949i 0.873768 0.486342i \(-0.161669\pi\)
−0.192530 + 0.981291i \(0.561669\pi\)
\(98\) 6.41615 11.1131i 0.648129 1.12259i
\(99\) −2.55330 4.42244i −0.256616 0.444472i
\(100\) 0.526990 5.01398i 0.0526990 0.501398i
\(101\) −1.29317 + 0.939541i −0.128675 + 0.0934879i −0.650261 0.759711i \(-0.725341\pi\)
0.521586 + 0.853199i \(0.325341\pi\)
\(102\) −0.547335 5.20755i −0.0541942 0.515624i
\(103\) 12.2503 + 13.6054i 1.20706 + 1.34058i 0.924431 + 0.381349i \(0.124540\pi\)
0.282631 + 0.959229i \(0.408793\pi\)
\(104\) −5.05397 + 2.25017i −0.495582 + 0.220647i
\(105\) −2.20147 + 0.467938i −0.214842 + 0.0456660i
\(106\) −23.4607 4.98672i −2.27870 0.484353i
\(107\) 10.5745 + 4.70809i 1.02228 + 0.455148i 0.848252 0.529593i \(-0.177655\pi\)
0.174027 + 0.984741i \(0.444322\pi\)
\(108\) −1.26297 3.88702i −0.121529 0.374029i
\(109\) 0.430552 + 1.32510i 0.0412394 + 0.126922i 0.969557 0.244867i \(-0.0787444\pi\)
−0.928317 + 0.371789i \(0.878744\pi\)
\(110\) 3.78865 + 1.68682i 0.361234 + 0.160832i
\(111\) −2.19936 0.467489i −0.208754 0.0443721i
\(112\) 17.6032 3.74167i 1.66334 0.353554i
\(113\) −2.97411 + 1.32416i −0.279780 + 0.124566i −0.541830 0.840488i \(-0.682268\pi\)
0.262050 + 0.965054i \(0.415602\pi\)
\(114\) 0.889294 + 0.987661i 0.0832900 + 0.0925030i
\(115\) 0.447338 + 4.25614i 0.0417145 + 0.396887i
\(116\) −1.58047 + 1.14828i −0.146743 + 0.106615i
\(117\) −1.49064 + 14.1825i −0.137810 + 1.31117i
\(118\) −2.01817 3.49557i −0.185787 0.321793i
\(119\) 10.5785 18.3224i 0.969726 1.67961i
\(120\) −0.520477 0.378149i −0.0475129 0.0345201i
\(121\) −5.05419 + 5.61325i −0.459472 + 0.510295i
\(122\) 1.53278 4.71740i 0.138771 0.427093i
\(123\) −2.35651 −0.212479
\(124\) 0 0
\(125\) −10.3136 −0.922478
\(126\) 5.87084 18.0686i 0.523016 1.60968i
\(127\) 6.41792 7.12783i 0.569499 0.632492i −0.387748 0.921765i \(-0.626747\pi\)
0.957247 + 0.289273i \(0.0934136\pi\)
\(128\) 6.61915 + 4.80909i 0.585056 + 0.425068i
\(129\) −1.63769 + 2.83656i −0.144190 + 0.249745i
\(130\) −5.79071 10.0298i −0.507879 0.879672i
\(131\) 1.20126 11.4292i 0.104955 0.998576i −0.807630 0.589689i \(-0.799250\pi\)
0.912585 0.408887i \(-0.134083\pi\)
\(132\) 1.06745 0.775550i 0.0929099 0.0675030i
\(133\) 0.561310 + 5.34051i 0.0486718 + 0.463081i
\(134\) −3.56924 3.96404i −0.308335 0.342441i
\(135\) −3.16733 + 1.41018i −0.272600 + 0.121369i
\(136\) 5.91551 1.25738i 0.507250 0.107819i
\(137\) 15.4427 + 3.28245i 1.31936 + 0.280439i 0.813192 0.581995i \(-0.197728\pi\)
0.506170 + 0.862434i \(0.331061\pi\)
\(138\) 2.99174 + 1.33201i 0.254674 + 0.113388i
\(139\) −3.15460 9.70886i −0.267570 0.823494i −0.991090 0.133192i \(-0.957477\pi\)
0.723521 0.690303i \(-0.242523\pi\)
\(140\) 1.98229 + 6.10087i 0.167534 + 0.515618i
\(141\) −1.92918 0.858927i −0.162466 0.0723347i
\(142\) 16.2909 + 3.46274i 1.36710 + 0.290587i
\(143\) −9.41469 + 2.00115i −0.787296 + 0.167345i
\(144\) 12.1140 5.39351i 1.00950 0.449459i
\(145\) 1.10890 + 1.23156i 0.0920893 + 0.102275i
\(146\) −0.813060 7.73575i −0.0672893 0.640215i
\(147\) −2.80189 + 2.03569i −0.231096 + 0.167901i
\(148\) −0.669890 + 6.37358i −0.0550646 + 0.523905i
\(149\) −1.91033 3.30879i −0.156501 0.271067i 0.777104 0.629372i \(-0.216688\pi\)
−0.933604 + 0.358305i \(0.883355\pi\)
\(150\) −1.63637 + 2.83428i −0.133609 + 0.231418i
\(151\) 7.17402 + 5.21223i 0.583814 + 0.424166i 0.840097 0.542436i \(-0.182498\pi\)
−0.256283 + 0.966602i \(0.582498\pi\)
\(152\) −1.02710 + 1.14071i −0.0833091 + 0.0925242i
\(153\) 4.81733 14.8262i 0.389458 1.19863i
\(154\) 12.8227 1.03328
\(155\) 0 0
\(156\) −3.68467 −0.295010
\(157\) −1.59982 + 4.92372i −0.127679 + 0.392956i −0.994380 0.105873i \(-0.966236\pi\)
0.866701 + 0.498829i \(0.166236\pi\)
\(158\) −13.9052 + 15.4433i −1.10624 + 1.22860i
\(159\) 5.23700 + 3.80490i 0.415321 + 0.301748i
\(160\) −4.09621 + 7.09485i −0.323834 + 0.560897i
\(161\) 6.61602 + 11.4593i 0.521416 + 0.903119i
\(162\) 1.31859 12.5456i 0.103598 0.985673i
\(163\) −0.448015 + 0.325502i −0.0350912 + 0.0254953i −0.605193 0.796079i \(-0.706904\pi\)
0.570101 + 0.821574i \(0.306904\pi\)
\(164\) 0.702069 + 6.67974i 0.0548224 + 0.521600i
\(165\) −0.748953 0.831796i −0.0583059 0.0647552i
\(166\) 17.7095 7.88476i 1.37452 0.611976i
\(167\) −1.95434 + 0.415409i −0.151232 + 0.0321453i −0.282905 0.959148i \(-0.591298\pi\)
0.131674 + 0.991293i \(0.457965\pi\)
\(168\) −1.94569 0.413570i −0.150113 0.0319076i
\(169\) 12.6789 + 5.64499i 0.975297 + 0.434230i
\(170\) 3.91228 + 12.0407i 0.300058 + 0.923483i
\(171\) 1.22271 + 3.76311i 0.0935028 + 0.287772i
\(172\) 8.52840 + 3.79709i 0.650284 + 0.289525i
\(173\) 3.96893 + 0.843621i 0.301752 + 0.0641393i 0.356299 0.934372i \(-0.384038\pi\)
−0.0545476 + 0.998511i \(0.517372\pi\)
\(174\) 1.24045 0.263665i 0.0940380 0.0199884i
\(175\) −12.0802 + 5.37847i −0.913181 + 0.406574i
\(176\) 5.98869 + 6.65111i 0.451414 + 0.501346i
\(177\) 0.113870 + 1.08340i 0.00855901 + 0.0814336i
\(178\) −4.04409 + 2.93820i −0.303117 + 0.220227i
\(179\) 0.414336 3.94215i 0.0309690 0.294650i −0.968065 0.250700i \(-0.919339\pi\)
0.999034 0.0439498i \(-0.0139942\pi\)
\(180\) 2.36334 + 4.09343i 0.176153 + 0.305106i
\(181\) −3.19871 + 5.54033i −0.237758 + 0.411809i −0.960071 0.279757i \(-0.909746\pi\)
0.722312 + 0.691567i \(0.243079\pi\)
\(182\) −28.9698 21.0478i −2.14738 1.56016i
\(183\) −0.895769 + 0.994853i −0.0662172 + 0.0735416i
\(184\) −1.16881 + 3.59723i −0.0861659 + 0.265191i
\(185\) 5.43652 0.399701
\(186\) 0 0
\(187\) 10.5217 0.769425
\(188\) −1.85995 + 5.72434i −0.135651 + 0.417491i
\(189\) −7.17297 + 7.96640i −0.521757 + 0.579470i
\(190\) −2.59968 1.88878i −0.188601 0.137027i
\(191\) −5.81282 + 10.0681i −0.420601 + 0.728502i −0.995998 0.0893720i \(-0.971514\pi\)
0.575398 + 0.817874i \(0.304847\pi\)
\(192\) 0.727233 + 1.25960i 0.0524835 + 0.0909041i
\(193\) −1.41568 + 13.4693i −0.101903 + 0.969544i 0.817420 + 0.576042i \(0.195403\pi\)
−0.919324 + 0.393503i \(0.871263\pi\)
\(194\) −12.4138 + 9.01917i −0.891260 + 0.647538i
\(195\) 0.326727 + 3.10860i 0.0233974 + 0.222612i
\(196\) 6.60512 + 7.33572i 0.471794 + 0.523980i
\(197\) 21.3809 9.51939i 1.52333 0.678228i 0.537082 0.843530i \(-0.319526\pi\)
0.986243 + 0.165302i \(0.0528598\pi\)
\(198\) 9.24179 1.96440i 0.656786 0.139604i
\(199\) −6.45379 1.37179i −0.457497 0.0972439i −0.0266019 0.999646i \(-0.508469\pi\)
−0.430895 + 0.902402i \(0.641802\pi\)
\(200\) −3.45311 1.53742i −0.244172 0.108712i
\(201\) 0.444873 + 1.36918i 0.0313789 + 0.0965744i
\(202\) −0.913902 2.81270i −0.0643019 0.197901i
\(203\) 4.68099 + 2.08411i 0.328541 + 0.146276i
\(204\) 3.93993 + 0.837457i 0.275850 + 0.0586337i
\(205\) 5.57316 1.18461i 0.389247 0.0827369i
\(206\) −30.9448 + 13.7775i −2.15603 + 0.959924i
\(207\) 6.52393 + 7.24556i 0.453445 + 0.503601i
\(208\) −2.61254 24.8566i −0.181147 1.72350i
\(209\) −2.16053 + 1.56972i −0.149447 + 0.108580i
\(210\) 0.435275 4.14137i 0.0300368 0.285781i
\(211\) 9.68254 + 16.7707i 0.666574 + 1.15454i 0.978856 + 0.204550i \(0.0655731\pi\)
−0.312283 + 0.949989i \(0.601094\pi\)
\(212\) 9.22510 15.9783i 0.633582 1.09740i
\(213\) −3.63654 2.64210i −0.249171 0.181034i
\(214\) −14.3305 + 15.9157i −0.979615 + 1.08797i
\(215\) 2.44721 7.53175i 0.166899 0.513661i
\(216\) −3.06424 −0.208495
\(217\) 0 0
\(218\) −2.57788 −0.174596
\(219\) −0.648723 + 1.99656i −0.0438366 + 0.134915i
\(220\) −2.13467 + 2.37079i −0.143919 + 0.159839i
\(221\) −23.7712 17.2708i −1.59903 1.16176i
\(222\) 2.08009 3.60283i 0.139607 0.241806i
\(223\) −3.52986 6.11389i −0.236377 0.409416i 0.723295 0.690539i \(-0.242627\pi\)
−0.959672 + 0.281123i \(0.909293\pi\)
\(224\) −2.64773 + 25.1914i −0.176909 + 1.68317i
\(225\) −7.88270 + 5.72712i −0.525513 + 0.381808i
\(226\) −0.629623 5.99047i −0.0418819 0.398480i
\(227\) −6.03543 6.70302i −0.400586 0.444895i 0.508778 0.860898i \(-0.330097\pi\)
−0.909363 + 0.416003i \(0.863431\pi\)
\(228\) −0.933963 + 0.415827i −0.0618532 + 0.0275388i
\(229\) −17.5615 + 3.73281i −1.16050 + 0.246671i −0.747627 0.664119i \(-0.768807\pi\)
−0.412870 + 0.910790i \(0.635473\pi\)
\(230\) −7.74508 1.64627i −0.510696 0.108552i
\(231\) −3.16154 1.40761i −0.208014 0.0926139i
\(232\) 0.452611 + 1.39299i 0.0297154 + 0.0914545i
\(233\) 4.21725 + 12.9793i 0.276281 + 0.850305i 0.988878 + 0.148731i \(0.0475190\pi\)
−0.712597 + 0.701574i \(0.752481\pi\)
\(234\) −24.1040 10.7318i −1.57573 0.701559i
\(235\) 4.99432 + 1.06157i 0.325793 + 0.0692495i
\(236\) 3.03708 0.645552i 0.197697 0.0420218i
\(237\) 5.12371 2.28122i 0.332821 0.148181i
\(238\) 26.1929 + 29.0902i 1.69783 + 1.88564i
\(239\) 1.02973 + 9.79726i 0.0666079 + 0.633732i 0.975997 + 0.217785i \(0.0698832\pi\)
−0.909389 + 0.415947i \(0.863450\pi\)
\(240\) 2.35140 1.70840i 0.151783 0.110276i
\(241\) 0.697185 6.63328i 0.0449097 0.427287i −0.948849 0.315732i \(-0.897750\pi\)
0.993758 0.111555i \(-0.0355832\pi\)
\(242\) −6.98765 12.1030i −0.449183 0.778008i
\(243\) −6.00971 + 10.4091i −0.385523 + 0.667746i
\(244\) 3.08688 + 2.24275i 0.197617 + 0.143577i
\(245\) 5.60315 6.22293i 0.357972 0.397569i
\(246\) 1.34732 4.14663i 0.0859021 0.264380i
\(247\) 7.45779 0.474528
\(248\) 0 0
\(249\) −5.23195 −0.331562
\(250\) 5.89676 18.1484i 0.372944 1.14780i
\(251\) −19.6175 + 21.7875i −1.23825 + 1.37521i −0.337237 + 0.941420i \(0.609492\pi\)
−0.901012 + 0.433795i \(0.857174\pi\)
\(252\) 11.8233 + 8.59016i 0.744801 + 0.541129i
\(253\) −3.29027 + 5.69891i −0.206857 + 0.358288i
\(254\) 8.87307 + 15.3686i 0.556746 + 0.964312i
\(255\) 0.357166 3.39821i 0.0223666 0.212804i
\(256\) −16.9596 + 12.3219i −1.05998 + 0.770118i
\(257\) 2.50330 + 23.8173i 0.156152 + 1.48568i 0.739333 + 0.673341i \(0.235141\pi\)
−0.583181 + 0.812342i \(0.698192\pi\)
\(258\) −4.05501 4.50355i −0.252454 0.280379i
\(259\) 15.3560 6.83691i 0.954173 0.424825i
\(260\) 8.71428 1.85228i 0.540436 0.114873i
\(261\) 3.69304 + 0.784979i 0.228593 + 0.0485890i
\(262\) 19.4246 + 8.64840i 1.20006 + 0.534300i
\(263\) 1.21883 + 3.75119i 0.0751566 + 0.231308i 0.981577 0.191070i \(-0.0611956\pi\)
−0.906420 + 0.422378i \(0.861196\pi\)
\(264\) −0.305694 0.940828i −0.0188141 0.0579040i
\(265\) −14.2983 6.36600i −0.878335 0.391060i
\(266\) −9.71836 2.06570i −0.595871 0.126656i
\(267\) 1.31964 0.280498i 0.0807608 0.0171662i
\(268\) 3.74852 1.66895i 0.228977 0.101947i
\(269\) 8.53291 + 9.47676i 0.520261 + 0.577808i 0.944819 0.327592i \(-0.106237\pi\)
−0.424558 + 0.905401i \(0.639571\pi\)
\(270\) −0.670529 6.37966i −0.0408071 0.388254i
\(271\) 2.68805 1.95298i 0.163287 0.118635i −0.503141 0.864204i \(-0.667822\pi\)
0.666428 + 0.745569i \(0.267822\pi\)
\(272\) −2.85593 + 27.1724i −0.173166 + 1.64757i
\(273\) 4.83221 + 8.36964i 0.292459 + 0.506554i
\(274\) −14.6053 + 25.2971i −0.882337 + 1.52825i
\(275\) −5.32032 3.86544i −0.320827 0.233095i
\(276\) −1.68566 + 1.87211i −0.101465 + 0.112688i
\(277\) 6.49451 19.9880i 0.390217 1.20096i −0.542407 0.840116i \(-0.682487\pi\)
0.932624 0.360849i \(-0.117513\pi\)
\(278\) 18.8878 1.13282
\(279\) 0 0
\(280\) 4.80948 0.287421
\(281\) −2.89451 + 8.90839i −0.172672 + 0.531430i −0.999519 0.0309964i \(-0.990132\pi\)
0.826847 + 0.562426i \(0.190132\pi\)
\(282\) 2.61441 2.90360i 0.155686 0.172907i
\(283\) 8.19788 + 5.95611i 0.487313 + 0.354054i 0.804150 0.594426i \(-0.202621\pi\)
−0.316837 + 0.948480i \(0.602621\pi\)
\(284\) −6.40585 + 11.0953i −0.380117 + 0.658382i
\(285\) 0.433632 + 0.751074i 0.0256862 + 0.0444898i
\(286\) 1.86147 17.7107i 0.110071 1.04726i
\(287\) 14.2522 10.3548i 0.841278 0.611225i
\(288\) 1.95094 + 18.5620i 0.114960 + 1.09378i
\(289\) 10.1174 + 11.2366i 0.595144 + 0.660974i
\(290\) −2.80112 + 1.24714i −0.164488 + 0.0732346i
\(291\) 4.05080 0.861024i 0.237462 0.0504741i
\(292\) 5.85272 + 1.24403i 0.342504 + 0.0728016i
\(293\) −19.4312 8.65133i −1.13518 0.505416i −0.248886 0.968533i \(-0.580064\pi\)
−0.886297 + 0.463117i \(0.846731\pi\)
\(294\) −1.98014 6.09424i −0.115484 0.355423i
\(295\) −0.813929 2.50502i −0.0473888 0.145848i
\(296\) 4.38947 + 1.95432i 0.255133 + 0.113592i
\(297\) −5.21467 1.10841i −0.302586 0.0643166i
\(298\) 6.91455 1.46973i 0.400549 0.0851393i
\(299\) 16.7880 7.47450i 0.970875 0.432261i
\(300\) −1.68456 1.87090i −0.0972584 0.108016i
\(301\) −2.55947 24.3517i −0.147525 1.40361i
\(302\) −13.2734 + 9.64371i −0.763800 + 0.554933i
\(303\) −0.0834335 + 0.793817i −0.00479313 + 0.0456036i
\(304\) −3.46736 6.00565i −0.198867 0.344447i
\(305\) 1.61839 2.80314i 0.0926688 0.160507i
\(306\) 23.3347 + 16.9536i 1.33396 + 0.969175i
\(307\) 10.8675 12.0696i 0.620241 0.688848i −0.348390 0.937350i \(-0.613272\pi\)
0.968631 + 0.248502i \(0.0799382\pi\)
\(308\) −3.04809 + 9.38105i −0.173681 + 0.534535i
\(309\) 9.14210 0.520076
\(310\) 0 0
\(311\) −10.3858 −0.588924 −0.294462 0.955663i \(-0.595141\pi\)
−0.294462 + 0.955663i \(0.595141\pi\)
\(312\) −0.853677 + 2.62735i −0.0483299 + 0.148744i
\(313\) 21.4414 23.8131i 1.21194 1.34600i 0.290791 0.956787i \(-0.406082\pi\)
0.921149 0.389209i \(-0.127252\pi\)
\(314\) −7.74935 5.63023i −0.437321 0.317732i
\(315\) 6.19876 10.7366i 0.349261 0.604937i
\(316\) −7.99283 13.8440i −0.449632 0.778786i
\(317\) −2.64611 + 25.1760i −0.148620 + 1.41403i 0.625123 + 0.780527i \(0.285049\pi\)
−0.773743 + 0.633500i \(0.781618\pi\)
\(318\) −9.68952 + 7.03985i −0.543361 + 0.394775i
\(319\) 0.266365 + 2.53429i 0.0149136 + 0.141893i
\(320\) −2.35311 2.61340i −0.131543 0.146093i
\(321\) 5.28044 2.35101i 0.294726 0.131220i
\(322\) −23.9470 + 5.09010i −1.33452 + 0.283660i
\(323\) −7.97443 1.69502i −0.443709 0.0943133i
\(324\) 8.86485 + 3.94689i 0.492492 + 0.219271i
\(325\) 5.67505 + 17.4660i 0.314795 + 0.968839i
\(326\) −0.316619 0.974453i −0.0175359 0.0539700i
\(327\) 0.635597 + 0.282986i 0.0351486 + 0.0156492i
\(328\) 4.92564 + 1.04698i 0.271973 + 0.0578096i
\(329\) 15.4419 3.28228i 0.851341 0.180958i
\(330\) 1.89188 0.842320i 0.104145 0.0463682i
\(331\) −22.0247 24.4609i −1.21059 1.34449i −0.922073 0.387016i \(-0.873506\pi\)
−0.288513 0.957476i \(-0.593161\pi\)
\(332\) 1.55874 + 14.8305i 0.0855472 + 0.813927i
\(333\) 10.0202 7.28010i 0.549103 0.398947i
\(334\) 0.386413 3.67647i 0.0211436 0.201167i
\(335\) −1.74041 3.01448i −0.0950888 0.164699i
\(336\) 4.49330 7.78262i 0.245130 0.424577i
\(337\) −3.19618 2.32216i −0.174107 0.126496i 0.497319 0.867568i \(-0.334318\pi\)
−0.671426 + 0.741072i \(0.734318\pi\)
\(338\) −17.1823 + 19.0829i −0.934593 + 1.03797i
\(339\) −0.502363 + 1.54611i −0.0272846 + 0.0839734i
\(340\) −9.73895 −0.528169
\(341\) 0 0
\(342\) −7.32083 −0.395865
\(343\) −0.0742848 + 0.228625i −0.00401100 + 0.0123446i
\(344\) 4.68340 5.20144i 0.252512 0.280443i
\(345\) 1.72889 + 1.25611i 0.0930804 + 0.0676269i
\(346\) −3.75369 + 6.50159i −0.201800 + 0.349527i
\(347\) 6.84222 + 11.8511i 0.367310 + 0.636199i 0.989144 0.146950i \(-0.0469456\pi\)
−0.621834 + 0.783149i \(0.713612\pi\)
\(348\) −0.101970 + 0.970182i −0.00546618 + 0.0520072i
\(349\) 2.99733 2.17769i 0.160443 0.116569i −0.504667 0.863314i \(-0.668385\pi\)
0.665110 + 0.746745i \(0.268385\pi\)
\(350\) −2.55741 24.3321i −0.136699 1.30061i
\(351\) 9.96187 + 11.0638i 0.531725 + 0.590541i
\(352\) −11.5081 + 5.12373i −0.613383 + 0.273096i
\(353\) 15.1529 3.22086i 0.806510 0.171429i 0.213834 0.976870i \(-0.431405\pi\)
0.592676 + 0.805441i \(0.298071\pi\)
\(354\) −1.97152 0.419059i −0.104785 0.0222727i
\(355\) 9.92862 + 4.42051i 0.526956 + 0.234616i
\(356\) −1.18826 3.65708i −0.0629775 0.193825i
\(357\) −3.26470 10.0477i −0.172786 0.531782i
\(358\) 6.69991 + 2.98299i 0.354101 + 0.157656i
\(359\) 5.25204 + 1.11636i 0.277192 + 0.0589190i 0.344410 0.938819i \(-0.388079\pi\)
−0.0672180 + 0.997738i \(0.521412\pi\)
\(360\) 3.46636 0.736798i 0.182693 0.0388327i
\(361\) −15.4670 + 6.88636i −0.814054 + 0.362440i
\(362\) −7.92020 8.79627i −0.416276 0.462322i
\(363\) 0.394261 + 3.75115i 0.0206934 + 0.196884i
\(364\) 22.2849 16.1909i 1.16804 0.848634i
\(365\) 0.530567 5.04800i 0.0277711 0.264225i
\(366\) −1.23844 2.14504i −0.0647344 0.112123i
\(367\) 7.36045 12.7487i 0.384212 0.665475i −0.607447 0.794360i \(-0.707806\pi\)
0.991660 + 0.128885i \(0.0411397\pi\)
\(368\) −13.8244 10.0440i −0.720645 0.523579i
\(369\) 8.68572 9.64646i 0.452160 0.502175i
\(370\) −3.10831 + 9.56638i −0.161593 + 0.497333i
\(371\) −48.3926 −2.51242
\(372\) 0 0
\(373\) 23.8449 1.23464 0.617320 0.786712i \(-0.288218\pi\)
0.617320 + 0.786712i \(0.288218\pi\)
\(374\) −6.01574 + 18.5146i −0.311067 + 0.957365i
\(375\) −3.44612 + 3.82731i −0.177957 + 0.197641i
\(376\) 3.65081 + 2.65247i 0.188276 + 0.136791i
\(377\) 3.55811 6.16282i 0.183252 0.317402i
\(378\) −9.91696 17.1767i −0.510073 0.883473i
\(379\) 2.31291 22.0059i 0.118806 1.13037i −0.758914 0.651191i \(-0.774270\pi\)
0.877720 0.479174i \(-0.159064\pi\)
\(380\) 1.99980 1.45294i 0.102587 0.0745341i
\(381\) −0.500642 4.76329i −0.0256487 0.244031i
\(382\) −14.3929 15.9849i −0.736404 0.817859i
\(383\) −21.7411 + 9.67976i −1.11092 + 0.494613i −0.878374 0.477973i \(-0.841372\pi\)
−0.232544 + 0.972586i \(0.574705\pi\)
\(384\) 3.99630 0.849439i 0.203935 0.0433478i
\(385\) 8.18468 + 1.73971i 0.417130 + 0.0886637i
\(386\) −22.8919 10.1921i −1.16517 0.518766i
\(387\) −5.57531 17.1590i −0.283409 0.872243i
\(388\) −3.64750 11.2258i −0.185174 0.569906i
\(389\) 15.5800 + 6.93665i 0.789936 + 0.351702i 0.761726 0.647900i \(-0.224352\pi\)
0.0282107 + 0.999602i \(0.491019\pi\)
\(390\) −5.65686 1.20240i −0.286446 0.0608860i
\(391\) −19.6498 + 4.17669i −0.993733 + 0.211225i
\(392\) 6.76102 3.01020i 0.341483 0.152038i
\(393\) −3.83992 4.26466i −0.193698 0.215124i
\(394\) 4.52637 + 43.0656i 0.228035 + 2.16961i
\(395\) −10.9709 + 7.97079i −0.552004 + 0.401054i
\(396\) −0.759716 + 7.22822i −0.0381772 + 0.363232i
\(397\) 5.01075 + 8.67887i 0.251482 + 0.435580i 0.963934 0.266141i \(-0.0857486\pi\)
−0.712452 + 0.701721i \(0.752415\pi\)
\(398\) 6.10380 10.5721i 0.305956 0.529931i
\(399\) 2.16938 + 1.57614i 0.108605 + 0.0789059i
\(400\) 11.4266 12.6905i 0.571330 0.634526i
\(401\) −8.82347 + 27.1559i −0.440623 + 1.35610i 0.446590 + 0.894739i \(0.352638\pi\)
−0.887213 + 0.461360i \(0.847362\pi\)
\(402\) −2.66363 −0.132850
\(403\) 0 0
\(404\) 2.27501 0.113186
\(405\) 2.54376 7.82888i 0.126400 0.389020i
\(406\) −6.34364 + 7.04533i −0.314830 + 0.349654i
\(407\) 6.76299 + 4.91360i 0.335229 + 0.243558i
\(408\) 1.50996 2.61533i 0.0747543 0.129478i
\(409\) 11.5051 + 19.9274i 0.568891 + 0.985349i 0.996676 + 0.0814681i \(0.0259609\pi\)
−0.427785 + 0.903881i \(0.640706\pi\)
\(410\) −1.10193 + 10.4841i −0.0544202 + 0.517774i
\(411\) 6.37803 4.63391i 0.314605 0.228574i
\(412\) −2.72369 25.9141i −0.134186 1.27670i
\(413\) −5.44930 6.05206i −0.268142 0.297802i
\(414\) −16.4797 + 7.33723i −0.809933 + 0.360605i
\(415\) 12.3736 2.63009i 0.607397 0.129106i
\(416\) 34.4100 + 7.31406i 1.68709 + 0.358601i
\(417\) −4.65694 2.07340i −0.228051 0.101535i
\(418\) −1.52688 4.69926i −0.0746822 0.229848i
\(419\) 10.3647 + 31.8994i 0.506351 + 1.55839i 0.798488 + 0.602011i \(0.205634\pi\)
−0.292137 + 0.956377i \(0.594366\pi\)
\(420\) 2.92634 + 1.30289i 0.142791 + 0.0635745i
\(421\) −8.83000 1.87687i −0.430348 0.0914733i −0.0123552 0.999924i \(-0.503933\pi\)
−0.417993 + 0.908450i \(0.637266\pi\)
\(422\) −35.0464 + 7.44935i −1.70603 + 0.362629i
\(423\) 10.6267 4.73132i 0.516689 0.230045i
\(424\) −9.25602 10.2799i −0.449512 0.499234i
\(425\) −2.09849 19.9658i −0.101792 0.968484i
\(426\) 6.72834 4.88843i 0.325989 0.236845i
\(427\) 1.04610 9.95299i 0.0506244 0.481659i
\(428\) −8.23733 14.2675i −0.398167 0.689645i
\(429\) −2.40315 + 4.16237i −0.116025 + 0.200961i
\(430\) 11.8541 + 8.61248i 0.571654 + 0.415331i
\(431\) 7.56570 8.40256i 0.364427 0.404737i −0.532847 0.846212i \(-0.678878\pi\)
0.897274 + 0.441475i \(0.145544\pi\)
\(432\) 4.27791 13.1660i 0.205821 0.633452i
\(433\) 9.10433 0.437526 0.218763 0.975778i \(-0.429798\pi\)
0.218763 + 0.975778i \(0.429798\pi\)
\(434\) 0 0
\(435\) 0.827544 0.0396777
\(436\) 0.612788 1.88597i 0.0293472 0.0903215i
\(437\) 3.41178 3.78916i 0.163207 0.181260i
\(438\) −3.14235 2.28305i −0.150147 0.109088i
\(439\) 19.8026 34.2992i 0.945128 1.63701i 0.189633 0.981855i \(-0.439270\pi\)
0.755495 0.655155i \(-0.227397\pi\)
\(440\) 1.19592 + 2.07140i 0.0570133 + 0.0987499i
\(441\) 1.99413 18.9729i 0.0949586 0.903470i
\(442\) 43.9817 31.9546i 2.09200 1.51992i
\(443\) −2.64021 25.1199i −0.125440 1.19348i −0.858316 0.513122i \(-0.828489\pi\)
0.732876 0.680363i \(-0.238178\pi\)
\(444\) 2.14136 + 2.37822i 0.101624 + 0.112865i
\(445\) −2.97996 + 1.32676i −0.141264 + 0.0628946i
\(446\) 12.7765 2.71573i 0.604984 0.128593i
\(447\) −1.86618 0.396668i −0.0882671 0.0187617i
\(448\) −9.93316 4.42253i −0.469298 0.208945i
\(449\) 0.566090 + 1.74225i 0.0267154 + 0.0822217i 0.963525 0.267617i \(-0.0862363\pi\)
−0.936810 + 0.349839i \(0.886236\pi\)
\(450\) −5.57083 17.1452i −0.262611 0.808235i
\(451\) 8.00364 + 3.56345i 0.376877 + 0.167796i
\(452\) 4.53227 + 0.963364i 0.213180 + 0.0453128i
\(453\) 4.33130 0.920647i 0.203502 0.0432558i
\(454\) 15.2457 6.78783i 0.715516 0.318568i
\(455\) −15.6356 17.3651i −0.733010 0.814090i
\(456\) 0.0801211 + 0.762301i 0.00375201 + 0.0356980i
\(457\) −29.0877 + 21.1334i −1.36066 + 0.988581i −0.362262 + 0.932076i \(0.617996\pi\)
−0.998402 + 0.0565045i \(0.982004\pi\)
\(458\) 3.47226 33.0363i 0.162248 1.54369i
\(459\) −8.13739 14.0944i −0.379821 0.657869i
\(460\) 3.04549 5.27494i 0.141997 0.245945i
\(461\) 1.08144 + 0.785711i 0.0503676 + 0.0365942i 0.612684 0.790328i \(-0.290090\pi\)
−0.562317 + 0.826922i \(0.690090\pi\)
\(462\) 4.28450 4.75842i 0.199333 0.221382i
\(463\) −3.63608 + 11.1907i −0.168983 + 0.520076i −0.999308 0.0372039i \(-0.988155\pi\)
0.830325 + 0.557280i \(0.188155\pi\)
\(464\) −6.61711 −0.307192
\(465\) 0 0
\(466\) −25.2503 −1.16970
\(467\) 3.39883 10.4605i 0.157279 0.484055i −0.841106 0.540871i \(-0.818095\pi\)
0.998385 + 0.0568157i \(0.0180947\pi\)
\(468\) 13.5811 15.0833i 0.627787 0.697228i
\(469\) −8.70693 6.32596i −0.402049 0.292106i
\(470\) −4.72348 + 8.18130i −0.217878 + 0.377375i
\(471\) 1.29261 + 2.23886i 0.0595602 + 0.103161i
\(472\) 0.243332 2.31515i 0.0112003 0.106563i
\(473\) 9.85161 7.15761i 0.452977 0.329107i
\(474\) 1.08470 + 10.3202i 0.0498219 + 0.474023i
\(475\) 3.40957 + 3.78671i 0.156442 + 0.173746i
\(476\) −27.5086 + 12.2476i −1.26085 + 0.561368i
\(477\) −34.8782 + 7.41360i −1.59697 + 0.339445i
\(478\) −17.8285 3.78957i −0.815457 0.173331i
\(479\) −0.613679 0.273227i −0.0280397 0.0124841i 0.392669 0.919680i \(-0.371552\pi\)
−0.420709 + 0.907196i \(0.638219\pi\)
\(480\) 1.26417 + 3.89070i 0.0577010 + 0.177585i
\(481\) −7.21391 22.2021i −0.328926 1.01233i
\(482\) 11.2736 + 5.01935i 0.513500 + 0.228625i
\(483\) 6.46309 + 1.37377i 0.294081 + 0.0625088i
\(484\) 10.5155 2.23514i 0.477978 0.101597i
\(485\) −9.14734 + 4.07266i −0.415359 + 0.184930i
\(486\) −14.8804 16.5264i −0.674989 0.749651i
\(487\) 2.56884 + 24.4409i 0.116405 + 1.10752i 0.884291 + 0.466935i \(0.154642\pi\)
−0.767886 + 0.640586i \(0.778691\pi\)
\(488\) 2.31437 1.68148i 0.104766 0.0761172i
\(489\) −0.0289053 + 0.275016i −0.00130714 + 0.0124366i
\(490\) 7.74661 + 13.4175i 0.349956 + 0.606142i
\(491\) −4.31714 + 7.47751i −0.194830 + 0.337455i −0.946845 0.321691i \(-0.895749\pi\)
0.752015 + 0.659146i \(0.229082\pi\)
\(492\) 2.71339 + 1.97139i 0.122329 + 0.0888772i
\(493\) −5.20529 + 5.78107i −0.234435 + 0.260366i
\(494\) −4.26395 + 13.1231i −0.191844 + 0.590436i
\(495\) 6.16551 0.277119
\(496\) 0 0
\(497\) 33.6035 1.50732
\(498\) 2.99134 9.20641i 0.134045 0.412549i
\(499\) 20.8075 23.1091i 0.931474 1.03451i −0.0678486 0.997696i \(-0.521613\pi\)
0.999322 0.0368107i \(-0.0117199\pi\)
\(500\) 11.8756 + 8.62809i 0.531091 + 0.385860i
\(501\) −0.498856 + 0.864044i −0.0222873 + 0.0386027i
\(502\) −27.1221 46.9769i −1.21052 2.09668i
\(503\) 1.72936 16.4537i 0.0771082 0.733635i −0.885848 0.463976i \(-0.846422\pi\)
0.962956 0.269659i \(-0.0869110\pi\)
\(504\) 8.86447 6.44042i 0.394855 0.286879i
\(505\) −0.201729 1.91933i −0.00897684 0.0854089i
\(506\) −8.14690 9.04805i −0.362174 0.402235i
\(507\) 6.33124 2.81885i 0.281180 0.125190i
\(508\) −13.3528 + 2.83823i −0.592436 + 0.125926i
\(509\) −30.2219 6.42386i −1.33956 0.284733i −0.518259 0.855224i \(-0.673419\pi\)
−0.821304 + 0.570491i \(0.806753\pi\)
\(510\) 5.77545 + 2.57140i 0.255741 + 0.113863i
\(511\) −4.84968 14.9258i −0.214537 0.660278i
\(512\) −6.92906 21.3254i −0.306224 0.942460i
\(513\) 3.77365 + 1.68014i 0.166611 + 0.0741798i
\(514\) −43.3414 9.21250i −1.91171 0.406346i
\(515\) −21.6212 + 4.59572i −0.952742 + 0.202512i
\(516\) 4.25869 1.89609i 0.187479 0.0834708i
\(517\) 5.25342 + 5.83452i 0.231045 + 0.256602i
\(518\) 3.25088 + 30.9301i 0.142836 + 1.35899i
\(519\) 1.63921 1.19096i 0.0719534 0.0522772i
\(520\) 0.698191 6.64284i 0.0306177 0.291308i
\(521\) 7.36097 + 12.7496i 0.322490 + 0.558569i 0.981001 0.194002i \(-0.0621468\pi\)
−0.658511 + 0.752571i \(0.728813\pi\)
\(522\) −3.49277 + 6.04965i −0.152874 + 0.264786i
\(523\) 24.5610 + 17.8446i 1.07398 + 0.780290i 0.976623 0.214960i \(-0.0689621\pi\)
0.0973541 + 0.995250i \(0.468962\pi\)
\(524\) −10.9446 + 12.1552i −0.478116 + 0.531001i
\(525\) −2.04050 + 6.28002i −0.0890548 + 0.274082i
\(526\) −7.29764 −0.318192
\(527\) 0 0
\(528\) 4.46920 0.194497
\(529\) −3.22490 + 9.92522i −0.140213 + 0.431531i
\(530\) 19.3769 21.5202i 0.841678 0.934778i
\(531\) −4.85466 3.52712i −0.210674 0.153064i
\(532\) 3.82141 6.61888i 0.165679 0.286965i
\(533\) −12.2330 21.1883i −0.529872 0.917765i
\(534\) −0.260919 + 2.48248i −0.0112911 + 0.107428i
\(535\) −11.3065 + 8.21462i −0.488821 + 0.355149i
\(536\) −0.321571 3.05954i −0.0138898 0.132152i
\(537\) −1.32446 1.47096i −0.0571546 0.0634766i
\(538\) −21.5544 + 9.59666i −0.929278 + 0.413741i
\(539\) 12.5946 2.67707i 0.542490 0.115310i
\(540\) 4.82672 + 1.02595i 0.207709 + 0.0441499i
\(541\) −24.7580 11.0230i −1.06443 0.473914i −0.201630 0.979462i \(-0.564624\pi\)
−0.862799 + 0.505548i \(0.831290\pi\)
\(542\) 1.89969 + 5.84664i 0.0815986 + 0.251135i
\(543\) 0.987180 + 3.03823i 0.0423639 + 0.130383i
\(544\) −35.1314 15.6415i −1.50625 0.670624i
\(545\) −1.64545 0.349751i −0.0704833 0.0149817i
\(546\) −17.4904 + 3.71771i −0.748522 + 0.159103i
\(547\) 30.0215 13.3664i 1.28363 0.571507i 0.352365 0.935863i \(-0.385377\pi\)
0.931260 + 0.364356i \(0.118711\pi\)
\(548\) −15.0354 16.6985i −0.642282 0.713326i
\(549\) −0.770807 7.33374i −0.0328972 0.312996i
\(550\) 9.84368 7.15186i 0.419736 0.304956i
\(551\) 0.206388 1.96365i 0.00879243 0.0836544i
\(552\) 0.944367 + 1.63569i 0.0401949 + 0.0696197i
\(553\) −20.9642 + 36.3111i −0.891489 + 1.54410i
\(554\) 31.4588 + 22.8561i 1.33655 + 0.971064i
\(555\) 1.81652 2.01745i 0.0771071 0.0856362i
\(556\) −4.48982 + 13.8183i −0.190411 + 0.586025i
\(557\) −3.79343 −0.160733 −0.0803663 0.996765i \(-0.525609\pi\)
−0.0803663 + 0.996765i \(0.525609\pi\)
\(558\) 0 0
\(559\) −34.0061 −1.43830
\(560\) −6.71438 + 20.6647i −0.283734 + 0.873245i
\(561\) 3.51566 3.90453i 0.148431 0.164850i
\(562\) −14.0207 10.1867i −0.591429 0.429698i
\(563\) 4.48909 7.77534i 0.189193 0.327691i −0.755789 0.654816i \(-0.772746\pi\)
0.944981 + 0.327124i \(0.106080\pi\)
\(564\) 1.50279 + 2.60291i 0.0632789 + 0.109602i
\(565\) 0.410864 3.90911i 0.0172852 0.164457i
\(566\) −15.1678 + 11.0200i −0.637549 + 0.463206i
\(567\) −2.66044 25.3124i −0.111728 1.06302i
\(568\) 6.42732 + 7.13826i 0.269684 + 0.299515i
\(569\) 8.67465 3.86220i 0.363660 0.161912i −0.216769 0.976223i \(-0.569552\pi\)
0.580429 + 0.814311i \(0.302885\pi\)
\(570\) −1.56955 + 0.333619i −0.0657414 + 0.0139738i
\(571\) −6.26832 1.33237i −0.262321 0.0557581i 0.0748734 0.997193i \(-0.476145\pi\)
−0.337195 + 0.941435i \(0.609478\pi\)
\(572\) 12.5146 + 5.57186i 0.523262 + 0.232971i
\(573\) 1.79394 + 5.52118i 0.0749429 + 0.230651i
\(574\) 10.0722 + 30.9991i 0.420407 + 1.29388i
\(575\) 11.4704 + 5.10693i 0.478347 + 0.212974i
\(576\) −7.83670 1.66574i −0.326529 0.0694060i
\(577\) −7.70309 + 1.63734i −0.320684 + 0.0681635i −0.365441 0.930834i \(-0.619082\pi\)
0.0447573 + 0.998998i \(0.485749\pi\)
\(578\) −25.5570 + 11.3787i −1.06303 + 0.473292i
\(579\) 4.52535 + 5.02591i 0.188067 + 0.208869i
\(580\) −0.246548 2.34575i −0.0102374 0.0974019i
\(581\) 31.6428 22.9899i 1.31277 0.953781i
\(582\) −0.800924 + 7.62028i −0.0331994 + 0.315871i
\(583\) −12.0332 20.8422i −0.498366 0.863196i
\(584\) 2.24303 3.88505i 0.0928174 0.160764i
\(585\) −13.9294 10.1203i −0.575912 0.418424i
\(586\) 26.3330 29.2458i 1.08781 1.20813i
\(587\) 14.2389 43.8227i 0.587701 1.80876i −0.000443412 1.00000i \(-0.500141\pi\)
0.588144 0.808756i \(-0.299859\pi\)
\(588\) 4.92922 0.203278
\(589\) 0 0
\(590\) 4.87331 0.200631
\(591\) 3.61149 11.1150i 0.148557 0.457211i
\(592\) −14.5251 + 16.1317i −0.596977 + 0.663010i
\(593\) −6.95156 5.05060i −0.285466 0.207403i 0.435832 0.900028i \(-0.356454\pi\)
−0.721298 + 0.692625i \(0.756454\pi\)
\(594\) 4.93188 8.54227i 0.202358 0.350494i
\(595\) 12.7720 + 22.1218i 0.523602 + 0.906905i
\(596\) −0.568406 + 5.40803i −0.0232828 + 0.221521i
\(597\) −2.66549 + 1.93659i −0.109091 + 0.0792594i
\(598\) 3.55405 + 33.8145i 0.145336 + 1.38278i
\(599\) −17.0007 18.8812i −0.694629 0.771464i 0.287882 0.957666i \(-0.407049\pi\)
−0.982511 + 0.186202i \(0.940382\pi\)
\(600\) −1.72433 + 0.767720i −0.0703954 + 0.0313420i
\(601\) 24.6156 5.23220i 1.00409 0.213426i 0.323609 0.946191i \(-0.395104\pi\)
0.680482 + 0.732765i \(0.261770\pi\)
\(602\) 44.3139 + 9.41920i 1.80610 + 0.383898i
\(603\) −7.24452 3.22547i −0.295019 0.131351i
\(604\) −3.90007 12.0032i −0.158692 0.488403i
\(605\) −2.81813 8.67330i −0.114573 0.352620i
\(606\) −1.34914 0.600675i −0.0548050 0.0244008i
\(607\) −9.18188 1.95167i −0.372681 0.0792158i 0.0177637 0.999842i \(-0.494345\pi\)
−0.390445 + 0.920626i \(0.627679\pi\)
\(608\) 9.54741 2.02936i 0.387198 0.0823016i
\(609\) 2.33747 1.04071i 0.0947192 0.0421717i
\(610\) 4.00723 + 4.45048i 0.162248 + 0.180195i
\(611\) −2.29178 21.8048i −0.0927156 0.882130i
\(612\) −17.9501 + 13.0415i −0.725590 + 0.527172i
\(613\) −1.20061 + 11.4230i −0.0484922 + 0.461372i 0.943151 + 0.332364i \(0.107846\pi\)
−0.991643 + 0.129008i \(0.958821\pi\)
\(614\) 15.0248 + 26.0237i 0.606352 + 1.05023i
\(615\) 1.42258 2.46398i 0.0573639 0.0993572i
\(616\) 5.98295 + 4.34687i 0.241060 + 0.175140i
\(617\) −1.50781 + 1.67460i −0.0607022 + 0.0674167i −0.772731 0.634734i \(-0.781110\pi\)
0.712029 + 0.702150i \(0.247777\pi\)
\(618\) −5.22695 + 16.0869i −0.210259 + 0.647110i
\(619\) 23.6684 0.951314 0.475657 0.879631i \(-0.342210\pi\)
0.475657 + 0.879631i \(0.342210\pi\)
\(620\) 0 0
\(621\) 10.1786 0.408455
\(622\) 5.93803 18.2754i 0.238093 0.732776i
\(623\) −6.74864 + 7.49513i −0.270379 + 0.300286i
\(624\) −10.0970 7.33594i −0.404205 0.293672i
\(625\) −2.62956 + 4.55454i −0.105183 + 0.182182i
\(626\) 29.6437 + 51.3444i 1.18480 + 2.05214i
\(627\) −0.139395 + 1.32625i −0.00556689 + 0.0529654i
\(628\) 5.96115 4.33103i 0.237876 0.172827i
\(629\) 2.66752 + 25.3798i 0.106361 + 1.01196i
\(630\) 15.3485 + 17.0462i 0.611499 + 0.679138i
\(631\) −31.7018 + 14.1146i −1.26203 + 0.561892i −0.925131 0.379649i \(-0.876045\pi\)
−0.336899 + 0.941541i \(0.609378\pi\)
\(632\) −11.7232 + 2.49185i −0.466326 + 0.0991206i
\(633\) 9.45872 + 2.01051i 0.375951 + 0.0799108i
\(634\) −42.7881 19.0505i −1.69933 0.756592i
\(635\) 3.57852 + 11.0136i 0.142009 + 0.437059i
\(636\) −2.84703 8.76226i −0.112892 0.347446i
\(637\) −32.8488 14.6252i −1.30152 0.579472i
\(638\) −4.61176 0.980259i −0.182581 0.0388088i
\(639\) 24.2192 5.14796i 0.958098 0.203650i
\(640\) −9.02427 + 4.01786i −0.356716 + 0.158820i
\(641\) 17.6602 + 19.6136i 0.697536 + 0.774692i 0.982982 0.183702i \(-0.0588083\pi\)
−0.285446 + 0.958395i \(0.592142\pi\)
\(642\) 1.11788 + 10.6359i 0.0441192 + 0.419766i
\(643\) −9.33144 + 6.77969i −0.367996 + 0.267365i −0.756379 0.654133i \(-0.773034\pi\)
0.388383 + 0.921498i \(0.373034\pi\)
\(644\) 1.96855 18.7295i 0.0775718 0.738046i
\(645\) −1.97728 3.42475i −0.0778554 0.134849i
\(646\) 7.54198 13.0631i 0.296735 0.513961i
\(647\) −34.8256 25.3023i −1.36914 0.994736i −0.997804 0.0662355i \(-0.978901\pi\)
−0.371332 0.928500i \(-0.621099\pi\)
\(648\) 4.86816 5.40664i 0.191239 0.212393i
\(649\) 1.25154 3.85186i 0.0491274 0.151199i
\(650\) −33.9787 −1.33276
\(651\) 0 0
\(652\) 0.788169 0.0308671
\(653\) −14.7595 + 45.4249i −0.577582 + 1.77762i 0.0496311 + 0.998768i \(0.484195\pi\)
−0.627213 + 0.778848i \(0.715805\pi\)
\(654\) −0.861356 + 0.956633i −0.0336817 + 0.0374073i
\(655\) 11.2253 + 8.15565i 0.438608 + 0.318668i
\(656\) −11.3751 + 19.7022i −0.444121 + 0.769241i
\(657\) −5.78193 10.0146i −0.225574 0.390706i
\(658\) −3.05318 + 29.0490i −0.119025 + 1.13245i
\(659\) 18.4987 13.4401i 0.720607 0.523552i −0.165971 0.986131i \(-0.553076\pi\)
0.886578 + 0.462579i \(0.153076\pi\)
\(660\) 0.166519 + 1.58432i 0.00648173 + 0.0616696i
\(661\) −13.3186 14.7918i −0.518035 0.575336i 0.426192 0.904633i \(-0.359855\pi\)
−0.944226 + 0.329297i \(0.893188\pi\)
\(662\) 55.6351 24.7703i 2.16232 0.962727i
\(663\) −14.3518 + 3.05058i −0.557379 + 0.118475i
\(664\) 10.9360 + 2.32451i 0.424398 + 0.0902085i
\(665\) −5.92292 2.63705i −0.229681 0.102261i
\(666\) 7.08143 + 21.7944i 0.274400 + 0.844516i
\(667\) −1.50346 4.62717i −0.0582141 0.179165i
\(668\) 2.59784 + 1.15663i 0.100513 + 0.0447514i
\(669\) −3.44826 0.732951i −0.133318 0.0283375i
\(670\) 6.29951 1.33900i 0.243371 0.0517301i
\(671\) 4.54678 2.02436i 0.175526 0.0781494i
\(672\) 8.46366 + 9.39984i 0.326493 + 0.362607i
\(673\) −1.82162 17.3316i −0.0702183 0.668083i −0.971854 0.235586i \(-0.924299\pi\)
0.901635 0.432497i \(-0.142367\pi\)
\(674\) 5.91359 4.29648i 0.227783 0.165494i
\(675\) −1.06327 + 10.1163i −0.0409252 + 0.389377i
\(676\) −9.87655 17.1067i −0.379867 0.657949i
\(677\) −15.9129 + 27.5619i −0.611581 + 1.05929i 0.379393 + 0.925236i \(0.376133\pi\)
−0.990974 + 0.134054i \(0.957200\pi\)
\(678\) −2.43340 1.76797i −0.0934540 0.0678983i
\(679\) −20.7158 + 23.0072i −0.794999 + 0.882936i
\(680\) −2.25635 + 6.94434i −0.0865272 + 0.266303i
\(681\) −4.50408 −0.172597
\(682\) 0 0
\(683\) 19.9935 0.765031 0.382515 0.923949i \(-0.375058\pi\)
0.382515 + 0.923949i \(0.375058\pi\)
\(684\) 1.74023 5.35589i 0.0665395 0.204788i
\(685\) −12.7546 + 14.1655i −0.487330 + 0.541234i
\(686\) −0.359828 0.261431i −0.0137383 0.00998147i
\(687\) −4.48266 + 7.76420i −0.171024 + 0.296223i
\(688\) 15.8105 + 27.3846i 0.602770 + 1.04403i
\(689\) −7.02514 + 66.8397i −0.267636 + 2.54639i
\(690\) −3.19881 + 2.32407i −0.121777 + 0.0884758i
\(691\) 1.49053 + 14.1814i 0.0567024 + 0.539487i 0.985593 + 0.169133i \(0.0540969\pi\)
−0.928891 + 0.370354i \(0.879236\pi\)
\(692\) −3.86425 4.29168i −0.146897 0.163145i
\(693\) 17.4151 7.75368i 0.661543 0.294538i
\(694\) −24.7658 + 5.26412i −0.940095 + 0.199823i
\(695\) 12.0560 + 2.56258i 0.457310 + 0.0972043i
\(696\) 0.668162 + 0.297485i 0.0253266 + 0.0112761i
\(697\) 8.26480 + 25.4364i 0.313052 + 0.963473i
\(698\) 2.11826 + 6.51934i 0.0801773 + 0.246760i
\(699\) 6.22566 + 2.77184i 0.235476 + 0.104841i
\(700\) 18.4092 + 3.91300i 0.695803 + 0.147897i
\(701\) 45.5280 9.67727i 1.71957 0.365505i 0.760644 0.649169i \(-0.224883\pi\)
0.958924 + 0.283664i \(0.0915499\pi\)
\(702\) −25.1640 + 11.2037i −0.949755 + 0.422858i
\(703\) −4.33412 4.81352i −0.163464 0.181545i
\(704\) −0.565231 5.37782i −0.0213030 0.202684i
\(705\) 2.06271 1.49865i 0.0776861 0.0564423i
\(706\) −2.99604 + 28.5054i −0.112757 + 1.07282i
\(707\) −2.98353 5.16762i −0.112207 0.194348i
\(708\) 0.775231 1.34274i 0.0291350 0.0504632i
\(709\) −17.9815 13.0643i −0.675309 0.490640i 0.196489 0.980506i \(-0.437046\pi\)
−0.871798 + 0.489866i \(0.837046\pi\)
\(710\) −13.4552 + 14.9435i −0.504964 + 0.560819i
\(711\) −9.54690 + 29.3823i −0.358037 + 1.10192i
\(712\) −2.88297 −0.108044
\(713\) 0 0
\(714\) 19.5471 0.731531
\(715\) 3.59105 11.0521i 0.134298 0.413326i
\(716\) −3.77498 + 4.19254i −0.141078 + 0.156683i
\(717\) 3.97976 + 2.89147i 0.148627 + 0.107984i
\(718\) −4.96722 + 8.60348i −0.185375 + 0.321079i
\(719\) −22.0457 38.1842i −0.822165 1.42403i −0.904067 0.427391i \(-0.859433\pi\)
0.0819018 0.996640i \(-0.473901\pi\)
\(720\) −1.67352 + 15.9224i −0.0623683 + 0.593394i
\(721\) −55.2914 + 40.1716i −2.05916 + 1.49607i
\(722\) −3.27440 31.1538i −0.121860 1.15942i
\(723\) −2.22861 2.47512i −0.0828828 0.0920507i
\(724\) 8.31803 3.70342i 0.309137 0.137637i
\(725\) 4.75589 1.01090i 0.176629 0.0375437i
\(726\) −6.82613 1.45094i −0.253341 0.0538494i
\(727\) 35.6376 + 15.8669i 1.32173 + 0.588471i 0.941684 0.336498i \(-0.109243\pi\)
0.380043 + 0.924969i \(0.375909\pi\)
\(728\) −6.38186 19.6414i −0.236528 0.727957i
\(729\) −4.46591 13.7447i −0.165404 0.509062i
\(730\) 8.57937 + 3.81978i 0.317537 + 0.141377i
\(731\) 36.3619 + 7.72895i 1.34489 + 0.285866i
\(732\) 1.86370 0.396141i 0.0688842 0.0146418i
\(733\) 6.22223 2.77031i 0.229823 0.102324i −0.288594 0.957451i \(-0.593188\pi\)
0.518418 + 0.855128i \(0.326521\pi\)
\(734\) 18.2249 + 20.2408i 0.672694 + 0.747102i
\(735\) −0.437084 4.15858i −0.0161221 0.153391i
\(736\) 19.4580 14.1370i 0.717230 0.521098i
\(737\) 0.559469 5.32300i 0.0206083 0.196075i
\(738\) 12.0084 + 20.7991i 0.442035 + 0.765627i
\(739\) 16.6002 28.7524i 0.610649 1.05767i −0.380482 0.924788i \(-0.624242\pi\)
0.991131 0.132887i \(-0.0424246\pi\)
\(740\) −6.25985 4.54805i −0.230117 0.167190i
\(741\) 2.49190 2.76753i 0.0915421 0.101668i
\(742\) 27.6682 85.1540i 1.01573 3.12610i
\(743\) 22.5011 0.825484 0.412742 0.910848i \(-0.364571\pi\)
0.412742 + 0.910848i \(0.364571\pi\)
\(744\) 0 0
\(745\) 4.61293 0.169005
\(746\) −13.6332 + 41.9586i −0.499146 + 1.53621i
\(747\) 19.2841 21.4172i 0.705570 0.783615i
\(748\) −12.1152 8.80219i −0.442975 0.321840i
\(749\) −21.6055 + 37.4218i −0.789448 + 1.36736i
\(750\) −4.76442 8.25222i −0.173972 0.301328i
\(751\) −0.670500 + 6.37939i −0.0244669 + 0.232787i 0.975454 + 0.220204i \(0.0706722\pi\)
−0.999921 + 0.0125834i \(0.995994\pi\)
\(752\) −16.4936 + 11.9833i −0.601460 + 0.436986i
\(753\) 1.53030 + 14.5599i 0.0557673 + 0.530591i
\(754\) 8.81009 + 9.78459i 0.320844 + 0.356334i
\(755\) −9.78076 + 4.35467i −0.355958 + 0.158483i
\(756\) 14.9238 3.17214i 0.542772 0.115370i
\(757\) 25.3085 + 5.37948i 0.919852 + 0.195521i 0.643420 0.765513i \(-0.277515\pi\)
0.276432 + 0.961034i \(0.410848\pi\)
\(758\) 37.4002 + 16.6517i 1.35844 + 0.604816i
\(759\) 1.01544 + 3.12519i 0.0368580 + 0.113437i
\(760\) −0.572695 1.76257i −0.0207738 0.0639352i
\(761\) −40.8653 18.1944i −1.48136 0.659546i −0.502597 0.864521i \(-0.667622\pi\)
−0.978767 + 0.204975i \(0.934289\pi\)
\(762\) 8.66797 + 1.84243i 0.314007 + 0.0667443i
\(763\) −5.08757 + 1.08140i −0.184182 + 0.0391492i
\(764\) 15.1158 6.73000i 0.546872 0.243483i
\(765\) 12.5943 + 13.9873i 0.455346 + 0.505713i
\(766\) −4.60263 43.7911i −0.166300 1.58224i
\(767\) −9.15016 + 6.64798i −0.330393 + 0.240045i
\(768\) −1.09421 + 10.4107i −0.0394840 + 0.375665i
\(769\) −6.34376 10.9877i −0.228762 0.396227i 0.728680 0.684855i \(-0.240134\pi\)
−0.957441 + 0.288628i \(0.906801\pi\)
\(770\) −7.74083 + 13.4075i −0.278960 + 0.483173i
\(771\) 9.67486 + 7.02920i 0.348432 + 0.253150i
\(772\) 12.8982 14.3249i 0.464215 0.515563i
\(773\) 2.84535 8.75710i 0.102340 0.314971i −0.886757 0.462236i \(-0.847047\pi\)
0.989097 + 0.147265i \(0.0470471\pi\)
\(774\) 33.3816 1.19988
\(775\) 0 0
\(776\) −8.84964 −0.317683
\(777\) 2.59381 7.98293i 0.0930524 0.286386i
\(778\) −21.1139 + 23.4493i −0.756969 + 0.840699i
\(779\) −5.49191 3.99011i −0.196768 0.142960i
\(780\) 2.22436 3.85271i 0.0796450 0.137949i
\(781\) 8.35581 + 14.4727i 0.298994 + 0.517873i
\(782\) 3.88516 36.9648i 0.138933 1.32186i
\(783\) 3.18880 2.31680i 0.113959 0.0827958i
\(784\) 3.49496 + 33.2523i 0.124820 + 1.18758i
\(785\) −4.18250 4.64513i −0.149280 0.165792i
\(786\) 9.69977 4.31862i 0.345980 0.154040i
\(787\) 45.7336 9.72098i 1.63023 0.346516i 0.700183 0.713963i \(-0.253102\pi\)
0.930044 + 0.367447i \(0.119768\pi\)
\(788\) −32.5826 6.92564i −1.16071 0.246716i
\(789\) 1.79929 + 0.801096i 0.0640565 + 0.0285198i
\(790\) −7.75328 23.8621i −0.275849 0.848977i
\(791\) −3.75553 11.5583i −0.133531 0.410967i
\(792\) 4.97806 + 2.21637i 0.176888 + 0.0787554i
\(793\) −13.5952 2.88975i −0.482779 0.102618i
\(794\) −18.1367 + 3.85507i −0.643646 + 0.136811i
\(795\) −7.13990 + 3.17889i −0.253226 + 0.112744i
\(796\) 6.28357 + 6.97861i 0.222715 + 0.247350i
\(797\) 0.0376280 + 0.358007i 0.00133285 + 0.0126813i 0.995168 0.0981857i \(-0.0313039\pi\)
−0.993835 + 0.110867i \(0.964637\pi\)
\(798\) −4.01380 + 2.91619i −0.142087 + 0.103232i
\(799\) −2.50529 + 23.8363i −0.0886309 + 0.843267i
\(800\) 12.0179 + 20.8156i 0.424896 + 0.735942i
\(801\) −3.71576 + 6.43588i −0.131290 + 0.227401i
\(802\) −42.7400 31.0525i −1.50920 1.09650i
\(803\) 5.22247 5.80014i 0.184297 0.204683i
\(804\) 0.633171 1.94870i 0.0223302 0.0687254i
\(805\) −15.9759 −0.563075
\(806\) 0 0
\(807\) 6.36789 0.224160
\(808\) 0.527081 1.62219i 0.0185426 0.0570684i
\(809\) −19.2182 + 21.3439i −0.675674 + 0.750412i −0.979308 0.202377i \(-0.935133\pi\)
0.303634 + 0.952789i \(0.401800\pi\)
\(810\) 12.3217 + 8.95225i 0.432941 + 0.314550i
\(811\) 9.95675 17.2456i 0.349629 0.605575i −0.636555 0.771232i \(-0.719641\pi\)
0.986183 + 0.165657i \(0.0529744\pi\)
\(812\) −3.64639 6.31573i −0.127963 0.221639i
\(813\) 0.173430 1.65007i 0.00608244 0.0578706i
\(814\) −12.5129 + 9.09117i −0.438578 + 0.318646i
\(815\) −0.0698886 0.664946i −0.00244809 0.0232920i
\(816\) 9.12920 + 10.1390i 0.319586 + 0.354936i
\(817\) −8.61962 + 3.83770i −0.301562 + 0.134264i
\(818\) −41.6433 + 8.85157i −1.45603 + 0.309488i
\(819\) −52.0722 11.0683i −1.81955 0.386758i
\(820\) −7.40820 3.29834i −0.258706 0.115183i
\(821\) 14.2250 + 43.7800i 0.496456 + 1.52793i 0.814676 + 0.579917i \(0.196915\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(822\) 4.50745 + 13.8725i 0.157216 + 0.483860i
\(823\) −12.0866 5.38131i −0.421313 0.187581i 0.185119 0.982716i \(-0.440733\pi\)
−0.606432 + 0.795135i \(0.707400\pi\)
\(824\) −19.1091 4.06176i −0.665696 0.141498i
\(825\) −3.21213 + 0.682759i −0.111832 + 0.0237706i
\(826\) 13.7651 6.12863i 0.478950 0.213242i
\(827\) 7.63322 + 8.47755i 0.265433 + 0.294793i 0.861097 0.508440i \(-0.169778\pi\)
−0.595664 + 0.803234i \(0.703111\pi\)
\(828\) −1.45050 13.8006i −0.0504084 0.479604i
\(829\) −34.8386 + 25.3118i −1.21000 + 0.879114i −0.995230 0.0975520i \(-0.968899\pi\)
−0.214766 + 0.976666i \(0.568899\pi\)
\(830\) −2.44651 + 23.2770i −0.0849196 + 0.807956i
\(831\) −5.24738 9.08873i −0.182030 0.315285i
\(832\) −7.55038 + 13.0776i −0.261762 + 0.453386i
\(833\) 31.8003 + 23.1043i 1.10182 + 0.800516i
\(834\) 6.31105 7.00913i 0.218534 0.242706i
\(835\) 0.745446 2.29425i 0.0257972 0.0793957i
\(836\) 3.80091 0.131457
\(837\) 0 0
\(838\) −62.0578 −2.14375
\(839\) 13.4023 41.2479i 0.462697 1.42404i −0.399159 0.916882i \(-0.630698\pi\)
0.861856 0.507153i \(-0.169302\pi\)
\(840\) 1.60701 1.78476i 0.0554470 0.0615802i
\(841\) 21.9373 + 15.9384i 0.756458 + 0.549599i
\(842\) 8.35115 14.4646i 0.287800 0.498484i
\(843\) 2.33868 + 4.05072i 0.0805486 + 0.139514i
\(844\) 2.88097 27.4106i 0.0991671 0.943512i
\(845\) −13.5564 + 9.84931i −0.466355 + 0.338827i
\(846\) 2.24969 + 21.4044i 0.0773461 + 0.735899i
\(847\) −18.8675 20.9545i −0.648295 0.720005i
\(848\) 57.0912 25.4187i 1.96052 0.872880i
\(849\) 4.94945 1.05204i 0.169865 0.0361059i
\(850\) 36.3326 + 7.72274i 1.24620 + 0.264888i
\(851\) −14.5807 6.49174i −0.499820 0.222534i
\(852\) 1.97696 + 6.08446i 0.0677295 + 0.208450i
\(853\) 2.08658 + 6.42185i 0.0714433 + 0.219880i 0.980402 0.197005i \(-0.0631217\pi\)
−0.908959 + 0.416885i \(0.863122\pi\)
\(854\) 16.9157 + 7.53135i 0.578843 + 0.257717i
\(855\) −4.67285 0.993245i −0.159808 0.0339683i
\(856\) −12.0819 + 2.56808i −0.412949 + 0.0877751i
\(857\) −22.6981 + 10.1058i −0.775351 + 0.345209i −0.755972 0.654604i \(-0.772836\pi\)
−0.0193790 + 0.999812i \(0.506169\pi\)
\(858\) −5.95034 6.60852i −0.203141 0.225611i
\(859\) −0.167023 1.58912i −0.00569874 0.0542199i 0.991303 0.131600i \(-0.0420113\pi\)
−0.997002 + 0.0773797i \(0.975345\pi\)
\(860\) −9.11869 + 6.62511i −0.310945 + 0.225915i
\(861\) 0.919531 8.74876i 0.0313375 0.298157i
\(862\) 10.4599 + 18.1171i 0.356266 + 0.617072i
\(863\) 15.3856 26.6487i 0.523734 0.907133i −0.475885 0.879508i \(-0.657872\pi\)
0.999618 0.0276255i \(-0.00879457\pi\)
\(864\) 15.7637 + 11.4530i 0.536292 + 0.389639i
\(865\) −3.27806 + 3.64065i −0.111457 + 0.123786i
\(866\) −5.20536 + 16.0204i −0.176885 + 0.544397i
\(867\) 7.55038 0.256424
\(868\) 0 0
\(869\) −20.8518 −0.707348
\(870\) −0.473144 + 1.45619i −0.0160411 + 0.0493694i
\(871\) −10.0014 + 11.1077i −0.338884 + 0.376369i
\(872\) −1.20281 0.873895i −0.0407324 0.0295938i
\(873\) −11.4060 + 19.7557i −0.386033 + 0.668630i
\(874\) 4.71693 + 8.16997i 0.159553 + 0.276353i
\(875\) 4.02447 38.2903i 0.136052 1.29445i
\(876\) 2.41724 1.75623i 0.0816710 0.0593374i
\(877\) −0.870812 8.28522i −0.0294052 0.279772i −0.999337 0.0363968i \(-0.988412\pi\)
0.969932 0.243375i \(-0.0782547\pi\)
\(878\) 49.0325 + 54.4561i 1.65477 + 1.83780i
\(879\) −9.70305 + 4.32008i −0.327276 + 0.145713i
\(880\) −10.5697 + 2.24666i −0.356304 + 0.0757348i
\(881\) −21.3856 4.54565i −0.720500 0.153147i −0.166953 0.985965i \(-0.553393\pi\)
−0.553547 + 0.832818i \(0.686726\pi\)
\(882\) 32.2455 + 14.3566i 1.08576 + 0.483413i
\(883\) −3.85357 11.8601i −0.129683 0.399123i 0.865042 0.501699i \(-0.167292\pi\)
−0.994725 + 0.102576i \(0.967292\pi\)
\(884\) 12.9229 + 39.7727i 0.434646 + 1.33770i
\(885\) −1.20155 0.534966i −0.0403898 0.0179827i
\(886\) 45.7119 + 9.71636i 1.53572 + 0.326427i
\(887\) 24.2013 5.14414i 0.812599 0.172723i 0.217172 0.976133i \(-0.430317\pi\)
0.595426 + 0.803410i \(0.296983\pi\)
\(888\) 2.19190 0.975897i 0.0735554 0.0327490i
\(889\) 23.9584 + 26.6085i 0.803538 + 0.892420i
\(890\) −0.630863 6.00226i −0.0211466 0.201196i
\(891\) 10.2403 7.43998i 0.343062 0.249249i
\(892\) −1.05028 + 9.99279i −0.0351661 + 0.334583i
\(893\) −3.04165 5.26830i −0.101785 0.176297i
\(894\) 1.76497 3.05702i 0.0590295 0.102242i
\(895\) 3.87181 + 2.81303i 0.129420 + 0.0940293i
\(896\) −20.4371 + 22.6977i −0.682754 + 0.758275i
\(897\) 2.83570 8.72738i 0.0946812 0.291399i
\(898\) −3.38940 −0.113106
\(899\) 0 0
\(900\) 13.8676 0.462255
\(901\) 22.7032 69.8734i 0.756354 2.32782i
\(902\) −10.8465 + 12.0462i −0.361148 + 0.401095i
\(903\) −9.89194 7.18692i −0.329183 0.239166i
\(904\) 1.73698 3.00853i 0.0577710 0.100062i
\(905\) −3.86200 6.68918i −0.128377 0.222356i
\(906\) −0.856384 + 8.14795i −0.0284515 + 0.270698i
\(907\) 25.4366 18.4808i 0.844609 0.613644i −0.0790457 0.996871i \(-0.525187\pi\)
0.923654 + 0.383227i \(0.125187\pi\)
\(908\) 1.34189 + 12.7672i 0.0445322 + 0.423696i
\(909\) −2.94200 3.26742i −0.0975800 0.108374i
\(910\) 39.4962 17.5848i 1.30929 0.582931i
\(911\) −8.20064 + 1.74310i −0.271699 + 0.0577514i −0.341746 0.939792i \(-0.611018\pi\)
0.0700471 + 0.997544i \(0.477685\pi\)
\(912\) −3.38721 0.719974i −0.112162 0.0238407i
\(913\) 17.7698 + 7.91162i 0.588094 + 0.261836i
\(914\) −20.5567 63.2671i −0.679956 2.09269i
\(915\) −0.499465 1.53719i −0.0165118 0.0508181i
\(916\) 23.3439 + 10.3934i 0.771303 + 0.343406i
\(917\) 41.9633 + 8.91958i 1.38575 + 0.294550i
\(918\) 29.4537 6.26057i 0.972117 0.206630i
\(919\) −36.6679 + 16.3256i −1.20956 + 0.538531i −0.909626 0.415428i \(-0.863632\pi\)
−0.299935 + 0.953960i \(0.596965\pi\)
\(920\) −3.05570 3.39369i −0.100743 0.111887i
\(921\) −0.847739 8.06570i −0.0279340 0.265774i
\(922\) −2.00088 + 1.45373i −0.0658956 + 0.0478759i
\(923\) 4.87821 46.4130i 0.160568 1.52770i
\(924\) 2.46277 + 4.26565i 0.0810193 + 0.140329i
\(925\) 7.97511 13.8133i 0.262220 0.454178i
\(926\) −17.6128 12.7965i −0.578793 0.420518i
\(927\) −33.6963 + 37.4236i −1.10673 + 1.22915i
\(928\) 2.87808 8.85781i 0.0944775 0.290772i
\(929\) 54.6187 1.79198 0.895991 0.444072i \(-0.146467\pi\)
0.895991 + 0.444072i \(0.146467\pi\)
\(930\) 0 0
\(931\) −9.97677 −0.326975
\(932\) 6.00225 18.4730i 0.196610 0.605104i
\(933\) −3.47024 + 3.85409i −0.113611 + 0.126177i
\(934\) 16.4636 + 11.9615i 0.538705 + 0.391392i
\(935\) −6.35176 + 11.0016i −0.207725 + 0.359790i
\(936\) −7.60864 13.1785i −0.248696 0.430754i
\(937\) 1.39962 13.3165i 0.0457237 0.435032i −0.947582 0.319514i \(-0.896480\pi\)
0.993305 0.115518i \(-0.0368529\pi\)
\(938\) 16.1096 11.7043i 0.525998 0.382160i
\(939\) −1.67258 15.9135i −0.0545825 0.519317i
\(940\) −4.86259 5.40045i −0.158600 0.176143i
\(941\) −35.0360 + 15.5990i −1.14214 + 0.508514i −0.888542 0.458795i \(-0.848281\pi\)
−0.253599 + 0.967309i \(0.581614\pi\)
\(942\) −4.67865 + 0.994479i −0.152439 + 0.0324019i
\(943\) −16.3617 3.47779i −0.532811 0.113252i
\(944\) 9.60772 + 4.27763i 0.312705 + 0.139225i
\(945\) −3.99952 12.3093i −0.130104 0.400420i
\(946\) 6.96229 + 21.4277i 0.226363 + 0.696675i
\(947\) 39.7278 + 17.6880i 1.29098 + 0.574782i 0.933312 0.359067i \(-0.116905\pi\)
0.357669 + 0.933849i \(0.383572\pi\)
\(948\) −7.80808 1.65966i −0.253595 0.0539032i
\(949\) −21.3195 + 4.53160i −0.692060 + 0.147102i
\(950\) −8.61269 + 3.83461i −0.279432 + 0.124411i
\(951\) 8.45849 + 9.39410i 0.274285 + 0.304625i
\(952\) 2.35985 + 22.4525i 0.0764833 + 0.727690i
\(953\) 32.5345 23.6377i 1.05390 0.765700i 0.0809464 0.996718i \(-0.474206\pi\)
0.972949 + 0.231018i \(0.0742057\pi\)
\(954\) 6.89612 65.6122i 0.223270 2.12427i
\(955\) −7.01817 12.1558i −0.227103 0.393353i
\(956\) 7.01045 12.1424i 0.226734 0.392715i
\(957\) 1.02946 + 0.747945i 0.0332776 + 0.0241776i
\(958\) 0.831653 0.923644i 0.0268695 0.0298416i
\(959\) −18.2123 + 56.0517i −0.588106 + 1.81001i
\(960\) −1.75607 −0.0566768
\(961\) 0 0
\(962\) 43.1925 1.39258
\(963\) −9.83894 + 30.2811i −0.317055 + 0.975796i
\(964\) −6.35199 + 7.05460i −0.204584 + 0.227213i
\(965\) −13.2290 9.61143i −0.425856 0.309403i
\(966\) −6.11260 + 10.5873i −0.196670 + 0.340642i
\(967\) −21.9360 37.9943i −0.705414 1.22181i −0.966542 0.256509i \(-0.917428\pi\)
0.261128 0.965304i \(-0.415906\pi\)
\(968\) 0.842507 8.01591i 0.0270792 0.257641i
\(969\) −3.29353 + 2.39289i −0.105803 + 0.0768707i
\(970\) −1.93651 18.4247i −0.0621776 0.591580i
\(971\) 34.4726 + 38.2857i 1.10628 + 1.22865i 0.971316 + 0.237794i \(0.0764244\pi\)
0.134961 + 0.990851i \(0.456909\pi\)
\(972\) 15.6278 6.95796i 0.501263 0.223177i
\(973\) 37.2760 7.92325i 1.19501 0.254008i
\(974\) −44.4761 9.45369i −1.42511 0.302916i
\(975\) 8.37773 + 3.73000i 0.268302 + 0.119456i
\(976\) 3.99376 + 12.2915i 0.127837 + 0.393442i
\(977\) 4.44223 + 13.6718i 0.142119 + 0.437399i 0.996629 0.0820365i \(-0.0261424\pi\)
−0.854510 + 0.519435i \(0.826142\pi\)
\(978\) −0.467405 0.208102i −0.0149460 0.00665438i
\(979\) −4.90619 1.04284i −0.156802 0.0333294i
\(980\) −11.6577 + 2.47791i −0.372390 + 0.0791540i
\(981\) −3.50112 + 1.55880i −0.111782 + 0.0497687i
\(982\) −10.6895 11.8719i −0.341116 0.378847i
\(983\) 5.61048 + 53.3801i 0.178946 + 1.70256i 0.603667 + 0.797237i \(0.293706\pi\)
−0.424721 + 0.905324i \(0.639628\pi\)
\(984\) 2.03434 1.47804i 0.0648525 0.0471181i
\(985\) −2.95371 + 28.1027i −0.0941129 + 0.895425i
\(986\) −7.19655 12.4648i −0.229185 0.396960i
\(987\) 3.94163 6.82711i 0.125464 0.217309i
\(988\) −8.58723 6.23898i −0.273196 0.198489i
\(989\) −15.5570 + 17.2779i −0.494685 + 0.549404i
\(990\) −3.52510 + 10.8491i −0.112035 + 0.344808i
\(991\) −35.5382 −1.12891 −0.564453 0.825465i \(-0.690913\pi\)
−0.564453 + 0.825465i \(0.690913\pi\)
\(992\) 0 0
\(993\) −16.4364 −0.521594
\(994\) −19.2126 + 59.1304i −0.609388 + 1.87550i
\(995\) 5.33038 5.91999i 0.168984 0.187676i
\(996\) 6.02430 + 4.37691i 0.190887 + 0.138688i
\(997\) 15.2613 26.4333i 0.483329 0.837151i −0.516488 0.856295i \(-0.672761\pi\)
0.999817 + 0.0191440i \(0.00609410\pi\)
\(998\) 28.7674 + 49.8265i 0.910615 + 1.57723i
\(999\) 1.35159 12.8595i 0.0427623 0.406856i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.k.448.1 16
31.2 even 5 961.2.c.j.521.2 16
31.3 odd 30 961.2.d.q.374.3 16
31.4 even 5 31.2.g.a.7.1 16
31.5 even 3 31.2.g.a.9.1 yes 16
31.6 odd 6 961.2.d.n.628.2 16
31.7 even 15 961.2.d.o.531.2 16
31.8 even 5 961.2.g.s.338.2 16
31.9 even 15 961.2.g.t.235.2 16
31.10 even 15 961.2.c.j.439.2 16
31.11 odd 30 961.2.g.j.547.1 16
31.12 odd 30 961.2.a.j.1.2 8
31.13 odd 30 961.2.g.m.816.2 16
31.14 even 15 961.2.d.p.388.3 16
31.15 odd 10 961.2.g.n.732.2 16
31.16 even 5 961.2.g.t.732.2 16
31.17 odd 30 961.2.d.q.388.3 16
31.18 even 15 961.2.g.s.816.2 16
31.19 even 15 961.2.a.i.1.2 8
31.20 even 15 inner 961.2.g.k.547.1 16
31.21 odd 30 961.2.c.i.439.2 16
31.22 odd 30 961.2.g.n.235.2 16
31.23 odd 10 961.2.g.m.338.2 16
31.24 odd 30 961.2.d.n.531.2 16
31.25 even 3 961.2.d.o.628.2 16
31.26 odd 6 961.2.g.l.846.1 16
31.27 odd 10 961.2.g.l.844.1 16
31.28 even 15 961.2.d.p.374.3 16
31.29 odd 10 961.2.c.i.521.2 16
31.30 odd 2 961.2.g.j.448.1 16
93.5 odd 6 279.2.y.c.226.2 16
93.35 odd 10 279.2.y.c.100.2 16
93.50 odd 30 8649.2.a.bf.1.7 8
93.74 even 30 8649.2.a.be.1.7 8
124.35 odd 10 496.2.bg.c.193.1 16
124.67 odd 6 496.2.bg.c.257.1 16
155.4 even 10 775.2.bl.a.751.2 16
155.67 odd 12 775.2.ck.a.474.1 32
155.97 odd 20 775.2.ck.a.224.4 32
155.98 odd 12 775.2.ck.a.474.4 32
155.128 odd 20 775.2.ck.a.224.1 32
155.129 even 6 775.2.bl.a.226.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.1 16 31.4 even 5
31.2.g.a.9.1 yes 16 31.5 even 3
279.2.y.c.100.2 16 93.35 odd 10
279.2.y.c.226.2 16 93.5 odd 6
496.2.bg.c.193.1 16 124.35 odd 10
496.2.bg.c.257.1 16 124.67 odd 6
775.2.bl.a.226.2 16 155.129 even 6
775.2.bl.a.751.2 16 155.4 even 10
775.2.ck.a.224.1 32 155.128 odd 20
775.2.ck.a.224.4 32 155.97 odd 20
775.2.ck.a.474.1 32 155.67 odd 12
775.2.ck.a.474.4 32 155.98 odd 12
961.2.a.i.1.2 8 31.19 even 15
961.2.a.j.1.2 8 31.12 odd 30
961.2.c.i.439.2 16 31.21 odd 30
961.2.c.i.521.2 16 31.29 odd 10
961.2.c.j.439.2 16 31.10 even 15
961.2.c.j.521.2 16 31.2 even 5
961.2.d.n.531.2 16 31.24 odd 30
961.2.d.n.628.2 16 31.6 odd 6
961.2.d.o.531.2 16 31.7 even 15
961.2.d.o.628.2 16 31.25 even 3
961.2.d.p.374.3 16 31.28 even 15
961.2.d.p.388.3 16 31.14 even 15
961.2.d.q.374.3 16 31.3 odd 30
961.2.d.q.388.3 16 31.17 odd 30
961.2.g.j.448.1 16 31.30 odd 2
961.2.g.j.547.1 16 31.11 odd 30
961.2.g.k.448.1 16 1.1 even 1 trivial
961.2.g.k.547.1 16 31.20 even 15 inner
961.2.g.l.844.1 16 31.27 odd 10
961.2.g.l.846.1 16 31.26 odd 6
961.2.g.m.338.2 16 31.23 odd 10
961.2.g.m.816.2 16 31.13 odd 30
961.2.g.n.235.2 16 31.22 odd 30
961.2.g.n.732.2 16 31.15 odd 10
961.2.g.s.338.2 16 31.8 even 5
961.2.g.s.816.2 16 31.18 even 15
961.2.g.t.235.2 16 31.9 even 15
961.2.g.t.732.2 16 31.16 even 5
8649.2.a.be.1.7 8 93.74 even 30
8649.2.a.bf.1.7 8 93.50 odd 30