Properties

Label 9464.2.a.z
Level $9464$
Weight $2$
Character orbit 9464.a
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,-2,0,4,0,13,0,1,0,0,0,-10,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.64268.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 6x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{5} + q^{7} + (\beta_{3} + \beta_1 + 3) q^{9} + (2 \beta_{3} + \beta_1) q^{11} + ( - 3 \beta_{3} - 2 \beta_1 - 2) q^{15} + ( - \beta_{3} + 4) q^{17} + (2 \beta_{3} + \beta_{2} + 3) q^{19}+ \cdots + (7 \beta_{3} + 2 \beta_{2} + 4 \beta_1 + 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 2 q^{5} + 4 q^{7} + 13 q^{9} + q^{11} - 10 q^{15} + 16 q^{17} + 10 q^{19} + q^{21} + 7 q^{23} + 14 q^{25} + 13 q^{27} + 4 q^{29} + q^{31} + q^{33} - 2 q^{35} - 5 q^{37} - 19 q^{41} + 14 q^{43}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 12x^{2} + 6x + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 6\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 7\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.65932
−1.72110
2.19455
3.18587
0 −2.65932 0 2.96141 0 1.00000 0 4.07200 0
1.2 0 −1.72110 0 −3.13311 0 1.00000 0 −0.0378271 0
1.3 0 2.19455 0 1.70715 0 1.00000 0 1.81604 0
1.4 0 3.18587 0 −3.53544 0 1.00000 0 7.14978 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9464.2.a.z 4
13.b even 2 1 728.2.a.i 4
39.d odd 2 1 6552.2.a.br 4
52.b odd 2 1 1456.2.a.v 4
91.b odd 2 1 5096.2.a.s 4
104.e even 2 1 5824.2.a.cb 4
104.h odd 2 1 5824.2.a.ce 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.a.i 4 13.b even 2 1
1456.2.a.v 4 52.b odd 2 1
5096.2.a.s 4 91.b odd 2 1
5824.2.a.cb 4 104.e even 2 1
5824.2.a.ce 4 104.h odd 2 1
6552.2.a.br 4 39.d odd 2 1
9464.2.a.z 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\):

\( T_{3}^{4} - T_{3}^{3} - 12T_{3}^{2} + 6T_{3} + 32 \) Copy content Toggle raw display
\( T_{5}^{4} + 2T_{5}^{3} - 15T_{5}^{2} - 18T_{5} + 56 \) Copy content Toggle raw display
\( T_{11}^{4} - T_{11}^{3} - 44T_{11}^{2} + 22T_{11} + 488 \) Copy content Toggle raw display
\( T_{17}^{4} - 16T_{17}^{3} + 82T_{17}^{2} - 140T_{17} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + \cdots + 32 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 56 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + \cdots + 488 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 16 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$19$ \( T^{4} - 10 T^{3} + \cdots - 784 \) Copy content Toggle raw display
$23$ \( T^{4} - 7 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots - 568 \) Copy content Toggle raw display
$31$ \( T^{4} - T^{3} - 27 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$37$ \( T^{4} + 5 T^{3} + \cdots - 508 \) Copy content Toggle raw display
$41$ \( T^{4} + 19 T^{3} + \cdots - 2104 \) Copy content Toggle raw display
$43$ \( T^{4} - 14 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( T^{4} - 13 T^{3} + \cdots - 4952 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots - 544 \) Copy content Toggle raw display
$59$ \( T^{4} - 26 T^{3} + \cdots - 9344 \) Copy content Toggle raw display
$61$ \( T^{4} + T^{3} + \cdots + 104 \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 4208 \) Copy content Toggle raw display
$71$ \( T^{4} - 18 T^{3} + \cdots + 2048 \) Copy content Toggle raw display
$73$ \( T^{4} + 7 T^{3} + \cdots - 166 \) Copy content Toggle raw display
$79$ \( T^{4} - 9 T^{3} + \cdots - 112 \) Copy content Toggle raw display
$83$ \( T^{4} + 12 T^{3} + \cdots + 1088 \) Copy content Toggle raw display
$89$ \( T^{4} + 4 T^{3} + \cdots + 5524 \) Copy content Toggle raw display
$97$ \( T^{4} + 25 T^{3} + \cdots + 526 \) Copy content Toggle raw display
show more
show less