| L(s) = 1 | + 2.19·3-s + 1.70·5-s + 7-s + 1.81·9-s − 4.56·11-s + 3.74·15-s + 7.37·17-s − 6.46·19-s + 2.19·21-s + 5.90·23-s − 2.08·25-s − 2.59·27-s + 2.69·29-s − 0.523·31-s − 10.0·33-s + 1.70·35-s − 2.17·37-s + 4.98·41-s + 2.32·43-s + 3.10·45-s + 12.3·47-s + 49-s + 16.1·51-s − 4.71·53-s − 7.78·55-s − 14.1·57-s + 13.7·59-s + ⋯ |
| L(s) = 1 | + 1.26·3-s + 0.763·5-s + 0.377·7-s + 0.605·9-s − 1.37·11-s + 0.967·15-s + 1.78·17-s − 1.48·19-s + 0.478·21-s + 1.23·23-s − 0.417·25-s − 0.500·27-s + 0.500·29-s − 0.0939·31-s − 1.74·33-s + 0.288·35-s − 0.357·37-s + 0.778·41-s + 0.355·43-s + 0.462·45-s + 1.79·47-s + 0.142·49-s + 2.26·51-s − 0.648·53-s − 1.05·55-s − 1.87·57-s + 1.79·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.986731105\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.986731105\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 - 2.19T + 3T^{2} \) |
| 5 | \( 1 - 1.70T + 5T^{2} \) |
| 11 | \( 1 + 4.56T + 11T^{2} \) |
| 17 | \( 1 - 7.37T + 17T^{2} \) |
| 19 | \( 1 + 6.46T + 19T^{2} \) |
| 23 | \( 1 - 5.90T + 23T^{2} \) |
| 29 | \( 1 - 2.69T + 29T^{2} \) |
| 31 | \( 1 + 0.523T + 31T^{2} \) |
| 37 | \( 1 + 2.17T + 37T^{2} \) |
| 41 | \( 1 - 4.98T + 41T^{2} \) |
| 43 | \( 1 - 2.32T + 43T^{2} \) |
| 47 | \( 1 - 12.3T + 47T^{2} \) |
| 53 | \( 1 + 4.71T + 53T^{2} \) |
| 59 | \( 1 - 13.7T + 59T^{2} \) |
| 61 | \( 1 + 0.137T + 61T^{2} \) |
| 67 | \( 1 - 7.96T + 67T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 + 2.52T + 73T^{2} \) |
| 79 | \( 1 - 4.85T + 79T^{2} \) |
| 83 | \( 1 - 7.51T + 83T^{2} \) |
| 89 | \( 1 - 10.8T + 89T^{2} \) |
| 97 | \( 1 + 17.6T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80857973473570127238457602921, −7.31031624123684363658142738547, −6.30623819143572534956259974093, −5.51939073508748780266035823793, −5.07914761120412241923284548608, −4.02882068343762087250076200458, −3.28101881338436727458499262574, −2.46003560483567326988863738748, −2.12281341065987937830935089328, −0.896317393568797324621514216953,
0.896317393568797324621514216953, 2.12281341065987937830935089328, 2.46003560483567326988863738748, 3.28101881338436727458499262574, 4.02882068343762087250076200458, 5.07914761120412241923284548608, 5.51939073508748780266035823793, 6.30623819143572534956259974093, 7.31031624123684363658142738547, 7.80857973473570127238457602921