Defining parameters
Level: | \( N \) | \(=\) | \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9464.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(2912\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9464))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1512 | 232 | 1280 |
Cusp forms | 1401 | 232 | 1169 |
Eisenstein series | 111 | 0 | 111 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(29\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(30\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(34\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(24\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(30\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(27\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(25\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(33\) |
Plus space | \(+\) | \(105\) | ||
Minus space | \(-\) | \(127\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9464))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9464)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4732))\)\(^{\oplus 2}\)