Defining parameters
Level: | \( N \) | \(=\) | \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9464.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(2912\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9464))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1512 | 232 | 1280 |
Cusp forms | 1401 | 232 | 1169 |
Eisenstein series | 111 | 0 | 111 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(175\) | \(29\) | \(146\) | \(162\) | \(29\) | \(133\) | \(13\) | \(0\) | \(13\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(201\) | \(30\) | \(171\) | \(187\) | \(30\) | \(157\) | \(14\) | \(0\) | \(14\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(203\) | \(34\) | \(169\) | \(189\) | \(34\) | \(155\) | \(14\) | \(0\) | \(14\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(177\) | \(24\) | \(153\) | \(163\) | \(24\) | \(139\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(189\) | \(30\) | \(159\) | \(175\) | \(30\) | \(145\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(191\) | \(27\) | \(164\) | \(177\) | \(27\) | \(150\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(189\) | \(25\) | \(164\) | \(175\) | \(25\) | \(150\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(187\) | \(33\) | \(154\) | \(173\) | \(33\) | \(140\) | \(14\) | \(0\) | \(14\) | |||
Plus space | \(+\) | \(732\) | \(105\) | \(627\) | \(677\) | \(105\) | \(572\) | \(55\) | \(0\) | \(55\) | |||||
Minus space | \(-\) | \(780\) | \(127\) | \(653\) | \(724\) | \(127\) | \(597\) | \(56\) | \(0\) | \(56\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9464))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9464)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1352))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4732))\)\(^{\oplus 2}\)