Properties

Label 9464.2.a.y.1.3
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,5,0,4,0,5,0,-3,0,0,0,-18,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.122260.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 2x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.401251\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.401251 q^{3} +0.598749 q^{5} +1.00000 q^{7} -2.83900 q^{9} -4.58315 q^{11} +0.240249 q^{15} -1.54666 q^{17} +5.58315 q^{19} +0.401251 q^{21} +1.98441 q^{23} -4.64150 q^{25} -2.34291 q^{27} +7.82340 q^{29} +0.546660 q^{31} -1.83900 q^{33} +0.598749 q^{35} -5.38566 q^{37} -0.854591 q^{41} +9.02090 q^{43} -1.69985 q^{45} +3.24025 q^{47} +1.00000 q^{49} -0.620600 q^{51} +0.327312 q^{53} -2.74416 q^{55} +2.24025 q^{57} -1.81810 q^{59} +2.82340 q^{61} -2.83900 q^{63} -2.05209 q^{67} +0.796246 q^{69} +6.24025 q^{71} -6.43775 q^{73} -1.86241 q^{75} -4.58315 q^{77} -11.3638 q^{79} +7.57690 q^{81} -4.67174 q^{83} -0.926061 q^{85} +3.13915 q^{87} +13.2611 q^{89} +0.219348 q^{93} +3.34291 q^{95} +8.11574 q^{97} +13.0116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 5 q^{5} + 4 q^{7} + 5 q^{9} - 3 q^{11} - 18 q^{15} - 2 q^{17} + 7 q^{19} - q^{21} - 10 q^{23} + 3 q^{25} - 13 q^{27} - 3 q^{29} - 2 q^{31} + 9 q^{33} + 5 q^{35} - q^{37} - 5 q^{41} + 7 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.401251 0.231663 0.115831 0.993269i \(-0.463047\pi\)
0.115831 + 0.993269i \(0.463047\pi\)
\(4\) 0 0
\(5\) 0.598749 0.267769 0.133884 0.990997i \(-0.457255\pi\)
0.133884 + 0.990997i \(0.457255\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.83900 −0.946332
\(10\) 0 0
\(11\) −4.58315 −1.38187 −0.690937 0.722915i \(-0.742802\pi\)
−0.690937 + 0.722915i \(0.742802\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0.240249 0.0620320
\(16\) 0 0
\(17\) −1.54666 −0.375120 −0.187560 0.982253i \(-0.560058\pi\)
−0.187560 + 0.982253i \(0.560058\pi\)
\(18\) 0 0
\(19\) 5.58315 1.28086 0.640432 0.768015i \(-0.278755\pi\)
0.640432 + 0.768015i \(0.278755\pi\)
\(20\) 0 0
\(21\) 0.401251 0.0875602
\(22\) 0 0
\(23\) 1.98441 0.413777 0.206889 0.978364i \(-0.433666\pi\)
0.206889 + 0.978364i \(0.433666\pi\)
\(24\) 0 0
\(25\) −4.64150 −0.928300
\(26\) 0 0
\(27\) −2.34291 −0.450892
\(28\) 0 0
\(29\) 7.82340 1.45277 0.726385 0.687288i \(-0.241199\pi\)
0.726385 + 0.687288i \(0.241199\pi\)
\(30\) 0 0
\(31\) 0.546660 0.0981831 0.0490915 0.998794i \(-0.484367\pi\)
0.0490915 + 0.998794i \(0.484367\pi\)
\(32\) 0 0
\(33\) −1.83900 −0.320128
\(34\) 0 0
\(35\) 0.598749 0.101207
\(36\) 0 0
\(37\) −5.38566 −0.885397 −0.442698 0.896671i \(-0.645979\pi\)
−0.442698 + 0.896671i \(0.645979\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.854591 −0.133465 −0.0667324 0.997771i \(-0.521257\pi\)
−0.0667324 + 0.997771i \(0.521257\pi\)
\(42\) 0 0
\(43\) 9.02090 1.37567 0.687837 0.725865i \(-0.258560\pi\)
0.687837 + 0.725865i \(0.258560\pi\)
\(44\) 0 0
\(45\) −1.69985 −0.253398
\(46\) 0 0
\(47\) 3.24025 0.472639 0.236319 0.971675i \(-0.424059\pi\)
0.236319 + 0.971675i \(0.424059\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.620600 −0.0869013
\(52\) 0 0
\(53\) 0.327312 0.0449598 0.0224799 0.999747i \(-0.492844\pi\)
0.0224799 + 0.999747i \(0.492844\pi\)
\(54\) 0 0
\(55\) −2.74416 −0.370022
\(56\) 0 0
\(57\) 2.24025 0.296728
\(58\) 0 0
\(59\) −1.81810 −0.236696 −0.118348 0.992972i \(-0.537760\pi\)
−0.118348 + 0.992972i \(0.537760\pi\)
\(60\) 0 0
\(61\) 2.82340 0.361500 0.180750 0.983529i \(-0.442148\pi\)
0.180750 + 0.983529i \(0.442148\pi\)
\(62\) 0 0
\(63\) −2.83900 −0.357680
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.05209 −0.250702 −0.125351 0.992112i \(-0.540006\pi\)
−0.125351 + 0.992112i \(0.540006\pi\)
\(68\) 0 0
\(69\) 0.796246 0.0958567
\(70\) 0 0
\(71\) 6.24025 0.740581 0.370291 0.928916i \(-0.379258\pi\)
0.370291 + 0.928916i \(0.379258\pi\)
\(72\) 0 0
\(73\) −6.43775 −0.753481 −0.376741 0.926319i \(-0.622955\pi\)
−0.376741 + 0.926319i \(0.622955\pi\)
\(74\) 0 0
\(75\) −1.86241 −0.215052
\(76\) 0 0
\(77\) −4.58315 −0.522299
\(78\) 0 0
\(79\) −11.3638 −1.27853 −0.639264 0.768987i \(-0.720761\pi\)
−0.639264 + 0.768987i \(0.720761\pi\)
\(80\) 0 0
\(81\) 7.57690 0.841878
\(82\) 0 0
\(83\) −4.67174 −0.512790 −0.256395 0.966572i \(-0.582535\pi\)
−0.256395 + 0.966572i \(0.582535\pi\)
\(84\) 0 0
\(85\) −0.926061 −0.100445
\(86\) 0 0
\(87\) 3.13915 0.336552
\(88\) 0 0
\(89\) 13.2611 1.40568 0.702840 0.711348i \(-0.251915\pi\)
0.702840 + 0.711348i \(0.251915\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.219348 0.0227453
\(94\) 0 0
\(95\) 3.34291 0.342975
\(96\) 0 0
\(97\) 8.11574 0.824029 0.412014 0.911177i \(-0.364825\pi\)
0.412014 + 0.911177i \(0.364825\pi\)
\(98\) 0 0
\(99\) 13.0116 1.30771
\(100\) 0 0
\(101\) −18.7339 −1.86409 −0.932045 0.362343i \(-0.881977\pi\)
−0.932045 + 0.362343i \(0.881977\pi\)
\(102\) 0 0
\(103\) −15.5738 −1.53453 −0.767267 0.641328i \(-0.778384\pi\)
−0.767267 + 0.641328i \(0.778384\pi\)
\(104\) 0 0
\(105\) 0.240249 0.0234459
\(106\) 0 0
\(107\) −13.8287 −1.33687 −0.668436 0.743770i \(-0.733036\pi\)
−0.668436 + 0.743770i \(0.733036\pi\)
\(108\) 0 0
\(109\) −11.3336 −1.08556 −0.542780 0.839875i \(-0.682628\pi\)
−0.542780 + 0.839875i \(0.682628\pi\)
\(110\) 0 0
\(111\) −2.16100 −0.205113
\(112\) 0 0
\(113\) −11.8802 −1.11760 −0.558799 0.829303i \(-0.688738\pi\)
−0.558799 + 0.829303i \(0.688738\pi\)
\(114\) 0 0
\(115\) 1.18816 0.110797
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.54666 −0.141782
\(120\) 0 0
\(121\) 10.0053 0.909573
\(122\) 0 0
\(123\) −0.342906 −0.0309188
\(124\) 0 0
\(125\) −5.77283 −0.516338
\(126\) 0 0
\(127\) −1.06768 −0.0947415 −0.0473707 0.998877i \(-0.515084\pi\)
−0.0473707 + 0.998877i \(0.515084\pi\)
\(128\) 0 0
\(129\) 3.61965 0.318692
\(130\) 0 0
\(131\) −4.90668 −0.428699 −0.214349 0.976757i \(-0.568763\pi\)
−0.214349 + 0.976757i \(0.568763\pi\)
\(132\) 0 0
\(133\) 5.58315 0.484121
\(134\) 0 0
\(135\) −1.40281 −0.120735
\(136\) 0 0
\(137\) 12.4999 1.06794 0.533968 0.845504i \(-0.320700\pi\)
0.533968 + 0.845504i \(0.320700\pi\)
\(138\) 0 0
\(139\) −6.34916 −0.538529 −0.269264 0.963066i \(-0.586781\pi\)
−0.269264 + 0.963066i \(0.586781\pi\)
\(140\) 0 0
\(141\) 1.30015 0.109493
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.68425 0.389006
\(146\) 0 0
\(147\) 0.401251 0.0330947
\(148\) 0 0
\(149\) −21.8225 −1.78777 −0.893883 0.448301i \(-0.852029\pi\)
−0.893883 + 0.448301i \(0.852029\pi\)
\(150\) 0 0
\(151\) −10.0924 −0.821305 −0.410653 0.911792i \(-0.634699\pi\)
−0.410653 + 0.911792i \(0.634699\pi\)
\(152\) 0 0
\(153\) 4.39096 0.354988
\(154\) 0 0
\(155\) 0.327312 0.0262903
\(156\) 0 0
\(157\) 3.56756 0.284722 0.142361 0.989815i \(-0.454531\pi\)
0.142361 + 0.989815i \(0.454531\pi\)
\(158\) 0 0
\(159\) 0.131334 0.0104155
\(160\) 0 0
\(161\) 1.98441 0.156393
\(162\) 0 0
\(163\) −11.0933 −0.868896 −0.434448 0.900697i \(-0.643057\pi\)
−0.434448 + 0.900697i \(0.643057\pi\)
\(164\) 0 0
\(165\) −1.10110 −0.0857203
\(166\) 0 0
\(167\) 15.9158 1.23160 0.615800 0.787903i \(-0.288833\pi\)
0.615800 + 0.787903i \(0.288833\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −15.8506 −1.21212
\(172\) 0 0
\(173\) −13.2665 −1.00863 −0.504315 0.863520i \(-0.668255\pi\)
−0.504315 + 0.863520i \(0.668255\pi\)
\(174\) 0 0
\(175\) −4.64150 −0.350864
\(176\) 0 0
\(177\) −0.729514 −0.0548336
\(178\) 0 0
\(179\) −14.6989 −1.09865 −0.549324 0.835610i \(-0.685115\pi\)
−0.549324 + 0.835610i \(0.685115\pi\)
\(180\) 0 0
\(181\) −15.2038 −1.13009 −0.565043 0.825061i \(-0.691140\pi\)
−0.565043 + 0.825061i \(0.691140\pi\)
\(182\) 0 0
\(183\) 1.13289 0.0837460
\(184\) 0 0
\(185\) −3.22465 −0.237081
\(186\) 0 0
\(187\) 7.08858 0.518369
\(188\) 0 0
\(189\) −2.34291 −0.170421
\(190\) 0 0
\(191\) −7.75572 −0.561184 −0.280592 0.959827i \(-0.590531\pi\)
−0.280592 + 0.959827i \(0.590531\pi\)
\(192\) 0 0
\(193\) 6.87549 0.494909 0.247454 0.968900i \(-0.420406\pi\)
0.247454 + 0.968900i \(0.420406\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.24959 0.516512 0.258256 0.966077i \(-0.416852\pi\)
0.258256 + 0.966077i \(0.416852\pi\)
\(198\) 0 0
\(199\) −26.7236 −1.89438 −0.947192 0.320666i \(-0.896093\pi\)
−0.947192 + 0.320666i \(0.896093\pi\)
\(200\) 0 0
\(201\) −0.823403 −0.0580784
\(202\) 0 0
\(203\) 7.82340 0.549095
\(204\) 0 0
\(205\) −0.511685 −0.0357377
\(206\) 0 0
\(207\) −5.63372 −0.391571
\(208\) 0 0
\(209\) −25.5885 −1.76999
\(210\) 0 0
\(211\) 13.9011 0.956993 0.478497 0.878089i \(-0.341182\pi\)
0.478497 + 0.878089i \(0.341182\pi\)
\(212\) 0 0
\(213\) 2.50391 0.171565
\(214\) 0 0
\(215\) 5.40125 0.368362
\(216\) 0 0
\(217\) 0.546660 0.0371097
\(218\) 0 0
\(219\) −2.58315 −0.174553
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −19.9026 −1.33278 −0.666390 0.745603i \(-0.732161\pi\)
−0.666390 + 0.745603i \(0.732161\pi\)
\(224\) 0 0
\(225\) 13.1772 0.878480
\(226\) 0 0
\(227\) −20.2596 −1.34468 −0.672339 0.740243i \(-0.734710\pi\)
−0.672339 + 0.740243i \(0.734710\pi\)
\(228\) 0 0
\(229\) −9.30641 −0.614985 −0.307492 0.951551i \(-0.599490\pi\)
−0.307492 + 0.951551i \(0.599490\pi\)
\(230\) 0 0
\(231\) −1.83900 −0.120997
\(232\) 0 0
\(233\) 13.3326 0.873449 0.436724 0.899595i \(-0.356138\pi\)
0.436724 + 0.899595i \(0.356138\pi\)
\(234\) 0 0
\(235\) 1.94009 0.126558
\(236\) 0 0
\(237\) −4.55974 −0.296187
\(238\) 0 0
\(239\) 0.729514 0.0471883 0.0235942 0.999722i \(-0.492489\pi\)
0.0235942 + 0.999722i \(0.492489\pi\)
\(240\) 0 0
\(241\) −1.44305 −0.0929552 −0.0464776 0.998919i \(-0.514800\pi\)
−0.0464776 + 0.998919i \(0.514800\pi\)
\(242\) 0 0
\(243\) 10.0690 0.645924
\(244\) 0 0
\(245\) 0.598749 0.0382526
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.87454 −0.118794
\(250\) 0 0
\(251\) 20.3389 1.28378 0.641889 0.766797i \(-0.278151\pi\)
0.641889 + 0.766797i \(0.278151\pi\)
\(252\) 0 0
\(253\) −9.09484 −0.571788
\(254\) 0 0
\(255\) −0.371583 −0.0232694
\(256\) 0 0
\(257\) −24.4951 −1.52796 −0.763982 0.645237i \(-0.776759\pi\)
−0.763982 + 0.645237i \(0.776759\pi\)
\(258\) 0 0
\(259\) −5.38566 −0.334648
\(260\) 0 0
\(261\) −22.2106 −1.37480
\(262\) 0 0
\(263\) 18.0100 1.11055 0.555273 0.831668i \(-0.312614\pi\)
0.555273 + 0.831668i \(0.312614\pi\)
\(264\) 0 0
\(265\) 0.195978 0.0120388
\(266\) 0 0
\(267\) 5.32105 0.325643
\(268\) 0 0
\(269\) 13.5822 0.828122 0.414061 0.910249i \(-0.364110\pi\)
0.414061 + 0.910249i \(0.364110\pi\)
\(270\) 0 0
\(271\) −23.9460 −1.45462 −0.727308 0.686311i \(-0.759229\pi\)
−0.727308 + 0.686311i \(0.759229\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.2727 1.28279
\(276\) 0 0
\(277\) 16.6989 1.00334 0.501670 0.865059i \(-0.332719\pi\)
0.501670 + 0.865059i \(0.332719\pi\)
\(278\) 0 0
\(279\) −1.55197 −0.0929138
\(280\) 0 0
\(281\) −16.4269 −0.979946 −0.489973 0.871738i \(-0.662993\pi\)
−0.489973 + 0.871738i \(0.662993\pi\)
\(282\) 0 0
\(283\) −32.0627 −1.90593 −0.952965 0.303081i \(-0.901985\pi\)
−0.952965 + 0.303081i \(0.901985\pi\)
\(284\) 0 0
\(285\) 1.34135 0.0794545
\(286\) 0 0
\(287\) −0.854591 −0.0504449
\(288\) 0 0
\(289\) −14.6078 −0.859285
\(290\) 0 0
\(291\) 3.25645 0.190897
\(292\) 0 0
\(293\) 17.1882 1.00414 0.502072 0.864826i \(-0.332571\pi\)
0.502072 + 0.864826i \(0.332571\pi\)
\(294\) 0 0
\(295\) −1.08858 −0.0633797
\(296\) 0 0
\(297\) 10.7379 0.623076
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.02090 0.519956
\(302\) 0 0
\(303\) −7.51699 −0.431840
\(304\) 0 0
\(305\) 1.69051 0.0967983
\(306\) 0 0
\(307\) −17.5160 −0.999693 −0.499847 0.866114i \(-0.666610\pi\)
−0.499847 + 0.866114i \(0.666610\pi\)
\(308\) 0 0
\(309\) −6.24902 −0.355494
\(310\) 0 0
\(311\) −12.9338 −0.733411 −0.366705 0.930337i \(-0.619514\pi\)
−0.366705 + 0.930337i \(0.619514\pi\)
\(312\) 0 0
\(313\) −20.3910 −1.15257 −0.576283 0.817250i \(-0.695497\pi\)
−0.576283 + 0.817250i \(0.695497\pi\)
\(314\) 0 0
\(315\) −1.69985 −0.0957755
\(316\) 0 0
\(317\) 11.6134 0.652273 0.326137 0.945323i \(-0.394253\pi\)
0.326137 + 0.945323i \(0.394253\pi\)
\(318\) 0 0
\(319\) −35.8559 −2.00754
\(320\) 0 0
\(321\) −5.54879 −0.309703
\(322\) 0 0
\(323\) −8.63524 −0.480478
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.54761 −0.251483
\(328\) 0 0
\(329\) 3.24025 0.178641
\(330\) 0 0
\(331\) 27.4468 1.50861 0.754307 0.656521i \(-0.227973\pi\)
0.754307 + 0.656521i \(0.227973\pi\)
\(332\) 0 0
\(333\) 15.2899 0.837880
\(334\) 0 0
\(335\) −1.22869 −0.0671302
\(336\) 0 0
\(337\) −17.9114 −0.975697 −0.487849 0.872928i \(-0.662218\pi\)
−0.487849 + 0.872928i \(0.662218\pi\)
\(338\) 0 0
\(339\) −4.76696 −0.258906
\(340\) 0 0
\(341\) −2.50543 −0.135677
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.476751 0.0256674
\(346\) 0 0
\(347\) −0.480497 −0.0257945 −0.0128972 0.999917i \(-0.504105\pi\)
−0.0128972 + 0.999917i \(0.504105\pi\)
\(348\) 0 0
\(349\) −21.1258 −1.13084 −0.565419 0.824804i \(-0.691285\pi\)
−0.565419 + 0.824804i \(0.691285\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.2446 1.29041 0.645205 0.764009i \(-0.276772\pi\)
0.645205 + 0.764009i \(0.276772\pi\)
\(354\) 0 0
\(355\) 3.73634 0.198304
\(356\) 0 0
\(357\) −0.620600 −0.0328456
\(358\) 0 0
\(359\) 27.0846 1.42947 0.714734 0.699396i \(-0.246548\pi\)
0.714734 + 0.699396i \(0.246548\pi\)
\(360\) 0 0
\(361\) 12.1716 0.640611
\(362\) 0 0
\(363\) 4.01464 0.210714
\(364\) 0 0
\(365\) −3.85459 −0.201759
\(366\) 0 0
\(367\) −2.13133 −0.111255 −0.0556274 0.998452i \(-0.517716\pi\)
−0.0556274 + 0.998452i \(0.517716\pi\)
\(368\) 0 0
\(369\) 2.42618 0.126302
\(370\) 0 0
\(371\) 0.327312 0.0169932
\(372\) 0 0
\(373\) −4.57690 −0.236983 −0.118491 0.992955i \(-0.537806\pi\)
−0.118491 + 0.992955i \(0.537806\pi\)
\(374\) 0 0
\(375\) −2.31636 −0.119616
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.88426 −0.148154 −0.0740772 0.997253i \(-0.523601\pi\)
−0.0740772 + 0.997253i \(0.523601\pi\)
\(380\) 0 0
\(381\) −0.428409 −0.0219481
\(382\) 0 0
\(383\) 8.35542 0.426942 0.213471 0.976949i \(-0.431523\pi\)
0.213471 + 0.976949i \(0.431523\pi\)
\(384\) 0 0
\(385\) −2.74416 −0.139855
\(386\) 0 0
\(387\) −25.6103 −1.30185
\(388\) 0 0
\(389\) −33.4212 −1.69452 −0.847261 0.531177i \(-0.821750\pi\)
−0.847261 + 0.531177i \(0.821750\pi\)
\(390\) 0 0
\(391\) −3.06920 −0.155216
\(392\) 0 0
\(393\) −1.96881 −0.0993134
\(394\) 0 0
\(395\) −6.80406 −0.342350
\(396\) 0 0
\(397\) 37.2611 1.87008 0.935042 0.354538i \(-0.115362\pi\)
0.935042 + 0.354538i \(0.115362\pi\)
\(398\) 0 0
\(399\) 2.24025 0.112153
\(400\) 0 0
\(401\) 10.6858 0.533624 0.266812 0.963749i \(-0.414030\pi\)
0.266812 + 0.963749i \(0.414030\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.53666 0.225428
\(406\) 0 0
\(407\) 24.6833 1.22351
\(408\) 0 0
\(409\) 32.8643 1.62503 0.812516 0.582938i \(-0.198097\pi\)
0.812516 + 0.582938i \(0.198097\pi\)
\(410\) 0 0
\(411\) 5.01559 0.247401
\(412\) 0 0
\(413\) −1.81810 −0.0894627
\(414\) 0 0
\(415\) −2.79720 −0.137309
\(416\) 0 0
\(417\) −2.54761 −0.124757
\(418\) 0 0
\(419\) 27.8302 1.35960 0.679798 0.733400i \(-0.262068\pi\)
0.679798 + 0.733400i \(0.262068\pi\)
\(420\) 0 0
\(421\) 35.5004 1.73019 0.865093 0.501612i \(-0.167259\pi\)
0.865093 + 0.501612i \(0.167259\pi\)
\(422\) 0 0
\(423\) −9.19906 −0.447273
\(424\) 0 0
\(425\) 7.17882 0.348224
\(426\) 0 0
\(427\) 2.82340 0.136634
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.6546 0.609552 0.304776 0.952424i \(-0.401418\pi\)
0.304776 + 0.952424i \(0.401418\pi\)
\(432\) 0 0
\(433\) 16.6671 0.800972 0.400486 0.916303i \(-0.368841\pi\)
0.400486 + 0.916303i \(0.368841\pi\)
\(434\) 0 0
\(435\) 1.87956 0.0901181
\(436\) 0 0
\(437\) 11.0792 0.529992
\(438\) 0 0
\(439\) −19.3841 −0.925154 −0.462577 0.886579i \(-0.653075\pi\)
−0.462577 + 0.886579i \(0.653075\pi\)
\(440\) 0 0
\(441\) −2.83900 −0.135190
\(442\) 0 0
\(443\) −20.9120 −0.993558 −0.496779 0.867877i \(-0.665484\pi\)
−0.496779 + 0.867877i \(0.665484\pi\)
\(444\) 0 0
\(445\) 7.94009 0.376397
\(446\) 0 0
\(447\) −8.75629 −0.414158
\(448\) 0 0
\(449\) 16.1585 0.762566 0.381283 0.924458i \(-0.375482\pi\)
0.381283 + 0.924458i \(0.375482\pi\)
\(450\) 0 0
\(451\) 3.91672 0.184431
\(452\) 0 0
\(453\) −4.04958 −0.190266
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.6274 0.918132 0.459066 0.888402i \(-0.348184\pi\)
0.459066 + 0.888402i \(0.348184\pi\)
\(458\) 0 0
\(459\) 3.62368 0.169139
\(460\) 0 0
\(461\) 17.8627 0.831950 0.415975 0.909376i \(-0.363440\pi\)
0.415975 + 0.909376i \(0.363440\pi\)
\(462\) 0 0
\(463\) 10.0924 0.469032 0.234516 0.972112i \(-0.424649\pi\)
0.234516 + 0.972112i \(0.424649\pi\)
\(464\) 0 0
\(465\) 0.131334 0.00609049
\(466\) 0 0
\(467\) −10.6118 −0.491057 −0.245529 0.969389i \(-0.578961\pi\)
−0.245529 + 0.969389i \(0.578961\pi\)
\(468\) 0 0
\(469\) −2.05209 −0.0947566
\(470\) 0 0
\(471\) 1.43149 0.0659595
\(472\) 0 0
\(473\) −41.3442 −1.90101
\(474\) 0 0
\(475\) −25.9142 −1.18903
\(476\) 0 0
\(477\) −0.929238 −0.0425469
\(478\) 0 0
\(479\) −11.0063 −0.502889 −0.251444 0.967872i \(-0.580906\pi\)
−0.251444 + 0.967872i \(0.580906\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.796246 0.0362304
\(484\) 0 0
\(485\) 4.85929 0.220649
\(486\) 0 0
\(487\) 9.87715 0.447576 0.223788 0.974638i \(-0.428158\pi\)
0.223788 + 0.974638i \(0.428158\pi\)
\(488\) 0 0
\(489\) −4.45121 −0.201291
\(490\) 0 0
\(491\) 23.0992 1.04245 0.521226 0.853419i \(-0.325475\pi\)
0.521226 + 0.853419i \(0.325475\pi\)
\(492\) 0 0
\(493\) −12.1001 −0.544963
\(494\) 0 0
\(495\) 7.79066 0.350164
\(496\) 0 0
\(497\) 6.24025 0.279913
\(498\) 0 0
\(499\) −12.7310 −0.569919 −0.284960 0.958540i \(-0.591980\pi\)
−0.284960 + 0.958540i \(0.591980\pi\)
\(500\) 0 0
\(501\) 6.38623 0.285316
\(502\) 0 0
\(503\) −11.9688 −0.533663 −0.266831 0.963743i \(-0.585977\pi\)
−0.266831 + 0.963743i \(0.585977\pi\)
\(504\) 0 0
\(505\) −11.2169 −0.499145
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.13664 −0.183353 −0.0916767 0.995789i \(-0.529223\pi\)
−0.0916767 + 0.995789i \(0.529223\pi\)
\(510\) 0 0
\(511\) −6.43775 −0.284789
\(512\) 0 0
\(513\) −13.0808 −0.577532
\(514\) 0 0
\(515\) −9.32480 −0.410900
\(516\) 0 0
\(517\) −14.8506 −0.653127
\(518\) 0 0
\(519\) −5.32318 −0.233662
\(520\) 0 0
\(521\) −1.96881 −0.0862552 −0.0431276 0.999070i \(-0.513732\pi\)
−0.0431276 + 0.999070i \(0.513732\pi\)
\(522\) 0 0
\(523\) 30.6056 1.33829 0.669144 0.743133i \(-0.266661\pi\)
0.669144 + 0.743133i \(0.266661\pi\)
\(524\) 0 0
\(525\) −1.86241 −0.0812822
\(526\) 0 0
\(527\) −0.845498 −0.0368305
\(528\) 0 0
\(529\) −19.0621 −0.828788
\(530\) 0 0
\(531\) 5.16157 0.223993
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.27992 −0.357972
\(536\) 0 0
\(537\) −5.89795 −0.254515
\(538\) 0 0
\(539\) −4.58315 −0.197410
\(540\) 0 0
\(541\) 0.375613 0.0161489 0.00807444 0.999967i \(-0.497430\pi\)
0.00807444 + 0.999967i \(0.497430\pi\)
\(542\) 0 0
\(543\) −6.10053 −0.261799
\(544\) 0 0
\(545\) −6.78596 −0.290679
\(546\) 0 0
\(547\) −13.4331 −0.574360 −0.287180 0.957877i \(-0.592718\pi\)
−0.287180 + 0.957877i \(0.592718\pi\)
\(548\) 0 0
\(549\) −8.01563 −0.342099
\(550\) 0 0
\(551\) 43.6793 1.86080
\(552\) 0 0
\(553\) −11.3638 −0.483238
\(554\) 0 0
\(555\) −1.29390 −0.0549229
\(556\) 0 0
\(557\) 39.8669 1.68921 0.844607 0.535387i \(-0.179834\pi\)
0.844607 + 0.535387i \(0.179834\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.84430 0.120087
\(562\) 0 0
\(563\) 31.5217 1.32848 0.664241 0.747518i \(-0.268755\pi\)
0.664241 + 0.747518i \(0.268755\pi\)
\(564\) 0 0
\(565\) −7.11327 −0.299258
\(566\) 0 0
\(567\) 7.57690 0.318200
\(568\) 0 0
\(569\) 1.55349 0.0651255 0.0325628 0.999470i \(-0.489633\pi\)
0.0325628 + 0.999470i \(0.489633\pi\)
\(570\) 0 0
\(571\) 7.06744 0.295763 0.147882 0.989005i \(-0.452755\pi\)
0.147882 + 0.989005i \(0.452755\pi\)
\(572\) 0 0
\(573\) −3.11199 −0.130005
\(574\) 0 0
\(575\) −9.21062 −0.384109
\(576\) 0 0
\(577\) −39.3248 −1.63711 −0.818556 0.574426i \(-0.805225\pi\)
−0.818556 + 0.574426i \(0.805225\pi\)
\(578\) 0 0
\(579\) 2.75880 0.114652
\(580\) 0 0
\(581\) −4.67174 −0.193816
\(582\) 0 0
\(583\) −1.50012 −0.0621287
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.2144 −1.57728 −0.788638 0.614858i \(-0.789213\pi\)
−0.788638 + 0.614858i \(0.789213\pi\)
\(588\) 0 0
\(589\) 3.05209 0.125759
\(590\) 0 0
\(591\) 2.90891 0.119656
\(592\) 0 0
\(593\) −0.734113 −0.0301464 −0.0150732 0.999886i \(-0.504798\pi\)
−0.0150732 + 0.999886i \(0.504798\pi\)
\(594\) 0 0
\(595\) −0.926061 −0.0379648
\(596\) 0 0
\(597\) −10.7229 −0.438858
\(598\) 0 0
\(599\) −24.6593 −1.00755 −0.503776 0.863834i \(-0.668056\pi\)
−0.503776 + 0.863834i \(0.668056\pi\)
\(600\) 0 0
\(601\) 20.4181 0.832873 0.416436 0.909165i \(-0.363279\pi\)
0.416436 + 0.909165i \(0.363279\pi\)
\(602\) 0 0
\(603\) 5.82587 0.237248
\(604\) 0 0
\(605\) 5.99066 0.243555
\(606\) 0 0
\(607\) −46.8821 −1.90288 −0.951442 0.307827i \(-0.900398\pi\)
−0.951442 + 0.307827i \(0.900398\pi\)
\(608\) 0 0
\(609\) 3.13915 0.127205
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 19.6696 0.794448 0.397224 0.917722i \(-0.369974\pi\)
0.397224 + 0.917722i \(0.369974\pi\)
\(614\) 0 0
\(615\) −0.205314 −0.00827908
\(616\) 0 0
\(617\) −14.9143 −0.600425 −0.300213 0.953872i \(-0.597058\pi\)
−0.300213 + 0.953872i \(0.597058\pi\)
\(618\) 0 0
\(619\) 35.7198 1.43570 0.717850 0.696198i \(-0.245126\pi\)
0.717850 + 0.696198i \(0.245126\pi\)
\(620\) 0 0
\(621\) −4.64928 −0.186569
\(622\) 0 0
\(623\) 13.2611 0.531297
\(624\) 0 0
\(625\) 19.7510 0.790041
\(626\) 0 0
\(627\) −10.2674 −0.410041
\(628\) 0 0
\(629\) 8.32978 0.332130
\(630\) 0 0
\(631\) 13.4696 0.536218 0.268109 0.963389i \(-0.413601\pi\)
0.268109 + 0.963389i \(0.413601\pi\)
\(632\) 0 0
\(633\) 5.57785 0.221700
\(634\) 0 0
\(635\) −0.639273 −0.0253688
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −17.7160 −0.700836
\(640\) 0 0
\(641\) 23.8880 0.943520 0.471760 0.881727i \(-0.343619\pi\)
0.471760 + 0.881727i \(0.343619\pi\)
\(642\) 0 0
\(643\) −20.1680 −0.795347 −0.397673 0.917527i \(-0.630182\pi\)
−0.397673 + 0.917527i \(0.630182\pi\)
\(644\) 0 0
\(645\) 2.16726 0.0853358
\(646\) 0 0
\(647\) −14.0895 −0.553917 −0.276958 0.960882i \(-0.589326\pi\)
−0.276958 + 0.960882i \(0.589326\pi\)
\(648\) 0 0
\(649\) 8.33262 0.327084
\(650\) 0 0
\(651\) 0.219348 0.00859693
\(652\) 0 0
\(653\) 37.0727 1.45077 0.725384 0.688344i \(-0.241662\pi\)
0.725384 + 0.688344i \(0.241662\pi\)
\(654\) 0 0
\(655\) −2.93787 −0.114792
\(656\) 0 0
\(657\) 18.2767 0.713044
\(658\) 0 0
\(659\) 27.0986 1.05561 0.527806 0.849365i \(-0.323015\pi\)
0.527806 + 0.849365i \(0.323015\pi\)
\(660\) 0 0
\(661\) −22.0372 −0.857148 −0.428574 0.903507i \(-0.640984\pi\)
−0.428574 + 0.903507i \(0.640984\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.34291 0.129632
\(666\) 0 0
\(667\) 15.5248 0.601123
\(668\) 0 0
\(669\) −7.98597 −0.308755
\(670\) 0 0
\(671\) −12.9401 −0.499547
\(672\) 0 0
\(673\) −34.5797 −1.33295 −0.666475 0.745528i \(-0.732198\pi\)
−0.666475 + 0.745528i \(0.732198\pi\)
\(674\) 0 0
\(675\) 10.8746 0.418563
\(676\) 0 0
\(677\) 10.2952 0.395676 0.197838 0.980235i \(-0.436608\pi\)
0.197838 + 0.980235i \(0.436608\pi\)
\(678\) 0 0
\(679\) 8.11574 0.311454
\(680\) 0 0
\(681\) −8.12921 −0.311512
\(682\) 0 0
\(683\) −41.4905 −1.58759 −0.793796 0.608184i \(-0.791898\pi\)
−0.793796 + 0.608184i \(0.791898\pi\)
\(684\) 0 0
\(685\) 7.48428 0.285960
\(686\) 0 0
\(687\) −3.73421 −0.142469
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −28.4461 −1.08214 −0.541071 0.840977i \(-0.681981\pi\)
−0.541071 + 0.840977i \(0.681981\pi\)
\(692\) 0 0
\(693\) 13.0116 0.494268
\(694\) 0 0
\(695\) −3.80155 −0.144201
\(696\) 0 0
\(697\) 1.32176 0.0500653
\(698\) 0 0
\(699\) 5.34973 0.202345
\(700\) 0 0
\(701\) −13.2699 −0.501198 −0.250599 0.968091i \(-0.580628\pi\)
−0.250599 + 0.968091i \(0.580628\pi\)
\(702\) 0 0
\(703\) −30.0690 −1.13407
\(704\) 0 0
\(705\) 0.778466 0.0293187
\(706\) 0 0
\(707\) −18.7339 −0.704560
\(708\) 0 0
\(709\) 12.7416 0.478523 0.239261 0.970955i \(-0.423095\pi\)
0.239261 + 0.970955i \(0.423095\pi\)
\(710\) 0 0
\(711\) 32.2618 1.20991
\(712\) 0 0
\(713\) 1.08480 0.0406259
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.292718 0.0109318
\(718\) 0 0
\(719\) 35.7470 1.33314 0.666568 0.745444i \(-0.267763\pi\)
0.666568 + 0.745444i \(0.267763\pi\)
\(720\) 0 0
\(721\) −15.5738 −0.579999
\(722\) 0 0
\(723\) −0.579027 −0.0215342
\(724\) 0 0
\(725\) −36.3123 −1.34861
\(726\) 0 0
\(727\) −19.3435 −0.717410 −0.358705 0.933451i \(-0.616782\pi\)
−0.358705 + 0.933451i \(0.616782\pi\)
\(728\) 0 0
\(729\) −18.6905 −0.692241
\(730\) 0 0
\(731\) −13.9523 −0.516043
\(732\) 0 0
\(733\) 26.7154 0.986757 0.493379 0.869815i \(-0.335762\pi\)
0.493379 + 0.869815i \(0.335762\pi\)
\(734\) 0 0
\(735\) 0.240249 0.00886171
\(736\) 0 0
\(737\) 9.40504 0.346439
\(738\) 0 0
\(739\) −12.6071 −0.463759 −0.231880 0.972744i \(-0.574488\pi\)
−0.231880 + 0.972744i \(0.574488\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.5348 −1.56045 −0.780225 0.625498i \(-0.784896\pi\)
−0.780225 + 0.625498i \(0.784896\pi\)
\(744\) 0 0
\(745\) −13.0662 −0.478707
\(746\) 0 0
\(747\) 13.2631 0.485270
\(748\) 0 0
\(749\) −13.8287 −0.505290
\(750\) 0 0
\(751\) −16.9563 −0.618744 −0.309372 0.950941i \(-0.600119\pi\)
−0.309372 + 0.950941i \(0.600119\pi\)
\(752\) 0 0
\(753\) 8.16100 0.297403
\(754\) 0 0
\(755\) −6.04279 −0.219920
\(756\) 0 0
\(757\) −29.5619 −1.07444 −0.537222 0.843441i \(-0.680526\pi\)
−0.537222 + 0.843441i \(0.680526\pi\)
\(758\) 0 0
\(759\) −3.64932 −0.132462
\(760\) 0 0
\(761\) 13.9775 0.506685 0.253343 0.967377i \(-0.418470\pi\)
0.253343 + 0.967377i \(0.418470\pi\)
\(762\) 0 0
\(763\) −11.3336 −0.410303
\(764\) 0 0
\(765\) 2.62908 0.0950547
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −18.5280 −0.668136 −0.334068 0.942549i \(-0.608422\pi\)
−0.334068 + 0.942549i \(0.608422\pi\)
\(770\) 0 0
\(771\) −9.82871 −0.353972
\(772\) 0 0
\(773\) −45.2936 −1.62910 −0.814549 0.580095i \(-0.803016\pi\)
−0.814549 + 0.580095i \(0.803016\pi\)
\(774\) 0 0
\(775\) −2.53732 −0.0911433
\(776\) 0 0
\(777\) −2.16100 −0.0775255
\(778\) 0 0
\(779\) −4.77131 −0.170950
\(780\) 0 0
\(781\) −28.6000 −1.02339
\(782\) 0 0
\(783\) −18.3295 −0.655043
\(784\) 0 0
\(785\) 2.13607 0.0762397
\(786\) 0 0
\(787\) −2.70483 −0.0964166 −0.0482083 0.998837i \(-0.515351\pi\)
−0.0482083 + 0.998837i \(0.515351\pi\)
\(788\) 0 0
\(789\) 7.22656 0.257272
\(790\) 0 0
\(791\) −11.8802 −0.422412
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.0786363 0.00278894
\(796\) 0 0
\(797\) −11.1435 −0.394723 −0.197362 0.980331i \(-0.563237\pi\)
−0.197362 + 0.980331i \(0.563237\pi\)
\(798\) 0 0
\(799\) −5.01156 −0.177296
\(800\) 0 0
\(801\) −37.6484 −1.33024
\(802\) 0 0
\(803\) 29.5052 1.04122
\(804\) 0 0
\(805\) 1.18816 0.0418771
\(806\) 0 0
\(807\) 5.44988 0.191845
\(808\) 0 0
\(809\) −0.906111 −0.0318571 −0.0159286 0.999873i \(-0.505070\pi\)
−0.0159286 + 0.999873i \(0.505070\pi\)
\(810\) 0 0
\(811\) 26.5953 0.933887 0.466943 0.884287i \(-0.345355\pi\)
0.466943 + 0.884287i \(0.345355\pi\)
\(812\) 0 0
\(813\) −9.60837 −0.336980
\(814\) 0 0
\(815\) −6.64211 −0.232663
\(816\) 0 0
\(817\) 50.3651 1.76205
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.6655 0.895731 0.447866 0.894101i \(-0.352184\pi\)
0.447866 + 0.894101i \(0.352184\pi\)
\(822\) 0 0
\(823\) −27.2992 −0.951589 −0.475795 0.879556i \(-0.657839\pi\)
−0.475795 + 0.879556i \(0.657839\pi\)
\(824\) 0 0
\(825\) 8.53571 0.297175
\(826\) 0 0
\(827\) −6.88497 −0.239414 −0.119707 0.992809i \(-0.538195\pi\)
−0.119707 + 0.992809i \(0.538195\pi\)
\(828\) 0 0
\(829\) 50.8278 1.76532 0.882661 0.470011i \(-0.155750\pi\)
0.882661 + 0.470011i \(0.155750\pi\)
\(830\) 0 0
\(831\) 6.70046 0.232436
\(832\) 0 0
\(833\) −1.54666 −0.0535886
\(834\) 0 0
\(835\) 9.52955 0.329784
\(836\) 0 0
\(837\) −1.28077 −0.0442700
\(838\) 0 0
\(839\) −0.915066 −0.0315916 −0.0157958 0.999875i \(-0.505028\pi\)
−0.0157958 + 0.999875i \(0.505028\pi\)
\(840\) 0 0
\(841\) 32.2056 1.11054
\(842\) 0 0
\(843\) −6.59131 −0.227017
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0053 0.343786
\(848\) 0 0
\(849\) −12.8652 −0.441533
\(850\) 0 0
\(851\) −10.6873 −0.366357
\(852\) 0 0
\(853\) 14.3622 0.491754 0.245877 0.969301i \(-0.420924\pi\)
0.245877 + 0.969301i \(0.420924\pi\)
\(854\) 0 0
\(855\) −9.49050 −0.324568
\(856\) 0 0
\(857\) 1.62368 0.0554638 0.0277319 0.999615i \(-0.491172\pi\)
0.0277319 + 0.999615i \(0.491172\pi\)
\(858\) 0 0
\(859\) −48.1045 −1.64130 −0.820652 0.571428i \(-0.806390\pi\)
−0.820652 + 0.571428i \(0.806390\pi\)
\(860\) 0 0
\(861\) −0.342906 −0.0116862
\(862\) 0 0
\(863\) −42.5828 −1.44953 −0.724767 0.688994i \(-0.758053\pi\)
−0.724767 + 0.688994i \(0.758053\pi\)
\(864\) 0 0
\(865\) −7.94327 −0.270079
\(866\) 0 0
\(867\) −5.86142 −0.199064
\(868\) 0 0
\(869\) 52.0821 1.76676
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −23.0406 −0.779805
\(874\) 0 0
\(875\) −5.77283 −0.195157
\(876\) 0 0
\(877\) −37.9080 −1.28006 −0.640030 0.768350i \(-0.721078\pi\)
−0.640030 + 0.768350i \(0.721078\pi\)
\(878\) 0 0
\(879\) 6.89677 0.232622
\(880\) 0 0
\(881\) −55.8471 −1.88154 −0.940768 0.339050i \(-0.889894\pi\)
−0.940768 + 0.339050i \(0.889894\pi\)
\(882\) 0 0
\(883\) −41.4193 −1.39387 −0.696935 0.717134i \(-0.745454\pi\)
−0.696935 + 0.717134i \(0.745454\pi\)
\(884\) 0 0
\(885\) −0.436795 −0.0146827
\(886\) 0 0
\(887\) 1.12451 0.0377573 0.0188786 0.999822i \(-0.493990\pi\)
0.0188786 + 0.999822i \(0.493990\pi\)
\(888\) 0 0
\(889\) −1.06768 −0.0358089
\(890\) 0 0
\(891\) −34.7261 −1.16337
\(892\) 0 0
\(893\) 18.0908 0.605386
\(894\) 0 0
\(895\) −8.80094 −0.294183
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.27674 0.142637
\(900\) 0 0
\(901\) −0.506240 −0.0168653
\(902\) 0 0
\(903\) 3.61965 0.120454
\(904\) 0 0
\(905\) −9.10323 −0.302601
\(906\) 0 0
\(907\) 35.9711 1.19440 0.597200 0.802092i \(-0.296280\pi\)
0.597200 + 0.802092i \(0.296280\pi\)
\(908\) 0 0
\(909\) 53.1854 1.76405
\(910\) 0 0
\(911\) 13.2106 0.437686 0.218843 0.975760i \(-0.429772\pi\)
0.218843 + 0.975760i \(0.429772\pi\)
\(912\) 0 0
\(913\) 21.4113 0.708610
\(914\) 0 0
\(915\) 0.678319 0.0224245
\(916\) 0 0
\(917\) −4.90668 −0.162033
\(918\) 0 0
\(919\) 4.00033 0.131959 0.0659793 0.997821i \(-0.478983\pi\)
0.0659793 + 0.997821i \(0.478983\pi\)
\(920\) 0 0
\(921\) −7.02834 −0.231592
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.9975 0.821914
\(926\) 0 0
\(927\) 44.2140 1.45218
\(928\) 0 0
\(929\) 54.3801 1.78415 0.892077 0.451884i \(-0.149248\pi\)
0.892077 + 0.451884i \(0.149248\pi\)
\(930\) 0 0
\(931\) 5.58315 0.182981
\(932\) 0 0
\(933\) −5.18972 −0.169904
\(934\) 0 0
\(935\) 4.24428 0.138803
\(936\) 0 0
\(937\) 46.7217 1.52633 0.763165 0.646203i \(-0.223644\pi\)
0.763165 + 0.646203i \(0.223644\pi\)
\(938\) 0 0
\(939\) −8.18190 −0.267006
\(940\) 0 0
\(941\) 38.4447 1.25326 0.626631 0.779316i \(-0.284433\pi\)
0.626631 + 0.779316i \(0.284433\pi\)
\(942\) 0 0
\(943\) −1.69586 −0.0552247
\(944\) 0 0
\(945\) −1.40281 −0.0456335
\(946\) 0 0
\(947\) −45.4366 −1.47649 −0.738245 0.674533i \(-0.764345\pi\)
−0.738245 + 0.674533i \(0.764345\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 4.65989 0.151107
\(952\) 0 0
\(953\) −12.0830 −0.391408 −0.195704 0.980663i \(-0.562699\pi\)
−0.195704 + 0.980663i \(0.562699\pi\)
\(954\) 0 0
\(955\) −4.64373 −0.150267
\(956\) 0 0
\(957\) −14.3872 −0.465073
\(958\) 0 0
\(959\) 12.4999 0.403642
\(960\) 0 0
\(961\) −30.7012 −0.990360
\(962\) 0 0
\(963\) 39.2597 1.26513
\(964\) 0 0
\(965\) 4.11669 0.132521
\(966\) 0 0
\(967\) 7.50012 0.241188 0.120594 0.992702i \(-0.461520\pi\)
0.120594 + 0.992702i \(0.461520\pi\)
\(968\) 0 0
\(969\) −3.46490 −0.111309
\(970\) 0 0
\(971\) 10.6649 0.342253 0.171127 0.985249i \(-0.445259\pi\)
0.171127 + 0.985249i \(0.445259\pi\)
\(972\) 0 0
\(973\) −6.34916 −0.203545
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.56035 −0.273870 −0.136935 0.990580i \(-0.543725\pi\)
−0.136935 + 0.990580i \(0.543725\pi\)
\(978\) 0 0
\(979\) −60.7779 −1.94247
\(980\) 0 0
\(981\) 32.1760 1.02730
\(982\) 0 0
\(983\) −15.7511 −0.502383 −0.251191 0.967937i \(-0.580822\pi\)
−0.251191 + 0.967937i \(0.580822\pi\)
\(984\) 0 0
\(985\) 4.34068 0.138306
\(986\) 0 0
\(987\) 1.30015 0.0413844
\(988\) 0 0
\(989\) 17.9011 0.569223
\(990\) 0 0
\(991\) −58.8369 −1.86901 −0.934507 0.355944i \(-0.884159\pi\)
−0.934507 + 0.355944i \(0.884159\pi\)
\(992\) 0 0
\(993\) 11.0131 0.349490
\(994\) 0 0
\(995\) −16.0007 −0.507257
\(996\) 0 0
\(997\) −39.0644 −1.23718 −0.618590 0.785714i \(-0.712296\pi\)
−0.618590 + 0.785714i \(0.712296\pi\)
\(998\) 0 0
\(999\) 12.6181 0.399219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.y.1.3 4
13.5 odd 4 728.2.k.a.337.5 8
13.8 odd 4 728.2.k.a.337.6 yes 8
13.12 even 2 9464.2.a.x.1.3 4
52.31 even 4 1456.2.k.e.337.3 8
52.47 even 4 1456.2.k.e.337.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.k.a.337.5 8 13.5 odd 4
728.2.k.a.337.6 yes 8 13.8 odd 4
1456.2.k.e.337.3 8 52.31 even 4
1456.2.k.e.337.4 8 52.47 even 4
9464.2.a.x.1.3 4 13.12 even 2
9464.2.a.y.1.3 4 1.1 even 1 trivial