Properties

Label 728.2.k.a.337.5
Level $728$
Weight $2$
Character 728.337
Analytic conductor $5.813$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(337,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{6} + 72x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.5
Root \(-0.401251i\) of defining polynomial
Character \(\chi\) \(=\) 728.337
Dual form 728.2.k.a.337.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.401251 q^{3} -0.598749i q^{5} +1.00000i q^{7} -2.83900 q^{9} -4.58315i q^{11} +(-0.401251 - 3.58315i) q^{13} -0.240249i q^{15} +1.54666 q^{17} -5.58315i q^{19} +0.401251i q^{21} -1.98441 q^{23} +4.64150 q^{25} -2.34291 q^{27} +7.82340 q^{29} -0.546660i q^{31} -1.83900i q^{33} +0.598749 q^{35} -5.38566i q^{37} +(-0.161003 - 1.43775i) q^{39} +0.854591i q^{41} -9.02090 q^{43} +1.69985i q^{45} +3.24025i q^{47} -1.00000 q^{49} +0.620600 q^{51} +0.327312 q^{53} -2.74416 q^{55} -2.24025i q^{57} -1.81810i q^{59} +2.82340 q^{61} -2.83900i q^{63} +(-2.14541 + 0.240249i) q^{65} +2.05209i q^{67} -0.796246 q^{69} -6.24025i q^{71} -6.43775i q^{73} +1.86241 q^{75} +4.58315 q^{77} -11.3638 q^{79} +7.57690 q^{81} +4.67174i q^{83} -0.926061i q^{85} +3.13915 q^{87} +13.2611i q^{89} +(3.58315 - 0.401251i) q^{91} -0.219348i q^{93} -3.34291 q^{95} -8.11574i q^{97} +13.0116i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 10 q^{9} + 2 q^{13} + 4 q^{17} + 20 q^{23} - 6 q^{25} - 26 q^{27} - 6 q^{29} + 10 q^{35} - 34 q^{39} - 14 q^{43} - 8 q^{49} + 20 q^{51} - 26 q^{53} - 24 q^{55} - 46 q^{61} - 14 q^{65} - 22 q^{69}+ \cdots - 34 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.401251 0.231663 0.115831 0.993269i \(-0.463047\pi\)
0.115831 + 0.993269i \(0.463047\pi\)
\(4\) 0 0
\(5\) 0.598749i 0.267769i −0.990997 0.133884i \(-0.957255\pi\)
0.990997 0.133884i \(-0.0427450\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −2.83900 −0.946332
\(10\) 0 0
\(11\) 4.58315i 1.38187i −0.722915 0.690937i \(-0.757198\pi\)
0.722915 0.690937i \(-0.242802\pi\)
\(12\) 0 0
\(13\) −0.401251 3.58315i −0.111287 0.993788i
\(14\) 0 0
\(15\) 0.240249i 0.0620320i
\(16\) 0 0
\(17\) 1.54666 0.375120 0.187560 0.982253i \(-0.439942\pi\)
0.187560 + 0.982253i \(0.439942\pi\)
\(18\) 0 0
\(19\) 5.58315i 1.28086i −0.768015 0.640432i \(-0.778755\pi\)
0.768015 0.640432i \(-0.221245\pi\)
\(20\) 0 0
\(21\) 0.401251i 0.0875602i
\(22\) 0 0
\(23\) −1.98441 −0.413777 −0.206889 0.978364i \(-0.566334\pi\)
−0.206889 + 0.978364i \(0.566334\pi\)
\(24\) 0 0
\(25\) 4.64150 0.928300
\(26\) 0 0
\(27\) −2.34291 −0.450892
\(28\) 0 0
\(29\) 7.82340 1.45277 0.726385 0.687288i \(-0.241199\pi\)
0.726385 + 0.687288i \(0.241199\pi\)
\(30\) 0 0
\(31\) 0.546660i 0.0981831i −0.998794 0.0490915i \(-0.984367\pi\)
0.998794 0.0490915i \(-0.0156326\pi\)
\(32\) 0 0
\(33\) 1.83900i 0.320128i
\(34\) 0 0
\(35\) 0.598749 0.101207
\(36\) 0 0
\(37\) 5.38566i 0.885397i −0.896671 0.442698i \(-0.854021\pi\)
0.896671 0.442698i \(-0.145979\pi\)
\(38\) 0 0
\(39\) −0.161003 1.43775i −0.0257811 0.230224i
\(40\) 0 0
\(41\) 0.854591i 0.133465i 0.997771 + 0.0667324i \(0.0212574\pi\)
−0.997771 + 0.0667324i \(0.978743\pi\)
\(42\) 0 0
\(43\) −9.02090 −1.37567 −0.687837 0.725865i \(-0.741440\pi\)
−0.687837 + 0.725865i \(0.741440\pi\)
\(44\) 0 0
\(45\) 1.69985i 0.253398i
\(46\) 0 0
\(47\) 3.24025i 0.472639i 0.971675 + 0.236319i \(0.0759412\pi\)
−0.971675 + 0.236319i \(0.924059\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.620600 0.0869013
\(52\) 0 0
\(53\) 0.327312 0.0449598 0.0224799 0.999747i \(-0.492844\pi\)
0.0224799 + 0.999747i \(0.492844\pi\)
\(54\) 0 0
\(55\) −2.74416 −0.370022
\(56\) 0 0
\(57\) 2.24025i 0.296728i
\(58\) 0 0
\(59\) 1.81810i 0.236696i −0.992972 0.118348i \(-0.962240\pi\)
0.992972 0.118348i \(-0.0377598\pi\)
\(60\) 0 0
\(61\) 2.82340 0.361500 0.180750 0.983529i \(-0.442148\pi\)
0.180750 + 0.983529i \(0.442148\pi\)
\(62\) 0 0
\(63\) 2.83900i 0.357680i
\(64\) 0 0
\(65\) −2.14541 + 0.240249i −0.266105 + 0.0297992i
\(66\) 0 0
\(67\) 2.05209i 0.250702i 0.992112 + 0.125351i \(0.0400058\pi\)
−0.992112 + 0.125351i \(0.959994\pi\)
\(68\) 0 0
\(69\) −0.796246 −0.0958567
\(70\) 0 0
\(71\) 6.24025i 0.740581i −0.928916 0.370291i \(-0.879258\pi\)
0.928916 0.370291i \(-0.120742\pi\)
\(72\) 0 0
\(73\) 6.43775i 0.753481i −0.926319 0.376741i \(-0.877045\pi\)
0.926319 0.376741i \(-0.122955\pi\)
\(74\) 0 0
\(75\) 1.86241 0.215052
\(76\) 0 0
\(77\) 4.58315 0.522299
\(78\) 0 0
\(79\) −11.3638 −1.27853 −0.639264 0.768987i \(-0.720761\pi\)
−0.639264 + 0.768987i \(0.720761\pi\)
\(80\) 0 0
\(81\) 7.57690 0.841878
\(82\) 0 0
\(83\) 4.67174i 0.512790i 0.966572 + 0.256395i \(0.0825348\pi\)
−0.966572 + 0.256395i \(0.917465\pi\)
\(84\) 0 0
\(85\) 0.926061i 0.100445i
\(86\) 0 0
\(87\) 3.13915 0.336552
\(88\) 0 0
\(89\) 13.2611i 1.40568i 0.711348 + 0.702840i \(0.248085\pi\)
−0.711348 + 0.702840i \(0.751915\pi\)
\(90\) 0 0
\(91\) 3.58315 0.401251i 0.375617 0.0420626i
\(92\) 0 0
\(93\) 0.219348i 0.0227453i
\(94\) 0 0
\(95\) −3.34291 −0.342975
\(96\) 0 0
\(97\) 8.11574i 0.824029i −0.911177 0.412014i \(-0.864825\pi\)
0.911177 0.412014i \(-0.135175\pi\)
\(98\) 0 0
\(99\) 13.0116i 1.30771i
\(100\) 0 0
\(101\) 18.7339 1.86409 0.932045 0.362343i \(-0.118023\pi\)
0.932045 + 0.362343i \(0.118023\pi\)
\(102\) 0 0
\(103\) 15.5738 1.53453 0.767267 0.641328i \(-0.221616\pi\)
0.767267 + 0.641328i \(0.221616\pi\)
\(104\) 0 0
\(105\) 0.240249 0.0234459
\(106\) 0 0
\(107\) −13.8287 −1.33687 −0.668436 0.743770i \(-0.733036\pi\)
−0.668436 + 0.743770i \(0.733036\pi\)
\(108\) 0 0
\(109\) 11.3336i 1.08556i 0.839875 + 0.542780i \(0.182628\pi\)
−0.839875 + 0.542780i \(0.817372\pi\)
\(110\) 0 0
\(111\) 2.16100i 0.205113i
\(112\) 0 0
\(113\) −11.8802 −1.11760 −0.558799 0.829303i \(-0.688738\pi\)
−0.558799 + 0.829303i \(0.688738\pi\)
\(114\) 0 0
\(115\) 1.18816i 0.110797i
\(116\) 0 0
\(117\) 1.13915 + 10.1726i 0.105315 + 0.940454i
\(118\) 0 0
\(119\) 1.54666i 0.141782i
\(120\) 0 0
\(121\) −10.0053 −0.909573
\(122\) 0 0
\(123\) 0.342906i 0.0309188i
\(124\) 0 0
\(125\) 5.77283i 0.516338i
\(126\) 0 0
\(127\) 1.06768 0.0947415 0.0473707 0.998877i \(-0.484916\pi\)
0.0473707 + 0.998877i \(0.484916\pi\)
\(128\) 0 0
\(129\) −3.61965 −0.318692
\(130\) 0 0
\(131\) −4.90668 −0.428699 −0.214349 0.976757i \(-0.568763\pi\)
−0.214349 + 0.976757i \(0.568763\pi\)
\(132\) 0 0
\(133\) 5.58315 0.484121
\(134\) 0 0
\(135\) 1.40281i 0.120735i
\(136\) 0 0
\(137\) 12.4999i 1.06794i 0.845504 + 0.533968i \(0.179300\pi\)
−0.845504 + 0.533968i \(0.820700\pi\)
\(138\) 0 0
\(139\) −6.34916 −0.538529 −0.269264 0.963066i \(-0.586781\pi\)
−0.269264 + 0.963066i \(0.586781\pi\)
\(140\) 0 0
\(141\) 1.30015i 0.109493i
\(142\) 0 0
\(143\) −16.4222 + 1.83900i −1.37329 + 0.153785i
\(144\) 0 0
\(145\) 4.68425i 0.389006i
\(146\) 0 0
\(147\) −0.401251 −0.0330947
\(148\) 0 0
\(149\) 21.8225i 1.78777i 0.448301 + 0.893883i \(0.352029\pi\)
−0.448301 + 0.893883i \(0.647971\pi\)
\(150\) 0 0
\(151\) 10.0924i 0.821305i −0.911792 0.410653i \(-0.865301\pi\)
0.911792 0.410653i \(-0.134699\pi\)
\(152\) 0 0
\(153\) −4.39096 −0.354988
\(154\) 0 0
\(155\) −0.327312 −0.0262903
\(156\) 0 0
\(157\) 3.56756 0.284722 0.142361 0.989815i \(-0.454531\pi\)
0.142361 + 0.989815i \(0.454531\pi\)
\(158\) 0 0
\(159\) 0.131334 0.0104155
\(160\) 0 0
\(161\) 1.98441i 0.156393i
\(162\) 0 0
\(163\) 11.0933i 0.868896i −0.900697 0.434448i \(-0.856943\pi\)
0.900697 0.434448i \(-0.143057\pi\)
\(164\) 0 0
\(165\) −1.10110 −0.0857203
\(166\) 0 0
\(167\) 15.9158i 1.23160i 0.787903 + 0.615800i \(0.211167\pi\)
−0.787903 + 0.615800i \(0.788833\pi\)
\(168\) 0 0
\(169\) −12.6780 + 2.87549i −0.975230 + 0.221192i
\(170\) 0 0
\(171\) 15.8506i 1.21212i
\(172\) 0 0
\(173\) 13.2665 1.00863 0.504315 0.863520i \(-0.331745\pi\)
0.504315 + 0.863520i \(0.331745\pi\)
\(174\) 0 0
\(175\) 4.64150i 0.350864i
\(176\) 0 0
\(177\) 0.729514i 0.0548336i
\(178\) 0 0
\(179\) 14.6989 1.09865 0.549324 0.835610i \(-0.314885\pi\)
0.549324 + 0.835610i \(0.314885\pi\)
\(180\) 0 0
\(181\) 15.2038 1.13009 0.565043 0.825061i \(-0.308860\pi\)
0.565043 + 0.825061i \(0.308860\pi\)
\(182\) 0 0
\(183\) 1.13289 0.0837460
\(184\) 0 0
\(185\) −3.22465 −0.237081
\(186\) 0 0
\(187\) 7.08858i 0.518369i
\(188\) 0 0
\(189\) 2.34291i 0.170421i
\(190\) 0 0
\(191\) −7.75572 −0.561184 −0.280592 0.959827i \(-0.590531\pi\)
−0.280592 + 0.959827i \(0.590531\pi\)
\(192\) 0 0
\(193\) 6.87549i 0.494909i 0.968900 + 0.247454i \(0.0795940\pi\)
−0.968900 + 0.247454i \(0.920406\pi\)
\(194\) 0 0
\(195\) −0.860848 + 0.0964001i −0.0616466 + 0.00690336i
\(196\) 0 0
\(197\) 7.24959i 0.516512i −0.966077 0.258256i \(-0.916852\pi\)
0.966077 0.258256i \(-0.0831477\pi\)
\(198\) 0 0
\(199\) 26.7236 1.89438 0.947192 0.320666i \(-0.103907\pi\)
0.947192 + 0.320666i \(0.103907\pi\)
\(200\) 0 0
\(201\) 0.823403i 0.0580784i
\(202\) 0 0
\(203\) 7.82340i 0.549095i
\(204\) 0 0
\(205\) 0.511685 0.0357377
\(206\) 0 0
\(207\) 5.63372 0.391571
\(208\) 0 0
\(209\) −25.5885 −1.76999
\(210\) 0 0
\(211\) 13.9011 0.956993 0.478497 0.878089i \(-0.341182\pi\)
0.478497 + 0.878089i \(0.341182\pi\)
\(212\) 0 0
\(213\) 2.50391i 0.171565i
\(214\) 0 0
\(215\) 5.40125i 0.368362i
\(216\) 0 0
\(217\) 0.546660 0.0371097
\(218\) 0 0
\(219\) 2.58315i 0.174553i
\(220\) 0 0
\(221\) −0.620600 5.54192i −0.0417460 0.372790i
\(222\) 0 0
\(223\) 19.9026i 1.33278i 0.745603 + 0.666390i \(0.232161\pi\)
−0.745603 + 0.666390i \(0.767839\pi\)
\(224\) 0 0
\(225\) −13.1772 −0.878480
\(226\) 0 0
\(227\) 20.2596i 1.34468i 0.740243 + 0.672339i \(0.234710\pi\)
−0.740243 + 0.672339i \(0.765290\pi\)
\(228\) 0 0
\(229\) 9.30641i 0.614985i −0.951551 0.307492i \(-0.900510\pi\)
0.951551 0.307492i \(-0.0994899\pi\)
\(230\) 0 0
\(231\) 1.83900 0.120997
\(232\) 0 0
\(233\) −13.3326 −0.873449 −0.436724 0.899595i \(-0.643862\pi\)
−0.436724 + 0.899595i \(0.643862\pi\)
\(234\) 0 0
\(235\) 1.94009 0.126558
\(236\) 0 0
\(237\) −4.55974 −0.296187
\(238\) 0 0
\(239\) 0.729514i 0.0471883i −0.999722 0.0235942i \(-0.992489\pi\)
0.999722 0.0235942i \(-0.00751095\pi\)
\(240\) 0 0
\(241\) 1.44305i 0.0929552i −0.998919 0.0464776i \(-0.985200\pi\)
0.998919 0.0464776i \(-0.0147996\pi\)
\(242\) 0 0
\(243\) 10.0690 0.645924
\(244\) 0 0
\(245\) 0.598749i 0.0382526i
\(246\) 0 0
\(247\) −20.0053 + 2.24025i −1.27291 + 0.142544i
\(248\) 0 0
\(249\) 1.87454i 0.118794i
\(250\) 0 0
\(251\) −20.3389 −1.28378 −0.641889 0.766797i \(-0.721849\pi\)
−0.641889 + 0.766797i \(0.721849\pi\)
\(252\) 0 0
\(253\) 9.09484i 0.571788i
\(254\) 0 0
\(255\) 0.371583i 0.0232694i
\(256\) 0 0
\(257\) 24.4951 1.52796 0.763982 0.645237i \(-0.223241\pi\)
0.763982 + 0.645237i \(0.223241\pi\)
\(258\) 0 0
\(259\) 5.38566 0.334648
\(260\) 0 0
\(261\) −22.2106 −1.37480
\(262\) 0 0
\(263\) 18.0100 1.11055 0.555273 0.831668i \(-0.312614\pi\)
0.555273 + 0.831668i \(0.312614\pi\)
\(264\) 0 0
\(265\) 0.195978i 0.0120388i
\(266\) 0 0
\(267\) 5.32105i 0.325643i
\(268\) 0 0
\(269\) 13.5822 0.828122 0.414061 0.910249i \(-0.364110\pi\)
0.414061 + 0.910249i \(0.364110\pi\)
\(270\) 0 0
\(271\) 23.9460i 1.45462i −0.686311 0.727308i \(-0.740771\pi\)
0.686311 0.727308i \(-0.259229\pi\)
\(272\) 0 0
\(273\) 1.43775 0.161003i 0.0870163 0.00974433i
\(274\) 0 0
\(275\) 21.2727i 1.28279i
\(276\) 0 0
\(277\) −16.6989 −1.00334 −0.501670 0.865059i \(-0.667281\pi\)
−0.501670 + 0.865059i \(0.667281\pi\)
\(278\) 0 0
\(279\) 1.55197i 0.0929138i
\(280\) 0 0
\(281\) 16.4269i 0.979946i −0.871738 0.489973i \(-0.837007\pi\)
0.871738 0.489973i \(-0.162993\pi\)
\(282\) 0 0
\(283\) 32.0627 1.90593 0.952965 0.303081i \(-0.0980152\pi\)
0.952965 + 0.303081i \(0.0980152\pi\)
\(284\) 0 0
\(285\) −1.34135 −0.0794545
\(286\) 0 0
\(287\) −0.854591 −0.0504449
\(288\) 0 0
\(289\) −14.6078 −0.859285
\(290\) 0 0
\(291\) 3.25645i 0.190897i
\(292\) 0 0
\(293\) 17.1882i 1.00414i 0.864826 + 0.502072i \(0.167429\pi\)
−0.864826 + 0.502072i \(0.832571\pi\)
\(294\) 0 0
\(295\) −1.08858 −0.0633797
\(296\) 0 0
\(297\) 10.7379i 0.623076i
\(298\) 0 0
\(299\) 0.796246 + 7.11043i 0.0460481 + 0.411207i
\(300\) 0 0
\(301\) 9.02090i 0.519956i
\(302\) 0 0
\(303\) 7.51699 0.431840
\(304\) 0 0
\(305\) 1.69051i 0.0967983i
\(306\) 0 0
\(307\) 17.5160i 0.999693i −0.866114 0.499847i \(-0.833390\pi\)
0.866114 0.499847i \(-0.166610\pi\)
\(308\) 0 0
\(309\) 6.24902 0.355494
\(310\) 0 0
\(311\) 12.9338 0.733411 0.366705 0.930337i \(-0.380486\pi\)
0.366705 + 0.930337i \(0.380486\pi\)
\(312\) 0 0
\(313\) −20.3910 −1.15257 −0.576283 0.817250i \(-0.695497\pi\)
−0.576283 + 0.817250i \(0.695497\pi\)
\(314\) 0 0
\(315\) −1.69985 −0.0957755
\(316\) 0 0
\(317\) 11.6134i 0.652273i −0.945323 0.326137i \(-0.894253\pi\)
0.945323 0.326137i \(-0.105747\pi\)
\(318\) 0 0
\(319\) 35.8559i 2.00754i
\(320\) 0 0
\(321\) −5.54879 −0.309703
\(322\) 0 0
\(323\) 8.63524i 0.480478i
\(324\) 0 0
\(325\) −1.86241 16.6312i −0.103308 0.922534i
\(326\) 0 0
\(327\) 4.54761i 0.251483i
\(328\) 0 0
\(329\) −3.24025 −0.178641
\(330\) 0 0
\(331\) 27.4468i 1.50861i −0.656521 0.754307i \(-0.727973\pi\)
0.656521 0.754307i \(-0.272027\pi\)
\(332\) 0 0
\(333\) 15.2899i 0.837880i
\(334\) 0 0
\(335\) 1.22869 0.0671302
\(336\) 0 0
\(337\) 17.9114 0.975697 0.487849 0.872928i \(-0.337782\pi\)
0.487849 + 0.872928i \(0.337782\pi\)
\(338\) 0 0
\(339\) −4.76696 −0.258906
\(340\) 0 0
\(341\) −2.50543 −0.135677
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0.476751i 0.0256674i
\(346\) 0 0
\(347\) −0.480497 −0.0257945 −0.0128972 0.999917i \(-0.504105\pi\)
−0.0128972 + 0.999917i \(0.504105\pi\)
\(348\) 0 0
\(349\) 21.1258i 1.13084i −0.824804 0.565419i \(-0.808715\pi\)
0.824804 0.565419i \(-0.191285\pi\)
\(350\) 0 0
\(351\) 0.940094 + 8.39499i 0.0501785 + 0.448092i
\(352\) 0 0
\(353\) 24.2446i 1.29041i −0.764009 0.645205i \(-0.776772\pi\)
0.764009 0.645205i \(-0.223228\pi\)
\(354\) 0 0
\(355\) −3.73634 −0.198304
\(356\) 0 0
\(357\) 0.620600i 0.0328456i
\(358\) 0 0
\(359\) 27.0846i 1.42947i 0.699396 + 0.714734i \(0.253452\pi\)
−0.699396 + 0.714734i \(0.746548\pi\)
\(360\) 0 0
\(361\) −12.1716 −0.640611
\(362\) 0 0
\(363\) −4.01464 −0.210714
\(364\) 0 0
\(365\) −3.85459 −0.201759
\(366\) 0 0
\(367\) −2.13133 −0.111255 −0.0556274 0.998452i \(-0.517716\pi\)
−0.0556274 + 0.998452i \(0.517716\pi\)
\(368\) 0 0
\(369\) 2.42618i 0.126302i
\(370\) 0 0
\(371\) 0.327312i 0.0169932i
\(372\) 0 0
\(373\) −4.57690 −0.236983 −0.118491 0.992955i \(-0.537806\pi\)
−0.118491 + 0.992955i \(0.537806\pi\)
\(374\) 0 0
\(375\) 2.31636i 0.119616i
\(376\) 0 0
\(377\) −3.13915 28.0325i −0.161675 1.44375i
\(378\) 0 0
\(379\) 2.88426i 0.148154i 0.997253 + 0.0740772i \(0.0236011\pi\)
−0.997253 + 0.0740772i \(0.976399\pi\)
\(380\) 0 0
\(381\) 0.428409 0.0219481
\(382\) 0 0
\(383\) 8.35542i 0.426942i −0.976949 0.213471i \(-0.931523\pi\)
0.976949 0.213471i \(-0.0684769\pi\)
\(384\) 0 0
\(385\) 2.74416i 0.139855i
\(386\) 0 0
\(387\) 25.6103 1.30185
\(388\) 0 0
\(389\) 33.4212 1.69452 0.847261 0.531177i \(-0.178250\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(390\) 0 0
\(391\) −3.06920 −0.155216
\(392\) 0 0
\(393\) −1.96881 −0.0993134
\(394\) 0 0
\(395\) 6.80406i 0.342350i
\(396\) 0 0
\(397\) 37.2611i 1.87008i 0.354538 + 0.935042i \(0.384638\pi\)
−0.354538 + 0.935042i \(0.615362\pi\)
\(398\) 0 0
\(399\) 2.24025 0.112153
\(400\) 0 0
\(401\) 10.6858i 0.533624i 0.963749 + 0.266812i \(0.0859703\pi\)
−0.963749 + 0.266812i \(0.914030\pi\)
\(402\) 0 0
\(403\) −1.95877 + 0.219348i −0.0975732 + 0.0109265i
\(404\) 0 0
\(405\) 4.53666i 0.225428i
\(406\) 0 0
\(407\) −24.6833 −1.22351
\(408\) 0 0
\(409\) 32.8643i 1.62503i −0.582938 0.812516i \(-0.698097\pi\)
0.582938 0.812516i \(-0.301903\pi\)
\(410\) 0 0
\(411\) 5.01559i 0.247401i
\(412\) 0 0
\(413\) 1.81810 0.0894627
\(414\) 0 0
\(415\) 2.79720 0.137309
\(416\) 0 0
\(417\) −2.54761 −0.124757
\(418\) 0 0
\(419\) 27.8302 1.35960 0.679798 0.733400i \(-0.262068\pi\)
0.679798 + 0.733400i \(0.262068\pi\)
\(420\) 0 0
\(421\) 35.5004i 1.73019i −0.501612 0.865093i \(-0.667259\pi\)
0.501612 0.865093i \(-0.332741\pi\)
\(422\) 0 0
\(423\) 9.19906i 0.447273i
\(424\) 0 0
\(425\) 7.17882 0.348224
\(426\) 0 0
\(427\) 2.82340i 0.136634i
\(428\) 0 0
\(429\) −6.58941 + 0.737900i −0.318140 + 0.0356262i
\(430\) 0 0
\(431\) 12.6546i 0.609552i −0.952424 0.304776i \(-0.901418\pi\)
0.952424 0.304776i \(-0.0985816\pi\)
\(432\) 0 0
\(433\) −16.6671 −0.800972 −0.400486 0.916303i \(-0.631159\pi\)
−0.400486 + 0.916303i \(0.631159\pi\)
\(434\) 0 0
\(435\) 1.87956i 0.0901181i
\(436\) 0 0
\(437\) 11.0792i 0.529992i
\(438\) 0 0
\(439\) 19.3841 0.925154 0.462577 0.886579i \(-0.346925\pi\)
0.462577 + 0.886579i \(0.346925\pi\)
\(440\) 0 0
\(441\) 2.83900 0.135190
\(442\) 0 0
\(443\) −20.9120 −0.993558 −0.496779 0.867877i \(-0.665484\pi\)
−0.496779 + 0.867877i \(0.665484\pi\)
\(444\) 0 0
\(445\) 7.94009 0.376397
\(446\) 0 0
\(447\) 8.75629i 0.414158i
\(448\) 0 0
\(449\) 16.1585i 0.762566i 0.924458 + 0.381283i \(0.124518\pi\)
−0.924458 + 0.381283i \(0.875482\pi\)
\(450\) 0 0
\(451\) 3.91672 0.184431
\(452\) 0 0
\(453\) 4.04958i 0.190266i
\(454\) 0 0
\(455\) −0.240249 2.14541i −0.0112630 0.100578i
\(456\) 0 0
\(457\) 19.6274i 0.918132i −0.888402 0.459066i \(-0.848184\pi\)
0.888402 0.459066i \(-0.151816\pi\)
\(458\) 0 0
\(459\) −3.62368 −0.169139
\(460\) 0 0
\(461\) 17.8627i 0.831950i −0.909376 0.415975i \(-0.863440\pi\)
0.909376 0.415975i \(-0.136560\pi\)
\(462\) 0 0
\(463\) 10.0924i 0.469032i 0.972112 + 0.234516i \(0.0753506\pi\)
−0.972112 + 0.234516i \(0.924649\pi\)
\(464\) 0 0
\(465\) −0.131334 −0.00609049
\(466\) 0 0
\(467\) 10.6118 0.491057 0.245529 0.969389i \(-0.421039\pi\)
0.245529 + 0.969389i \(0.421039\pi\)
\(468\) 0 0
\(469\) −2.05209 −0.0947566
\(470\) 0 0
\(471\) 1.43149 0.0659595
\(472\) 0 0
\(473\) 41.3442i 1.90101i
\(474\) 0 0
\(475\) 25.9142i 1.18903i
\(476\) 0 0
\(477\) −0.929238 −0.0425469
\(478\) 0 0
\(479\) 11.0063i 0.502889i −0.967872 0.251444i \(-0.919094\pi\)
0.967872 0.251444i \(-0.0809055\pi\)
\(480\) 0 0
\(481\) −19.2976 + 2.16100i −0.879897 + 0.0985332i
\(482\) 0 0
\(483\) 0.796246i 0.0362304i
\(484\) 0 0
\(485\) −4.85929 −0.220649
\(486\) 0 0
\(487\) 9.87715i 0.447576i −0.974638 0.223788i \(-0.928158\pi\)
0.974638 0.223788i \(-0.0718424\pi\)
\(488\) 0 0
\(489\) 4.45121i 0.201291i
\(490\) 0 0
\(491\) −23.0992 −1.04245 −0.521226 0.853419i \(-0.674525\pi\)
−0.521226 + 0.853419i \(0.674525\pi\)
\(492\) 0 0
\(493\) 12.1001 0.544963
\(494\) 0 0
\(495\) 7.79066 0.350164
\(496\) 0 0
\(497\) 6.24025 0.279913
\(498\) 0 0
\(499\) 12.7310i 0.569919i 0.958540 + 0.284960i \(0.0919802\pi\)
−0.958540 + 0.284960i \(0.908020\pi\)
\(500\) 0 0
\(501\) 6.38623i 0.285316i
\(502\) 0 0
\(503\) −11.9688 −0.533663 −0.266831 0.963743i \(-0.585977\pi\)
−0.266831 + 0.963743i \(0.585977\pi\)
\(504\) 0 0
\(505\) 11.2169i 0.499145i
\(506\) 0 0
\(507\) −5.08706 + 1.15380i −0.225924 + 0.0512418i
\(508\) 0 0
\(509\) 4.13664i 0.183353i 0.995789 + 0.0916767i \(0.0292226\pi\)
−0.995789 + 0.0916767i \(0.970777\pi\)
\(510\) 0 0
\(511\) 6.43775 0.284789
\(512\) 0 0
\(513\) 13.0808i 0.577532i
\(514\) 0 0
\(515\) 9.32480i 0.410900i
\(516\) 0 0
\(517\) 14.8506 0.653127
\(518\) 0 0
\(519\) 5.32318 0.233662
\(520\) 0 0
\(521\) −1.96881 −0.0862552 −0.0431276 0.999070i \(-0.513732\pi\)
−0.0431276 + 0.999070i \(0.513732\pi\)
\(522\) 0 0
\(523\) 30.6056 1.33829 0.669144 0.743133i \(-0.266661\pi\)
0.669144 + 0.743133i \(0.266661\pi\)
\(524\) 0 0
\(525\) 1.86241i 0.0812822i
\(526\) 0 0
\(527\) 0.845498i 0.0368305i
\(528\) 0 0
\(529\) −19.0621 −0.828788
\(530\) 0 0
\(531\) 5.16157i 0.223993i
\(532\) 0 0
\(533\) 3.06213 0.342906i 0.132636 0.0148529i
\(534\) 0 0
\(535\) 8.27992i 0.357972i
\(536\) 0 0
\(537\) 5.89795 0.254515
\(538\) 0 0
\(539\) 4.58315i 0.197410i
\(540\) 0 0
\(541\) 0.375613i 0.0161489i 0.999967 + 0.00807444i \(0.00257020\pi\)
−0.999967 + 0.00807444i \(0.997430\pi\)
\(542\) 0 0
\(543\) 6.10053 0.261799
\(544\) 0 0
\(545\) 6.78596 0.290679
\(546\) 0 0
\(547\) −13.4331 −0.574360 −0.287180 0.957877i \(-0.592718\pi\)
−0.287180 + 0.957877i \(0.592718\pi\)
\(548\) 0 0
\(549\) −8.01563 −0.342099
\(550\) 0 0
\(551\) 43.6793i 1.86080i
\(552\) 0 0
\(553\) 11.3638i 0.483238i
\(554\) 0 0
\(555\) −1.29390 −0.0549229
\(556\) 0 0
\(557\) 39.8669i 1.68921i 0.535387 + 0.844607i \(0.320166\pi\)
−0.535387 + 0.844607i \(0.679834\pi\)
\(558\) 0 0
\(559\) 3.61965 + 32.3233i 0.153095 + 1.36713i
\(560\) 0 0
\(561\) 2.84430i 0.120087i
\(562\) 0 0
\(563\) −31.5217 −1.32848 −0.664241 0.747518i \(-0.731245\pi\)
−0.664241 + 0.747518i \(0.731245\pi\)
\(564\) 0 0
\(565\) 7.11327i 0.299258i
\(566\) 0 0
\(567\) 7.57690i 0.318200i
\(568\) 0 0
\(569\) −1.55349 −0.0651255 −0.0325628 0.999470i \(-0.510367\pi\)
−0.0325628 + 0.999470i \(0.510367\pi\)
\(570\) 0 0
\(571\) −7.06744 −0.295763 −0.147882 0.989005i \(-0.547245\pi\)
−0.147882 + 0.989005i \(0.547245\pi\)
\(572\) 0 0
\(573\) −3.11199 −0.130005
\(574\) 0 0
\(575\) −9.21062 −0.384109
\(576\) 0 0
\(577\) 39.3248i 1.63711i 0.574426 + 0.818556i \(0.305225\pi\)
−0.574426 + 0.818556i \(0.694775\pi\)
\(578\) 0 0
\(579\) 2.75880i 0.114652i
\(580\) 0 0
\(581\) −4.67174 −0.193816
\(582\) 0 0
\(583\) 1.50012i 0.0621287i
\(584\) 0 0
\(585\) 6.09081 0.682065i 0.251824 0.0281999i
\(586\) 0 0
\(587\) 38.2144i 1.57728i 0.614858 + 0.788638i \(0.289213\pi\)
−0.614858 + 0.788638i \(0.710787\pi\)
\(588\) 0 0
\(589\) −3.05209 −0.125759
\(590\) 0 0
\(591\) 2.90891i 0.119656i
\(592\) 0 0
\(593\) 0.734113i 0.0301464i −0.999886 0.0150732i \(-0.995202\pi\)
0.999886 0.0150732i \(-0.00479813\pi\)
\(594\) 0 0
\(595\) 0.926061 0.0379648
\(596\) 0 0
\(597\) 10.7229 0.438858
\(598\) 0 0
\(599\) −24.6593 −1.00755 −0.503776 0.863834i \(-0.668056\pi\)
−0.503776 + 0.863834i \(0.668056\pi\)
\(600\) 0 0
\(601\) 20.4181 0.832873 0.416436 0.909165i \(-0.363279\pi\)
0.416436 + 0.909165i \(0.363279\pi\)
\(602\) 0 0
\(603\) 5.82587i 0.237248i
\(604\) 0 0
\(605\) 5.99066i 0.243555i
\(606\) 0 0
\(607\) −46.8821 −1.90288 −0.951442 0.307827i \(-0.900398\pi\)
−0.951442 + 0.307827i \(0.900398\pi\)
\(608\) 0 0
\(609\) 3.13915i 0.127205i
\(610\) 0 0
\(611\) 11.6103 1.30015i 0.469703 0.0525986i
\(612\) 0 0
\(613\) 19.6696i 0.794448i −0.917722 0.397224i \(-0.869974\pi\)
0.917722 0.397224i \(-0.130026\pi\)
\(614\) 0 0
\(615\) 0.205314 0.00827908
\(616\) 0 0
\(617\) 14.9143i 0.600425i 0.953872 + 0.300213i \(0.0970576\pi\)
−0.953872 + 0.300213i \(0.902942\pi\)
\(618\) 0 0
\(619\) 35.7198i 1.43570i 0.696198 + 0.717850i \(0.254874\pi\)
−0.696198 + 0.717850i \(0.745126\pi\)
\(620\) 0 0
\(621\) 4.64928 0.186569
\(622\) 0 0
\(623\) −13.2611 −0.531297
\(624\) 0 0
\(625\) 19.7510 0.790041
\(626\) 0 0
\(627\) −10.2674 −0.410041
\(628\) 0 0
\(629\) 8.32978i 0.332130i
\(630\) 0 0
\(631\) 13.4696i 0.536218i 0.963389 + 0.268109i \(0.0863987\pi\)
−0.963389 + 0.268109i \(0.913601\pi\)
\(632\) 0 0
\(633\) 5.57785 0.221700
\(634\) 0 0
\(635\) 0.639273i 0.0253688i
\(636\) 0 0
\(637\) 0.401251 + 3.58315i 0.0158982 + 0.141970i
\(638\) 0 0
\(639\) 17.7160i 0.700836i
\(640\) 0 0
\(641\) −23.8880 −0.943520 −0.471760 0.881727i \(-0.656381\pi\)
−0.471760 + 0.881727i \(0.656381\pi\)
\(642\) 0 0
\(643\) 20.1680i 0.795347i 0.917527 + 0.397673i \(0.130182\pi\)
−0.917527 + 0.397673i \(0.869818\pi\)
\(644\) 0 0
\(645\) 2.16726i 0.0853358i
\(646\) 0 0
\(647\) 14.0895 0.553917 0.276958 0.960882i \(-0.410674\pi\)
0.276958 + 0.960882i \(0.410674\pi\)
\(648\) 0 0
\(649\) −8.33262 −0.327084
\(650\) 0 0
\(651\) 0.219348 0.00859693
\(652\) 0 0
\(653\) 37.0727 1.45077 0.725384 0.688344i \(-0.241662\pi\)
0.725384 + 0.688344i \(0.241662\pi\)
\(654\) 0 0
\(655\) 2.93787i 0.114792i
\(656\) 0 0
\(657\) 18.2767i 0.713044i
\(658\) 0 0
\(659\) 27.0986 1.05561 0.527806 0.849365i \(-0.323015\pi\)
0.527806 + 0.849365i \(0.323015\pi\)
\(660\) 0 0
\(661\) 22.0372i 0.857148i −0.903507 0.428574i \(-0.859016\pi\)
0.903507 0.428574i \(-0.140984\pi\)
\(662\) 0 0
\(663\) −0.249016 2.22370i −0.00967100 0.0863615i
\(664\) 0 0
\(665\) 3.34291i 0.129632i
\(666\) 0 0
\(667\) −15.5248 −0.601123
\(668\) 0 0
\(669\) 7.98597i 0.308755i
\(670\) 0 0
\(671\) 12.9401i 0.499547i
\(672\) 0 0
\(673\) 34.5797 1.33295 0.666475 0.745528i \(-0.267802\pi\)
0.666475 + 0.745528i \(0.267802\pi\)
\(674\) 0 0
\(675\) −10.8746 −0.418563
\(676\) 0 0
\(677\) 10.2952 0.395676 0.197838 0.980235i \(-0.436608\pi\)
0.197838 + 0.980235i \(0.436608\pi\)
\(678\) 0 0
\(679\) 8.11574 0.311454
\(680\) 0 0
\(681\) 8.12921i 0.311512i
\(682\) 0 0
\(683\) 41.4905i 1.58759i −0.608184 0.793796i \(-0.708102\pi\)
0.608184 0.793796i \(-0.291898\pi\)
\(684\) 0 0
\(685\) 7.48428 0.285960
\(686\) 0 0
\(687\) 3.73421i 0.142469i
\(688\) 0 0
\(689\) −0.131334 1.17281i −0.00500344 0.0446805i
\(690\) 0 0
\(691\) 28.4461i 1.08214i 0.840977 + 0.541071i \(0.181981\pi\)
−0.840977 + 0.541071i \(0.818019\pi\)
\(692\) 0 0
\(693\) −13.0116 −0.494268
\(694\) 0 0
\(695\) 3.80155i 0.144201i
\(696\) 0 0
\(697\) 1.32176i 0.0500653i
\(698\) 0 0
\(699\) −5.34973 −0.202345
\(700\) 0 0
\(701\) 13.2699 0.501198 0.250599 0.968091i \(-0.419372\pi\)
0.250599 + 0.968091i \(0.419372\pi\)
\(702\) 0 0
\(703\) −30.0690 −1.13407
\(704\) 0 0
\(705\) 0.778466 0.0293187
\(706\) 0 0
\(707\) 18.7339i 0.704560i
\(708\) 0 0
\(709\) 12.7416i 0.478523i 0.970955 + 0.239261i \(0.0769053\pi\)
−0.970955 + 0.239261i \(0.923095\pi\)
\(710\) 0 0
\(711\) 32.2618 1.20991
\(712\) 0 0
\(713\) 1.08480i 0.0406259i
\(714\) 0 0
\(715\) 1.10110 + 9.83274i 0.0411787 + 0.367724i
\(716\) 0 0
\(717\) 0.292718i 0.0109318i
\(718\) 0 0
\(719\) −35.7470 −1.33314 −0.666568 0.745444i \(-0.732237\pi\)
−0.666568 + 0.745444i \(0.732237\pi\)
\(720\) 0 0
\(721\) 15.5738i 0.579999i
\(722\) 0 0
\(723\) 0.579027i 0.0215342i
\(724\) 0 0
\(725\) 36.3123 1.34861
\(726\) 0 0
\(727\) 19.3435 0.717410 0.358705 0.933451i \(-0.383218\pi\)
0.358705 + 0.933451i \(0.383218\pi\)
\(728\) 0 0
\(729\) −18.6905 −0.692241
\(730\) 0 0
\(731\) −13.9523 −0.516043
\(732\) 0 0
\(733\) 26.7154i 0.986757i −0.869815 0.493379i \(-0.835762\pi\)
0.869815 0.493379i \(-0.164238\pi\)
\(734\) 0 0
\(735\) 0.240249i 0.00886171i
\(736\) 0 0
\(737\) 9.40504 0.346439
\(738\) 0 0
\(739\) 12.6071i 0.463759i −0.972744 0.231880i \(-0.925512\pi\)
0.972744 0.231880i \(-0.0744876\pi\)
\(740\) 0 0
\(741\) −8.02716 + 0.898903i −0.294885 + 0.0330220i
\(742\) 0 0
\(743\) 42.5348i 1.56045i 0.625498 + 0.780225i \(0.284896\pi\)
−0.625498 + 0.780225i \(0.715104\pi\)
\(744\) 0 0
\(745\) 13.0662 0.478707
\(746\) 0 0
\(747\) 13.2631i 0.485270i
\(748\) 0 0
\(749\) 13.8287i 0.505290i
\(750\) 0 0
\(751\) 16.9563 0.618744 0.309372 0.950941i \(-0.399881\pi\)
0.309372 + 0.950941i \(0.399881\pi\)
\(752\) 0 0
\(753\) −8.16100 −0.297403
\(754\) 0 0
\(755\) −6.04279 −0.219920
\(756\) 0 0
\(757\) −29.5619 −1.07444 −0.537222 0.843441i \(-0.680526\pi\)
−0.537222 + 0.843441i \(0.680526\pi\)
\(758\) 0 0
\(759\) 3.64932i 0.132462i
\(760\) 0 0
\(761\) 13.9775i 0.506685i 0.967377 + 0.253343i \(0.0815300\pi\)
−0.967377 + 0.253343i \(0.918470\pi\)
\(762\) 0 0
\(763\) −11.3336 −0.410303
\(764\) 0 0
\(765\) 2.62908i 0.0950547i
\(766\) 0 0
\(767\) −6.51452 + 0.729514i −0.235226 + 0.0263412i
\(768\) 0 0
\(769\) 18.5280i 0.668136i 0.942549 + 0.334068i \(0.108422\pi\)
−0.942549 + 0.334068i \(0.891578\pi\)
\(770\) 0 0
\(771\) 9.82871 0.353972
\(772\) 0 0
\(773\) 45.2936i 1.62910i 0.580095 + 0.814549i \(0.303016\pi\)
−0.580095 + 0.814549i \(0.696984\pi\)
\(774\) 0 0
\(775\) 2.53732i 0.0911433i
\(776\) 0 0
\(777\) 2.16100 0.0775255
\(778\) 0 0
\(779\) 4.77131 0.170950
\(780\) 0 0
\(781\) −28.6000 −1.02339
\(782\) 0 0
\(783\) −18.3295 −0.655043
\(784\) 0 0
\(785\) 2.13607i 0.0762397i
\(786\) 0 0
\(787\) 2.70483i 0.0964166i −0.998837 0.0482083i \(-0.984649\pi\)
0.998837 0.0482083i \(-0.0153511\pi\)
\(788\) 0 0
\(789\) 7.22656 0.257272
\(790\) 0 0
\(791\) 11.8802i 0.422412i
\(792\) 0 0
\(793\) −1.13289 10.1167i −0.0402303 0.359254i
\(794\) 0 0
\(795\) 0.0786363i 0.00278894i
\(796\) 0 0
\(797\) 11.1435 0.394723 0.197362 0.980331i \(-0.436763\pi\)
0.197362 + 0.980331i \(0.436763\pi\)
\(798\) 0 0
\(799\) 5.01156i 0.177296i
\(800\) 0 0
\(801\) 37.6484i 1.33024i
\(802\) 0 0
\(803\) −29.5052 −1.04122
\(804\) 0 0
\(805\) −1.18816 −0.0418771
\(806\) 0 0
\(807\) 5.44988 0.191845
\(808\) 0 0
\(809\) −0.906111 −0.0318571 −0.0159286 0.999873i \(-0.505070\pi\)
−0.0159286 + 0.999873i \(0.505070\pi\)
\(810\) 0 0
\(811\) 26.5953i 0.933887i −0.884287 0.466943i \(-0.845355\pi\)
0.884287 0.466943i \(-0.154645\pi\)
\(812\) 0 0
\(813\) 9.60837i 0.336980i
\(814\) 0 0
\(815\) −6.64211 −0.232663
\(816\) 0 0
\(817\) 50.3651i 1.76205i
\(818\) 0 0
\(819\) −10.1726 + 1.13915i −0.355458 + 0.0398052i
\(820\) 0 0
\(821\) 25.6655i 0.895731i −0.894101 0.447866i \(-0.852184\pi\)
0.894101 0.447866i \(-0.147816\pi\)
\(822\) 0 0
\(823\) 27.2992 0.951589 0.475795 0.879556i \(-0.342161\pi\)
0.475795 + 0.879556i \(0.342161\pi\)
\(824\) 0 0
\(825\) 8.53571i 0.297175i
\(826\) 0 0
\(827\) 6.88497i 0.239414i −0.992809 0.119707i \(-0.961805\pi\)
0.992809 0.119707i \(-0.0381955\pi\)
\(828\) 0 0
\(829\) −50.8278 −1.76532 −0.882661 0.470011i \(-0.844250\pi\)
−0.882661 + 0.470011i \(0.844250\pi\)
\(830\) 0 0
\(831\) −6.70046 −0.232436
\(832\) 0 0
\(833\) −1.54666 −0.0535886
\(834\) 0 0
\(835\) 9.52955 0.329784
\(836\) 0 0
\(837\) 1.28077i 0.0442700i
\(838\) 0 0
\(839\) 0.915066i 0.0315916i −0.999875 0.0157958i \(-0.994972\pi\)
0.999875 0.0157958i \(-0.00502817\pi\)
\(840\) 0 0
\(841\) 32.2056 1.11054
\(842\) 0 0
\(843\) 6.59131i 0.227017i
\(844\) 0 0
\(845\) 1.72170 + 7.59093i 0.0592282 + 0.261136i
\(846\) 0 0
\(847\) 10.0053i 0.343786i
\(848\) 0 0
\(849\) 12.8652 0.441533
\(850\) 0 0
\(851\) 10.6873i 0.366357i
\(852\) 0 0
\(853\) 14.3622i 0.491754i 0.969301 + 0.245877i \(0.0790759\pi\)
−0.969301 + 0.245877i \(0.920924\pi\)
\(854\) 0 0
\(855\) 9.49050 0.324568
\(856\) 0 0
\(857\) −1.62368 −0.0554638 −0.0277319 0.999615i \(-0.508828\pi\)
−0.0277319 + 0.999615i \(0.508828\pi\)
\(858\) 0 0
\(859\) −48.1045 −1.64130 −0.820652 0.571428i \(-0.806390\pi\)
−0.820652 + 0.571428i \(0.806390\pi\)
\(860\) 0 0
\(861\) −0.342906 −0.0116862
\(862\) 0 0
\(863\) 42.5828i 1.44953i 0.688994 + 0.724767i \(0.258053\pi\)
−0.688994 + 0.724767i \(0.741947\pi\)
\(864\) 0 0
\(865\) 7.94327i 0.270079i
\(866\) 0 0
\(867\) −5.86142 −0.199064
\(868\) 0 0
\(869\) 52.0821i 1.76676i
\(870\) 0 0
\(871\) 7.35295 0.823403i 0.249145 0.0279000i
\(872\) 0 0
\(873\) 23.0406i 0.779805i
\(874\) 0 0
\(875\) 5.77283 0.195157
\(876\) 0 0
\(877\) 37.9080i 1.28006i 0.768350 + 0.640030i \(0.221078\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(878\) 0 0
\(879\) 6.89677i 0.232622i
\(880\) 0 0
\(881\) 55.8471 1.88154 0.940768 0.339050i \(-0.110106\pi\)
0.940768 + 0.339050i \(0.110106\pi\)
\(882\) 0 0
\(883\) 41.4193 1.39387 0.696935 0.717134i \(-0.254546\pi\)
0.696935 + 0.717134i \(0.254546\pi\)
\(884\) 0 0
\(885\) −0.436795 −0.0146827
\(886\) 0 0
\(887\) 1.12451 0.0377573 0.0188786 0.999822i \(-0.493990\pi\)
0.0188786 + 0.999822i \(0.493990\pi\)
\(888\) 0 0
\(889\) 1.06768i 0.0358089i
\(890\) 0 0
\(891\) 34.7261i 1.16337i
\(892\) 0 0
\(893\) 18.0908 0.605386
\(894\) 0 0
\(895\) 8.80094i 0.294183i
\(896\) 0 0
\(897\) 0.319495 + 2.85307i 0.0106676 + 0.0952613i
\(898\) 0 0
\(899\) 4.27674i 0.142637i
\(900\) 0 0
\(901\) 0.506240 0.0168653
\(902\) 0 0
\(903\) 3.61965i 0.120454i
\(904\) 0 0
\(905\) 9.10323i 0.302601i
\(906\) 0 0
\(907\) −35.9711 −1.19440 −0.597200 0.802092i \(-0.703720\pi\)
−0.597200 + 0.802092i \(0.703720\pi\)
\(908\) 0 0
\(909\) −53.1854 −1.76405
\(910\) 0 0
\(911\) 13.2106 0.437686 0.218843 0.975760i \(-0.429772\pi\)
0.218843 + 0.975760i \(0.429772\pi\)
\(912\) 0 0
\(913\) 21.4113 0.708610
\(914\) 0 0
\(915\) 0.678319i 0.0224245i
\(916\) 0 0
\(917\) 4.90668i 0.162033i
\(918\) 0 0
\(919\) 4.00033 0.131959 0.0659793 0.997821i \(-0.478983\pi\)
0.0659793 + 0.997821i \(0.478983\pi\)
\(920\) 0 0
\(921\) 7.02834i 0.231592i
\(922\) 0 0
\(923\) −22.3598 + 2.50391i −0.735981 + 0.0824172i
\(924\) 0 0
\(925\) 24.9975i 0.821914i
\(926\) 0 0
\(927\) −44.2140 −1.45218
\(928\) 0 0
\(929\) 54.3801i 1.78415i −0.451884 0.892077i \(-0.649248\pi\)
0.451884 0.892077i \(-0.350752\pi\)
\(930\) 0 0
\(931\) 5.58315i 0.182981i
\(932\) 0 0
\(933\) 5.18972 0.169904
\(934\) 0 0
\(935\) −4.24428 −0.138803
\(936\) 0 0
\(937\) 46.7217 1.52633 0.763165 0.646203i \(-0.223644\pi\)
0.763165 + 0.646203i \(0.223644\pi\)
\(938\) 0 0
\(939\) −8.18190 −0.267006
\(940\) 0 0
\(941\) 38.4447i 1.25326i −0.779316 0.626631i \(-0.784433\pi\)
0.779316 0.626631i \(-0.215567\pi\)
\(942\) 0 0
\(943\) 1.69586i 0.0552247i
\(944\) 0 0
\(945\) −1.40281 −0.0456335
\(946\) 0 0
\(947\) 45.4366i 1.47649i −0.674533 0.738245i \(-0.735655\pi\)
0.674533 0.738245i \(-0.264345\pi\)
\(948\) 0 0
\(949\) −23.0674 + 2.58315i −0.748801 + 0.0838527i
\(950\) 0 0
\(951\) 4.65989i 0.151107i
\(952\) 0 0
\(953\) 12.0830 0.391408 0.195704 0.980663i \(-0.437301\pi\)
0.195704 + 0.980663i \(0.437301\pi\)
\(954\) 0 0
\(955\) 4.64373i 0.150267i
\(956\) 0 0
\(957\) 14.3872i 0.465073i
\(958\) 0 0
\(959\) −12.4999 −0.403642
\(960\) 0 0
\(961\) 30.7012 0.990360
\(962\) 0 0
\(963\) 39.2597 1.26513
\(964\) 0 0
\(965\) 4.11669 0.132521
\(966\) 0 0
\(967\) 7.50012i 0.241188i −0.992702 0.120594i \(-0.961520\pi\)
0.992702 0.120594i \(-0.0384799\pi\)
\(968\) 0 0
\(969\) 3.46490i 0.111309i
\(970\) 0 0
\(971\) 10.6649 0.342253 0.171127 0.985249i \(-0.445259\pi\)
0.171127 + 0.985249i \(0.445259\pi\)
\(972\) 0 0
\(973\) 6.34916i 0.203545i
\(974\) 0 0
\(975\) −0.747294 6.67330i −0.0239326 0.213717i
\(976\) 0 0
\(977\) 8.56035i 0.273870i 0.990580 + 0.136935i \(0.0437251\pi\)
−0.990580 + 0.136935i \(0.956275\pi\)
\(978\) 0 0
\(979\) 60.7779 1.94247
\(980\) 0 0
\(981\) 32.1760i 1.02730i
\(982\) 0 0
\(983\) 15.7511i 0.502383i −0.967937 0.251191i \(-0.919178\pi\)
0.967937 0.251191i \(-0.0808224\pi\)
\(984\) 0 0
\(985\) −4.34068 −0.138306
\(986\) 0 0
\(987\) −1.30015 −0.0413844
\(988\) 0 0
\(989\) 17.9011 0.569223
\(990\) 0 0
\(991\) −58.8369 −1.86901 −0.934507 0.355944i \(-0.884159\pi\)
−0.934507 + 0.355944i \(0.884159\pi\)
\(992\) 0 0
\(993\) 11.0131i 0.349490i
\(994\) 0 0
\(995\) 16.0007i 0.507257i
\(996\) 0 0
\(997\) −39.0644 −1.23718 −0.618590 0.785714i \(-0.712296\pi\)
−0.618590 + 0.785714i \(0.712296\pi\)
\(998\) 0 0
\(999\) 12.6181i 0.399219i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.k.a.337.5 8
4.3 odd 2 1456.2.k.e.337.3 8
13.5 odd 4 9464.2.a.x.1.3 4
13.8 odd 4 9464.2.a.y.1.3 4
13.12 even 2 inner 728.2.k.a.337.6 yes 8
52.51 odd 2 1456.2.k.e.337.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.k.a.337.5 8 1.1 even 1 trivial
728.2.k.a.337.6 yes 8 13.12 even 2 inner
1456.2.k.e.337.3 8 4.3 odd 2
1456.2.k.e.337.4 8 52.51 odd 2
9464.2.a.x.1.3 4 13.5 odd 4
9464.2.a.y.1.3 4 13.8 odd 4