Properties

Label 9464.2.a.bs.1.4
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,4,0,15,0,16,0,15,0,0,0,8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.23382\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23382 q^{3} -3.65424 q^{5} +1.00000 q^{7} +1.98994 q^{9} +3.59386 q^{11} +8.16292 q^{15} +0.523266 q^{17} -4.88563 q^{19} -2.23382 q^{21} -5.85374 q^{23} +8.35350 q^{25} +2.25628 q^{27} -0.335543 q^{29} +8.80205 q^{31} -8.02802 q^{33} -3.65424 q^{35} +5.06510 q^{37} -3.59478 q^{41} +9.42197 q^{43} -7.27175 q^{45} -11.0569 q^{47} +1.00000 q^{49} -1.16888 q^{51} -2.73964 q^{53} -13.1328 q^{55} +10.9136 q^{57} +10.7238 q^{59} -0.0368175 q^{61} +1.98994 q^{63} +0.533398 q^{67} +13.0762 q^{69} +2.19349 q^{71} -4.19000 q^{73} -18.6602 q^{75} +3.59386 q^{77} +4.08884 q^{79} -11.0100 q^{81} +5.52286 q^{83} -1.91214 q^{85} +0.749542 q^{87} -16.0882 q^{89} -19.6622 q^{93} +17.8533 q^{95} -12.3593 q^{97} +7.15157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} + 4 q^{5} + 15 q^{7} + 16 q^{9} + 15 q^{11} + 8 q^{15} + 2 q^{17} + 13 q^{19} - 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} + 19 q^{31} - 24 q^{33} + 4 q^{35} - 2 q^{37} + 30 q^{41}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.23382 −1.28970 −0.644848 0.764311i \(-0.723079\pi\)
−0.644848 + 0.764311i \(0.723079\pi\)
\(4\) 0 0
\(5\) −3.65424 −1.63423 −0.817114 0.576476i \(-0.804427\pi\)
−0.817114 + 0.576476i \(0.804427\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.98994 0.663315
\(10\) 0 0
\(11\) 3.59386 1.08359 0.541794 0.840511i \(-0.317745\pi\)
0.541794 + 0.840511i \(0.317745\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 8.16292 2.10766
\(16\) 0 0
\(17\) 0.523266 0.126911 0.0634553 0.997985i \(-0.479788\pi\)
0.0634553 + 0.997985i \(0.479788\pi\)
\(18\) 0 0
\(19\) −4.88563 −1.12084 −0.560421 0.828208i \(-0.689361\pi\)
−0.560421 + 0.828208i \(0.689361\pi\)
\(20\) 0 0
\(21\) −2.23382 −0.487459
\(22\) 0 0
\(23\) −5.85374 −1.22059 −0.610294 0.792175i \(-0.708949\pi\)
−0.610294 + 0.792175i \(0.708949\pi\)
\(24\) 0 0
\(25\) 8.35350 1.67070
\(26\) 0 0
\(27\) 2.25628 0.434221
\(28\) 0 0
\(29\) −0.335543 −0.0623087 −0.0311544 0.999515i \(-0.509918\pi\)
−0.0311544 + 0.999515i \(0.509918\pi\)
\(30\) 0 0
\(31\) 8.80205 1.58089 0.790447 0.612530i \(-0.209848\pi\)
0.790447 + 0.612530i \(0.209848\pi\)
\(32\) 0 0
\(33\) −8.02802 −1.39750
\(34\) 0 0
\(35\) −3.65424 −0.617680
\(36\) 0 0
\(37\) 5.06510 0.832697 0.416348 0.909205i \(-0.363310\pi\)
0.416348 + 0.909205i \(0.363310\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.59478 −0.561410 −0.280705 0.959794i \(-0.590568\pi\)
−0.280705 + 0.959794i \(0.590568\pi\)
\(42\) 0 0
\(43\) 9.42197 1.43684 0.718419 0.695611i \(-0.244866\pi\)
0.718419 + 0.695611i \(0.244866\pi\)
\(44\) 0 0
\(45\) −7.27175 −1.08401
\(46\) 0 0
\(47\) −11.0569 −1.61282 −0.806410 0.591357i \(-0.798592\pi\)
−0.806410 + 0.591357i \(0.798592\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.16888 −0.163676
\(52\) 0 0
\(53\) −2.73964 −0.376318 −0.188159 0.982139i \(-0.560252\pi\)
−0.188159 + 0.982139i \(0.560252\pi\)
\(54\) 0 0
\(55\) −13.1328 −1.77083
\(56\) 0 0
\(57\) 10.9136 1.44554
\(58\) 0 0
\(59\) 10.7238 1.39613 0.698063 0.716036i \(-0.254046\pi\)
0.698063 + 0.716036i \(0.254046\pi\)
\(60\) 0 0
\(61\) −0.0368175 −0.00471399 −0.00235700 0.999997i \(-0.500750\pi\)
−0.00235700 + 0.999997i \(0.500750\pi\)
\(62\) 0 0
\(63\) 1.98994 0.250709
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.533398 0.0651650 0.0325825 0.999469i \(-0.489627\pi\)
0.0325825 + 0.999469i \(0.489627\pi\)
\(68\) 0 0
\(69\) 13.0762 1.57419
\(70\) 0 0
\(71\) 2.19349 0.260320 0.130160 0.991493i \(-0.458451\pi\)
0.130160 + 0.991493i \(0.458451\pi\)
\(72\) 0 0
\(73\) −4.19000 −0.490402 −0.245201 0.969472i \(-0.578854\pi\)
−0.245201 + 0.969472i \(0.578854\pi\)
\(74\) 0 0
\(75\) −18.6602 −2.15470
\(76\) 0 0
\(77\) 3.59386 0.409558
\(78\) 0 0
\(79\) 4.08884 0.460031 0.230015 0.973187i \(-0.426122\pi\)
0.230015 + 0.973187i \(0.426122\pi\)
\(80\) 0 0
\(81\) −11.0100 −1.22333
\(82\) 0 0
\(83\) 5.52286 0.606213 0.303106 0.952957i \(-0.401976\pi\)
0.303106 + 0.952957i \(0.401976\pi\)
\(84\) 0 0
\(85\) −1.91214 −0.207401
\(86\) 0 0
\(87\) 0.749542 0.0803593
\(88\) 0 0
\(89\) −16.0882 −1.70534 −0.852672 0.522446i \(-0.825019\pi\)
−0.852672 + 0.522446i \(0.825019\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −19.6622 −2.03887
\(94\) 0 0
\(95\) 17.8533 1.83171
\(96\) 0 0
\(97\) −12.3593 −1.25490 −0.627449 0.778657i \(-0.715901\pi\)
−0.627449 + 0.778657i \(0.715901\pi\)
\(98\) 0 0
\(99\) 7.15157 0.718760
\(100\) 0 0
\(101\) 15.5254 1.54484 0.772418 0.635114i \(-0.219047\pi\)
0.772418 + 0.635114i \(0.219047\pi\)
\(102\) 0 0
\(103\) −11.3488 −1.11823 −0.559114 0.829091i \(-0.688859\pi\)
−0.559114 + 0.829091i \(0.688859\pi\)
\(104\) 0 0
\(105\) 8.16292 0.796619
\(106\) 0 0
\(107\) −12.2867 −1.18780 −0.593900 0.804539i \(-0.702413\pi\)
−0.593900 + 0.804539i \(0.702413\pi\)
\(108\) 0 0
\(109\) 3.68889 0.353332 0.176666 0.984271i \(-0.443469\pi\)
0.176666 + 0.984271i \(0.443469\pi\)
\(110\) 0 0
\(111\) −11.3145 −1.07393
\(112\) 0 0
\(113\) −20.2282 −1.90291 −0.951456 0.307784i \(-0.900413\pi\)
−0.951456 + 0.307784i \(0.900413\pi\)
\(114\) 0 0
\(115\) 21.3910 1.99472
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.523266 0.0479677
\(120\) 0 0
\(121\) 1.91580 0.174163
\(122\) 0 0
\(123\) 8.03008 0.724048
\(124\) 0 0
\(125\) −12.2545 −1.09608
\(126\) 0 0
\(127\) −5.07362 −0.450211 −0.225105 0.974334i \(-0.572273\pi\)
−0.225105 + 0.974334i \(0.572273\pi\)
\(128\) 0 0
\(129\) −21.0470 −1.85308
\(130\) 0 0
\(131\) −10.7310 −0.937571 −0.468785 0.883312i \(-0.655308\pi\)
−0.468785 + 0.883312i \(0.655308\pi\)
\(132\) 0 0
\(133\) −4.88563 −0.423638
\(134\) 0 0
\(135\) −8.24500 −0.709616
\(136\) 0 0
\(137\) 3.18036 0.271717 0.135858 0.990728i \(-0.456621\pi\)
0.135858 + 0.990728i \(0.456621\pi\)
\(138\) 0 0
\(139\) −13.1951 −1.11919 −0.559596 0.828765i \(-0.689044\pi\)
−0.559596 + 0.828765i \(0.689044\pi\)
\(140\) 0 0
\(141\) 24.6992 2.08005
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.22616 0.101827
\(146\) 0 0
\(147\) −2.23382 −0.184242
\(148\) 0 0
\(149\) 13.9497 1.14281 0.571404 0.820669i \(-0.306399\pi\)
0.571404 + 0.820669i \(0.306399\pi\)
\(150\) 0 0
\(151\) 0.797580 0.0649061 0.0324531 0.999473i \(-0.489668\pi\)
0.0324531 + 0.999473i \(0.489668\pi\)
\(152\) 0 0
\(153\) 1.04127 0.0841817
\(154\) 0 0
\(155\) −32.1648 −2.58354
\(156\) 0 0
\(157\) −23.2501 −1.85556 −0.927778 0.373131i \(-0.878284\pi\)
−0.927778 + 0.373131i \(0.878284\pi\)
\(158\) 0 0
\(159\) 6.11985 0.485336
\(160\) 0 0
\(161\) −5.85374 −0.461339
\(162\) 0 0
\(163\) 17.4334 1.36549 0.682744 0.730657i \(-0.260786\pi\)
0.682744 + 0.730657i \(0.260786\pi\)
\(164\) 0 0
\(165\) 29.3363 2.28383
\(166\) 0 0
\(167\) −20.9467 −1.62090 −0.810451 0.585807i \(-0.800778\pi\)
−0.810451 + 0.585807i \(0.800778\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −9.72214 −0.743471
\(172\) 0 0
\(173\) 22.5761 1.71643 0.858214 0.513293i \(-0.171574\pi\)
0.858214 + 0.513293i \(0.171574\pi\)
\(174\) 0 0
\(175\) 8.35350 0.631466
\(176\) 0 0
\(177\) −23.9551 −1.80058
\(178\) 0 0
\(179\) −19.0378 −1.42296 −0.711478 0.702709i \(-0.751974\pi\)
−0.711478 + 0.702709i \(0.751974\pi\)
\(180\) 0 0
\(181\) 6.34003 0.471251 0.235626 0.971844i \(-0.424286\pi\)
0.235626 + 0.971844i \(0.424286\pi\)
\(182\) 0 0
\(183\) 0.0822435 0.00607962
\(184\) 0 0
\(185\) −18.5091 −1.36082
\(186\) 0 0
\(187\) 1.88054 0.137519
\(188\) 0 0
\(189\) 2.25628 0.164120
\(190\) 0 0
\(191\) 16.3591 1.18371 0.591853 0.806046i \(-0.298397\pi\)
0.591853 + 0.806046i \(0.298397\pi\)
\(192\) 0 0
\(193\) 18.7785 1.35171 0.675853 0.737036i \(-0.263775\pi\)
0.675853 + 0.737036i \(0.263775\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.7832 1.19575 0.597877 0.801588i \(-0.296011\pi\)
0.597877 + 0.801588i \(0.296011\pi\)
\(198\) 0 0
\(199\) −13.1248 −0.930394 −0.465197 0.885207i \(-0.654016\pi\)
−0.465197 + 0.885207i \(0.654016\pi\)
\(200\) 0 0
\(201\) −1.19151 −0.0840430
\(202\) 0 0
\(203\) −0.335543 −0.0235505
\(204\) 0 0
\(205\) 13.1362 0.917471
\(206\) 0 0
\(207\) −11.6486 −0.809635
\(208\) 0 0
\(209\) −17.5583 −1.21453
\(210\) 0 0
\(211\) 20.6865 1.42412 0.712058 0.702120i \(-0.247763\pi\)
0.712058 + 0.702120i \(0.247763\pi\)
\(212\) 0 0
\(213\) −4.89986 −0.335733
\(214\) 0 0
\(215\) −34.4302 −2.34812
\(216\) 0 0
\(217\) 8.80205 0.597522
\(218\) 0 0
\(219\) 9.35969 0.632469
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.0881 1.47913 0.739564 0.673086i \(-0.235032\pi\)
0.739564 + 0.673086i \(0.235032\pi\)
\(224\) 0 0
\(225\) 16.6230 1.10820
\(226\) 0 0
\(227\) −28.8399 −1.91417 −0.957085 0.289807i \(-0.906409\pi\)
−0.957085 + 0.289807i \(0.906409\pi\)
\(228\) 0 0
\(229\) −17.3604 −1.14721 −0.573603 0.819134i \(-0.694455\pi\)
−0.573603 + 0.819134i \(0.694455\pi\)
\(230\) 0 0
\(231\) −8.02802 −0.528205
\(232\) 0 0
\(233\) −10.1724 −0.666415 −0.333208 0.942854i \(-0.608131\pi\)
−0.333208 + 0.942854i \(0.608131\pi\)
\(234\) 0 0
\(235\) 40.4047 2.63571
\(236\) 0 0
\(237\) −9.13373 −0.593300
\(238\) 0 0
\(239\) −18.0660 −1.16859 −0.584295 0.811541i \(-0.698629\pi\)
−0.584295 + 0.811541i \(0.698629\pi\)
\(240\) 0 0
\(241\) 16.2933 1.04954 0.524772 0.851243i \(-0.324151\pi\)
0.524772 + 0.851243i \(0.324151\pi\)
\(242\) 0 0
\(243\) 17.8254 1.14350
\(244\) 0 0
\(245\) −3.65424 −0.233461
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.3371 −0.781830
\(250\) 0 0
\(251\) −0.911182 −0.0575133 −0.0287566 0.999586i \(-0.509155\pi\)
−0.0287566 + 0.999586i \(0.509155\pi\)
\(252\) 0 0
\(253\) −21.0375 −1.32262
\(254\) 0 0
\(255\) 4.27138 0.267484
\(256\) 0 0
\(257\) 27.2763 1.70145 0.850726 0.525610i \(-0.176163\pi\)
0.850726 + 0.525610i \(0.176163\pi\)
\(258\) 0 0
\(259\) 5.06510 0.314730
\(260\) 0 0
\(261\) −0.667712 −0.0413303
\(262\) 0 0
\(263\) −12.4532 −0.767897 −0.383948 0.923355i \(-0.625436\pi\)
−0.383948 + 0.923355i \(0.625436\pi\)
\(264\) 0 0
\(265\) 10.0113 0.614989
\(266\) 0 0
\(267\) 35.9381 2.19938
\(268\) 0 0
\(269\) 5.82364 0.355074 0.177537 0.984114i \(-0.443187\pi\)
0.177537 + 0.984114i \(0.443187\pi\)
\(270\) 0 0
\(271\) −3.08086 −0.187149 −0.0935744 0.995612i \(-0.529829\pi\)
−0.0935744 + 0.995612i \(0.529829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 30.0213 1.81035
\(276\) 0 0
\(277\) 7.29344 0.438220 0.219110 0.975700i \(-0.429685\pi\)
0.219110 + 0.975700i \(0.429685\pi\)
\(278\) 0 0
\(279\) 17.5156 1.04863
\(280\) 0 0
\(281\) −0.556271 −0.0331844 −0.0165922 0.999862i \(-0.505282\pi\)
−0.0165922 + 0.999862i \(0.505282\pi\)
\(282\) 0 0
\(283\) −9.61970 −0.571832 −0.285916 0.958255i \(-0.592298\pi\)
−0.285916 + 0.958255i \(0.592298\pi\)
\(284\) 0 0
\(285\) −39.8810 −2.36235
\(286\) 0 0
\(287\) −3.59478 −0.212193
\(288\) 0 0
\(289\) −16.7262 −0.983894
\(290\) 0 0
\(291\) 27.6085 1.61844
\(292\) 0 0
\(293\) 15.8707 0.927174 0.463587 0.886051i \(-0.346562\pi\)
0.463587 + 0.886051i \(0.346562\pi\)
\(294\) 0 0
\(295\) −39.1876 −2.28159
\(296\) 0 0
\(297\) 8.10874 0.470517
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.42197 0.543073
\(302\) 0 0
\(303\) −34.6810 −1.99237
\(304\) 0 0
\(305\) 0.134540 0.00770374
\(306\) 0 0
\(307\) −27.0574 −1.54425 −0.772124 0.635472i \(-0.780805\pi\)
−0.772124 + 0.635472i \(0.780805\pi\)
\(308\) 0 0
\(309\) 25.3511 1.44217
\(310\) 0 0
\(311\) 3.61878 0.205202 0.102601 0.994723i \(-0.467283\pi\)
0.102601 + 0.994723i \(0.467283\pi\)
\(312\) 0 0
\(313\) 10.1368 0.572968 0.286484 0.958085i \(-0.407513\pi\)
0.286484 + 0.958085i \(0.407513\pi\)
\(314\) 0 0
\(315\) −7.27175 −0.409716
\(316\) 0 0
\(317\) −6.45061 −0.362302 −0.181151 0.983455i \(-0.557982\pi\)
−0.181151 + 0.983455i \(0.557982\pi\)
\(318\) 0 0
\(319\) −1.20589 −0.0675170
\(320\) 0 0
\(321\) 27.4463 1.53190
\(322\) 0 0
\(323\) −2.55649 −0.142247
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.24031 −0.455690
\(328\) 0 0
\(329\) −11.0569 −0.609588
\(330\) 0 0
\(331\) −8.25809 −0.453906 −0.226953 0.973906i \(-0.572876\pi\)
−0.226953 + 0.973906i \(0.572876\pi\)
\(332\) 0 0
\(333\) 10.0793 0.552340
\(334\) 0 0
\(335\) −1.94917 −0.106494
\(336\) 0 0
\(337\) 14.2570 0.776629 0.388315 0.921527i \(-0.373057\pi\)
0.388315 + 0.921527i \(0.373057\pi\)
\(338\) 0 0
\(339\) 45.1862 2.45418
\(340\) 0 0
\(341\) 31.6333 1.71304
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −47.7836 −2.57258
\(346\) 0 0
\(347\) −10.0018 −0.536927 −0.268463 0.963290i \(-0.586516\pi\)
−0.268463 + 0.963290i \(0.586516\pi\)
\(348\) 0 0
\(349\) 15.4589 0.827498 0.413749 0.910391i \(-0.364219\pi\)
0.413749 + 0.910391i \(0.364219\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.5355 0.613974 0.306987 0.951714i \(-0.400679\pi\)
0.306987 + 0.951714i \(0.400679\pi\)
\(354\) 0 0
\(355\) −8.01556 −0.425422
\(356\) 0 0
\(357\) −1.16888 −0.0618637
\(358\) 0 0
\(359\) 7.97359 0.420830 0.210415 0.977612i \(-0.432518\pi\)
0.210415 + 0.977612i \(0.432518\pi\)
\(360\) 0 0
\(361\) 4.86942 0.256285
\(362\) 0 0
\(363\) −4.27954 −0.224618
\(364\) 0 0
\(365\) 15.3113 0.801428
\(366\) 0 0
\(367\) −2.12105 −0.110718 −0.0553590 0.998467i \(-0.517630\pi\)
−0.0553590 + 0.998467i \(0.517630\pi\)
\(368\) 0 0
\(369\) −7.15341 −0.372391
\(370\) 0 0
\(371\) −2.73964 −0.142235
\(372\) 0 0
\(373\) 35.2329 1.82429 0.912144 0.409869i \(-0.134426\pi\)
0.912144 + 0.409869i \(0.134426\pi\)
\(374\) 0 0
\(375\) 27.3744 1.41361
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 15.3183 0.786846 0.393423 0.919358i \(-0.371291\pi\)
0.393423 + 0.919358i \(0.371291\pi\)
\(380\) 0 0
\(381\) 11.3335 0.580635
\(382\) 0 0
\(383\) 38.8011 1.98264 0.991321 0.131465i \(-0.0419680\pi\)
0.991321 + 0.131465i \(0.0419680\pi\)
\(384\) 0 0
\(385\) −13.1328 −0.669311
\(386\) 0 0
\(387\) 18.7492 0.953076
\(388\) 0 0
\(389\) −7.56180 −0.383398 −0.191699 0.981454i \(-0.561400\pi\)
−0.191699 + 0.981454i \(0.561400\pi\)
\(390\) 0 0
\(391\) −3.06306 −0.154906
\(392\) 0 0
\(393\) 23.9711 1.20918
\(394\) 0 0
\(395\) −14.9416 −0.751795
\(396\) 0 0
\(397\) −0.959334 −0.0481476 −0.0240738 0.999710i \(-0.507664\pi\)
−0.0240738 + 0.999710i \(0.507664\pi\)
\(398\) 0 0
\(399\) 10.9136 0.546364
\(400\) 0 0
\(401\) 12.7776 0.638085 0.319043 0.947740i \(-0.396639\pi\)
0.319043 + 0.947740i \(0.396639\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 40.2331 1.99920
\(406\) 0 0
\(407\) 18.2032 0.902300
\(408\) 0 0
\(409\) 26.2802 1.29947 0.649736 0.760160i \(-0.274880\pi\)
0.649736 + 0.760160i \(0.274880\pi\)
\(410\) 0 0
\(411\) −7.10436 −0.350432
\(412\) 0 0
\(413\) 10.7238 0.527686
\(414\) 0 0
\(415\) −20.1819 −0.990690
\(416\) 0 0
\(417\) 29.4754 1.44342
\(418\) 0 0
\(419\) −18.4420 −0.900950 −0.450475 0.892789i \(-0.648745\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(420\) 0 0
\(421\) 37.3294 1.81932 0.909661 0.415351i \(-0.136341\pi\)
0.909661 + 0.415351i \(0.136341\pi\)
\(422\) 0 0
\(423\) −22.0027 −1.06981
\(424\) 0 0
\(425\) 4.37110 0.212030
\(426\) 0 0
\(427\) −0.0368175 −0.00178172
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0791 −1.15985 −0.579925 0.814670i \(-0.696918\pi\)
−0.579925 + 0.814670i \(0.696918\pi\)
\(432\) 0 0
\(433\) −21.5670 −1.03645 −0.518223 0.855246i \(-0.673406\pi\)
−0.518223 + 0.855246i \(0.673406\pi\)
\(434\) 0 0
\(435\) −2.73901 −0.131325
\(436\) 0 0
\(437\) 28.5992 1.36809
\(438\) 0 0
\(439\) 6.43596 0.307172 0.153586 0.988135i \(-0.450918\pi\)
0.153586 + 0.988135i \(0.450918\pi\)
\(440\) 0 0
\(441\) 1.98994 0.0947593
\(442\) 0 0
\(443\) 39.8586 1.89374 0.946870 0.321618i \(-0.104227\pi\)
0.946870 + 0.321618i \(0.104227\pi\)
\(444\) 0 0
\(445\) 58.7902 2.78692
\(446\) 0 0
\(447\) −31.1612 −1.47387
\(448\) 0 0
\(449\) 35.9047 1.69445 0.847224 0.531237i \(-0.178272\pi\)
0.847224 + 0.531237i \(0.178272\pi\)
\(450\) 0 0
\(451\) −12.9191 −0.608337
\(452\) 0 0
\(453\) −1.78165 −0.0837092
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.89831 0.182355 0.0911777 0.995835i \(-0.470937\pi\)
0.0911777 + 0.995835i \(0.470937\pi\)
\(458\) 0 0
\(459\) 1.18063 0.0551073
\(460\) 0 0
\(461\) 28.9131 1.34662 0.673310 0.739361i \(-0.264872\pi\)
0.673310 + 0.739361i \(0.264872\pi\)
\(462\) 0 0
\(463\) 6.52035 0.303026 0.151513 0.988455i \(-0.451585\pi\)
0.151513 + 0.988455i \(0.451585\pi\)
\(464\) 0 0
\(465\) 71.8504 3.33198
\(466\) 0 0
\(467\) −7.61110 −0.352200 −0.176100 0.984372i \(-0.556348\pi\)
−0.176100 + 0.984372i \(0.556348\pi\)
\(468\) 0 0
\(469\) 0.533398 0.0246300
\(470\) 0 0
\(471\) 51.9364 2.39310
\(472\) 0 0
\(473\) 33.8612 1.55694
\(474\) 0 0
\(475\) −40.8122 −1.87259
\(476\) 0 0
\(477\) −5.45173 −0.249617
\(478\) 0 0
\(479\) 21.1050 0.964312 0.482156 0.876086i \(-0.339854\pi\)
0.482156 + 0.876086i \(0.339854\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 13.0762 0.594987
\(484\) 0 0
\(485\) 45.1640 2.05079
\(486\) 0 0
\(487\) 35.0845 1.58983 0.794916 0.606719i \(-0.207515\pi\)
0.794916 + 0.606719i \(0.207515\pi\)
\(488\) 0 0
\(489\) −38.9430 −1.76106
\(490\) 0 0
\(491\) 21.5183 0.971107 0.485554 0.874207i \(-0.338618\pi\)
0.485554 + 0.874207i \(0.338618\pi\)
\(492\) 0 0
\(493\) −0.175578 −0.00790764
\(494\) 0 0
\(495\) −26.1336 −1.17462
\(496\) 0 0
\(497\) 2.19349 0.0983916
\(498\) 0 0
\(499\) −8.79408 −0.393677 −0.196838 0.980436i \(-0.563067\pi\)
−0.196838 + 0.980436i \(0.563067\pi\)
\(500\) 0 0
\(501\) 46.7910 2.09047
\(502\) 0 0
\(503\) −3.41762 −0.152384 −0.0761922 0.997093i \(-0.524276\pi\)
−0.0761922 + 0.997093i \(0.524276\pi\)
\(504\) 0 0
\(505\) −56.7337 −2.52462
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.2480 0.720180 0.360090 0.932918i \(-0.382746\pi\)
0.360090 + 0.932918i \(0.382746\pi\)
\(510\) 0 0
\(511\) −4.19000 −0.185354
\(512\) 0 0
\(513\) −11.0234 −0.486693
\(514\) 0 0
\(515\) 41.4712 1.82744
\(516\) 0 0
\(517\) −39.7370 −1.74763
\(518\) 0 0
\(519\) −50.4309 −2.21367
\(520\) 0 0
\(521\) −15.2329 −0.667365 −0.333683 0.942686i \(-0.608291\pi\)
−0.333683 + 0.942686i \(0.608291\pi\)
\(522\) 0 0
\(523\) −17.4048 −0.761058 −0.380529 0.924769i \(-0.624258\pi\)
−0.380529 + 0.924769i \(0.624258\pi\)
\(524\) 0 0
\(525\) −18.6602 −0.814398
\(526\) 0 0
\(527\) 4.60581 0.200632
\(528\) 0 0
\(529\) 11.2663 0.489837
\(530\) 0 0
\(531\) 21.3399 0.926071
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 44.8986 1.94114
\(536\) 0 0
\(537\) 42.5271 1.83518
\(538\) 0 0
\(539\) 3.59386 0.154798
\(540\) 0 0
\(541\) 29.3275 1.26089 0.630444 0.776235i \(-0.282873\pi\)
0.630444 + 0.776235i \(0.282873\pi\)
\(542\) 0 0
\(543\) −14.1625 −0.607770
\(544\) 0 0
\(545\) −13.4801 −0.577425
\(546\) 0 0
\(547\) −3.07670 −0.131550 −0.0657750 0.997834i \(-0.520952\pi\)
−0.0657750 + 0.997834i \(0.520952\pi\)
\(548\) 0 0
\(549\) −0.0732647 −0.00312686
\(550\) 0 0
\(551\) 1.63934 0.0698382
\(552\) 0 0
\(553\) 4.08884 0.173875
\(554\) 0 0
\(555\) 41.3460 1.75504
\(556\) 0 0
\(557\) −33.5265 −1.42057 −0.710283 0.703917i \(-0.751433\pi\)
−0.710283 + 0.703917i \(0.751433\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4.20079 −0.177357
\(562\) 0 0
\(563\) −4.44274 −0.187239 −0.0936195 0.995608i \(-0.529844\pi\)
−0.0936195 + 0.995608i \(0.529844\pi\)
\(564\) 0 0
\(565\) 73.9189 3.10979
\(566\) 0 0
\(567\) −11.0100 −0.462375
\(568\) 0 0
\(569\) −25.6346 −1.07466 −0.537330 0.843372i \(-0.680567\pi\)
−0.537330 + 0.843372i \(0.680567\pi\)
\(570\) 0 0
\(571\) −21.1422 −0.884773 −0.442386 0.896825i \(-0.645868\pi\)
−0.442386 + 0.896825i \(0.645868\pi\)
\(572\) 0 0
\(573\) −36.5433 −1.52662
\(574\) 0 0
\(575\) −48.8992 −2.03924
\(576\) 0 0
\(577\) 18.6402 0.776002 0.388001 0.921659i \(-0.373166\pi\)
0.388001 + 0.921659i \(0.373166\pi\)
\(578\) 0 0
\(579\) −41.9478 −1.74329
\(580\) 0 0
\(581\) 5.52286 0.229127
\(582\) 0 0
\(583\) −9.84586 −0.407774
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.2610 1.29028 0.645139 0.764065i \(-0.276800\pi\)
0.645139 + 0.764065i \(0.276800\pi\)
\(588\) 0 0
\(589\) −43.0036 −1.77193
\(590\) 0 0
\(591\) −37.4906 −1.54216
\(592\) 0 0
\(593\) 9.97063 0.409445 0.204722 0.978820i \(-0.434371\pi\)
0.204722 + 0.978820i \(0.434371\pi\)
\(594\) 0 0
\(595\) −1.91214 −0.0783901
\(596\) 0 0
\(597\) 29.3185 1.19992
\(598\) 0 0
\(599\) −15.9628 −0.652222 −0.326111 0.945331i \(-0.605738\pi\)
−0.326111 + 0.945331i \(0.605738\pi\)
\(600\) 0 0
\(601\) −23.9242 −0.975889 −0.487944 0.872875i \(-0.662253\pi\)
−0.487944 + 0.872875i \(0.662253\pi\)
\(602\) 0 0
\(603\) 1.06143 0.0432249
\(604\) 0 0
\(605\) −7.00079 −0.284622
\(606\) 0 0
\(607\) 47.1499 1.91376 0.956878 0.290489i \(-0.0938181\pi\)
0.956878 + 0.290489i \(0.0938181\pi\)
\(608\) 0 0
\(609\) 0.749542 0.0303730
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.75121 0.151510 0.0757550 0.997126i \(-0.475863\pi\)
0.0757550 + 0.997126i \(0.475863\pi\)
\(614\) 0 0
\(615\) −29.3439 −1.18326
\(616\) 0 0
\(617\) 37.0517 1.49165 0.745823 0.666145i \(-0.232057\pi\)
0.745823 + 0.666145i \(0.232057\pi\)
\(618\) 0 0
\(619\) −38.0711 −1.53021 −0.765104 0.643906i \(-0.777313\pi\)
−0.765104 + 0.643906i \(0.777313\pi\)
\(620\) 0 0
\(621\) −13.2077 −0.530006
\(622\) 0 0
\(623\) −16.0882 −0.644560
\(624\) 0 0
\(625\) 3.01351 0.120540
\(626\) 0 0
\(627\) 39.2220 1.56637
\(628\) 0 0
\(629\) 2.65039 0.105678
\(630\) 0 0
\(631\) −4.94117 −0.196705 −0.0983525 0.995152i \(-0.531357\pi\)
−0.0983525 + 0.995152i \(0.531357\pi\)
\(632\) 0 0
\(633\) −46.2099 −1.83668
\(634\) 0 0
\(635\) 18.5402 0.735747
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.36493 0.172674
\(640\) 0 0
\(641\) 6.19200 0.244569 0.122285 0.992495i \(-0.460978\pi\)
0.122285 + 0.992495i \(0.460978\pi\)
\(642\) 0 0
\(643\) 44.6852 1.76221 0.881107 0.472918i \(-0.156799\pi\)
0.881107 + 0.472918i \(0.156799\pi\)
\(644\) 0 0
\(645\) 76.9108 3.02836
\(646\) 0 0
\(647\) 3.96747 0.155977 0.0779886 0.996954i \(-0.475150\pi\)
0.0779886 + 0.996954i \(0.475150\pi\)
\(648\) 0 0
\(649\) 38.5400 1.51283
\(650\) 0 0
\(651\) −19.6622 −0.770622
\(652\) 0 0
\(653\) −31.2980 −1.22478 −0.612392 0.790554i \(-0.709792\pi\)
−0.612392 + 0.790554i \(0.709792\pi\)
\(654\) 0 0
\(655\) 39.2137 1.53220
\(656\) 0 0
\(657\) −8.33786 −0.325291
\(658\) 0 0
\(659\) −17.9143 −0.697842 −0.348921 0.937152i \(-0.613452\pi\)
−0.348921 + 0.937152i \(0.613452\pi\)
\(660\) 0 0
\(661\) −5.53764 −0.215389 −0.107695 0.994184i \(-0.534347\pi\)
−0.107695 + 0.994184i \(0.534347\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.8533 0.692321
\(666\) 0 0
\(667\) 1.96418 0.0760534
\(668\) 0 0
\(669\) −49.3408 −1.90763
\(670\) 0 0
\(671\) −0.132317 −0.00510803
\(672\) 0 0
\(673\) 35.1270 1.35405 0.677023 0.735962i \(-0.263270\pi\)
0.677023 + 0.735962i \(0.263270\pi\)
\(674\) 0 0
\(675\) 18.8478 0.725454
\(676\) 0 0
\(677\) −27.3688 −1.05187 −0.525934 0.850525i \(-0.676284\pi\)
−0.525934 + 0.850525i \(0.676284\pi\)
\(678\) 0 0
\(679\) −12.3593 −0.474307
\(680\) 0 0
\(681\) 64.4231 2.46870
\(682\) 0 0
\(683\) −33.8210 −1.29412 −0.647062 0.762437i \(-0.724002\pi\)
−0.647062 + 0.762437i \(0.724002\pi\)
\(684\) 0 0
\(685\) −11.6218 −0.444047
\(686\) 0 0
\(687\) 38.7799 1.47955
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −7.95802 −0.302737 −0.151369 0.988477i \(-0.548368\pi\)
−0.151369 + 0.988477i \(0.548368\pi\)
\(692\) 0 0
\(693\) 7.15157 0.271666
\(694\) 0 0
\(695\) 48.2181 1.82902
\(696\) 0 0
\(697\) −1.88102 −0.0712488
\(698\) 0 0
\(699\) 22.7233 0.859473
\(700\) 0 0
\(701\) −6.13153 −0.231585 −0.115792 0.993273i \(-0.536941\pi\)
−0.115792 + 0.993273i \(0.536941\pi\)
\(702\) 0 0
\(703\) −24.7462 −0.933321
\(704\) 0 0
\(705\) −90.2568 −3.39927
\(706\) 0 0
\(707\) 15.5254 0.583893
\(708\) 0 0
\(709\) 10.4070 0.390845 0.195422 0.980719i \(-0.437392\pi\)
0.195422 + 0.980719i \(0.437392\pi\)
\(710\) 0 0
\(711\) 8.13657 0.305145
\(712\) 0 0
\(713\) −51.5249 −1.92962
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 40.3561 1.50713
\(718\) 0 0
\(719\) 0.420339 0.0156760 0.00783799 0.999969i \(-0.497505\pi\)
0.00783799 + 0.999969i \(0.497505\pi\)
\(720\) 0 0
\(721\) −11.3488 −0.422651
\(722\) 0 0
\(723\) −36.3963 −1.35359
\(724\) 0 0
\(725\) −2.80296 −0.104099
\(726\) 0 0
\(727\) −23.4398 −0.869336 −0.434668 0.900591i \(-0.643134\pi\)
−0.434668 + 0.900591i \(0.643134\pi\)
\(728\) 0 0
\(729\) −6.78884 −0.251439
\(730\) 0 0
\(731\) 4.93020 0.182350
\(732\) 0 0
\(733\) −49.4516 −1.82654 −0.913268 0.407359i \(-0.866450\pi\)
−0.913268 + 0.407359i \(0.866450\pi\)
\(734\) 0 0
\(735\) 8.16292 0.301094
\(736\) 0 0
\(737\) 1.91696 0.0706120
\(738\) 0 0
\(739\) 31.5841 1.16184 0.580920 0.813961i \(-0.302693\pi\)
0.580920 + 0.813961i \(0.302693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −44.6986 −1.63983 −0.819916 0.572484i \(-0.805980\pi\)
−0.819916 + 0.572484i \(0.805980\pi\)
\(744\) 0 0
\(745\) −50.9758 −1.86761
\(746\) 0 0
\(747\) 10.9902 0.402110
\(748\) 0 0
\(749\) −12.2867 −0.448946
\(750\) 0 0
\(751\) 18.4336 0.672651 0.336326 0.941746i \(-0.390816\pi\)
0.336326 + 0.941746i \(0.390816\pi\)
\(752\) 0 0
\(753\) 2.03541 0.0741746
\(754\) 0 0
\(755\) −2.91455 −0.106071
\(756\) 0 0
\(757\) 4.04446 0.146998 0.0734991 0.997295i \(-0.476583\pi\)
0.0734991 + 0.997295i \(0.476583\pi\)
\(758\) 0 0
\(759\) 46.9939 1.70577
\(760\) 0 0
\(761\) 35.0672 1.27118 0.635592 0.772025i \(-0.280756\pi\)
0.635592 + 0.772025i \(0.280756\pi\)
\(762\) 0 0
\(763\) 3.68889 0.133547
\(764\) 0 0
\(765\) −3.80506 −0.137572
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −20.4729 −0.738271 −0.369136 0.929376i \(-0.620346\pi\)
−0.369136 + 0.929376i \(0.620346\pi\)
\(770\) 0 0
\(771\) −60.9304 −2.19435
\(772\) 0 0
\(773\) 26.8165 0.964522 0.482261 0.876028i \(-0.339816\pi\)
0.482261 + 0.876028i \(0.339816\pi\)
\(774\) 0 0
\(775\) 73.5279 2.64120
\(776\) 0 0
\(777\) −11.3145 −0.405906
\(778\) 0 0
\(779\) 17.5628 0.629251
\(780\) 0 0
\(781\) 7.88310 0.282079
\(782\) 0 0
\(783\) −0.757078 −0.0270558
\(784\) 0 0
\(785\) 84.9614 3.03240
\(786\) 0 0
\(787\) 1.22600 0.0437022 0.0218511 0.999761i \(-0.493044\pi\)
0.0218511 + 0.999761i \(0.493044\pi\)
\(788\) 0 0
\(789\) 27.8182 0.990353
\(790\) 0 0
\(791\) −20.2282 −0.719233
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −22.3634 −0.793149
\(796\) 0 0
\(797\) 2.03881 0.0722184 0.0361092 0.999348i \(-0.488504\pi\)
0.0361092 + 0.999348i \(0.488504\pi\)
\(798\) 0 0
\(799\) −5.78571 −0.204684
\(800\) 0 0
\(801\) −32.0146 −1.13118
\(802\) 0 0
\(803\) −15.0582 −0.531394
\(804\) 0 0
\(805\) 21.3910 0.753933
\(806\) 0 0
\(807\) −13.0090 −0.457937
\(808\) 0 0
\(809\) 49.0474 1.72442 0.862208 0.506554i \(-0.169081\pi\)
0.862208 + 0.506554i \(0.169081\pi\)
\(810\) 0 0
\(811\) −13.9488 −0.489810 −0.244905 0.969547i \(-0.578757\pi\)
−0.244905 + 0.969547i \(0.578757\pi\)
\(812\) 0 0
\(813\) 6.88208 0.241365
\(814\) 0 0
\(815\) −63.7059 −2.23152
\(816\) 0 0
\(817\) −46.0323 −1.61047
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.0578 0.525522 0.262761 0.964861i \(-0.415367\pi\)
0.262761 + 0.964861i \(0.415367\pi\)
\(822\) 0 0
\(823\) 20.1510 0.702419 0.351209 0.936297i \(-0.385771\pi\)
0.351209 + 0.936297i \(0.385771\pi\)
\(824\) 0 0
\(825\) −67.0621 −2.33480
\(826\) 0 0
\(827\) −37.1684 −1.29247 −0.646235 0.763138i \(-0.723657\pi\)
−0.646235 + 0.763138i \(0.723657\pi\)
\(828\) 0 0
\(829\) 8.06684 0.280173 0.140086 0.990139i \(-0.455262\pi\)
0.140086 + 0.990139i \(0.455262\pi\)
\(830\) 0 0
\(831\) −16.2922 −0.565171
\(832\) 0 0
\(833\) 0.523266 0.0181301
\(834\) 0 0
\(835\) 76.5442 2.64892
\(836\) 0 0
\(837\) 19.8599 0.686458
\(838\) 0 0
\(839\) 21.1736 0.730994 0.365497 0.930812i \(-0.380899\pi\)
0.365497 + 0.930812i \(0.380899\pi\)
\(840\) 0 0
\(841\) −28.8874 −0.996118
\(842\) 0 0
\(843\) 1.24261 0.0427977
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.91580 0.0658275
\(848\) 0 0
\(849\) 21.4887 0.737489
\(850\) 0 0
\(851\) −29.6497 −1.01638
\(852\) 0 0
\(853\) −9.01944 −0.308820 −0.154410 0.988007i \(-0.549348\pi\)
−0.154410 + 0.988007i \(0.549348\pi\)
\(854\) 0 0
\(855\) 35.5271 1.21500
\(856\) 0 0
\(857\) −25.4950 −0.870892 −0.435446 0.900215i \(-0.643409\pi\)
−0.435446 + 0.900215i \(0.643409\pi\)
\(858\) 0 0
\(859\) −17.5592 −0.599112 −0.299556 0.954079i \(-0.596839\pi\)
−0.299556 + 0.954079i \(0.596839\pi\)
\(860\) 0 0
\(861\) 8.03008 0.273664
\(862\) 0 0
\(863\) −26.2220 −0.892606 −0.446303 0.894882i \(-0.647260\pi\)
−0.446303 + 0.894882i \(0.647260\pi\)
\(864\) 0 0
\(865\) −82.4985 −2.80503
\(866\) 0 0
\(867\) 37.3633 1.26892
\(868\) 0 0
\(869\) 14.6947 0.498484
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −24.5944 −0.832393
\(874\) 0 0
\(875\) −12.2545 −0.414279
\(876\) 0 0
\(877\) −58.4076 −1.97229 −0.986143 0.165898i \(-0.946948\pi\)
−0.986143 + 0.165898i \(0.946948\pi\)
\(878\) 0 0
\(879\) −35.4522 −1.19577
\(880\) 0 0
\(881\) −3.26593 −0.110032 −0.0550160 0.998485i \(-0.517521\pi\)
−0.0550160 + 0.998485i \(0.517521\pi\)
\(882\) 0 0
\(883\) −30.8801 −1.03920 −0.519598 0.854411i \(-0.673918\pi\)
−0.519598 + 0.854411i \(0.673918\pi\)
\(884\) 0 0
\(885\) 87.5379 2.94255
\(886\) 0 0
\(887\) −10.8847 −0.365473 −0.182736 0.983162i \(-0.558495\pi\)
−0.182736 + 0.983162i \(0.558495\pi\)
\(888\) 0 0
\(889\) −5.07362 −0.170164
\(890\) 0 0
\(891\) −39.5682 −1.32558
\(892\) 0 0
\(893\) 54.0201 1.80771
\(894\) 0 0
\(895\) 69.5689 2.32543
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.95346 −0.0985035
\(900\) 0 0
\(901\) −1.43356 −0.0477587
\(902\) 0 0
\(903\) −21.0470 −0.700399
\(904\) 0 0
\(905\) −23.1680 −0.770132
\(906\) 0 0
\(907\) −23.1014 −0.767069 −0.383534 0.923527i \(-0.625293\pi\)
−0.383534 + 0.923527i \(0.625293\pi\)
\(908\) 0 0
\(909\) 30.8947 1.02471
\(910\) 0 0
\(911\) 23.3012 0.772002 0.386001 0.922498i \(-0.373856\pi\)
0.386001 + 0.922498i \(0.373856\pi\)
\(912\) 0 0
\(913\) 19.8484 0.656885
\(914\) 0 0
\(915\) −0.300538 −0.00993548
\(916\) 0 0
\(917\) −10.7310 −0.354368
\(918\) 0 0
\(919\) 15.8450 0.522680 0.261340 0.965247i \(-0.415836\pi\)
0.261340 + 0.965247i \(0.415836\pi\)
\(920\) 0 0
\(921\) 60.4413 1.99161
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 42.3113 1.39119
\(926\) 0 0
\(927\) −22.5834 −0.741738
\(928\) 0 0
\(929\) 35.3986 1.16139 0.580695 0.814121i \(-0.302781\pi\)
0.580695 + 0.814121i \(0.302781\pi\)
\(930\) 0 0
\(931\) −4.88563 −0.160120
\(932\) 0 0
\(933\) −8.08371 −0.264649
\(934\) 0 0
\(935\) −6.87196 −0.224737
\(936\) 0 0
\(937\) −11.8676 −0.387698 −0.193849 0.981031i \(-0.562097\pi\)
−0.193849 + 0.981031i \(0.562097\pi\)
\(938\) 0 0
\(939\) −22.6439 −0.738955
\(940\) 0 0
\(941\) 20.3178 0.662342 0.331171 0.943571i \(-0.392556\pi\)
0.331171 + 0.943571i \(0.392556\pi\)
\(942\) 0 0
\(943\) 21.0429 0.685251
\(944\) 0 0
\(945\) −8.24500 −0.268210
\(946\) 0 0
\(947\) 8.27959 0.269051 0.134525 0.990910i \(-0.457049\pi\)
0.134525 + 0.990910i \(0.457049\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 14.4095 0.467260
\(952\) 0 0
\(953\) 1.78597 0.0578533 0.0289267 0.999582i \(-0.490791\pi\)
0.0289267 + 0.999582i \(0.490791\pi\)
\(954\) 0 0
\(955\) −59.7803 −1.93444
\(956\) 0 0
\(957\) 2.69374 0.0870764
\(958\) 0 0
\(959\) 3.18036 0.102699
\(960\) 0 0
\(961\) 46.4761 1.49923
\(962\) 0 0
\(963\) −24.4499 −0.787886
\(964\) 0 0
\(965\) −68.6212 −2.20900
\(966\) 0 0
\(967\) 41.8505 1.34582 0.672911 0.739723i \(-0.265044\pi\)
0.672911 + 0.739723i \(0.265044\pi\)
\(968\) 0 0
\(969\) 5.71072 0.183455
\(970\) 0 0
\(971\) −19.0102 −0.610067 −0.305034 0.952342i \(-0.598668\pi\)
−0.305034 + 0.952342i \(0.598668\pi\)
\(972\) 0 0
\(973\) −13.1951 −0.423015
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −52.8495 −1.69081 −0.845403 0.534129i \(-0.820640\pi\)
−0.845403 + 0.534129i \(0.820640\pi\)
\(978\) 0 0
\(979\) −57.8186 −1.84789
\(980\) 0 0
\(981\) 7.34069 0.234370
\(982\) 0 0
\(983\) 28.6422 0.913545 0.456772 0.889584i \(-0.349005\pi\)
0.456772 + 0.889584i \(0.349005\pi\)
\(984\) 0 0
\(985\) −61.3299 −1.95413
\(986\) 0 0
\(987\) 24.6992 0.786184
\(988\) 0 0
\(989\) −55.1538 −1.75379
\(990\) 0 0
\(991\) 27.0860 0.860415 0.430208 0.902730i \(-0.358440\pi\)
0.430208 + 0.902730i \(0.358440\pi\)
\(992\) 0 0
\(993\) 18.4471 0.585400
\(994\) 0 0
\(995\) 47.9613 1.52048
\(996\) 0 0
\(997\) 45.5672 1.44313 0.721564 0.692348i \(-0.243424\pi\)
0.721564 + 0.692348i \(0.243424\pi\)
\(998\) 0 0
\(999\) 11.4283 0.361575
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bs.1.4 yes 15
13.12 even 2 9464.2.a.br.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.4 15 13.12 even 2
9464.2.a.bs.1.4 yes 15 1.1 even 1 trivial