Properties

Label 2-9464-1.1-c1-0-24
Degree $2$
Conductor $9464$
Sign $1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·3-s − 3.65·5-s + 7-s + 1.98·9-s + 3.59·11-s + 8.16·15-s + 0.523·17-s − 4.88·19-s − 2.23·21-s − 5.85·23-s + 8.35·25-s + 2.25·27-s − 0.335·29-s + 8.80·31-s − 8.02·33-s − 3.65·35-s + 5.06·37-s − 3.59·41-s + 9.42·43-s − 7.27·45-s − 11.0·47-s + 49-s − 1.16·51-s − 2.73·53-s − 13.1·55-s + 10.9·57-s + 10.7·59-s + ⋯
L(s)  = 1  − 1.28·3-s − 1.63·5-s + 0.377·7-s + 0.663·9-s + 1.08·11-s + 2.10·15-s + 0.126·17-s − 1.12·19-s − 0.487·21-s − 1.22·23-s + 1.67·25-s + 0.434·27-s − 0.0623·29-s + 1.58·31-s − 1.39·33-s − 0.617·35-s + 0.832·37-s − 0.561·41-s + 1.43·43-s − 1.08·45-s − 1.61·47-s + 0.142·49-s − 0.163·51-s − 0.376·53-s − 1.77·55-s + 1.44·57-s + 1.39·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6087256098\)
\(L(\frac12)\) \(\approx\) \(0.6087256098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + 2.23T + 3T^{2} \)
5 \( 1 + 3.65T + 5T^{2} \)
11 \( 1 - 3.59T + 11T^{2} \)
17 \( 1 - 0.523T + 17T^{2} \)
19 \( 1 + 4.88T + 19T^{2} \)
23 \( 1 + 5.85T + 23T^{2} \)
29 \( 1 + 0.335T + 29T^{2} \)
31 \( 1 - 8.80T + 31T^{2} \)
37 \( 1 - 5.06T + 37T^{2} \)
41 \( 1 + 3.59T + 41T^{2} \)
43 \( 1 - 9.42T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 2.73T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 + 0.0368T + 61T^{2} \)
67 \( 1 - 0.533T + 67T^{2} \)
71 \( 1 - 2.19T + 71T^{2} \)
73 \( 1 + 4.18T + 73T^{2} \)
79 \( 1 - 4.08T + 79T^{2} \)
83 \( 1 - 5.52T + 83T^{2} \)
89 \( 1 + 16.0T + 89T^{2} \)
97 \( 1 + 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80134293371923091048086629245, −6.72776825463410321415225333769, −6.52238389829120121521752627241, −5.68964677825129586228288550944, −4.79760261779971837959424414632, −4.22272652790758174494898228671, −3.84220084552967957289456038839, −2.67460819015064565084586253119, −1.35296353635223372684775869176, −0.43792658762445472327521369949, 0.43792658762445472327521369949, 1.35296353635223372684775869176, 2.67460819015064565084586253119, 3.84220084552967957289456038839, 4.22272652790758174494898228671, 4.79760261779971837959424414632, 5.68964677825129586228288550944, 6.52238389829120121521752627241, 6.72776825463410321415225333769, 7.80134293371923091048086629245

Graph of the $Z$-function along the critical line