Properties

Label 9464.2.a.bf.1.6
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-4,0,-6,0,-4,0,10,0,0,0,-6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7674048.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.38595\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38595 q^{3} -0.877521 q^{5} -1.00000 q^{7} +2.69277 q^{9} +3.18434 q^{11} -2.09372 q^{15} -0.971244 q^{17} +1.58529 q^{19} -2.38595 q^{21} -3.26443 q^{23} -4.22996 q^{25} -0.733037 q^{27} -9.73068 q^{29} -3.94150 q^{31} +7.59768 q^{33} +0.877521 q^{35} +5.16838 q^{37} -4.51950 q^{41} -7.62643 q^{43} -2.36296 q^{45} +4.12013 q^{47} +1.00000 q^{49} -2.31734 q^{51} -2.01686 q^{53} -2.79432 q^{55} +3.78243 q^{57} +1.04081 q^{59} +5.01011 q^{61} -2.69277 q^{63} -7.45668 q^{67} -7.78877 q^{69} -4.07774 q^{71} +12.6820 q^{73} -10.0925 q^{75} -3.18434 q^{77} -9.79759 q^{79} -9.82730 q^{81} +6.81690 q^{83} +0.852287 q^{85} -23.2169 q^{87} -4.63133 q^{89} -9.40424 q^{93} -1.39113 q^{95} +4.10631 q^{97} +8.57469 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 4 q^{5} - 6 q^{7} - 4 q^{9} + 10 q^{11} - 6 q^{15} + 2 q^{17} + 14 q^{19} - 2 q^{21} - 6 q^{23} - 2 q^{25} + 2 q^{27} - 20 q^{29} - 4 q^{31} + 4 q^{33} + 4 q^{35} - 4 q^{37} + 10 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.38595 1.37753 0.688765 0.724985i \(-0.258153\pi\)
0.688765 + 0.724985i \(0.258153\pi\)
\(4\) 0 0
\(5\) −0.877521 −0.392439 −0.196220 0.980560i \(-0.562867\pi\)
−0.196220 + 0.980560i \(0.562867\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.69277 0.897590
\(10\) 0 0
\(11\) 3.18434 0.960114 0.480057 0.877237i \(-0.340616\pi\)
0.480057 + 0.877237i \(0.340616\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.09372 −0.540597
\(16\) 0 0
\(17\) −0.971244 −0.235561 −0.117781 0.993040i \(-0.537578\pi\)
−0.117781 + 0.993040i \(0.537578\pi\)
\(18\) 0 0
\(19\) 1.58529 0.363691 0.181845 0.983327i \(-0.441793\pi\)
0.181845 + 0.983327i \(0.441793\pi\)
\(20\) 0 0
\(21\) −2.38595 −0.520658
\(22\) 0 0
\(23\) −3.26443 −0.680680 −0.340340 0.940302i \(-0.610542\pi\)
−0.340340 + 0.940302i \(0.610542\pi\)
\(24\) 0 0
\(25\) −4.22996 −0.845991
\(26\) 0 0
\(27\) −0.733037 −0.141073
\(28\) 0 0
\(29\) −9.73068 −1.80694 −0.903471 0.428649i \(-0.858990\pi\)
−0.903471 + 0.428649i \(0.858990\pi\)
\(30\) 0 0
\(31\) −3.94150 −0.707915 −0.353957 0.935262i \(-0.615164\pi\)
−0.353957 + 0.935262i \(0.615164\pi\)
\(32\) 0 0
\(33\) 7.59768 1.32259
\(34\) 0 0
\(35\) 0.877521 0.148328
\(36\) 0 0
\(37\) 5.16838 0.849677 0.424838 0.905269i \(-0.360331\pi\)
0.424838 + 0.905269i \(0.360331\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.51950 −0.705827 −0.352913 0.935656i \(-0.614809\pi\)
−0.352913 + 0.935656i \(0.614809\pi\)
\(42\) 0 0
\(43\) −7.62643 −1.16302 −0.581510 0.813539i \(-0.697538\pi\)
−0.581510 + 0.813539i \(0.697538\pi\)
\(44\) 0 0
\(45\) −2.36296 −0.352250
\(46\) 0 0
\(47\) 4.12013 0.600982 0.300491 0.953785i \(-0.402849\pi\)
0.300491 + 0.953785i \(0.402849\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.31734 −0.324493
\(52\) 0 0
\(53\) −2.01686 −0.277037 −0.138519 0.990360i \(-0.544234\pi\)
−0.138519 + 0.990360i \(0.544234\pi\)
\(54\) 0 0
\(55\) −2.79432 −0.376786
\(56\) 0 0
\(57\) 3.78243 0.500995
\(58\) 0 0
\(59\) 1.04081 0.135502 0.0677508 0.997702i \(-0.478418\pi\)
0.0677508 + 0.997702i \(0.478418\pi\)
\(60\) 0 0
\(61\) 5.01011 0.641479 0.320740 0.947167i \(-0.396069\pi\)
0.320740 + 0.947167i \(0.396069\pi\)
\(62\) 0 0
\(63\) −2.69277 −0.339257
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.45668 −0.910979 −0.455490 0.890241i \(-0.650536\pi\)
−0.455490 + 0.890241i \(0.650536\pi\)
\(68\) 0 0
\(69\) −7.78877 −0.937658
\(70\) 0 0
\(71\) −4.07774 −0.483938 −0.241969 0.970284i \(-0.577793\pi\)
−0.241969 + 0.970284i \(0.577793\pi\)
\(72\) 0 0
\(73\) 12.6820 1.48432 0.742159 0.670224i \(-0.233802\pi\)
0.742159 + 0.670224i \(0.233802\pi\)
\(74\) 0 0
\(75\) −10.0925 −1.16538
\(76\) 0 0
\(77\) −3.18434 −0.362889
\(78\) 0 0
\(79\) −9.79759 −1.10232 −0.551158 0.834401i \(-0.685814\pi\)
−0.551158 + 0.834401i \(0.685814\pi\)
\(80\) 0 0
\(81\) −9.82730 −1.09192
\(82\) 0 0
\(83\) 6.81690 0.748252 0.374126 0.927378i \(-0.377943\pi\)
0.374126 + 0.927378i \(0.377943\pi\)
\(84\) 0 0
\(85\) 0.852287 0.0924435
\(86\) 0 0
\(87\) −23.2169 −2.48912
\(88\) 0 0
\(89\) −4.63133 −0.490920 −0.245460 0.969407i \(-0.578939\pi\)
−0.245460 + 0.969407i \(0.578939\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9.40424 −0.975174
\(94\) 0 0
\(95\) −1.39113 −0.142727
\(96\) 0 0
\(97\) 4.10631 0.416933 0.208466 0.978030i \(-0.433153\pi\)
0.208466 + 0.978030i \(0.433153\pi\)
\(98\) 0 0
\(99\) 8.57469 0.861789
\(100\) 0 0
\(101\) −13.7349 −1.36667 −0.683335 0.730105i \(-0.739471\pi\)
−0.683335 + 0.730105i \(0.739471\pi\)
\(102\) 0 0
\(103\) −2.35474 −0.232019 −0.116010 0.993248i \(-0.537010\pi\)
−0.116010 + 0.993248i \(0.537010\pi\)
\(104\) 0 0
\(105\) 2.09372 0.204326
\(106\) 0 0
\(107\) 4.24563 0.410441 0.205220 0.978716i \(-0.434209\pi\)
0.205220 + 0.978716i \(0.434209\pi\)
\(108\) 0 0
\(109\) −18.8556 −1.80604 −0.903019 0.429600i \(-0.858655\pi\)
−0.903019 + 0.429600i \(0.858655\pi\)
\(110\) 0 0
\(111\) 12.3315 1.17046
\(112\) 0 0
\(113\) 18.7453 1.76341 0.881703 0.471805i \(-0.156397\pi\)
0.881703 + 0.471805i \(0.156397\pi\)
\(114\) 0 0
\(115\) 2.86460 0.267126
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.971244 0.0890338
\(120\) 0 0
\(121\) −0.859992 −0.0781811
\(122\) 0 0
\(123\) −10.7833 −0.972298
\(124\) 0 0
\(125\) 8.09948 0.724440
\(126\) 0 0
\(127\) −20.7801 −1.84393 −0.921967 0.387268i \(-0.873419\pi\)
−0.921967 + 0.387268i \(0.873419\pi\)
\(128\) 0 0
\(129\) −18.1963 −1.60210
\(130\) 0 0
\(131\) 1.78298 0.155780 0.0778898 0.996962i \(-0.475182\pi\)
0.0778898 + 0.996962i \(0.475182\pi\)
\(132\) 0 0
\(133\) −1.58529 −0.137462
\(134\) 0 0
\(135\) 0.643256 0.0553626
\(136\) 0 0
\(137\) −16.6374 −1.42143 −0.710715 0.703480i \(-0.751629\pi\)
−0.710715 + 0.703480i \(0.751629\pi\)
\(138\) 0 0
\(139\) −1.55273 −0.131700 −0.0658502 0.997830i \(-0.520976\pi\)
−0.0658502 + 0.997830i \(0.520976\pi\)
\(140\) 0 0
\(141\) 9.83042 0.827871
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 8.53888 0.709115
\(146\) 0 0
\(147\) 2.38595 0.196790
\(148\) 0 0
\(149\) −0.160852 −0.0131775 −0.00658875 0.999978i \(-0.502097\pi\)
−0.00658875 + 0.999978i \(0.502097\pi\)
\(150\) 0 0
\(151\) 11.8322 0.962892 0.481446 0.876476i \(-0.340112\pi\)
0.481446 + 0.876476i \(0.340112\pi\)
\(152\) 0 0
\(153\) −2.61534 −0.211437
\(154\) 0 0
\(155\) 3.45875 0.277813
\(156\) 0 0
\(157\) −14.9635 −1.19421 −0.597107 0.802162i \(-0.703683\pi\)
−0.597107 + 0.802162i \(0.703683\pi\)
\(158\) 0 0
\(159\) −4.81214 −0.381628
\(160\) 0 0
\(161\) 3.26443 0.257273
\(162\) 0 0
\(163\) −12.2494 −0.959446 −0.479723 0.877420i \(-0.659263\pi\)
−0.479723 + 0.877420i \(0.659263\pi\)
\(164\) 0 0
\(165\) −6.66712 −0.519035
\(166\) 0 0
\(167\) −8.41151 −0.650902 −0.325451 0.945559i \(-0.605516\pi\)
−0.325451 + 0.945559i \(0.605516\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 4.26882 0.326445
\(172\) 0 0
\(173\) 13.7418 1.04477 0.522384 0.852710i \(-0.325043\pi\)
0.522384 + 0.852710i \(0.325043\pi\)
\(174\) 0 0
\(175\) 4.22996 0.319755
\(176\) 0 0
\(177\) 2.48332 0.186658
\(178\) 0 0
\(179\) 21.8049 1.62977 0.814887 0.579619i \(-0.196799\pi\)
0.814887 + 0.579619i \(0.196799\pi\)
\(180\) 0 0
\(181\) 16.3948 1.21862 0.609309 0.792933i \(-0.291447\pi\)
0.609309 + 0.792933i \(0.291447\pi\)
\(182\) 0 0
\(183\) 11.9539 0.883657
\(184\) 0 0
\(185\) −4.53536 −0.333447
\(186\) 0 0
\(187\) −3.09277 −0.226166
\(188\) 0 0
\(189\) 0.733037 0.0533206
\(190\) 0 0
\(191\) 10.9596 0.793011 0.396506 0.918032i \(-0.370223\pi\)
0.396506 + 0.918032i \(0.370223\pi\)
\(192\) 0 0
\(193\) −2.11026 −0.151900 −0.0759498 0.997112i \(-0.524199\pi\)
−0.0759498 + 0.997112i \(0.524199\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.82473 0.343748 0.171874 0.985119i \(-0.445018\pi\)
0.171874 + 0.985119i \(0.445018\pi\)
\(198\) 0 0
\(199\) −7.39963 −0.524546 −0.262273 0.964994i \(-0.584472\pi\)
−0.262273 + 0.964994i \(0.584472\pi\)
\(200\) 0 0
\(201\) −17.7913 −1.25490
\(202\) 0 0
\(203\) 9.73068 0.682960
\(204\) 0 0
\(205\) 3.96595 0.276994
\(206\) 0 0
\(207\) −8.79035 −0.610972
\(208\) 0 0
\(209\) 5.04810 0.349185
\(210\) 0 0
\(211\) 2.14005 0.147327 0.0736634 0.997283i \(-0.476531\pi\)
0.0736634 + 0.997283i \(0.476531\pi\)
\(212\) 0 0
\(213\) −9.72928 −0.666640
\(214\) 0 0
\(215\) 6.69236 0.456415
\(216\) 0 0
\(217\) 3.94150 0.267567
\(218\) 0 0
\(219\) 30.2587 2.04469
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −25.3180 −1.69542 −0.847710 0.530460i \(-0.822019\pi\)
−0.847710 + 0.530460i \(0.822019\pi\)
\(224\) 0 0
\(225\) −11.3903 −0.759353
\(226\) 0 0
\(227\) −8.70636 −0.577862 −0.288931 0.957350i \(-0.593300\pi\)
−0.288931 + 0.957350i \(0.593300\pi\)
\(228\) 0 0
\(229\) 13.7265 0.907076 0.453538 0.891237i \(-0.350162\pi\)
0.453538 + 0.891237i \(0.350162\pi\)
\(230\) 0 0
\(231\) −7.59768 −0.499891
\(232\) 0 0
\(233\) −16.8245 −1.10221 −0.551106 0.834435i \(-0.685794\pi\)
−0.551106 + 0.834435i \(0.685794\pi\)
\(234\) 0 0
\(235\) −3.61550 −0.235849
\(236\) 0 0
\(237\) −23.3766 −1.51847
\(238\) 0 0
\(239\) 4.27266 0.276376 0.138188 0.990406i \(-0.455872\pi\)
0.138188 + 0.990406i \(0.455872\pi\)
\(240\) 0 0
\(241\) 25.4646 1.64032 0.820159 0.572135i \(-0.193885\pi\)
0.820159 + 0.572135i \(0.193885\pi\)
\(242\) 0 0
\(243\) −21.2484 −1.36308
\(244\) 0 0
\(245\) −0.877521 −0.0560628
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.2648 1.03074
\(250\) 0 0
\(251\) −23.7136 −1.49679 −0.748395 0.663253i \(-0.769175\pi\)
−0.748395 + 0.663253i \(0.769175\pi\)
\(252\) 0 0
\(253\) −10.3950 −0.653531
\(254\) 0 0
\(255\) 2.03352 0.127344
\(256\) 0 0
\(257\) −3.63543 −0.226772 −0.113386 0.993551i \(-0.536170\pi\)
−0.113386 + 0.993551i \(0.536170\pi\)
\(258\) 0 0
\(259\) −5.16838 −0.321148
\(260\) 0 0
\(261\) −26.2025 −1.62189
\(262\) 0 0
\(263\) −15.9588 −0.984063 −0.492031 0.870577i \(-0.663745\pi\)
−0.492031 + 0.870577i \(0.663745\pi\)
\(264\) 0 0
\(265\) 1.76984 0.108720
\(266\) 0 0
\(267\) −11.0501 −0.676257
\(268\) 0 0
\(269\) 15.7887 0.962654 0.481327 0.876541i \(-0.340155\pi\)
0.481327 + 0.876541i \(0.340155\pi\)
\(270\) 0 0
\(271\) 7.74180 0.470281 0.235140 0.971961i \(-0.424445\pi\)
0.235140 + 0.971961i \(0.424445\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.4696 −0.812248
\(276\) 0 0
\(277\) 31.6295 1.90043 0.950215 0.311594i \(-0.100863\pi\)
0.950215 + 0.311594i \(0.100863\pi\)
\(278\) 0 0
\(279\) −10.6136 −0.635417
\(280\) 0 0
\(281\) 7.36786 0.439530 0.219765 0.975553i \(-0.429471\pi\)
0.219765 + 0.975553i \(0.429471\pi\)
\(282\) 0 0
\(283\) 10.9435 0.650523 0.325261 0.945624i \(-0.394548\pi\)
0.325261 + 0.945624i \(0.394548\pi\)
\(284\) 0 0
\(285\) −3.31916 −0.196610
\(286\) 0 0
\(287\) 4.51950 0.266777
\(288\) 0 0
\(289\) −16.0567 −0.944511
\(290\) 0 0
\(291\) 9.79746 0.574337
\(292\) 0 0
\(293\) −31.8523 −1.86083 −0.930415 0.366508i \(-0.880553\pi\)
−0.930415 + 0.366508i \(0.880553\pi\)
\(294\) 0 0
\(295\) −0.913331 −0.0531762
\(296\) 0 0
\(297\) −2.33424 −0.135446
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7.62643 0.439580
\(302\) 0 0
\(303\) −32.7707 −1.88263
\(304\) 0 0
\(305\) −4.39648 −0.251742
\(306\) 0 0
\(307\) 32.6251 1.86201 0.931007 0.365002i \(-0.118932\pi\)
0.931007 + 0.365002i \(0.118932\pi\)
\(308\) 0 0
\(309\) −5.61830 −0.319614
\(310\) 0 0
\(311\) 6.86932 0.389524 0.194762 0.980851i \(-0.437607\pi\)
0.194762 + 0.980851i \(0.437607\pi\)
\(312\) 0 0
\(313\) −2.13137 −0.120472 −0.0602360 0.998184i \(-0.519185\pi\)
−0.0602360 + 0.998184i \(0.519185\pi\)
\(314\) 0 0
\(315\) 2.36296 0.133138
\(316\) 0 0
\(317\) 5.52242 0.310170 0.155085 0.987901i \(-0.450435\pi\)
0.155085 + 0.987901i \(0.450435\pi\)
\(318\) 0 0
\(319\) −30.9858 −1.73487
\(320\) 0 0
\(321\) 10.1299 0.565394
\(322\) 0 0
\(323\) −1.53971 −0.0856715
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −44.9886 −2.48787
\(328\) 0 0
\(329\) −4.12013 −0.227150
\(330\) 0 0
\(331\) 9.47833 0.520976 0.260488 0.965477i \(-0.416117\pi\)
0.260488 + 0.965477i \(0.416117\pi\)
\(332\) 0 0
\(333\) 13.9173 0.762661
\(334\) 0 0
\(335\) 6.54340 0.357504
\(336\) 0 0
\(337\) 12.8597 0.700511 0.350255 0.936654i \(-0.386095\pi\)
0.350255 + 0.936654i \(0.386095\pi\)
\(338\) 0 0
\(339\) 44.7253 2.42915
\(340\) 0 0
\(341\) −12.5511 −0.679679
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 6.83481 0.367974
\(346\) 0 0
\(347\) 0.0885314 0.00475261 0.00237631 0.999997i \(-0.499244\pi\)
0.00237631 + 0.999997i \(0.499244\pi\)
\(348\) 0 0
\(349\) −5.87025 −0.314227 −0.157114 0.987581i \(-0.550219\pi\)
−0.157114 + 0.987581i \(0.550219\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.9660 0.743333 0.371667 0.928366i \(-0.378786\pi\)
0.371667 + 0.928366i \(0.378786\pi\)
\(354\) 0 0
\(355\) 3.57830 0.189916
\(356\) 0 0
\(357\) 2.31734 0.122647
\(358\) 0 0
\(359\) −21.4343 −1.13126 −0.565629 0.824659i \(-0.691367\pi\)
−0.565629 + 0.824659i \(0.691367\pi\)
\(360\) 0 0
\(361\) −16.4869 −0.867729
\(362\) 0 0
\(363\) −2.05190 −0.107697
\(364\) 0 0
\(365\) −11.1287 −0.582504
\(366\) 0 0
\(367\) −3.70494 −0.193397 −0.0966983 0.995314i \(-0.530828\pi\)
−0.0966983 + 0.995314i \(0.530828\pi\)
\(368\) 0 0
\(369\) −12.1700 −0.633543
\(370\) 0 0
\(371\) 2.01686 0.104710
\(372\) 0 0
\(373\) −1.77919 −0.0921230 −0.0460615 0.998939i \(-0.514667\pi\)
−0.0460615 + 0.998939i \(0.514667\pi\)
\(374\) 0 0
\(375\) 19.3250 0.997937
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.317064 0.0162865 0.00814323 0.999967i \(-0.497408\pi\)
0.00814323 + 0.999967i \(0.497408\pi\)
\(380\) 0 0
\(381\) −49.5803 −2.54008
\(382\) 0 0
\(383\) −26.2675 −1.34220 −0.671102 0.741365i \(-0.734179\pi\)
−0.671102 + 0.741365i \(0.734179\pi\)
\(384\) 0 0
\(385\) 2.79432 0.142412
\(386\) 0 0
\(387\) −20.5362 −1.04392
\(388\) 0 0
\(389\) −26.0221 −1.31937 −0.659686 0.751542i \(-0.729311\pi\)
−0.659686 + 0.751542i \(0.729311\pi\)
\(390\) 0 0
\(391\) 3.17056 0.160342
\(392\) 0 0
\(393\) 4.25410 0.214591
\(394\) 0 0
\(395\) 8.59759 0.432592
\(396\) 0 0
\(397\) −32.3447 −1.62334 −0.811668 0.584119i \(-0.801440\pi\)
−0.811668 + 0.584119i \(0.801440\pi\)
\(398\) 0 0
\(399\) −3.78243 −0.189358
\(400\) 0 0
\(401\) 29.2032 1.45834 0.729168 0.684334i \(-0.239907\pi\)
0.729168 + 0.684334i \(0.239907\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 8.62366 0.428513
\(406\) 0 0
\(407\) 16.4579 0.815787
\(408\) 0 0
\(409\) −13.4511 −0.665112 −0.332556 0.943084i \(-0.607911\pi\)
−0.332556 + 0.943084i \(0.607911\pi\)
\(410\) 0 0
\(411\) −39.6961 −1.95806
\(412\) 0 0
\(413\) −1.04081 −0.0512148
\(414\) 0 0
\(415\) −5.98197 −0.293643
\(416\) 0 0
\(417\) −3.70473 −0.181421
\(418\) 0 0
\(419\) 8.26689 0.403864 0.201932 0.979400i \(-0.435278\pi\)
0.201932 + 0.979400i \(0.435278\pi\)
\(420\) 0 0
\(421\) −11.3220 −0.551802 −0.275901 0.961186i \(-0.588976\pi\)
−0.275901 + 0.961186i \(0.588976\pi\)
\(422\) 0 0
\(423\) 11.0945 0.539435
\(424\) 0 0
\(425\) 4.10832 0.199283
\(426\) 0 0
\(427\) −5.01011 −0.242456
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.6290 −0.800989 −0.400495 0.916299i \(-0.631162\pi\)
−0.400495 + 0.916299i \(0.631162\pi\)
\(432\) 0 0
\(433\) −23.2877 −1.11914 −0.559569 0.828784i \(-0.689033\pi\)
−0.559569 + 0.828784i \(0.689033\pi\)
\(434\) 0 0
\(435\) 20.3734 0.976828
\(436\) 0 0
\(437\) −5.17507 −0.247557
\(438\) 0 0
\(439\) −21.6370 −1.03268 −0.516338 0.856385i \(-0.672705\pi\)
−0.516338 + 0.856385i \(0.672705\pi\)
\(440\) 0 0
\(441\) 2.69277 0.128227
\(442\) 0 0
\(443\) 32.7018 1.55371 0.776855 0.629680i \(-0.216814\pi\)
0.776855 + 0.629680i \(0.216814\pi\)
\(444\) 0 0
\(445\) 4.06409 0.192656
\(446\) 0 0
\(447\) −0.383785 −0.0181524
\(448\) 0 0
\(449\) 4.89620 0.231066 0.115533 0.993304i \(-0.463142\pi\)
0.115533 + 0.993304i \(0.463142\pi\)
\(450\) 0 0
\(451\) −14.3916 −0.677674
\(452\) 0 0
\(453\) 28.2311 1.32641
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.7043 0.781396 0.390698 0.920519i \(-0.372234\pi\)
0.390698 + 0.920519i \(0.372234\pi\)
\(458\) 0 0
\(459\) 0.711958 0.0332314
\(460\) 0 0
\(461\) −20.7451 −0.966195 −0.483098 0.875566i \(-0.660488\pi\)
−0.483098 + 0.875566i \(0.660488\pi\)
\(462\) 0 0
\(463\) −27.0197 −1.25571 −0.627855 0.778330i \(-0.716067\pi\)
−0.627855 + 0.778330i \(0.716067\pi\)
\(464\) 0 0
\(465\) 8.25241 0.382697
\(466\) 0 0
\(467\) −33.8384 −1.56586 −0.782928 0.622112i \(-0.786275\pi\)
−0.782928 + 0.622112i \(0.786275\pi\)
\(468\) 0 0
\(469\) 7.45668 0.344318
\(470\) 0 0
\(471\) −35.7021 −1.64507
\(472\) 0 0
\(473\) −24.2851 −1.11663
\(474\) 0 0
\(475\) −6.70572 −0.307679
\(476\) 0 0
\(477\) −5.43095 −0.248666
\(478\) 0 0
\(479\) 12.0454 0.550367 0.275183 0.961392i \(-0.411261\pi\)
0.275183 + 0.961392i \(0.411261\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 7.78877 0.354401
\(484\) 0 0
\(485\) −3.60337 −0.163621
\(486\) 0 0
\(487\) 14.2491 0.645688 0.322844 0.946452i \(-0.395361\pi\)
0.322844 + 0.946452i \(0.395361\pi\)
\(488\) 0 0
\(489\) −29.2264 −1.32167
\(490\) 0 0
\(491\) 25.6033 1.15546 0.577731 0.816227i \(-0.303938\pi\)
0.577731 + 0.816227i \(0.303938\pi\)
\(492\) 0 0
\(493\) 9.45087 0.425646
\(494\) 0 0
\(495\) −7.52447 −0.338200
\(496\) 0 0
\(497\) 4.07774 0.182911
\(498\) 0 0
\(499\) 12.8345 0.574550 0.287275 0.957848i \(-0.407251\pi\)
0.287275 + 0.957848i \(0.407251\pi\)
\(500\) 0 0
\(501\) −20.0695 −0.896638
\(502\) 0 0
\(503\) −26.1240 −1.16481 −0.582406 0.812898i \(-0.697889\pi\)
−0.582406 + 0.812898i \(0.697889\pi\)
\(504\) 0 0
\(505\) 12.0526 0.536335
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.0296155 −0.00131268 −0.000656342 1.00000i \(-0.500209\pi\)
−0.000656342 1.00000i \(0.500209\pi\)
\(510\) 0 0
\(511\) −12.6820 −0.561019
\(512\) 0 0
\(513\) −1.16208 −0.0513070
\(514\) 0 0
\(515\) 2.06633 0.0910535
\(516\) 0 0
\(517\) 13.1199 0.577011
\(518\) 0 0
\(519\) 32.7873 1.43920
\(520\) 0 0
\(521\) 25.4799 1.11630 0.558148 0.829742i \(-0.311512\pi\)
0.558148 + 0.829742i \(0.311512\pi\)
\(522\) 0 0
\(523\) −39.0099 −1.70578 −0.852892 0.522087i \(-0.825154\pi\)
−0.852892 + 0.522087i \(0.825154\pi\)
\(524\) 0 0
\(525\) 10.0925 0.440472
\(526\) 0 0
\(527\) 3.82816 0.166757
\(528\) 0 0
\(529\) −12.3435 −0.536675
\(530\) 0 0
\(531\) 2.80266 0.121625
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −3.72563 −0.161073
\(536\) 0 0
\(537\) 52.0255 2.24506
\(538\) 0 0
\(539\) 3.18434 0.137159
\(540\) 0 0
\(541\) −3.87645 −0.166662 −0.0833308 0.996522i \(-0.526556\pi\)
−0.0833308 + 0.996522i \(0.526556\pi\)
\(542\) 0 0
\(543\) 39.1173 1.67868
\(544\) 0 0
\(545\) 16.5462 0.708761
\(546\) 0 0
\(547\) 38.8022 1.65906 0.829532 0.558460i \(-0.188607\pi\)
0.829532 + 0.558460i \(0.188607\pi\)
\(548\) 0 0
\(549\) 13.4911 0.575785
\(550\) 0 0
\(551\) −15.4260 −0.657168
\(552\) 0 0
\(553\) 9.79759 0.416636
\(554\) 0 0
\(555\) −10.8212 −0.459333
\(556\) 0 0
\(557\) 3.84787 0.163039 0.0815197 0.996672i \(-0.474023\pi\)
0.0815197 + 0.996672i \(0.474023\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −7.37920 −0.311550
\(562\) 0 0
\(563\) −13.4656 −0.567506 −0.283753 0.958897i \(-0.591580\pi\)
−0.283753 + 0.958897i \(0.591580\pi\)
\(564\) 0 0
\(565\) −16.4494 −0.692030
\(566\) 0 0
\(567\) 9.82730 0.412708
\(568\) 0 0
\(569\) 7.51845 0.315190 0.157595 0.987504i \(-0.449626\pi\)
0.157595 + 0.987504i \(0.449626\pi\)
\(570\) 0 0
\(571\) 4.48050 0.187503 0.0937515 0.995596i \(-0.470114\pi\)
0.0937515 + 0.995596i \(0.470114\pi\)
\(572\) 0 0
\(573\) 26.1492 1.09240
\(574\) 0 0
\(575\) 13.8084 0.575850
\(576\) 0 0
\(577\) 8.68801 0.361686 0.180843 0.983512i \(-0.442117\pi\)
0.180843 + 0.983512i \(0.442117\pi\)
\(578\) 0 0
\(579\) −5.03497 −0.209246
\(580\) 0 0
\(581\) −6.81690 −0.282813
\(582\) 0 0
\(583\) −6.42237 −0.265988
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.0991 1.28360 0.641799 0.766873i \(-0.278188\pi\)
0.641799 + 0.766873i \(0.278188\pi\)
\(588\) 0 0
\(589\) −6.24843 −0.257462
\(590\) 0 0
\(591\) 11.5116 0.473523
\(592\) 0 0
\(593\) −45.7116 −1.87715 −0.938575 0.345076i \(-0.887853\pi\)
−0.938575 + 0.345076i \(0.887853\pi\)
\(594\) 0 0
\(595\) −0.852287 −0.0349404
\(596\) 0 0
\(597\) −17.6552 −0.722578
\(598\) 0 0
\(599\) −10.2396 −0.418380 −0.209190 0.977875i \(-0.567083\pi\)
−0.209190 + 0.977875i \(0.567083\pi\)
\(600\) 0 0
\(601\) −15.8699 −0.647346 −0.323673 0.946169i \(-0.604918\pi\)
−0.323673 + 0.946169i \(0.604918\pi\)
\(602\) 0 0
\(603\) −20.0791 −0.817686
\(604\) 0 0
\(605\) 0.754661 0.0306813
\(606\) 0 0
\(607\) −35.3481 −1.43474 −0.717368 0.696695i \(-0.754653\pi\)
−0.717368 + 0.696695i \(0.754653\pi\)
\(608\) 0 0
\(609\) 23.2169 0.940798
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.56595 −0.0632479 −0.0316240 0.999500i \(-0.510068\pi\)
−0.0316240 + 0.999500i \(0.510068\pi\)
\(614\) 0 0
\(615\) 9.46258 0.381568
\(616\) 0 0
\(617\) −9.54239 −0.384162 −0.192081 0.981379i \(-0.561524\pi\)
−0.192081 + 0.981379i \(0.561524\pi\)
\(618\) 0 0
\(619\) 25.6394 1.03053 0.515267 0.857030i \(-0.327693\pi\)
0.515267 + 0.857030i \(0.327693\pi\)
\(620\) 0 0
\(621\) 2.39295 0.0960256
\(622\) 0 0
\(623\) 4.63133 0.185550
\(624\) 0 0
\(625\) 14.0423 0.561693
\(626\) 0 0
\(627\) 12.0445 0.481012
\(628\) 0 0
\(629\) −5.01976 −0.200151
\(630\) 0 0
\(631\) 30.5409 1.21581 0.607907 0.794009i \(-0.292009\pi\)
0.607907 + 0.794009i \(0.292009\pi\)
\(632\) 0 0
\(633\) 5.10605 0.202947
\(634\) 0 0
\(635\) 18.2350 0.723632
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −10.9804 −0.434378
\(640\) 0 0
\(641\) −10.0657 −0.397572 −0.198786 0.980043i \(-0.563700\pi\)
−0.198786 + 0.980043i \(0.563700\pi\)
\(642\) 0 0
\(643\) 34.1859 1.34816 0.674080 0.738658i \(-0.264540\pi\)
0.674080 + 0.738658i \(0.264540\pi\)
\(644\) 0 0
\(645\) 15.9676 0.628725
\(646\) 0 0
\(647\) −43.5258 −1.71117 −0.855587 0.517658i \(-0.826804\pi\)
−0.855587 + 0.517658i \(0.826804\pi\)
\(648\) 0 0
\(649\) 3.31428 0.130097
\(650\) 0 0
\(651\) 9.40424 0.368581
\(652\) 0 0
\(653\) 49.0602 1.91987 0.959937 0.280217i \(-0.0904064\pi\)
0.959937 + 0.280217i \(0.0904064\pi\)
\(654\) 0 0
\(655\) −1.56460 −0.0611340
\(656\) 0 0
\(657\) 34.1497 1.33231
\(658\) 0 0
\(659\) −37.6187 −1.46541 −0.732707 0.680544i \(-0.761744\pi\)
−0.732707 + 0.680544i \(0.761744\pi\)
\(660\) 0 0
\(661\) −9.37504 −0.364647 −0.182323 0.983239i \(-0.558362\pi\)
−0.182323 + 0.983239i \(0.558362\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.39113 0.0539456
\(666\) 0 0
\(667\) 31.7651 1.22995
\(668\) 0 0
\(669\) −60.4076 −2.33549
\(670\) 0 0
\(671\) 15.9539 0.615893
\(672\) 0 0
\(673\) −23.4831 −0.905206 −0.452603 0.891712i \(-0.649505\pi\)
−0.452603 + 0.891712i \(0.649505\pi\)
\(674\) 0 0
\(675\) 3.10072 0.119347
\(676\) 0 0
\(677\) 2.71645 0.104401 0.0522007 0.998637i \(-0.483376\pi\)
0.0522007 + 0.998637i \(0.483376\pi\)
\(678\) 0 0
\(679\) −4.10631 −0.157586
\(680\) 0 0
\(681\) −20.7730 −0.796022
\(682\) 0 0
\(683\) −45.0155 −1.72247 −0.861235 0.508206i \(-0.830309\pi\)
−0.861235 + 0.508206i \(0.830309\pi\)
\(684\) 0 0
\(685\) 14.5997 0.557825
\(686\) 0 0
\(687\) 32.7509 1.24952
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −17.7336 −0.674619 −0.337310 0.941394i \(-0.609517\pi\)
−0.337310 + 0.941394i \(0.609517\pi\)
\(692\) 0 0
\(693\) −8.57469 −0.325725
\(694\) 0 0
\(695\) 1.36255 0.0516844
\(696\) 0 0
\(697\) 4.38954 0.166266
\(698\) 0 0
\(699\) −40.1426 −1.51833
\(700\) 0 0
\(701\) 7.97397 0.301173 0.150586 0.988597i \(-0.451884\pi\)
0.150586 + 0.988597i \(0.451884\pi\)
\(702\) 0 0
\(703\) 8.19339 0.309020
\(704\) 0 0
\(705\) −8.62640 −0.324889
\(706\) 0 0
\(707\) 13.7349 0.516553
\(708\) 0 0
\(709\) −32.3379 −1.21447 −0.607237 0.794521i \(-0.707722\pi\)
−0.607237 + 0.794521i \(0.707722\pi\)
\(710\) 0 0
\(711\) −26.3827 −0.989427
\(712\) 0 0
\(713\) 12.8667 0.481863
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.1944 0.380716
\(718\) 0 0
\(719\) 28.7628 1.07267 0.536335 0.844005i \(-0.319808\pi\)
0.536335 + 0.844005i \(0.319808\pi\)
\(720\) 0 0
\(721\) 2.35474 0.0876951
\(722\) 0 0
\(723\) 60.7573 2.25959
\(724\) 0 0
\(725\) 41.1604 1.52866
\(726\) 0 0
\(727\) 27.5051 1.02011 0.510054 0.860143i \(-0.329626\pi\)
0.510054 + 0.860143i \(0.329626\pi\)
\(728\) 0 0
\(729\) −21.2157 −0.785766
\(730\) 0 0
\(731\) 7.40713 0.273963
\(732\) 0 0
\(733\) −6.53199 −0.241265 −0.120632 0.992697i \(-0.538492\pi\)
−0.120632 + 0.992697i \(0.538492\pi\)
\(734\) 0 0
\(735\) −2.09372 −0.0772281
\(736\) 0 0
\(737\) −23.7446 −0.874644
\(738\) 0 0
\(739\) 26.5907 0.978154 0.489077 0.872241i \(-0.337334\pi\)
0.489077 + 0.872241i \(0.337334\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 37.3030 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(744\) 0 0
\(745\) 0.141151 0.00517137
\(746\) 0 0
\(747\) 18.3563 0.671623
\(748\) 0 0
\(749\) −4.24563 −0.155132
\(750\) 0 0
\(751\) 3.66994 0.133918 0.0669591 0.997756i \(-0.478670\pi\)
0.0669591 + 0.997756i \(0.478670\pi\)
\(752\) 0 0
\(753\) −56.5796 −2.06187
\(754\) 0 0
\(755\) −10.3830 −0.377876
\(756\) 0 0
\(757\) −44.7042 −1.62480 −0.812401 0.583099i \(-0.801840\pi\)
−0.812401 + 0.583099i \(0.801840\pi\)
\(758\) 0 0
\(759\) −24.8021 −0.900258
\(760\) 0 0
\(761\) −39.4739 −1.43093 −0.715463 0.698650i \(-0.753784\pi\)
−0.715463 + 0.698650i \(0.753784\pi\)
\(762\) 0 0
\(763\) 18.8556 0.682618
\(764\) 0 0
\(765\) 2.29501 0.0829764
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.95318 0.250738 0.125369 0.992110i \(-0.459989\pi\)
0.125369 + 0.992110i \(0.459989\pi\)
\(770\) 0 0
\(771\) −8.67397 −0.312385
\(772\) 0 0
\(773\) 49.4334 1.77800 0.888998 0.457911i \(-0.151402\pi\)
0.888998 + 0.457911i \(0.151402\pi\)
\(774\) 0 0
\(775\) 16.6724 0.598890
\(776\) 0 0
\(777\) −12.3315 −0.442391
\(778\) 0 0
\(779\) −7.16472 −0.256703
\(780\) 0 0
\(781\) −12.9849 −0.464636
\(782\) 0 0
\(783\) 7.13295 0.254911
\(784\) 0 0
\(785\) 13.1307 0.468657
\(786\) 0 0
\(787\) −28.3548 −1.01074 −0.505370 0.862903i \(-0.668644\pi\)
−0.505370 + 0.862903i \(0.668644\pi\)
\(788\) 0 0
\(789\) −38.0770 −1.35558
\(790\) 0 0
\(791\) −18.7453 −0.666505
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.22275 0.149766
\(796\) 0 0
\(797\) −17.7040 −0.627109 −0.313555 0.949570i \(-0.601520\pi\)
−0.313555 + 0.949570i \(0.601520\pi\)
\(798\) 0 0
\(799\) −4.00165 −0.141568
\(800\) 0 0
\(801\) −12.4711 −0.440645
\(802\) 0 0
\(803\) 40.3838 1.42511
\(804\) 0 0
\(805\) −2.86460 −0.100964
\(806\) 0 0
\(807\) 37.6711 1.32609
\(808\) 0 0
\(809\) 9.35040 0.328743 0.164371 0.986399i \(-0.447440\pi\)
0.164371 + 0.986399i \(0.447440\pi\)
\(810\) 0 0
\(811\) 35.5948 1.24990 0.624951 0.780664i \(-0.285119\pi\)
0.624951 + 0.780664i \(0.285119\pi\)
\(812\) 0 0
\(813\) 18.4716 0.647826
\(814\) 0 0
\(815\) 10.7491 0.376524
\(816\) 0 0
\(817\) −12.0901 −0.422980
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.5928 1.34690 0.673449 0.739234i \(-0.264812\pi\)
0.673449 + 0.739234i \(0.264812\pi\)
\(822\) 0 0
\(823\) 50.7203 1.76800 0.883999 0.467490i \(-0.154841\pi\)
0.883999 + 0.467490i \(0.154841\pi\)
\(824\) 0 0
\(825\) −32.1379 −1.11890
\(826\) 0 0
\(827\) −21.9754 −0.764158 −0.382079 0.924130i \(-0.624792\pi\)
−0.382079 + 0.924130i \(0.624792\pi\)
\(828\) 0 0
\(829\) 8.85481 0.307540 0.153770 0.988107i \(-0.450858\pi\)
0.153770 + 0.988107i \(0.450858\pi\)
\(830\) 0 0
\(831\) 75.4664 2.61790
\(832\) 0 0
\(833\) −0.971244 −0.0336516
\(834\) 0 0
\(835\) 7.38128 0.255440
\(836\) 0 0
\(837\) 2.88927 0.0998677
\(838\) 0 0
\(839\) 29.9148 1.03277 0.516387 0.856355i \(-0.327277\pi\)
0.516387 + 0.856355i \(0.327277\pi\)
\(840\) 0 0
\(841\) 65.6862 2.26504
\(842\) 0 0
\(843\) 17.5794 0.605466
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.859992 0.0295497
\(848\) 0 0
\(849\) 26.1106 0.896115
\(850\) 0 0
\(851\) −16.8718 −0.578358
\(852\) 0 0
\(853\) −39.7867 −1.36227 −0.681135 0.732158i \(-0.738513\pi\)
−0.681135 + 0.732158i \(0.738513\pi\)
\(854\) 0 0
\(855\) −3.74598 −0.128110
\(856\) 0 0
\(857\) −17.0715 −0.583150 −0.291575 0.956548i \(-0.594179\pi\)
−0.291575 + 0.956548i \(0.594179\pi\)
\(858\) 0 0
\(859\) −45.4327 −1.55014 −0.775071 0.631874i \(-0.782286\pi\)
−0.775071 + 0.631874i \(0.782286\pi\)
\(860\) 0 0
\(861\) 10.7833 0.367494
\(862\) 0 0
\(863\) 22.8572 0.778068 0.389034 0.921223i \(-0.372809\pi\)
0.389034 + 0.921223i \(0.372809\pi\)
\(864\) 0 0
\(865\) −12.0587 −0.410008
\(866\) 0 0
\(867\) −38.3105 −1.30109
\(868\) 0 0
\(869\) −31.1988 −1.05835
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 11.0573 0.374234
\(874\) 0 0
\(875\) −8.09948 −0.273812
\(876\) 0 0
\(877\) −29.8620 −1.00837 −0.504185 0.863596i \(-0.668207\pi\)
−0.504185 + 0.863596i \(0.668207\pi\)
\(878\) 0 0
\(879\) −75.9980 −2.56335
\(880\) 0 0
\(881\) −24.9735 −0.841379 −0.420689 0.907205i \(-0.638212\pi\)
−0.420689 + 0.907205i \(0.638212\pi\)
\(882\) 0 0
\(883\) −12.3025 −0.414011 −0.207005 0.978340i \(-0.566372\pi\)
−0.207005 + 0.978340i \(0.566372\pi\)
\(884\) 0 0
\(885\) −2.17916 −0.0732518
\(886\) 0 0
\(887\) −38.3862 −1.28888 −0.644441 0.764654i \(-0.722910\pi\)
−0.644441 + 0.764654i \(0.722910\pi\)
\(888\) 0 0
\(889\) 20.7801 0.696942
\(890\) 0 0
\(891\) −31.2934 −1.04837
\(892\) 0 0
\(893\) 6.53160 0.218572
\(894\) 0 0
\(895\) −19.1343 −0.639588
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 38.3535 1.27916
\(900\) 0 0
\(901\) 1.95887 0.0652593
\(902\) 0 0
\(903\) 18.1963 0.605535
\(904\) 0 0
\(905\) −14.3868 −0.478233
\(906\) 0 0
\(907\) 15.1964 0.504589 0.252294 0.967651i \(-0.418815\pi\)
0.252294 + 0.967651i \(0.418815\pi\)
\(908\) 0 0
\(909\) −36.9848 −1.22671
\(910\) 0 0
\(911\) 46.1592 1.52932 0.764661 0.644433i \(-0.222907\pi\)
0.764661 + 0.644433i \(0.222907\pi\)
\(912\) 0 0
\(913\) 21.7073 0.718407
\(914\) 0 0
\(915\) −10.4898 −0.346782
\(916\) 0 0
\(917\) −1.78298 −0.0588791
\(918\) 0 0
\(919\) −17.4589 −0.575916 −0.287958 0.957643i \(-0.592976\pi\)
−0.287958 + 0.957643i \(0.592976\pi\)
\(920\) 0 0
\(921\) 77.8420 2.56498
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −21.8620 −0.718819
\(926\) 0 0
\(927\) −6.34077 −0.208258
\(928\) 0 0
\(929\) 55.4173 1.81818 0.909091 0.416599i \(-0.136778\pi\)
0.909091 + 0.416599i \(0.136778\pi\)
\(930\) 0 0
\(931\) 1.58529 0.0519558
\(932\) 0 0
\(933\) 16.3899 0.536581
\(934\) 0 0
\(935\) 2.71397 0.0887563
\(936\) 0 0
\(937\) 28.3045 0.924668 0.462334 0.886706i \(-0.347012\pi\)
0.462334 + 0.886706i \(0.347012\pi\)
\(938\) 0 0
\(939\) −5.08534 −0.165954
\(940\) 0 0
\(941\) 20.5105 0.668622 0.334311 0.942463i \(-0.391496\pi\)
0.334311 + 0.942463i \(0.391496\pi\)
\(942\) 0 0
\(943\) 14.7536 0.480442
\(944\) 0 0
\(945\) −0.643256 −0.0209251
\(946\) 0 0
\(947\) 6.16669 0.200390 0.100195 0.994968i \(-0.468053\pi\)
0.100195 + 0.994968i \(0.468053\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 13.1762 0.427269
\(952\) 0 0
\(953\) −41.1044 −1.33150 −0.665751 0.746174i \(-0.731889\pi\)
−0.665751 + 0.746174i \(0.731889\pi\)
\(954\) 0 0
\(955\) −9.61731 −0.311209
\(956\) 0 0
\(957\) −73.9306 −2.38984
\(958\) 0 0
\(959\) 16.6374 0.537250
\(960\) 0 0
\(961\) −15.4646 −0.498857
\(962\) 0 0
\(963\) 11.4325 0.368407
\(964\) 0 0
\(965\) 1.85179 0.0596114
\(966\) 0 0
\(967\) 45.3751 1.45917 0.729583 0.683892i \(-0.239714\pi\)
0.729583 + 0.683892i \(0.239714\pi\)
\(968\) 0 0
\(969\) −3.67366 −0.118015
\(970\) 0 0
\(971\) 41.2205 1.32283 0.661415 0.750020i \(-0.269956\pi\)
0.661415 + 0.750020i \(0.269956\pi\)
\(972\) 0 0
\(973\) 1.55273 0.0497781
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −57.2225 −1.83071 −0.915355 0.402648i \(-0.868090\pi\)
−0.915355 + 0.402648i \(0.868090\pi\)
\(978\) 0 0
\(979\) −14.7477 −0.471339
\(980\) 0 0
\(981\) −50.7738 −1.62108
\(982\) 0 0
\(983\) 45.1712 1.44074 0.720368 0.693592i \(-0.243973\pi\)
0.720368 + 0.693592i \(0.243973\pi\)
\(984\) 0 0
\(985\) −4.23380 −0.134900
\(986\) 0 0
\(987\) −9.83042 −0.312906
\(988\) 0 0
\(989\) 24.8959 0.791645
\(990\) 0 0
\(991\) 11.5814 0.367895 0.183947 0.982936i \(-0.441112\pi\)
0.183947 + 0.982936i \(0.441112\pi\)
\(992\) 0 0
\(993\) 22.6148 0.717661
\(994\) 0 0
\(995\) 6.49333 0.205852
\(996\) 0 0
\(997\) 40.0062 1.26701 0.633505 0.773738i \(-0.281615\pi\)
0.633505 + 0.773738i \(0.281615\pi\)
\(998\) 0 0
\(999\) −3.78862 −0.119867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bf.1.6 6
13.2 odd 12 728.2.bm.b.225.1 12
13.7 odd 12 728.2.bm.b.673.1 yes 12
13.12 even 2 9464.2.a.bg.1.6 6
52.7 even 12 1456.2.cc.e.673.6 12
52.15 even 12 1456.2.cc.e.225.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.b.225.1 12 13.2 odd 12
728.2.bm.b.673.1 yes 12 13.7 odd 12
1456.2.cc.e.225.6 12 52.15 even 12
1456.2.cc.e.673.6 12 52.7 even 12
9464.2.a.bf.1.6 6 1.1 even 1 trivial
9464.2.a.bg.1.6 6 13.12 even 2