Properties

Label 728.2.bm.b.673.1
Level $728$
Weight $2$
Character 728.673
Analytic conductor $5.813$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(225,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.1
Root \(0.759479 - 1.19298i\) of defining polynomial
Character \(\chi\) \(=\) 728.673
Dual form 728.2.bm.b.225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19298 - 2.06630i) q^{3} -0.877521i q^{5} +(-0.866025 - 0.500000i) q^{7} +(-1.34638 + 2.33201i) q^{9} +(-2.75772 + 1.59217i) q^{11} +(-3.31140 + 1.42641i) q^{13} +(-1.81322 + 1.04686i) q^{15} +(-0.485622 + 0.841122i) q^{17} +(-1.37290 - 0.792646i) q^{19} +2.38595i q^{21} +(-1.63221 - 2.82708i) q^{23} +4.22996 q^{25} -0.733037 q^{27} +(4.86534 + 8.42702i) q^{29} -3.94150i q^{31} +(6.57978 + 3.79884i) q^{33} +(-0.438760 + 0.759955i) q^{35} +(-4.47595 + 2.58419i) q^{37} +(6.89781 + 5.14065i) q^{39} +(-3.91400 + 2.25975i) q^{41} +(-3.81322 + 6.60469i) q^{43} +(2.04638 + 1.18148i) q^{45} -4.12013i q^{47} +(0.500000 + 0.866025i) q^{49} +2.31734 q^{51} -2.01686 q^{53} +(1.39716 + 2.41995i) q^{55} +3.78243i q^{57} +(0.901366 + 0.520404i) q^{59} +(-2.50506 + 4.33888i) q^{61} +(2.33201 - 1.34638i) q^{63} +(1.25171 + 2.90582i) q^{65} +(-6.45768 + 3.72834i) q^{67} +(-3.89438 + 6.74527i) q^{69} +(3.53142 + 2.03887i) q^{71} -12.6820i q^{73} +(-5.04624 - 8.74034i) q^{75} +3.18434 q^{77} -9.79759 q^{79} +(4.91365 + 8.51069i) q^{81} +6.81690i q^{83} +(0.738102 + 0.426144i) q^{85} +(11.6085 - 20.1065i) q^{87} +(4.01085 - 2.31567i) q^{89} +(3.58096 + 0.420388i) q^{91} +(-8.14431 + 4.70212i) q^{93} +(-0.695563 + 1.20475i) q^{95} +(-3.55617 - 2.05315i) q^{97} -8.57469i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 4 q^{9} + 2 q^{13} + 12 q^{15} + 2 q^{17} + 12 q^{19} - 6 q^{23} + 4 q^{25} + 4 q^{27} + 20 q^{29} + 6 q^{33} - 4 q^{35} - 6 q^{37} + 26 q^{39} - 12 q^{41} - 12 q^{43} + 18 q^{45} + 6 q^{49}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.19298 2.06630i −0.688765 1.19298i −0.972238 0.233996i \(-0.924820\pi\)
0.283472 0.958980i \(-0.408514\pi\)
\(4\) 0 0
\(5\) 0.877521i 0.392439i −0.980560 0.196220i \(-0.937133\pi\)
0.980560 0.196220i \(-0.0628666\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0 0
\(9\) −1.34638 + 2.33201i −0.448795 + 0.777336i
\(10\) 0 0
\(11\) −2.75772 + 1.59217i −0.831483 + 0.480057i −0.854360 0.519681i \(-0.826051\pi\)
0.0228771 + 0.999738i \(0.492717\pi\)
\(12\) 0 0
\(13\) −3.31140 + 1.42641i −0.918416 + 0.395616i
\(14\) 0 0
\(15\) −1.81322 + 1.04686i −0.468171 + 0.270299i
\(16\) 0 0
\(17\) −0.485622 + 0.841122i −0.117781 + 0.204002i −0.918888 0.394519i \(-0.870911\pi\)
0.801107 + 0.598521i \(0.204245\pi\)
\(18\) 0 0
\(19\) −1.37290 0.792646i −0.314965 0.181845i 0.334181 0.942509i \(-0.391540\pi\)
−0.649146 + 0.760664i \(0.724874\pi\)
\(20\) 0 0
\(21\) 2.38595i 0.520658i
\(22\) 0 0
\(23\) −1.63221 2.82708i −0.340340 0.589486i 0.644156 0.764894i \(-0.277209\pi\)
−0.984496 + 0.175408i \(0.943876\pi\)
\(24\) 0 0
\(25\) 4.22996 0.845991
\(26\) 0 0
\(27\) −0.733037 −0.141073
\(28\) 0 0
\(29\) 4.86534 + 8.42702i 0.903471 + 1.56486i 0.822956 + 0.568105i \(0.192323\pi\)
0.0805151 + 0.996753i \(0.474343\pi\)
\(30\) 0 0
\(31\) 3.94150i 0.707915i −0.935262 0.353957i \(-0.884836\pi\)
0.935262 0.353957i \(-0.115164\pi\)
\(32\) 0 0
\(33\) 6.57978 + 3.79884i 1.14539 + 0.661293i
\(34\) 0 0
\(35\) −0.438760 + 0.759955i −0.0741641 + 0.128456i
\(36\) 0 0
\(37\) −4.47595 + 2.58419i −0.735842 + 0.424838i −0.820555 0.571567i \(-0.806336\pi\)
0.0847137 + 0.996405i \(0.473002\pi\)
\(38\) 0 0
\(39\) 6.89781 + 5.14065i 1.10453 + 0.823162i
\(40\) 0 0
\(41\) −3.91400 + 2.25975i −0.611264 + 0.352913i −0.773460 0.633845i \(-0.781476\pi\)
0.162196 + 0.986759i \(0.448142\pi\)
\(42\) 0 0
\(43\) −3.81322 + 6.60469i −0.581510 + 1.00721i 0.413790 + 0.910372i \(0.364205\pi\)
−0.995301 + 0.0968331i \(0.969129\pi\)
\(44\) 0 0
\(45\) 2.04638 + 1.18148i 0.305057 + 0.176125i
\(46\) 0 0
\(47\) 4.12013i 0.600982i −0.953785 0.300491i \(-0.902849\pi\)
0.953785 0.300491i \(-0.0971505\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 2.31734 0.324493
\(52\) 0 0
\(53\) −2.01686 −0.277037 −0.138519 0.990360i \(-0.544234\pi\)
−0.138519 + 0.990360i \(0.544234\pi\)
\(54\) 0 0
\(55\) 1.39716 + 2.41995i 0.188393 + 0.326307i
\(56\) 0 0
\(57\) 3.78243i 0.500995i
\(58\) 0 0
\(59\) 0.901366 + 0.520404i 0.117348 + 0.0677508i 0.557525 0.830160i \(-0.311751\pi\)
−0.440177 + 0.897911i \(0.645084\pi\)
\(60\) 0 0
\(61\) −2.50506 + 4.33888i −0.320740 + 0.555537i −0.980641 0.195815i \(-0.937265\pi\)
0.659901 + 0.751352i \(0.270598\pi\)
\(62\) 0 0
\(63\) 2.33201 1.34638i 0.293805 0.169629i
\(64\) 0 0
\(65\) 1.25171 + 2.90582i 0.155255 + 0.360423i
\(66\) 0 0
\(67\) −6.45768 + 3.72834i −0.788931 + 0.455490i −0.839586 0.543227i \(-0.817202\pi\)
0.0506551 + 0.998716i \(0.483869\pi\)
\(68\) 0 0
\(69\) −3.89438 + 6.74527i −0.468829 + 0.812035i
\(70\) 0 0
\(71\) 3.53142 + 2.03887i 0.419103 + 0.241969i 0.694693 0.719306i \(-0.255540\pi\)
−0.275591 + 0.961275i \(0.588873\pi\)
\(72\) 0 0
\(73\) 12.6820i 1.48432i −0.670224 0.742159i \(-0.733802\pi\)
0.670224 0.742159i \(-0.266198\pi\)
\(74\) 0 0
\(75\) −5.04624 8.74034i −0.582689 1.00925i
\(76\) 0 0
\(77\) 3.18434 0.362889
\(78\) 0 0
\(79\) −9.79759 −1.10232 −0.551158 0.834401i \(-0.685814\pi\)
−0.551158 + 0.834401i \(0.685814\pi\)
\(80\) 0 0
\(81\) 4.91365 + 8.51069i 0.545961 + 0.945632i
\(82\) 0 0
\(83\) 6.81690i 0.748252i 0.927378 + 0.374126i \(0.122057\pi\)
−0.927378 + 0.374126i \(0.877943\pi\)
\(84\) 0 0
\(85\) 0.738102 + 0.426144i 0.0800584 + 0.0462218i
\(86\) 0 0
\(87\) 11.6085 20.1065i 1.24456 2.15564i
\(88\) 0 0
\(89\) 4.01085 2.31567i 0.425149 0.245460i −0.272129 0.962261i \(-0.587728\pi\)
0.697278 + 0.716801i \(0.254394\pi\)
\(90\) 0 0
\(91\) 3.58096 + 0.420388i 0.375387 + 0.0440686i
\(92\) 0 0
\(93\) −8.14431 + 4.70212i −0.844525 + 0.487587i
\(94\) 0 0
\(95\) −0.695563 + 1.20475i −0.0713633 + 0.123605i
\(96\) 0 0
\(97\) −3.55617 2.05315i −0.361074 0.208466i 0.308478 0.951232i \(-0.400180\pi\)
−0.669552 + 0.742765i \(0.733514\pi\)
\(98\) 0 0
\(99\) 8.57469i 0.861789i
\(100\) 0 0
\(101\) −6.86743 11.8947i −0.683335 1.18357i −0.973957 0.226733i \(-0.927195\pi\)
0.290622 0.956838i \(-0.406138\pi\)
\(102\) 0 0
\(103\) 2.35474 0.232019 0.116010 0.993248i \(-0.462990\pi\)
0.116010 + 0.993248i \(0.462990\pi\)
\(104\) 0 0
\(105\) 2.09372 0.204326
\(106\) 0 0
\(107\) −2.12281 3.67682i −0.205220 0.355452i 0.744983 0.667084i \(-0.232458\pi\)
−0.950203 + 0.311632i \(0.899124\pi\)
\(108\) 0 0
\(109\) 18.8556i 1.80604i −0.429600 0.903019i \(-0.641345\pi\)
0.429600 0.903019i \(-0.358655\pi\)
\(110\) 0 0
\(111\) 10.6794 + 6.16576i 1.01364 + 0.585228i
\(112\) 0 0
\(113\) −9.37263 + 16.2339i −0.881703 + 1.52715i −0.0322566 + 0.999480i \(0.510269\pi\)
−0.849446 + 0.527675i \(0.823064\pi\)
\(114\) 0 0
\(115\) −2.48082 + 1.43230i −0.231338 + 0.133563i
\(116\) 0 0
\(117\) 1.13201 9.64270i 0.104654 0.891468i
\(118\) 0 0
\(119\) 0.841122 0.485622i 0.0771055 0.0445169i
\(120\) 0 0
\(121\) −0.429996 + 0.744775i −0.0390906 + 0.0677068i
\(122\) 0 0
\(123\) 9.33862 + 5.39165i 0.842035 + 0.486149i
\(124\) 0 0
\(125\) 8.09948i 0.724440i
\(126\) 0 0
\(127\) −10.3900 17.9961i −0.921967 1.59689i −0.796368 0.604813i \(-0.793248\pi\)
−0.125599 0.992081i \(-0.540085\pi\)
\(128\) 0 0
\(129\) 18.1963 1.60210
\(130\) 0 0
\(131\) 1.78298 0.155780 0.0778898 0.996962i \(-0.475182\pi\)
0.0778898 + 0.996962i \(0.475182\pi\)
\(132\) 0 0
\(133\) 0.792646 + 1.37290i 0.0687311 + 0.119046i
\(134\) 0 0
\(135\) 0.643256i 0.0553626i
\(136\) 0 0
\(137\) −14.4084 8.31871i −1.23099 0.710715i −0.263758 0.964589i \(-0.584962\pi\)
−0.967237 + 0.253874i \(0.918295\pi\)
\(138\) 0 0
\(139\) 0.776363 1.34470i 0.0658502 0.114056i −0.831221 0.555943i \(-0.812357\pi\)
0.897071 + 0.441887i \(0.145691\pi\)
\(140\) 0 0
\(141\) −8.51340 + 4.91521i −0.716957 + 0.413936i
\(142\) 0 0
\(143\) 6.86080 9.20595i 0.573729 0.769840i
\(144\) 0 0
\(145\) 7.39489 4.26944i 0.614112 0.354558i
\(146\) 0 0
\(147\) 1.19298 2.06630i 0.0983950 0.170425i
\(148\) 0 0
\(149\) 0.139302 + 0.0804260i 0.0114121 + 0.00658875i 0.505695 0.862712i \(-0.331236\pi\)
−0.494283 + 0.869301i \(0.664569\pi\)
\(150\) 0 0
\(151\) 11.8322i 0.962892i −0.876476 0.481446i \(-0.840112\pi\)
0.876476 0.481446i \(-0.159888\pi\)
\(152\) 0 0
\(153\) −1.30767 2.26495i −0.105719 0.183110i
\(154\) 0 0
\(155\) −3.45875 −0.277813
\(156\) 0 0
\(157\) −14.9635 −1.19421 −0.597107 0.802162i \(-0.703683\pi\)
−0.597107 + 0.802162i \(0.703683\pi\)
\(158\) 0 0
\(159\) 2.40607 + 4.16744i 0.190814 + 0.330499i
\(160\) 0 0
\(161\) 3.26443i 0.257273i
\(162\) 0 0
\(163\) −10.6083 6.12469i −0.830904 0.479723i 0.0232580 0.999729i \(-0.492596\pi\)
−0.854162 + 0.520007i \(0.825929\pi\)
\(164\) 0 0
\(165\) 3.33356 5.77390i 0.259517 0.449497i
\(166\) 0 0
\(167\) 7.28458 4.20576i 0.563698 0.325451i −0.190930 0.981604i \(-0.561150\pi\)
0.754628 + 0.656152i \(0.227817\pi\)
\(168\) 0 0
\(169\) 8.93069 9.44684i 0.686976 0.726680i
\(170\) 0 0
\(171\) 3.69691 2.13441i 0.282710 0.163223i
\(172\) 0 0
\(173\) 6.87089 11.9007i 0.522384 0.904796i −0.477276 0.878753i \(-0.658376\pi\)
0.999661 0.0260431i \(-0.00829071\pi\)
\(174\) 0 0
\(175\) −3.66325 2.11498i −0.276916 0.159877i
\(176\) 0 0
\(177\) 2.48332i 0.186658i
\(178\) 0 0
\(179\) 10.9025 + 18.8836i 0.814887 + 1.41143i 0.909409 + 0.415904i \(0.136535\pi\)
−0.0945212 + 0.995523i \(0.530132\pi\)
\(180\) 0 0
\(181\) −16.3948 −1.21862 −0.609309 0.792933i \(-0.708553\pi\)
−0.609309 + 0.792933i \(0.708553\pi\)
\(182\) 0 0
\(183\) 11.9539 0.883657
\(184\) 0 0
\(185\) 2.26768 + 3.92774i 0.166723 + 0.288773i
\(186\) 0 0
\(187\) 3.09277i 0.226166i
\(188\) 0 0
\(189\) 0.634829 + 0.366519i 0.0461770 + 0.0266603i
\(190\) 0 0
\(191\) −5.47982 + 9.49132i −0.396506 + 0.686768i −0.993292 0.115632i \(-0.963111\pi\)
0.596787 + 0.802400i \(0.296444\pi\)
\(192\) 0 0
\(193\) 1.82754 1.05513i 0.131549 0.0759498i −0.432781 0.901499i \(-0.642468\pi\)
0.564330 + 0.825549i \(0.309134\pi\)
\(194\) 0 0
\(195\) 4.51102 6.05297i 0.323041 0.433462i
\(196\) 0 0
\(197\) 4.17834 2.41236i 0.297694 0.171874i −0.343712 0.939075i \(-0.611685\pi\)
0.641407 + 0.767201i \(0.278351\pi\)
\(198\) 0 0
\(199\) −3.69982 + 6.40827i −0.262273 + 0.454270i −0.966846 0.255362i \(-0.917805\pi\)
0.704573 + 0.709632i \(0.251139\pi\)
\(200\) 0 0
\(201\) 15.4077 + 8.89565i 1.08678 + 0.627451i
\(202\) 0 0
\(203\) 9.73068i 0.682960i
\(204\) 0 0
\(205\) 1.98298 + 3.43462i 0.138497 + 0.239884i
\(206\) 0 0
\(207\) 8.79035 0.610972
\(208\) 0 0
\(209\) 5.04810 0.349185
\(210\) 0 0
\(211\) −1.07002 1.85333i −0.0736634 0.127589i 0.826841 0.562436i \(-0.190136\pi\)
−0.900504 + 0.434847i \(0.856802\pi\)
\(212\) 0 0
\(213\) 9.72928i 0.666640i
\(214\) 0 0
\(215\) 5.79575 + 3.34618i 0.395267 + 0.228207i
\(216\) 0 0
\(217\) −1.97075 + 3.41344i −0.133783 + 0.231719i
\(218\) 0 0
\(219\) −26.2048 + 15.1293i −1.77076 + 1.02235i
\(220\) 0 0
\(221\) 0.408299 3.47799i 0.0274652 0.233955i
\(222\) 0 0
\(223\) −21.9260 + 12.6590i −1.46828 + 0.847710i −0.999368 0.0355373i \(-0.988686\pi\)
−0.468908 + 0.883247i \(0.655352\pi\)
\(224\) 0 0
\(225\) −5.69515 + 9.86429i −0.379677 + 0.657619i
\(226\) 0 0
\(227\) 7.53993 + 4.35318i 0.500443 + 0.288931i 0.728896 0.684624i \(-0.240034\pi\)
−0.228454 + 0.973555i \(0.573367\pi\)
\(228\) 0 0
\(229\) 13.7265i 0.907076i −0.891237 0.453538i \(-0.850162\pi\)
0.891237 0.453538i \(-0.149838\pi\)
\(230\) 0 0
\(231\) −3.79884 6.57978i −0.249945 0.432918i
\(232\) 0 0
\(233\) 16.8245 1.10221 0.551106 0.834435i \(-0.314206\pi\)
0.551106 + 0.834435i \(0.314206\pi\)
\(234\) 0 0
\(235\) −3.61550 −0.235849
\(236\) 0 0
\(237\) 11.6883 + 20.2447i 0.759236 + 1.31504i
\(238\) 0 0
\(239\) 4.27266i 0.276376i 0.990406 + 0.138188i \(0.0441278\pi\)
−0.990406 + 0.138188i \(0.955872\pi\)
\(240\) 0 0
\(241\) 22.0530 + 12.7323i 1.42056 + 0.820159i 0.996346 0.0854042i \(-0.0272182\pi\)
0.424211 + 0.905563i \(0.360551\pi\)
\(242\) 0 0
\(243\) 10.6242 18.4016i 0.681542 1.18046i
\(244\) 0 0
\(245\) 0.759955 0.438760i 0.0485518 0.0280314i
\(246\) 0 0
\(247\) 5.67687 + 0.666437i 0.361210 + 0.0424044i
\(248\) 0 0
\(249\) 14.0857 8.13240i 0.892647 0.515370i
\(250\) 0 0
\(251\) −11.8568 + 20.5366i −0.748395 + 1.29626i 0.200196 + 0.979756i \(0.435842\pi\)
−0.948592 + 0.316503i \(0.897491\pi\)
\(252\) 0 0
\(253\) 9.00237 + 5.19752i 0.565974 + 0.326765i
\(254\) 0 0
\(255\) 2.03352i 0.127344i
\(256\) 0 0
\(257\) −1.81772 3.14838i −0.113386 0.196390i 0.803747 0.594971i \(-0.202836\pi\)
−0.917133 + 0.398580i \(0.869503\pi\)
\(258\) 0 0
\(259\) 5.16838 0.321148
\(260\) 0 0
\(261\) −26.2025 −1.62189
\(262\) 0 0
\(263\) 7.97941 + 13.8207i 0.492031 + 0.852223i 0.999958 0.00917702i \(-0.00292118\pi\)
−0.507926 + 0.861400i \(0.669588\pi\)
\(264\) 0 0
\(265\) 1.76984i 0.108720i
\(266\) 0 0
\(267\) −9.56970 5.52507i −0.585656 0.338129i
\(268\) 0 0
\(269\) −7.89435 + 13.6734i −0.481327 + 0.833683i −0.999770 0.0214290i \(-0.993178\pi\)
0.518443 + 0.855112i \(0.326512\pi\)
\(270\) 0 0
\(271\) −6.70460 + 3.87090i −0.407275 + 0.235140i −0.689618 0.724173i \(-0.742222\pi\)
0.282343 + 0.959313i \(0.408888\pi\)
\(272\) 0 0
\(273\) −3.40336 7.90083i −0.205980 0.478180i
\(274\) 0 0
\(275\) −11.6650 + 6.73481i −0.703428 + 0.406124i
\(276\) 0 0
\(277\) 15.8147 27.3919i 0.950215 1.64582i 0.205259 0.978708i \(-0.434196\pi\)
0.744956 0.667114i \(-0.232470\pi\)
\(278\) 0 0
\(279\) 9.19161 + 5.30678i 0.550287 + 0.317708i
\(280\) 0 0
\(281\) 7.36786i 0.439530i −0.975553 0.219765i \(-0.929471\pi\)
0.975553 0.219765i \(-0.0705290\pi\)
\(282\) 0 0
\(283\) 5.47174 + 9.47734i 0.325261 + 0.563369i 0.981565 0.191128i \(-0.0612144\pi\)
−0.656304 + 0.754497i \(0.727881\pi\)
\(284\) 0 0
\(285\) 3.31916 0.196610
\(286\) 0 0
\(287\) 4.51950 0.266777
\(288\) 0 0
\(289\) 8.02834 + 13.9055i 0.472255 + 0.817970i
\(290\) 0 0
\(291\) 9.79746i 0.574337i
\(292\) 0 0
\(293\) −27.5849 15.9261i −1.61153 0.930415i −0.989017 0.147802i \(-0.952780\pi\)
−0.622509 0.782613i \(-0.713887\pi\)
\(294\) 0 0
\(295\) 0.456665 0.790968i 0.0265881 0.0460519i
\(296\) 0 0
\(297\) 2.02151 1.16712i 0.117300 0.0677231i
\(298\) 0 0
\(299\) 9.43749 + 7.03336i 0.545784 + 0.406750i
\(300\) 0 0
\(301\) 6.60469 3.81322i 0.380688 0.219790i
\(302\) 0 0
\(303\) −16.3854 + 28.3803i −0.941315 + 1.63041i
\(304\) 0 0
\(305\) 3.80746 + 2.19824i 0.218015 + 0.125871i
\(306\) 0 0
\(307\) 32.6251i 1.86201i −0.365002 0.931007i \(-0.618932\pi\)
0.365002 0.931007i \(-0.381068\pi\)
\(308\) 0 0
\(309\) −2.80915 4.86559i −0.159807 0.276794i
\(310\) 0 0
\(311\) −6.86932 −0.389524 −0.194762 0.980851i \(-0.562393\pi\)
−0.194762 + 0.980851i \(0.562393\pi\)
\(312\) 0 0
\(313\) −2.13137 −0.120472 −0.0602360 0.998184i \(-0.519185\pi\)
−0.0602360 + 0.998184i \(0.519185\pi\)
\(314\) 0 0
\(315\) −1.18148 2.04638i −0.0665689 0.115301i
\(316\) 0 0
\(317\) 5.52242i 0.310170i 0.987901 + 0.155085i \(0.0495651\pi\)
−0.987901 + 0.155085i \(0.950435\pi\)
\(318\) 0 0
\(319\) −26.8345 15.4929i −1.50244 0.867435i
\(320\) 0 0
\(321\) −5.06494 + 8.77273i −0.282697 + 0.489646i
\(322\) 0 0
\(323\) 1.33342 0.769853i 0.0741937 0.0428357i
\(324\) 0 0
\(325\) −14.0071 + 6.03367i −0.776972 + 0.334688i
\(326\) 0 0
\(327\) −38.9612 + 22.4943i −2.15456 + 1.24394i
\(328\) 0 0
\(329\) −2.06006 + 3.56813i −0.113575 + 0.196718i
\(330\) 0 0
\(331\) −8.20848 4.73917i −0.451179 0.260488i 0.257149 0.966372i \(-0.417217\pi\)
−0.708328 + 0.705884i \(0.750550\pi\)
\(332\) 0 0
\(333\) 13.9173i 0.762661i
\(334\) 0 0
\(335\) 3.27170 + 5.66675i 0.178752 + 0.309608i
\(336\) 0 0
\(337\) −12.8597 −0.700511 −0.350255 0.936654i \(-0.613905\pi\)
−0.350255 + 0.936654i \(0.613905\pi\)
\(338\) 0 0
\(339\) 44.7253 2.42915
\(340\) 0 0
\(341\) 6.27554 + 10.8695i 0.339839 + 0.588619i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 5.91912 + 3.41740i 0.318675 + 0.183987i
\(346\) 0 0
\(347\) −0.0442657 + 0.0766704i −0.00237631 + 0.00411588i −0.867211 0.497941i \(-0.834090\pi\)
0.864835 + 0.502057i \(0.167423\pi\)
\(348\) 0 0
\(349\) 5.08379 2.93513i 0.272129 0.157114i −0.357726 0.933827i \(-0.616448\pi\)
0.629855 + 0.776713i \(0.283114\pi\)
\(350\) 0 0
\(351\) 2.42738 1.04561i 0.129564 0.0558108i
\(352\) 0 0
\(353\) 12.0949 6.98298i 0.643746 0.371667i −0.142310 0.989822i \(-0.545453\pi\)
0.786056 + 0.618155i \(0.212120\pi\)
\(354\) 0 0
\(355\) 1.78915 3.09890i 0.0949582 0.164472i
\(356\) 0 0
\(357\) −2.00688 1.15867i −0.106215 0.0613234i
\(358\) 0 0
\(359\) 21.4343i 1.13126i 0.824659 + 0.565629i \(0.191367\pi\)
−0.824659 + 0.565629i \(0.808633\pi\)
\(360\) 0 0
\(361\) −8.24343 14.2780i −0.433864 0.751475i
\(362\) 0 0
\(363\) 2.05190 0.107697
\(364\) 0 0
\(365\) −11.1287 −0.582504
\(366\) 0 0
\(367\) 1.85247 + 3.20858i 0.0966983 + 0.167486i 0.910316 0.413914i \(-0.135838\pi\)
−0.813618 + 0.581400i \(0.802505\pi\)
\(368\) 0 0
\(369\) 12.1700i 0.633543i
\(370\) 0 0
\(371\) 1.74665 + 1.00843i 0.0906818 + 0.0523552i
\(372\) 0 0
\(373\) 0.889596 1.54083i 0.0460615 0.0797809i −0.842075 0.539360i \(-0.818666\pi\)
0.888137 + 0.459579i \(0.152000\pi\)
\(374\) 0 0
\(375\) −16.7359 + 9.66249i −0.864239 + 0.498969i
\(376\) 0 0
\(377\) −28.1315 20.9652i −1.44885 1.07976i
\(378\) 0 0
\(379\) 0.274585 0.158532i 0.0141045 0.00814323i −0.492931 0.870068i \(-0.664075\pi\)
0.507036 + 0.861925i \(0.330741\pi\)
\(380\) 0 0
\(381\) −24.7901 + 42.9378i −1.27004 + 2.19977i
\(382\) 0 0
\(383\) 22.7483 + 13.1337i 1.16238 + 0.671102i 0.951874 0.306490i \(-0.0991545\pi\)
0.210509 + 0.977592i \(0.432488\pi\)
\(384\) 0 0
\(385\) 2.79432i 0.142412i
\(386\) 0 0
\(387\) −10.2681 17.7849i −0.521958 0.904057i
\(388\) 0 0
\(389\) 26.0221 1.31937 0.659686 0.751542i \(-0.270689\pi\)
0.659686 + 0.751542i \(0.270689\pi\)
\(390\) 0 0
\(391\) 3.17056 0.160342
\(392\) 0 0
\(393\) −2.12705 3.68416i −0.107296 0.185841i
\(394\) 0 0
\(395\) 8.59759i 0.432592i
\(396\) 0 0
\(397\) −28.0114 16.1724i −1.40585 0.811668i −0.410865 0.911696i \(-0.634773\pi\)
−0.994985 + 0.100028i \(0.968107\pi\)
\(398\) 0 0
\(399\) 1.89122 3.27568i 0.0946792 0.163989i
\(400\) 0 0
\(401\) −25.2907 + 14.6016i −1.26296 + 0.729168i −0.973646 0.228067i \(-0.926760\pi\)
−0.289311 + 0.957235i \(0.593426\pi\)
\(402\) 0 0
\(403\) 5.62221 + 13.0519i 0.280062 + 0.650160i
\(404\) 0 0
\(405\) 7.46831 4.31183i 0.371103 0.214257i
\(406\) 0 0
\(407\) 8.22894 14.2529i 0.407893 0.706492i
\(408\) 0 0
\(409\) 11.6490 + 6.72553i 0.576004 + 0.332556i 0.759544 0.650456i \(-0.225422\pi\)
−0.183540 + 0.983012i \(0.558756\pi\)
\(410\) 0 0
\(411\) 39.6961i 1.95806i
\(412\) 0 0
\(413\) −0.520404 0.901366i −0.0256074 0.0443533i
\(414\) 0 0
\(415\) 5.98197 0.293643
\(416\) 0 0
\(417\) −3.70473 −0.181421
\(418\) 0 0
\(419\) −4.13345 7.15934i −0.201932 0.349757i 0.747219 0.664578i \(-0.231389\pi\)
−0.949151 + 0.314822i \(0.898055\pi\)
\(420\) 0 0
\(421\) 11.3220i 0.551802i −0.961186 0.275901i \(-0.911024\pi\)
0.961186 0.275901i \(-0.0889763\pi\)
\(422\) 0 0
\(423\) 9.60816 + 5.54727i 0.467165 + 0.269718i
\(424\) 0 0
\(425\) −2.05416 + 3.55791i −0.0996414 + 0.172584i
\(426\) 0 0
\(427\) 4.33888 2.50506i 0.209973 0.121228i
\(428\) 0 0
\(429\) −27.2070 3.19397i −1.31357 0.154206i
\(430\) 0 0
\(431\) −14.4011 + 8.31449i −0.693677 + 0.400495i −0.804988 0.593291i \(-0.797828\pi\)
0.111311 + 0.993786i \(0.464495\pi\)
\(432\) 0 0
\(433\) −11.6439 + 20.1678i −0.559569 + 0.969201i 0.437964 + 0.898993i \(0.355700\pi\)
−0.997532 + 0.0702085i \(0.977634\pi\)
\(434\) 0 0
\(435\) −17.6438 10.1867i −0.845958 0.488414i
\(436\) 0 0
\(437\) 5.17507i 0.247557i
\(438\) 0 0
\(439\) −10.8185 18.7382i −0.516338 0.894324i −0.999820 0.0189699i \(-0.993961\pi\)
0.483482 0.875355i \(-0.339372\pi\)
\(440\) 0 0
\(441\) −2.69277 −0.128227
\(442\) 0 0
\(443\) 32.7018 1.55371 0.776855 0.629680i \(-0.216814\pi\)
0.776855 + 0.629680i \(0.216814\pi\)
\(444\) 0 0
\(445\) −2.03204 3.51960i −0.0963281 0.166845i
\(446\) 0 0
\(447\) 0.383785i 0.0181524i
\(448\) 0 0
\(449\) 4.24023 + 2.44810i 0.200109 + 0.115533i 0.596706 0.802460i \(-0.296476\pi\)
−0.396597 + 0.917993i \(0.629809\pi\)
\(450\) 0 0
\(451\) 7.19580 12.4635i 0.338837 0.586883i
\(452\) 0 0
\(453\) −24.4488 + 14.1155i −1.14871 + 0.663206i
\(454\) 0 0
\(455\) 0.368899 3.14237i 0.0172942 0.147316i
\(456\) 0 0
\(457\) 14.4664 8.35217i 0.676709 0.390698i −0.121905 0.992542i \(-0.538900\pi\)
0.798614 + 0.601844i \(0.205567\pi\)
\(458\) 0 0
\(459\) 0.355979 0.616574i 0.0166157 0.0287792i
\(460\) 0 0
\(461\) 17.9658 + 10.3725i 0.836750 + 0.483098i 0.856158 0.516714i \(-0.172845\pi\)
−0.0194084 + 0.999812i \(0.506178\pi\)
\(462\) 0 0
\(463\) 27.0197i 1.25571i 0.778330 + 0.627855i \(0.216067\pi\)
−0.778330 + 0.627855i \(0.783933\pi\)
\(464\) 0 0
\(465\) 4.12621 + 7.14680i 0.191348 + 0.331425i
\(466\) 0 0
\(467\) 33.8384 1.56586 0.782928 0.622112i \(-0.213725\pi\)
0.782928 + 0.622112i \(0.213725\pi\)
\(468\) 0 0
\(469\) 7.45668 0.344318
\(470\) 0 0
\(471\) 17.8511 + 30.9189i 0.822533 + 1.42467i
\(472\) 0 0
\(473\) 24.2851i 1.11663i
\(474\) 0 0
\(475\) −5.80732 3.35286i −0.266458 0.153840i
\(476\) 0 0
\(477\) 2.71547 4.70334i 0.124333 0.215351i
\(478\) 0 0
\(479\) −10.4316 + 6.02268i −0.476632 + 0.275183i −0.719012 0.694998i \(-0.755405\pi\)
0.242380 + 0.970181i \(0.422072\pi\)
\(480\) 0 0
\(481\) 11.1355 14.9418i 0.507736 0.681289i
\(482\) 0 0
\(483\) 6.74527 3.89438i 0.306920 0.177201i
\(484\) 0 0
\(485\) −1.80169 + 3.12061i −0.0818104 + 0.141700i
\(486\) 0 0
\(487\) −12.3401 7.12454i −0.559182 0.322844i 0.193635 0.981074i \(-0.437972\pi\)
−0.752817 + 0.658230i \(0.771306\pi\)
\(488\) 0 0
\(489\) 29.2264i 1.32167i
\(490\) 0 0
\(491\) 12.8017 + 22.1731i 0.577731 + 1.00066i 0.995739 + 0.0922167i \(0.0293952\pi\)
−0.418008 + 0.908444i \(0.637271\pi\)
\(492\) 0 0
\(493\) −9.45087 −0.425646
\(494\) 0 0
\(495\) −7.52447 −0.338200
\(496\) 0 0
\(497\) −2.03887 3.53142i −0.0914557 0.158406i
\(498\) 0 0
\(499\) 12.8345i 0.574550i 0.957848 + 0.287275i \(0.0927494\pi\)
−0.957848 + 0.287275i \(0.907251\pi\)
\(500\) 0 0
\(501\) −17.3807 10.0347i −0.776511 0.448319i
\(502\) 0 0
\(503\) 13.0620 22.6241i 0.582406 1.00876i −0.412787 0.910828i \(-0.635445\pi\)
0.995193 0.0979300i \(-0.0312221\pi\)
\(504\) 0 0
\(505\) −10.4379 + 6.02632i −0.464480 + 0.268168i
\(506\) 0 0
\(507\) −30.1741 7.18358i −1.34008 0.319034i
\(508\) 0 0
\(509\) −0.0256478 + 0.0148077i −0.00113682 + 0.000656342i −0.500568 0.865697i \(-0.666876\pi\)
0.499431 + 0.866353i \(0.333542\pi\)
\(510\) 0 0
\(511\) −6.34101 + 10.9829i −0.280510 + 0.485857i
\(512\) 0 0
\(513\) 1.00639 + 0.581039i 0.0444332 + 0.0256535i
\(514\) 0 0
\(515\) 2.06633i 0.0910535i
\(516\) 0 0
\(517\) 6.55994 + 11.3621i 0.288506 + 0.499706i
\(518\) 0 0
\(519\) −32.7873 −1.43920
\(520\) 0 0
\(521\) 25.4799 1.11630 0.558148 0.829742i \(-0.311512\pi\)
0.558148 + 0.829742i \(0.311512\pi\)
\(522\) 0 0
\(523\) 19.5050 + 33.7836i 0.852892 + 1.47725i 0.878587 + 0.477583i \(0.158487\pi\)
−0.0256945 + 0.999670i \(0.508180\pi\)
\(524\) 0 0
\(525\) 10.0925i 0.440472i
\(526\) 0 0
\(527\) 3.31528 + 1.91408i 0.144416 + 0.0833786i
\(528\) 0 0
\(529\) 6.17176 10.6898i 0.268337 0.464774i
\(530\) 0 0
\(531\) −2.42717 + 1.40133i −0.105330 + 0.0608125i
\(532\) 0 0
\(533\) 9.73747 13.0659i 0.421776 0.565947i
\(534\) 0 0
\(535\) −3.22649 + 1.86281i −0.139493 + 0.0805365i
\(536\) 0 0
\(537\) 26.0127 45.0554i 1.12253 1.94428i
\(538\) 0 0
\(539\) −2.75772 1.59217i −0.118783 0.0685796i
\(540\) 0 0
\(541\) 3.87645i 0.166662i 0.996522 + 0.0833308i \(0.0265558\pi\)
−0.996522 + 0.0833308i \(0.973444\pi\)
\(542\) 0 0
\(543\) 19.5586 + 33.8766i 0.839341 + 1.45378i
\(544\) 0 0
\(545\) −16.5462 −0.708761
\(546\) 0 0
\(547\) 38.8022 1.65906 0.829532 0.558460i \(-0.188607\pi\)
0.829532 + 0.558460i \(0.188607\pi\)
\(548\) 0 0
\(549\) −6.74554 11.6836i −0.287893 0.498645i
\(550\) 0 0
\(551\) 15.4260i 0.657168i
\(552\) 0 0
\(553\) 8.48496 + 4.89880i 0.360817 + 0.208318i
\(554\) 0 0
\(555\) 5.41058 9.37140i 0.229666 0.397794i
\(556\) 0 0
\(557\) −3.33235 + 1.92393i −0.141196 + 0.0815197i −0.568934 0.822383i \(-0.692644\pi\)
0.427738 + 0.903903i \(0.359311\pi\)
\(558\) 0 0
\(559\) 3.20606 27.3100i 0.135602 1.15509i
\(560\) 0 0
\(561\) −6.39058 + 3.68960i −0.269810 + 0.155775i
\(562\) 0 0
\(563\) −6.73279 + 11.6615i −0.283753 + 0.491475i −0.972306 0.233711i \(-0.924913\pi\)
0.688553 + 0.725186i \(0.258246\pi\)
\(564\) 0 0
\(565\) 14.2456 + 8.22468i 0.599315 + 0.346015i
\(566\) 0 0
\(567\) 9.82730i 0.412708i
\(568\) 0 0
\(569\) 3.75922 + 6.51117i 0.157595 + 0.272962i 0.934001 0.357271i \(-0.116293\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(570\) 0 0
\(571\) −4.48050 −0.187503 −0.0937515 0.995596i \(-0.529886\pi\)
−0.0937515 + 0.995596i \(0.529886\pi\)
\(572\) 0 0
\(573\) 26.1492 1.09240
\(574\) 0 0
\(575\) −6.90419 11.9584i −0.287925 0.498700i
\(576\) 0 0
\(577\) 8.68801i 0.361686i 0.983512 + 0.180843i \(0.0578827\pi\)
−0.983512 + 0.180843i \(0.942117\pi\)
\(578\) 0 0
\(579\) −4.36041 2.51749i −0.181213 0.104623i
\(580\) 0 0
\(581\) 3.40845 5.90361i 0.141406 0.244923i
\(582\) 0 0
\(583\) 5.56194 3.21119i 0.230352 0.132994i
\(584\) 0 0
\(585\) −8.46167 0.993360i −0.349847 0.0410704i
\(586\) 0 0
\(587\) 26.9326 15.5496i 1.11163 0.641799i 0.172378 0.985031i \(-0.444855\pi\)
0.939251 + 0.343232i \(0.111522\pi\)
\(588\) 0 0
\(589\) −3.12421 + 5.41130i −0.128731 + 0.222969i
\(590\) 0 0
\(591\) −9.96931 5.75578i −0.410083 0.236761i
\(592\) 0 0
\(593\) 45.7116i 1.87715i 0.345076 + 0.938575i \(0.387853\pi\)
−0.345076 + 0.938575i \(0.612147\pi\)
\(594\) 0 0
\(595\) −0.426144 0.738102i −0.0174702 0.0302592i
\(596\) 0 0
\(597\) 17.6552 0.722578
\(598\) 0 0
\(599\) −10.2396 −0.418380 −0.209190 0.977875i \(-0.567083\pi\)
−0.209190 + 0.977875i \(0.567083\pi\)
\(600\) 0 0
\(601\) 7.93494 + 13.7437i 0.323673 + 0.560618i 0.981243 0.192776i \(-0.0617490\pi\)
−0.657570 + 0.753393i \(0.728416\pi\)
\(602\) 0 0
\(603\) 20.0791i 0.817686i
\(604\) 0 0
\(605\) 0.653556 + 0.377331i 0.0265708 + 0.0153407i
\(606\) 0 0
\(607\) 17.6740 30.6124i 0.717368 1.24252i −0.244672 0.969606i \(-0.578680\pi\)
0.962039 0.272911i \(-0.0879865\pi\)
\(608\) 0 0
\(609\) −20.1065 + 11.6085i −0.814755 + 0.470399i
\(610\) 0 0
\(611\) 5.87700 + 13.6434i 0.237758 + 0.551952i
\(612\) 0 0
\(613\) −1.35615 + 0.782973i −0.0547743 + 0.0316240i −0.527137 0.849780i \(-0.676735\pi\)
0.472363 + 0.881404i \(0.343401\pi\)
\(614\) 0 0
\(615\) 4.73129 8.19483i 0.190784 0.330448i
\(616\) 0 0
\(617\) 8.26395 + 4.77119i 0.332694 + 0.192081i 0.657037 0.753859i \(-0.271810\pi\)
−0.324342 + 0.945940i \(0.605143\pi\)
\(618\) 0 0
\(619\) 25.6394i 1.03053i −0.857030 0.515267i \(-0.827693\pi\)
0.857030 0.515267i \(-0.172307\pi\)
\(620\) 0 0
\(621\) 1.19647 + 2.07235i 0.0480128 + 0.0831607i
\(622\) 0 0
\(623\) −4.63133 −0.185550
\(624\) 0 0
\(625\) 14.0423 0.561693
\(626\) 0 0
\(627\) −6.02227 10.4309i −0.240506 0.416569i
\(628\) 0 0
\(629\) 5.01976i 0.200151i
\(630\) 0 0
\(631\) 26.4492 + 15.2704i 1.05293 + 0.607907i 0.923467 0.383678i \(-0.125343\pi\)
0.129458 + 0.991585i \(0.458676\pi\)
\(632\) 0 0
\(633\) −2.55302 + 4.42197i −0.101474 + 0.175757i
\(634\) 0 0
\(635\) −15.7919 + 9.11748i −0.626684 + 0.361816i
\(636\) 0 0
\(637\) −2.89101 2.15455i −0.114546 0.0853662i
\(638\) 0 0
\(639\) −9.50931 + 5.49020i −0.376182 + 0.217189i
\(640\) 0 0
\(641\) −5.03286 + 8.71717i −0.198786 + 0.344307i −0.948135 0.317868i \(-0.897033\pi\)
0.749349 + 0.662175i \(0.230367\pi\)
\(642\) 0 0
\(643\) −29.6059 17.0930i −1.16754 0.674080i −0.214442 0.976737i \(-0.568793\pi\)
−0.953100 + 0.302656i \(0.902127\pi\)
\(644\) 0 0
\(645\) 15.9676i 0.628725i
\(646\) 0 0
\(647\) −21.7629 37.6944i −0.855587 1.48192i −0.876099 0.482131i \(-0.839863\pi\)
0.0205115 0.999790i \(-0.493471\pi\)
\(648\) 0 0
\(649\) −3.31428 −0.130097
\(650\) 0 0
\(651\) 9.40424 0.368581
\(652\) 0 0
\(653\) −24.5301 42.4874i −0.959937 1.66266i −0.722643 0.691221i \(-0.757073\pi\)
−0.237293 0.971438i \(-0.576260\pi\)
\(654\) 0 0
\(655\) 1.56460i 0.0611340i
\(656\) 0 0
\(657\) 29.5745 + 17.0749i 1.15381 + 0.666154i
\(658\) 0 0
\(659\) 18.8093 32.5787i 0.732707 1.26909i −0.223015 0.974815i \(-0.571590\pi\)
0.955722 0.294271i \(-0.0950769\pi\)
\(660\) 0 0
\(661\) 8.11902 4.68752i 0.315793 0.182323i −0.333723 0.942671i \(-0.608305\pi\)
0.649516 + 0.760348i \(0.274972\pi\)
\(662\) 0 0
\(663\) −7.67364 + 3.30549i −0.298019 + 0.128375i
\(664\) 0 0
\(665\) 1.20475 0.695563i 0.0467182 0.0269728i
\(666\) 0 0
\(667\) 15.8826 27.5094i 0.614975 1.06517i
\(668\) 0 0
\(669\) 52.3145 + 30.2038i 2.02260 + 1.16775i
\(670\) 0 0
\(671\) 15.9539i 0.615893i
\(672\) 0 0
\(673\) −11.7415 20.3369i −0.452603 0.783932i 0.545944 0.837822i \(-0.316171\pi\)
−0.998547 + 0.0538903i \(0.982838\pi\)
\(674\) 0 0
\(675\) −3.10072 −0.119347
\(676\) 0 0
\(677\) 2.71645 0.104401 0.0522007 0.998637i \(-0.483376\pi\)
0.0522007 + 0.998637i \(0.483376\pi\)
\(678\) 0 0
\(679\) 2.05315 + 3.55617i 0.0787929 + 0.136473i
\(680\) 0 0
\(681\) 20.7730i 0.796022i
\(682\) 0 0
\(683\) −38.9846 22.5078i −1.49170 0.861235i −0.491749 0.870737i \(-0.663642\pi\)
−0.999955 + 0.00950165i \(0.996975\pi\)
\(684\) 0 0
\(685\) −7.29984 + 12.6437i −0.278913 + 0.483091i
\(686\) 0 0
\(687\) −28.3631 + 16.3754i −1.08212 + 0.624762i
\(688\) 0 0
\(689\) 6.67863 2.87688i 0.254436 0.109600i
\(690\) 0 0
\(691\) −15.3578 + 8.86682i −0.584237 + 0.337310i −0.762816 0.646616i \(-0.776184\pi\)
0.178578 + 0.983926i \(0.442850\pi\)
\(692\) 0 0
\(693\) −4.28734 + 7.42590i −0.162863 + 0.282087i
\(694\) 0 0
\(695\) −1.18000 0.681275i −0.0447600 0.0258422i
\(696\) 0 0
\(697\) 4.38954i 0.166266i
\(698\) 0 0
\(699\) −20.0713 34.7645i −0.759166 1.31491i
\(700\) 0 0
\(701\) −7.97397 −0.301173 −0.150586 0.988597i \(-0.548116\pi\)
−0.150586 + 0.988597i \(0.548116\pi\)
\(702\) 0 0
\(703\) 8.19339 0.309020
\(704\) 0 0
\(705\) 4.31320 + 7.47068i 0.162445 + 0.281362i
\(706\) 0 0
\(707\) 13.7349i 0.516553i
\(708\) 0 0
\(709\) −28.0054 16.1689i −1.05177 0.607237i −0.128622 0.991694i \(-0.541055\pi\)
−0.923143 + 0.384457i \(0.874389\pi\)
\(710\) 0 0
\(711\) 13.1913 22.8480i 0.494713 0.856869i
\(712\) 0 0
\(713\) −11.1429 + 6.43337i −0.417306 + 0.240932i
\(714\) 0 0
\(715\) −8.07841 6.02050i −0.302115 0.225154i
\(716\) 0 0
\(717\) 8.82859 5.09719i 0.329710 0.190358i
\(718\) 0 0
\(719\) 14.3814 24.9093i 0.536335 0.928960i −0.462762 0.886483i \(-0.653142\pi\)
0.999097 0.0424776i \(-0.0135251\pi\)
\(720\) 0 0
\(721\) −2.03926 1.17737i −0.0759462 0.0438475i
\(722\) 0 0
\(723\) 60.7573i 2.25959i
\(724\) 0 0
\(725\) 20.5802 + 35.6459i 0.764329 + 1.32386i
\(726\) 0 0
\(727\) −27.5051 −1.02011 −0.510054 0.860143i \(-0.670374\pi\)
−0.510054 + 0.860143i \(0.670374\pi\)
\(728\) 0 0
\(729\) −21.2157 −0.785766
\(730\) 0 0
\(731\) −3.70357 6.41476i −0.136981 0.237259i
\(732\) 0 0
\(733\) 6.53199i 0.241265i −0.992697 0.120632i \(-0.961508\pi\)
0.992697 0.120632i \(-0.0384922\pi\)
\(734\) 0 0
\(735\) −1.81322 1.04686i −0.0668815 0.0386141i
\(736\) 0 0
\(737\) 11.8723 20.5634i 0.437322 0.757464i
\(738\) 0 0
\(739\) −23.0282 + 13.2953i −0.847106 + 0.489077i −0.859673 0.510844i \(-0.829333\pi\)
0.0125673 + 0.999921i \(0.496000\pi\)
\(740\) 0 0
\(741\) −5.39531 12.5251i −0.198202 0.460122i
\(742\) 0 0
\(743\) 32.3053 18.6515i 1.18517 0.684257i 0.227963 0.973670i \(-0.426793\pi\)
0.957204 + 0.289413i \(0.0934601\pi\)
\(744\) 0 0
\(745\) 0.0705755 0.122240i 0.00258569 0.00447854i
\(746\) 0 0
\(747\) −15.8971 9.17817i −0.581643 0.335812i
\(748\) 0 0
\(749\) 4.24563i 0.155132i
\(750\) 0 0
\(751\) 1.83497 + 3.17826i 0.0669591 + 0.115977i 0.897561 0.440890i \(-0.145337\pi\)
−0.830602 + 0.556866i \(0.812004\pi\)
\(752\) 0 0
\(753\) 56.5796 2.06187
\(754\) 0 0
\(755\) −10.3830 −0.377876
\(756\) 0 0
\(757\) 22.3521 + 38.7150i 0.812401 + 1.40712i 0.911179 + 0.412010i \(0.135173\pi\)
−0.0987785 + 0.995109i \(0.531494\pi\)
\(758\) 0 0
\(759\) 24.8021i 0.900258i
\(760\) 0 0
\(761\) −34.1854 19.7369i −1.23922 0.715463i −0.270284 0.962781i \(-0.587118\pi\)
−0.968935 + 0.247317i \(0.920451\pi\)
\(762\) 0 0
\(763\) −9.42780 + 16.3294i −0.341309 + 0.591165i
\(764\) 0 0
\(765\) −1.98754 + 1.14751i −0.0718596 + 0.0414882i
\(766\) 0 0
\(767\) −3.72709 0.437543i −0.134577 0.0157988i
\(768\) 0 0
\(769\) 6.02163 3.47659i 0.217146 0.125369i −0.387482 0.921877i \(-0.626655\pi\)
0.604628 + 0.796508i \(0.293322\pi\)
\(770\) 0 0
\(771\) −4.33699 + 7.51188i −0.156193 + 0.270534i
\(772\) 0 0
\(773\) −42.8106 24.7167i −1.53979 0.888998i −0.998850 0.0479361i \(-0.984736\pi\)
−0.540939 0.841062i \(-0.681931\pi\)
\(774\) 0 0
\(775\) 16.6724i 0.598890i
\(776\) 0 0
\(777\) −6.16576 10.6794i −0.221195 0.383122i
\(778\) 0 0
\(779\) 7.16472 0.256703
\(780\) 0 0
\(781\) −12.9849 −0.464636
\(782\) 0 0
\(783\) −3.56648 6.17732i −0.127455 0.220759i
\(784\) 0 0
\(785\) 13.1307i 0.468657i
\(786\) 0 0
\(787\) −24.5560 14.1774i −0.875327 0.505370i −0.00621204 0.999981i \(-0.501977\pi\)
−0.869115 + 0.494611i \(0.835311\pi\)
\(788\) 0 0
\(789\) 19.0385 32.9756i 0.677788 1.17396i
\(790\) 0 0
\(791\) 16.2339 9.37263i 0.577210 0.333252i
\(792\) 0 0
\(793\) 2.10619 17.9410i 0.0747930 0.637104i
\(794\) 0 0
\(795\) 3.65701 2.11138i 0.129701 0.0748828i
\(796\) 0 0
\(797\) −8.85202 + 15.3322i −0.313555 + 0.543093i −0.979129 0.203239i \(-0.934853\pi\)
0.665574 + 0.746331i \(0.268187\pi\)
\(798\) 0 0
\(799\) 3.46553 + 2.00082i 0.122602 + 0.0707841i
\(800\) 0 0
\(801\) 12.4711i 0.440645i
\(802\) 0 0
\(803\) 20.1919 + 34.9734i 0.712557 + 1.23418i
\(804\) 0 0
\(805\) 2.86460 0.100964
\(806\) 0 0
\(807\) 37.6711 1.32609
\(808\) 0 0
\(809\) −4.67520 8.09768i −0.164371 0.284699i 0.772061 0.635549i \(-0.219226\pi\)
−0.936432 + 0.350850i \(0.885893\pi\)
\(810\) 0 0
\(811\) 35.5948i 1.24990i 0.780664 + 0.624951i \(0.214881\pi\)
−0.780664 + 0.624951i \(0.785119\pi\)
\(812\) 0 0
\(813\) 15.9968 + 9.23578i 0.561034 + 0.323913i
\(814\) 0 0
\(815\) −5.37454 + 9.30898i −0.188262 + 0.326079i
\(816\) 0 0
\(817\) 10.4704 6.04506i 0.366311 0.211490i
\(818\) 0 0
\(819\) −5.80170 + 7.78482i −0.202728 + 0.272024i
\(820\) 0 0
\(821\) 33.4223 19.2964i 1.16645 0.673449i 0.213607 0.976920i \(-0.431479\pi\)
0.952841 + 0.303471i \(0.0981455\pi\)
\(822\) 0 0
\(823\) 25.3601 43.9250i 0.883999 1.53113i 0.0371413 0.999310i \(-0.488175\pi\)
0.846857 0.531820i \(-0.178492\pi\)
\(824\) 0 0
\(825\) 27.8322 + 16.0689i 0.968993 + 0.559448i
\(826\) 0 0
\(827\) 21.9754i 0.764158i 0.924130 + 0.382079i \(0.124792\pi\)
−0.924130 + 0.382079i \(0.875208\pi\)
\(828\) 0 0
\(829\) 4.42741 + 7.66849i 0.153770 + 0.266338i 0.932611 0.360884i \(-0.117525\pi\)
−0.778840 + 0.627222i \(0.784192\pi\)
\(830\) 0 0
\(831\) −75.4664 −2.61790
\(832\) 0 0
\(833\) −0.971244 −0.0336516
\(834\) 0 0
\(835\) −3.69064 6.39237i −0.127720 0.221217i
\(836\) 0 0
\(837\) 2.88927i 0.0998677i
\(838\) 0 0
\(839\) 25.9070 + 14.9574i 0.894409 + 0.516387i 0.875382 0.483432i \(-0.160610\pi\)
0.0190269 + 0.999819i \(0.493943\pi\)
\(840\) 0 0
\(841\) −32.8431 + 56.8859i −1.13252 + 1.96158i
\(842\) 0 0
\(843\) −15.2242 + 8.78969i −0.524349 + 0.302733i
\(844\) 0 0
\(845\) −8.28980 7.83687i −0.285178 0.269596i
\(846\) 0 0
\(847\) 0.744775 0.429996i 0.0255908 0.0147748i
\(848\) 0 0
\(849\) 13.0553 22.6125i 0.448057 0.776058i
\(850\) 0 0
\(851\) 14.6114 + 8.43591i 0.500873 + 0.289179i
\(852\) 0 0
\(853\) 39.7867i 1.36227i 0.732158 + 0.681135i \(0.238513\pi\)
−0.732158 + 0.681135i \(0.761487\pi\)
\(854\) 0 0
\(855\) −1.87299 3.24412i −0.0640550 0.110946i
\(856\) 0 0
\(857\) 17.0715 0.583150 0.291575 0.956548i \(-0.405821\pi\)
0.291575 + 0.956548i \(0.405821\pi\)
\(858\) 0 0
\(859\) −45.4327 −1.55014 −0.775071 0.631874i \(-0.782286\pi\)
−0.775071 + 0.631874i \(0.782286\pi\)
\(860\) 0 0
\(861\) −5.39165 9.33862i −0.183747 0.318259i
\(862\) 0 0
\(863\) 22.8572i 0.778068i 0.921223 + 0.389034i \(0.127191\pi\)
−0.921223 + 0.389034i \(0.872809\pi\)
\(864\) 0 0
\(865\) −10.4431 6.02935i −0.355078 0.205004i
\(866\) 0 0
\(867\) 19.1552 33.1779i 0.650546 1.12678i
\(868\) 0 0
\(869\) 27.0190 15.5994i 0.916556 0.529174i
\(870\) 0 0
\(871\) 16.0658 21.5573i 0.544368 0.730443i
\(872\) 0 0
\(873\) 9.57594 5.52867i 0.324097 0.187117i
\(874\) 0 0
\(875\) −4.04974 + 7.01436i −0.136906 + 0.237129i
\(876\) 0 0
\(877\) 25.8613 + 14.9310i 0.873273 + 0.504185i 0.868435 0.495804i \(-0.165126\pi\)
0.00483876 + 0.999988i \(0.498460\pi\)
\(878\) 0 0
\(879\) 75.9980i 2.56335i
\(880\) 0 0
\(881\) −12.4867 21.6277i −0.420689 0.728655i 0.575318 0.817930i \(-0.304878\pi\)
−0.996007 + 0.0892748i \(0.971545\pi\)
\(882\) 0 0
\(883\) 12.3025 0.414011 0.207005 0.978340i \(-0.433628\pi\)
0.207005 + 0.978340i \(0.433628\pi\)
\(884\) 0 0
\(885\) −2.17916 −0.0732518
\(886\) 0 0
\(887\) 19.1931 + 33.2434i 0.644441 + 1.11620i 0.984430 + 0.175775i \(0.0562433\pi\)
−0.339989 + 0.940429i \(0.610423\pi\)
\(888\) 0 0
\(889\) 20.7801i 0.696942i
\(890\) 0 0
\(891\) −27.1009 15.6467i −0.907915 0.524185i
\(892\) 0 0
\(893\) −3.26580 + 5.65653i −0.109286 + 0.189289i
\(894\) 0 0
\(895\) 16.5708 9.56713i 0.553899 0.319794i
\(896\) 0 0
\(897\) 3.27430 27.8913i 0.109326 0.931262i
\(898\) 0 0
\(899\) 33.2151 19.1768i 1.10779 0.639581i
\(900\) 0 0
\(901\) 0.979433 1.69643i 0.0326297 0.0565162i
\(902\) 0 0
\(903\) −15.7585 9.09816i −0.524409 0.302768i
\(904\) 0 0
\(905\) 14.3868i 0.478233i
\(906\) 0 0
\(907\) 7.59821 + 13.1605i 0.252294 + 0.436987i 0.964157 0.265332i \(-0.0854815\pi\)
−0.711863 + 0.702319i \(0.752148\pi\)
\(908\) 0 0
\(909\) 36.9848 1.22671
\(910\) 0 0
\(911\) 46.1592 1.52932 0.764661 0.644433i \(-0.222907\pi\)
0.764661 + 0.644433i \(0.222907\pi\)
\(912\) 0 0
\(913\) −10.8537 18.7991i −0.359204 0.622159i
\(914\) 0 0
\(915\) 10.4898i 0.346782i
\(916\) 0 0
\(917\) −1.54410 0.891489i −0.0509908 0.0294396i
\(918\) 0 0
\(919\) 8.72945 15.1198i 0.287958 0.498758i −0.685364 0.728200i \(-0.740357\pi\)
0.973322 + 0.229443i \(0.0736904\pi\)
\(920\) 0 0
\(921\) −67.4131 + 38.9210i −2.22134 + 1.28249i
\(922\) 0 0
\(923\) −14.6022 1.71423i −0.480638 0.0564245i
\(924\) 0 0
\(925\) −18.9331 + 10.9310i −0.622516 + 0.359410i
\(926\) 0 0
\(927\) −3.17039 + 5.49127i −0.104129 + 0.180357i
\(928\) 0 0
\(929\) −47.9927 27.7086i −1.57459 0.909091i −0.995595 0.0937602i \(-0.970111\pi\)
−0.578996 0.815330i \(-0.696555\pi\)
\(930\) 0 0
\(931\) 1.58529i 0.0519558i
\(932\) 0 0
\(933\) 8.19494 + 14.1941i 0.268290 + 0.464692i
\(934\) 0 0
\(935\) −2.71397 −0.0887563
\(936\) 0 0
\(937\) 28.3045 0.924668 0.462334 0.886706i \(-0.347012\pi\)
0.462334 + 0.886706i \(0.347012\pi\)
\(938\) 0 0
\(939\) 2.54267 + 4.40403i 0.0829769 + 0.143720i
\(940\) 0 0
\(941\) 20.5105i 0.668622i 0.942463 + 0.334311i \(0.108504\pi\)
−0.942463 + 0.334311i \(0.891496\pi\)
\(942\) 0 0
\(943\) 12.7770 + 7.37679i 0.416075 + 0.240221i
\(944\) 0 0
\(945\) 0.321628 0.557076i 0.0104626 0.0181217i
\(946\) 0 0
\(947\) −5.34051 + 3.08334i −0.173543 + 0.100195i −0.584256 0.811570i \(-0.698613\pi\)
0.410712 + 0.911765i \(0.365280\pi\)
\(948\) 0 0
\(949\) 18.0898 + 41.9952i 0.587220 + 1.36322i
\(950\) 0 0
\(951\) 11.4110 6.58812i 0.370025 0.213634i
\(952\) 0 0
\(953\) −20.5522 + 35.5975i −0.665751 + 1.15312i 0.313330 + 0.949644i \(0.398556\pi\)
−0.979081 + 0.203471i \(0.934778\pi\)
\(954\) 0 0
\(955\) 8.32883 + 4.80865i 0.269515 + 0.155604i
\(956\) 0 0
\(957\) 73.9306i 2.38984i
\(958\) 0 0
\(959\) 8.31871 + 14.4084i 0.268625 + 0.465272i
\(960\) 0 0
\(961\) 15.4646 0.498857
\(962\) 0 0
\(963\) 11.4325 0.368407
\(964\) 0 0
\(965\) −0.925897 1.60370i −0.0298057 0.0516250i
\(966\) 0 0
\(967\) 45.3751i 1.45917i 0.683892 + 0.729583i \(0.260286\pi\)
−0.683892 + 0.729583i \(0.739714\pi\)
\(968\) 0 0
\(969\) −3.18149 1.83683i −0.102204 0.0590075i
\(970\) 0 0
\(971\) −20.6103 + 35.6980i −0.661415 + 1.14560i 0.318829 + 0.947812i \(0.396710\pi\)
−0.980244 + 0.197792i \(0.936623\pi\)
\(972\) 0 0
\(973\) −1.34470 + 0.776363i −0.0431091 + 0.0248890i
\(974\) 0 0
\(975\) 29.1774 + 21.7447i 0.934426 + 0.696388i
\(976\) 0 0
\(977\) −49.5561 + 28.6112i −1.58544 + 0.915355i −0.591397 + 0.806381i \(0.701423\pi\)
−0.994045 + 0.108974i \(0.965243\pi\)
\(978\) 0 0
\(979\) −7.37386 + 12.7719i −0.235670 + 0.408192i
\(980\) 0 0
\(981\) 43.9714 + 25.3869i 1.40390 + 0.810541i
\(982\) 0 0
\(983\) 45.1712i 1.44074i −0.693592 0.720368i \(-0.743973\pi\)
0.693592 0.720368i \(-0.256027\pi\)
\(984\) 0 0
\(985\) −2.11690 3.66658i −0.0674500 0.116827i
\(986\) 0 0
\(987\) 9.83042 0.312906
\(988\) 0 0
\(989\) 24.8959 0.791645
\(990\) 0 0
\(991\) −5.79069 10.0298i −0.183947 0.318606i 0.759274 0.650771i \(-0.225554\pi\)
−0.943221 + 0.332165i \(0.892221\pi\)
\(992\) 0 0
\(993\) 22.6148i 0.717661i
\(994\) 0 0
\(995\) 5.62339 + 3.24667i 0.178273 + 0.102926i
\(996\) 0 0
\(997\) −20.0031 + 34.6464i −0.633505 + 1.09726i 0.353324 + 0.935501i \(0.385051\pi\)
−0.986830 + 0.161763i \(0.948282\pi\)
\(998\) 0 0
\(999\) 3.28104 1.89431i 0.103807 0.0599333i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.b.673.1 yes 12
4.3 odd 2 1456.2.cc.e.673.6 12
13.2 odd 12 9464.2.a.bf.1.6 6
13.4 even 6 inner 728.2.bm.b.225.1 12
13.11 odd 12 9464.2.a.bg.1.6 6
52.43 odd 6 1456.2.cc.e.225.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.b.225.1 12 13.4 even 6 inner
728.2.bm.b.673.1 yes 12 1.1 even 1 trivial
1456.2.cc.e.225.6 12 52.43 odd 6
1456.2.cc.e.673.6 12 4.3 odd 2
9464.2.a.bf.1.6 6 13.2 odd 12
9464.2.a.bg.1.6 6 13.11 odd 12