Properties

Label 936.2.w.k.811.12
Level $936$
Weight $2$
Character 936.811
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 811.12
Character \(\chi\) \(=\) 936.811
Dual form 936.2.w.k.307.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.189453 - 1.40147i) q^{2} +(-1.92821 + 0.531025i) q^{4} +(-0.612096 - 0.612096i) q^{5} +(1.94766 - 1.94766i) q^{7} +(1.10952 + 2.60172i) q^{8} +(-0.741868 + 0.973796i) q^{10} +(0.148872 + 0.148872i) q^{11} +(0.952638 - 3.47742i) q^{13} +(-3.09856 - 2.36058i) q^{14} +(3.43602 - 2.04786i) q^{16} +3.60967i q^{17} +(1.89240 - 1.89240i) q^{19} +(1.50529 + 0.855214i) q^{20} +(0.180435 - 0.236844i) q^{22} -2.04327 q^{23} -4.25068i q^{25} +(-5.05397 - 0.676280i) q^{26} +(-2.72124 + 4.78975i) q^{28} -6.31014i q^{29} +(0.261807 + 0.261807i) q^{31} +(-3.52097 - 4.42750i) q^{32} +(5.05883 - 0.683863i) q^{34} -2.38430 q^{35} +(-1.73417 + 1.73417i) q^{37} +(-3.01066 - 2.29362i) q^{38} +(0.913371 - 2.27164i) q^{40} +(-0.454360 + 0.454360i) q^{41} -10.8239i q^{43} +(-0.366113 - 0.208003i) q^{44} +(0.387104 + 2.86357i) q^{46} +(-6.24940 + 6.24940i) q^{47} -0.586721i q^{49} +(-5.95718 + 0.805305i) q^{50} +(0.00970845 + 7.21110i) q^{52} -7.10635i q^{53} -0.182248i q^{55} +(7.22822 + 2.90630i) q^{56} +(-8.84344 + 1.19548i) q^{58} +(-7.60381 - 7.60381i) q^{59} +5.54058i q^{61} +(0.317314 - 0.416514i) q^{62} +(-5.53793 + 5.77333i) q^{64} +(-2.71162 + 1.54541i) q^{65} +(-1.25346 + 1.25346i) q^{67} +(-1.91682 - 6.96021i) q^{68} +(0.451714 + 3.34152i) q^{70} +(-7.84227 - 7.84227i) q^{71} +(-5.73583 - 5.73583i) q^{73} +(2.75892 + 2.10183i) q^{74} +(-2.64404 + 4.65387i) q^{76} +0.579904 q^{77} +6.43580i q^{79} +(-3.35666 - 0.849690i) q^{80} +(0.722851 + 0.550691i) q^{82} +(3.01711 - 3.01711i) q^{83} +(2.20946 - 2.20946i) q^{85} +(-15.1693 + 2.05063i) q^{86} +(-0.222148 + 0.552501i) q^{88} +(7.13489 + 7.13489i) q^{89} +(-4.91741 - 8.62823i) q^{91} +(3.93986 - 1.08503i) q^{92} +(9.94229 + 7.57435i) q^{94} -2.31666 q^{95} +(7.21217 - 7.21217i) q^{97} +(-0.822269 + 0.111156i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{16} - 8 q^{19} - 32 q^{22} + 24 q^{28} + 8 q^{34} + 16 q^{40} - 8 q^{46} + 24 q^{52} - 24 q^{58} + 40 q^{67} - 24 q^{70} + 56 q^{76} + 104 q^{91} - 64 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.189453 1.40147i −0.133964 0.990986i
\(3\) 0 0
\(4\) −1.92821 + 0.531025i −0.964107 + 0.265513i
\(5\) −0.612096 0.612096i −0.273738 0.273738i 0.556865 0.830603i \(-0.312004\pi\)
−0.830603 + 0.556865i \(0.812004\pi\)
\(6\) 0 0
\(7\) 1.94766 1.94766i 0.736144 0.736144i −0.235685 0.971829i \(-0.575733\pi\)
0.971829 + 0.235685i \(0.0757334\pi\)
\(8\) 1.10952 + 2.60172i 0.392275 + 0.919848i
\(9\) 0 0
\(10\) −0.741868 + 0.973796i −0.234599 + 0.307941i
\(11\) 0.148872 + 0.148872i 0.0448867 + 0.0448867i 0.729194 0.684307i \(-0.239895\pi\)
−0.684307 + 0.729194i \(0.739895\pi\)
\(12\) 0 0
\(13\) 0.952638 3.47742i 0.264214 0.964464i
\(14\) −3.09856 2.36058i −0.828126 0.630892i
\(15\) 0 0
\(16\) 3.43602 2.04786i 0.859006 0.511965i
\(17\) 3.60967i 0.875473i 0.899103 + 0.437736i \(0.144220\pi\)
−0.899103 + 0.437736i \(0.855780\pi\)
\(18\) 0 0
\(19\) 1.89240 1.89240i 0.434147 0.434147i −0.455890 0.890036i \(-0.650679\pi\)
0.890036 + 0.455890i \(0.150679\pi\)
\(20\) 1.50529 + 0.855214i 0.336593 + 0.191232i
\(21\) 0 0
\(22\) 0.180435 0.236844i 0.0384689 0.0504953i
\(23\) −2.04327 −0.426051 −0.213026 0.977047i \(-0.568332\pi\)
−0.213026 + 0.977047i \(0.568332\pi\)
\(24\) 0 0
\(25\) 4.25068i 0.850135i
\(26\) −5.05397 0.676280i −0.991166 0.132629i
\(27\) 0 0
\(28\) −2.72124 + 4.78975i −0.514267 + 0.905178i
\(29\) 6.31014i 1.17176i −0.810397 0.585881i \(-0.800748\pi\)
0.810397 0.585881i \(-0.199252\pi\)
\(30\) 0 0
\(31\) 0.261807 + 0.261807i 0.0470220 + 0.0470220i 0.730227 0.683205i \(-0.239414\pi\)
−0.683205 + 0.730227i \(0.739414\pi\)
\(32\) −3.52097 4.42750i −0.622426 0.782679i
\(33\) 0 0
\(34\) 5.05883 0.683863i 0.867581 0.117282i
\(35\) −2.38430 −0.403021
\(36\) 0 0
\(37\) −1.73417 + 1.73417i −0.285095 + 0.285095i −0.835137 0.550042i \(-0.814612\pi\)
0.550042 + 0.835137i \(0.314612\pi\)
\(38\) −3.01066 2.29362i −0.488393 0.372074i
\(39\) 0 0
\(40\) 0.913371 2.27164i 0.144417 0.359177i
\(41\) −0.454360 + 0.454360i −0.0709592 + 0.0709592i −0.741696 0.670737i \(-0.765978\pi\)
0.670737 + 0.741696i \(0.265978\pi\)
\(42\) 0 0
\(43\) 10.8239i 1.65063i −0.564672 0.825315i \(-0.690997\pi\)
0.564672 0.825315i \(-0.309003\pi\)
\(44\) −0.366113 0.208003i −0.0551936 0.0313576i
\(45\) 0 0
\(46\) 0.387104 + 2.86357i 0.0570754 + 0.422211i
\(47\) −6.24940 + 6.24940i −0.911569 + 0.911569i −0.996396 0.0848271i \(-0.972966\pi\)
0.0848271 + 0.996396i \(0.472966\pi\)
\(48\) 0 0
\(49\) 0.586721i 0.0838173i
\(50\) −5.95718 + 0.805305i −0.842472 + 0.113887i
\(51\) 0 0
\(52\) 0.00970845 + 7.21110i 0.00134632 + 0.999999i
\(53\) 7.10635i 0.976132i −0.872807 0.488066i \(-0.837703\pi\)
0.872807 0.488066i \(-0.162297\pi\)
\(54\) 0 0
\(55\) 0.182248i 0.0245743i
\(56\) 7.22822 + 2.90630i 0.965912 + 0.388370i
\(57\) 0 0
\(58\) −8.84344 + 1.19548i −1.16120 + 0.156974i
\(59\) −7.60381 7.60381i −0.989932 0.989932i 0.0100179 0.999950i \(-0.496811\pi\)
−0.999950 + 0.0100179i \(0.996811\pi\)
\(60\) 0 0
\(61\) 5.54058i 0.709398i 0.934981 + 0.354699i \(0.115417\pi\)
−0.934981 + 0.354699i \(0.884583\pi\)
\(62\) 0.317314 0.416514i 0.0402989 0.0528974i
\(63\) 0 0
\(64\) −5.53793 + 5.77333i −0.692241 + 0.721666i
\(65\) −2.71162 + 1.54541i −0.336336 + 0.191685i
\(66\) 0 0
\(67\) −1.25346 + 1.25346i −0.153134 + 0.153134i −0.779516 0.626382i \(-0.784535\pi\)
0.626382 + 0.779516i \(0.284535\pi\)
\(68\) −1.91682 6.96021i −0.232449 0.844050i
\(69\) 0 0
\(70\) 0.451714 + 3.34152i 0.0539902 + 0.399388i
\(71\) −7.84227 7.84227i −0.930706 0.930706i 0.0670439 0.997750i \(-0.478643\pi\)
−0.997750 + 0.0670439i \(0.978643\pi\)
\(72\) 0 0
\(73\) −5.73583 5.73583i −0.671328 0.671328i 0.286694 0.958022i \(-0.407444\pi\)
−0.958022 + 0.286694i \(0.907444\pi\)
\(74\) 2.75892 + 2.10183i 0.320718 + 0.244333i
\(75\) 0 0
\(76\) −2.64404 + 4.65387i −0.303293 + 0.533836i
\(77\) 0.579904 0.0660862
\(78\) 0 0
\(79\) 6.43580i 0.724085i 0.932162 + 0.362042i \(0.117920\pi\)
−0.932162 + 0.362042i \(0.882080\pi\)
\(80\) −3.35666 0.849690i −0.375286 0.0949982i
\(81\) 0 0
\(82\) 0.722851 + 0.550691i 0.0798255 + 0.0608136i
\(83\) 3.01711 3.01711i 0.331171 0.331171i −0.521860 0.853031i \(-0.674762\pi\)
0.853031 + 0.521860i \(0.174762\pi\)
\(84\) 0 0
\(85\) 2.20946 2.20946i 0.239650 0.239650i
\(86\) −15.1693 + 2.05063i −1.63575 + 0.221125i
\(87\) 0 0
\(88\) −0.222148 + 0.552501i −0.0236810 + 0.0588968i
\(89\) 7.13489 + 7.13489i 0.756297 + 0.756297i 0.975646 0.219350i \(-0.0703935\pi\)
−0.219350 + 0.975646i \(0.570394\pi\)
\(90\) 0 0
\(91\) −4.91741 8.62823i −0.515485 0.904485i
\(92\) 3.93986 1.08503i 0.410759 0.113122i
\(93\) 0 0
\(94\) 9.94229 + 7.57435i 1.02547 + 0.781235i
\(95\) −2.31666 −0.237685
\(96\) 0 0
\(97\) 7.21217 7.21217i 0.732285 0.732285i −0.238787 0.971072i \(-0.576750\pi\)
0.971072 + 0.238787i \(0.0767497\pi\)
\(98\) −0.822269 + 0.111156i −0.0830618 + 0.0112285i
\(99\) 0 0
\(100\) 2.25722 + 8.19622i 0.225722 + 0.819622i
\(101\) 9.96869 0.991922 0.495961 0.868345i \(-0.334816\pi\)
0.495961 + 0.868345i \(0.334816\pi\)
\(102\) 0 0
\(103\) 8.19929 0.807900 0.403950 0.914781i \(-0.367637\pi\)
0.403950 + 0.914781i \(0.367637\pi\)
\(104\) 10.1043 1.37977i 0.990805 0.135298i
\(105\) 0 0
\(106\) −9.95930 + 1.34632i −0.967333 + 0.130766i
\(107\) −4.86415 −0.470235 −0.235118 0.971967i \(-0.575548\pi\)
−0.235118 + 0.971967i \(0.575548\pi\)
\(108\) 0 0
\(109\) 6.69167 + 6.69167i 0.640946 + 0.640946i 0.950788 0.309842i \(-0.100276\pi\)
−0.309842 + 0.950788i \(0.600276\pi\)
\(110\) −0.255415 + 0.0345275i −0.0243528 + 0.00329207i
\(111\) 0 0
\(112\) 2.70367 10.6807i 0.255472 1.00923i
\(113\) 18.2063 1.71271 0.856353 0.516391i \(-0.172725\pi\)
0.856353 + 0.516391i \(0.172725\pi\)
\(114\) 0 0
\(115\) 1.25068 + 1.25068i 0.116626 + 0.116626i
\(116\) 3.35084 + 12.1673i 0.311118 + 1.12971i
\(117\) 0 0
\(118\) −9.21592 + 12.0971i −0.848394 + 1.11362i
\(119\) 7.03038 + 7.03038i 0.644474 + 0.644474i
\(120\) 0 0
\(121\) 10.9557i 0.995970i
\(122\) 7.76493 1.04968i 0.703004 0.0950337i
\(123\) 0 0
\(124\) −0.643847 0.365794i −0.0578191 0.0328493i
\(125\) −5.66230 + 5.66230i −0.506452 + 0.506452i
\(126\) 0 0
\(127\) −1.99734 −0.177235 −0.0886177 0.996066i \(-0.528245\pi\)
−0.0886177 + 0.996066i \(0.528245\pi\)
\(128\) 9.14031 + 6.66744i 0.807897 + 0.589324i
\(129\) 0 0
\(130\) 2.67957 + 3.50747i 0.235014 + 0.307625i
\(131\) −16.0431 −1.40169 −0.700846 0.713312i \(-0.747194\pi\)
−0.700846 + 0.713312i \(0.747194\pi\)
\(132\) 0 0
\(133\) 7.37149i 0.639190i
\(134\) 1.99415 + 1.51921i 0.172268 + 0.131239i
\(135\) 0 0
\(136\) −9.39135 + 4.00500i −0.805302 + 0.343426i
\(137\) 12.5509 + 12.5509i 1.07229 + 1.07229i 0.997175 + 0.0751182i \(0.0239334\pi\)
0.0751182 + 0.997175i \(0.476067\pi\)
\(138\) 0 0
\(139\) 2.18436 0.185275 0.0926375 0.995700i \(-0.470470\pi\)
0.0926375 + 0.995700i \(0.470470\pi\)
\(140\) 4.59745 1.26612i 0.388555 0.107007i
\(141\) 0 0
\(142\) −9.50493 + 12.4764i −0.797636 + 1.04700i
\(143\) 0.659513 0.375871i 0.0551513 0.0314319i
\(144\) 0 0
\(145\) −3.86241 + 3.86241i −0.320756 + 0.320756i
\(146\) −6.95190 + 9.12525i −0.575343 + 0.755211i
\(147\) 0 0
\(148\) 2.42296 4.26473i 0.199166 0.350559i
\(149\) 3.22148 + 3.22148i 0.263914 + 0.263914i 0.826642 0.562728i \(-0.190248\pi\)
−0.562728 + 0.826642i \(0.690248\pi\)
\(150\) 0 0
\(151\) −4.75516 + 4.75516i −0.386969 + 0.386969i −0.873605 0.486636i \(-0.838224\pi\)
0.486636 + 0.873605i \(0.338224\pi\)
\(152\) 7.02317 + 2.82385i 0.569654 + 0.229044i
\(153\) 0 0
\(154\) −0.109865 0.812715i −0.00885315 0.0654905i
\(155\) 0.320502i 0.0257434i
\(156\) 0 0
\(157\) 1.95742i 0.156219i −0.996945 0.0781097i \(-0.975112\pi\)
0.996945 0.0781097i \(-0.0248884\pi\)
\(158\) 9.01956 1.21928i 0.717558 0.0970011i
\(159\) 0 0
\(160\) −0.554880 + 4.86523i −0.0438671 + 0.384630i
\(161\) −3.97958 + 3.97958i −0.313635 + 0.313635i
\(162\) 0 0
\(163\) −1.25346 1.25346i −0.0981783 0.0981783i 0.656312 0.754490i \(-0.272116\pi\)
−0.754490 + 0.656312i \(0.772116\pi\)
\(164\) 0.634828 1.11738i 0.0495717 0.0872528i
\(165\) 0 0
\(166\) −4.79998 3.65678i −0.372551 0.283821i
\(167\) −1.38331 + 1.38331i −0.107044 + 0.107044i −0.758600 0.651557i \(-0.774116\pi\)
0.651557 + 0.758600i \(0.274116\pi\)
\(168\) 0 0
\(169\) −11.1850 6.62545i −0.860382 0.509650i
\(170\) −3.51508 2.67790i −0.269594 0.205385i
\(171\) 0 0
\(172\) 5.74777 + 20.8708i 0.438263 + 1.59138i
\(173\) 22.3012 1.69553 0.847764 0.530374i \(-0.177949\pi\)
0.847764 + 0.530374i \(0.177949\pi\)
\(174\) 0 0
\(175\) −8.27885 8.27885i −0.625822 0.625822i
\(176\) 0.816398 + 0.206659i 0.0615384 + 0.0155775i
\(177\) 0 0
\(178\) 8.64758 11.3510i 0.648163 0.850796i
\(179\) 22.0773i 1.65014i −0.565033 0.825069i \(-0.691136\pi\)
0.565033 0.825069i \(-0.308864\pi\)
\(180\) 0 0
\(181\) 3.99980 0.297303 0.148651 0.988890i \(-0.452507\pi\)
0.148651 + 0.988890i \(0.452507\pi\)
\(182\) −11.1606 + 8.52624i −0.827276 + 0.632007i
\(183\) 0 0
\(184\) −2.26705 5.31602i −0.167129 0.391902i
\(185\) 2.12295 0.156083
\(186\) 0 0
\(187\) −0.537379 + 0.537379i −0.0392971 + 0.0392971i
\(188\) 8.73160 15.3688i 0.636817 1.12088i
\(189\) 0 0
\(190\) 0.438900 + 3.24673i 0.0318411 + 0.235542i
\(191\) 16.3774i 1.18503i 0.805560 + 0.592515i \(0.201865\pi\)
−0.805560 + 0.592515i \(0.798135\pi\)
\(192\) 0 0
\(193\) 17.2782 + 17.2782i 1.24371 + 1.24371i 0.958449 + 0.285265i \(0.0920817\pi\)
0.285265 + 0.958449i \(0.407918\pi\)
\(194\) −11.4740 8.74125i −0.823784 0.627585i
\(195\) 0 0
\(196\) 0.311563 + 1.13132i 0.0222545 + 0.0808088i
\(197\) −0.612096 0.612096i −0.0436100 0.0436100i 0.684965 0.728576i \(-0.259817\pi\)
−0.728576 + 0.684965i \(0.759817\pi\)
\(198\) 0 0
\(199\) 20.8691 1.47937 0.739686 0.672952i \(-0.234974\pi\)
0.739686 + 0.672952i \(0.234974\pi\)
\(200\) 11.0591 4.71621i 0.781995 0.333487i
\(201\) 0 0
\(202\) −1.88860 13.9708i −0.132882 0.982981i
\(203\) −12.2900 12.2900i −0.862587 0.862587i
\(204\) 0 0
\(205\) 0.556224 0.0388484
\(206\) −1.55338 11.4910i −0.108229 0.800618i
\(207\) 0 0
\(208\) −3.84799 13.8994i −0.266810 0.963749i
\(209\) 0.563452 0.0389748
\(210\) 0 0
\(211\) 2.97031 0.204485 0.102242 0.994760i \(-0.467398\pi\)
0.102242 + 0.994760i \(0.467398\pi\)
\(212\) 3.77365 + 13.7026i 0.259175 + 0.941096i
\(213\) 0 0
\(214\) 0.921530 + 6.81694i 0.0629945 + 0.465997i
\(215\) −6.62527 + 6.62527i −0.451840 + 0.451840i
\(216\) 0 0
\(217\) 1.01982 0.0692299
\(218\) 8.11039 10.6459i 0.549305 0.721032i
\(219\) 0 0
\(220\) 0.0967784 + 0.351414i 0.00652480 + 0.0236923i
\(221\) 12.5523 + 3.43871i 0.844362 + 0.231312i
\(222\) 0 0
\(223\) −12.6750 12.6750i −0.848782 0.848782i 0.141199 0.989981i \(-0.454904\pi\)
−0.989981 + 0.141199i \(0.954904\pi\)
\(224\) −15.4809 1.76560i −1.03436 0.117969i
\(225\) 0 0
\(226\) −3.44925 25.5155i −0.229441 1.69727i
\(227\) 15.3983 15.3983i 1.02202 1.02202i 0.0222717 0.999752i \(-0.492910\pi\)
0.999752 0.0222717i \(-0.00708990\pi\)
\(228\) 0 0
\(229\) −4.47509 + 4.47509i −0.295723 + 0.295723i −0.839336 0.543613i \(-0.817056\pi\)
0.543613 + 0.839336i \(0.317056\pi\)
\(230\) 1.51584 1.98973i 0.0999513 0.131199i
\(231\) 0 0
\(232\) 16.4172 7.00122i 1.07784 0.459653i
\(233\) 12.4145i 0.813304i −0.913583 0.406652i \(-0.866696\pi\)
0.913583 0.406652i \(-0.133304\pi\)
\(234\) 0 0
\(235\) 7.65046 0.499061
\(236\) 18.6996 + 10.6240i 1.21724 + 0.691561i
\(237\) 0 0
\(238\) 8.52092 11.1848i 0.552329 0.725001i
\(239\) 4.32760 + 4.32760i 0.279929 + 0.279929i 0.833081 0.553151i \(-0.186575\pi\)
−0.553151 + 0.833081i \(0.686575\pi\)
\(240\) 0 0
\(241\) −4.44913 4.44913i −0.286594 0.286594i 0.549138 0.835732i \(-0.314956\pi\)
−0.835732 + 0.549138i \(0.814956\pi\)
\(242\) −15.3540 + 2.07559i −0.986993 + 0.133424i
\(243\) 0 0
\(244\) −2.94218 10.6834i −0.188354 0.683936i
\(245\) −0.359129 + 0.359129i −0.0229439 + 0.0229439i
\(246\) 0 0
\(247\) −4.77791 8.38346i −0.304011 0.533427i
\(248\) −0.390669 + 0.971630i −0.0248075 + 0.0616986i
\(249\) 0 0
\(250\) 9.00827 + 6.86278i 0.569733 + 0.434041i
\(251\) 19.9908i 1.26181i 0.775862 + 0.630903i \(0.217315\pi\)
−0.775862 + 0.630903i \(0.782685\pi\)
\(252\) 0 0
\(253\) −0.304186 0.304186i −0.0191240 0.0191240i
\(254\) 0.378403 + 2.79921i 0.0237431 + 0.175638i
\(255\) 0 0
\(256\) 7.61253 14.0730i 0.475783 0.879562i
\(257\) 17.5555i 1.09508i 0.836778 + 0.547542i \(0.184436\pi\)
−0.836778 + 0.547542i \(0.815564\pi\)
\(258\) 0 0
\(259\) 6.75511i 0.419742i
\(260\) 4.40794 4.41983i 0.273369 0.274106i
\(261\) 0 0
\(262\) 3.03942 + 22.4839i 0.187776 + 1.38906i
\(263\) 27.6745i 1.70649i 0.521514 + 0.853243i \(0.325367\pi\)
−0.521514 + 0.853243i \(0.674633\pi\)
\(264\) 0 0
\(265\) −4.34977 + 4.34977i −0.267204 + 0.267204i
\(266\) −10.3309 + 1.39655i −0.633428 + 0.0856282i
\(267\) 0 0
\(268\) 1.75132 3.08255i 0.106979 0.188297i
\(269\) 21.7213i 1.32437i −0.749341 0.662185i \(-0.769629\pi\)
0.749341 0.662185i \(-0.230371\pi\)
\(270\) 0 0
\(271\) −12.0894 + 12.0894i −0.734379 + 0.734379i −0.971484 0.237105i \(-0.923801\pi\)
0.237105 + 0.971484i \(0.423801\pi\)
\(272\) 7.39209 + 12.4029i 0.448211 + 0.752036i
\(273\) 0 0
\(274\) 15.2118 19.9674i 0.918979 1.20628i
\(275\) 0.632808 0.632808i 0.0381598 0.0381598i
\(276\) 0 0
\(277\) 11.2590 0.676485 0.338242 0.941059i \(-0.390168\pi\)
0.338242 + 0.941059i \(0.390168\pi\)
\(278\) −0.413835 3.06131i −0.0248202 0.183605i
\(279\) 0 0
\(280\) −2.64543 6.20330i −0.158095 0.370718i
\(281\) −8.00783 8.00783i −0.477707 0.477707i 0.426691 0.904398i \(-0.359679\pi\)
−0.904398 + 0.426691i \(0.859679\pi\)
\(282\) 0 0
\(283\) 20.4299i 1.21443i 0.794537 + 0.607216i \(0.207714\pi\)
−0.794537 + 0.607216i \(0.792286\pi\)
\(284\) 19.2860 + 10.9571i 1.14441 + 0.650187i
\(285\) 0 0
\(286\) −0.651717 0.853076i −0.0385368 0.0504434i
\(287\) 1.76987i 0.104472i
\(288\) 0 0
\(289\) 3.97031 0.233548
\(290\) 6.14478 + 4.68129i 0.360834 + 0.274895i
\(291\) 0 0
\(292\) 14.1058 + 8.01405i 0.825479 + 0.468987i
\(293\) 10.5808 10.5808i 0.618136 0.618136i −0.326917 0.945053i \(-0.606010\pi\)
0.945053 + 0.326917i \(0.106010\pi\)
\(294\) 0 0
\(295\) 9.30852i 0.541963i
\(296\) −6.43591 2.58773i −0.374080 0.150409i
\(297\) 0 0
\(298\) 3.90447 5.12511i 0.226180 0.296890i
\(299\) −1.94650 + 7.10531i −0.112569 + 0.410911i
\(300\) 0 0
\(301\) −21.0812 21.0812i −1.21510 1.21510i
\(302\) 7.56507 + 5.76331i 0.435321 + 0.331641i
\(303\) 0 0
\(304\) 2.62696 10.3777i 0.150667 0.595203i
\(305\) 3.39137 3.39137i 0.194189 0.194189i
\(306\) 0 0
\(307\) −3.60647 3.60647i −0.205832 0.205832i 0.596661 0.802493i \(-0.296494\pi\)
−0.802493 + 0.596661i \(0.796494\pi\)
\(308\) −1.11818 + 0.307943i −0.0637142 + 0.0175467i
\(309\) 0 0
\(310\) −0.449173 + 0.0607202i −0.0255113 + 0.00344868i
\(311\) −9.13650 −0.518084 −0.259042 0.965866i \(-0.583407\pi\)
−0.259042 + 0.965866i \(0.583407\pi\)
\(312\) 0 0
\(313\) 11.1291 0.629055 0.314527 0.949248i \(-0.398154\pi\)
0.314527 + 0.949248i \(0.398154\pi\)
\(314\) −2.74326 + 0.370841i −0.154811 + 0.0209277i
\(315\) 0 0
\(316\) −3.41757 12.4096i −0.192254 0.698095i
\(317\) −9.07790 9.07790i −0.509866 0.509866i 0.404620 0.914485i \(-0.367404\pi\)
−0.914485 + 0.404620i \(0.867404\pi\)
\(318\) 0 0
\(319\) 0.939404 0.939404i 0.0525965 0.0525965i
\(320\) 6.92358 0.144088i 0.387040 0.00805478i
\(321\) 0 0
\(322\) 6.33120 + 4.82331i 0.352824 + 0.268792i
\(323\) 6.83094 + 6.83094i 0.380084 + 0.380084i
\(324\) 0 0
\(325\) −14.7814 4.04936i −0.819925 0.224618i
\(326\) −1.51921 + 1.99415i −0.0841410 + 0.110446i
\(327\) 0 0
\(328\) −1.68624 0.677998i −0.0931072 0.0374362i
\(329\) 24.3433i 1.34209i
\(330\) 0 0
\(331\) 4.54016 4.54016i 0.249550 0.249550i −0.571236 0.820786i \(-0.693536\pi\)
0.820786 + 0.571236i \(0.193536\pi\)
\(332\) −4.21548 + 7.41980i −0.231354 + 0.407215i
\(333\) 0 0
\(334\) 2.20073 + 1.67659i 0.120419 + 0.0917387i
\(335\) 1.53447 0.0838372
\(336\) 0 0
\(337\) 29.5600i 1.61023i 0.593116 + 0.805117i \(0.297898\pi\)
−0.593116 + 0.805117i \(0.702102\pi\)
\(338\) −7.16632 + 16.9306i −0.389796 + 0.920901i
\(339\) 0 0
\(340\) −3.08704 + 5.43360i −0.167418 + 0.294678i
\(341\) 0.0779517i 0.00422132i
\(342\) 0 0
\(343\) 12.4909 + 12.4909i 0.674443 + 0.674443i
\(344\) 28.1608 12.0093i 1.51833 0.647500i
\(345\) 0 0
\(346\) −4.22503 31.2544i −0.227139 1.68024i
\(347\) 7.48795 0.401974 0.200987 0.979594i \(-0.435585\pi\)
0.200987 + 0.979594i \(0.435585\pi\)
\(348\) 0 0
\(349\) −3.45262 + 3.45262i −0.184815 + 0.184815i −0.793450 0.608635i \(-0.791717\pi\)
0.608635 + 0.793450i \(0.291717\pi\)
\(350\) −10.0341 + 13.1710i −0.536344 + 0.704019i
\(351\) 0 0
\(352\) 0.134956 1.18331i 0.00719320 0.0630705i
\(353\) 13.1464 13.1464i 0.699710 0.699710i −0.264638 0.964348i \(-0.585252\pi\)
0.964348 + 0.264638i \(0.0852524\pi\)
\(354\) 0 0
\(355\) 9.60044i 0.509539i
\(356\) −17.5464 9.96879i −0.929958 0.528345i
\(357\) 0 0
\(358\) −30.9406 + 4.18262i −1.63526 + 0.221059i
\(359\) 13.2695 13.2695i 0.700339 0.700339i −0.264144 0.964483i \(-0.585089\pi\)
0.964483 + 0.264144i \(0.0850894\pi\)
\(360\) 0 0
\(361\) 11.8376i 0.623033i
\(362\) −0.757775 5.60558i −0.0398278 0.294623i
\(363\) 0 0
\(364\) 14.0636 + 14.0258i 0.737135 + 0.735153i
\(365\) 7.02176i 0.367536i
\(366\) 0 0
\(367\) 15.9191i 0.830973i −0.909599 0.415486i \(-0.863611\pi\)
0.909599 0.415486i \(-0.136389\pi\)
\(368\) −7.02072 + 4.18433i −0.365981 + 0.218123i
\(369\) 0 0
\(370\) −0.402200 2.97525i −0.0209094 0.154676i
\(371\) −13.8407 13.8407i −0.718574 0.718574i
\(372\) 0 0
\(373\) 25.0250i 1.29574i 0.761749 + 0.647872i \(0.224341\pi\)
−0.761749 + 0.647872i \(0.775659\pi\)
\(374\) 0.854927 + 0.651310i 0.0442072 + 0.0336785i
\(375\) 0 0
\(376\) −23.1930 9.32537i −1.19609 0.480919i
\(377\) −21.9430 6.01128i −1.13012 0.309596i
\(378\) 0 0
\(379\) −24.7631 + 24.7631i −1.27199 + 1.27199i −0.326953 + 0.945040i \(0.606022\pi\)
−0.945040 + 0.326953i \(0.893978\pi\)
\(380\) 4.46703 1.23021i 0.229154 0.0631083i
\(381\) 0 0
\(382\) 22.9524 3.10276i 1.17435 0.158751i
\(383\) −22.3395 22.3395i −1.14150 1.14150i −0.988177 0.153318i \(-0.951004\pi\)
−0.153318 0.988177i \(-0.548996\pi\)
\(384\) 0 0
\(385\) −0.354957 0.354957i −0.0180903 0.0180903i
\(386\) 20.9414 27.4883i 1.06589 1.39912i
\(387\) 0 0
\(388\) −10.0768 + 17.7365i −0.511571 + 0.900433i
\(389\) −8.16460 −0.413961 −0.206981 0.978345i \(-0.566364\pi\)
−0.206981 + 0.978345i \(0.566364\pi\)
\(390\) 0 0
\(391\) 7.37552i 0.372996i
\(392\) 1.52649 0.650979i 0.0770992 0.0328794i
\(393\) 0 0
\(394\) −0.741868 + 0.973796i −0.0373748 + 0.0490591i
\(395\) 3.93933 3.93933i 0.198209 0.198209i
\(396\) 0 0
\(397\) 3.64644 3.64644i 0.183010 0.183010i −0.609656 0.792666i \(-0.708693\pi\)
0.792666 + 0.609656i \(0.208693\pi\)
\(398\) −3.95372 29.2474i −0.198182 1.46604i
\(399\) 0 0
\(400\) −8.70479 14.6054i −0.435240 0.730272i
\(401\) 15.8904 + 15.8904i 0.793526 + 0.793526i 0.982066 0.188539i \(-0.0603753\pi\)
−0.188539 + 0.982066i \(0.560375\pi\)
\(402\) 0 0
\(403\) 1.15982 0.661007i 0.0577749 0.0329271i
\(404\) −19.2218 + 5.29362i −0.956319 + 0.263368i
\(405\) 0 0
\(406\) −14.8956 + 19.5523i −0.739256 + 0.970367i
\(407\) −0.516338 −0.0255939
\(408\) 0 0
\(409\) −23.5920 + 23.5920i −1.16655 + 1.16655i −0.183534 + 0.983013i \(0.558754\pi\)
−0.983013 + 0.183534i \(0.941246\pi\)
\(410\) −0.105379 0.779530i −0.00520428 0.0384982i
\(411\) 0 0
\(412\) −15.8100 + 4.35403i −0.778903 + 0.214508i
\(413\) −29.6192 −1.45747
\(414\) 0 0
\(415\) −3.69352 −0.181308
\(416\) −18.7505 + 8.02612i −0.919319 + 0.393513i
\(417\) 0 0
\(418\) −0.106748 0.789659i −0.00522121 0.0386235i
\(419\) −0.205279 −0.0100285 −0.00501426 0.999987i \(-0.501596\pi\)
−0.00501426 + 0.999987i \(0.501596\pi\)
\(420\) 0 0
\(421\) 5.11031 + 5.11031i 0.249061 + 0.249061i 0.820585 0.571524i \(-0.193648\pi\)
−0.571524 + 0.820585i \(0.693648\pi\)
\(422\) −0.562735 4.16279i −0.0273935 0.202641i
\(423\) 0 0
\(424\) 18.4887 7.88464i 0.897893 0.382912i
\(425\) 15.3435 0.744270
\(426\) 0 0
\(427\) 10.7911 + 10.7911i 0.522220 + 0.522220i
\(428\) 9.37913 2.58299i 0.453357 0.124853i
\(429\) 0 0
\(430\) 10.5403 + 8.02991i 0.508297 + 0.387237i
\(431\) −15.7282 15.7282i −0.757599 0.757599i 0.218286 0.975885i \(-0.429954\pi\)
−0.975885 + 0.218286i \(0.929954\pi\)
\(432\) 0 0
\(433\) 3.59682i 0.172852i 0.996258 + 0.0864261i \(0.0275446\pi\)
−0.996258 + 0.0864261i \(0.972455\pi\)
\(434\) −0.193208 1.42924i −0.00927430 0.0686059i
\(435\) 0 0
\(436\) −16.4564 9.34954i −0.788120 0.447762i
\(437\) −3.86669 + 3.86669i −0.184969 + 0.184969i
\(438\) 0 0
\(439\) 34.9806 1.66953 0.834766 0.550604i \(-0.185603\pi\)
0.834766 + 0.550604i \(0.185603\pi\)
\(440\) 0.474160 0.202208i 0.0226047 0.00963990i
\(441\) 0 0
\(442\) 2.44115 18.2432i 0.116113 0.867738i
\(443\) −19.1553 −0.910095 −0.455048 0.890467i \(-0.650378\pi\)
−0.455048 + 0.890467i \(0.650378\pi\)
\(444\) 0 0
\(445\) 8.73447i 0.414054i
\(446\) −15.3623 + 20.1649i −0.727425 + 0.954838i
\(447\) 0 0
\(448\) 0.458481 + 22.0304i 0.0216612 + 1.04084i
\(449\) −4.05676 4.05676i −0.191450 0.191450i 0.604872 0.796322i \(-0.293224\pi\)
−0.796322 + 0.604872i \(0.793224\pi\)
\(450\) 0 0
\(451\) −0.135283 −0.00637024
\(452\) −35.1057 + 9.66801i −1.65123 + 0.454745i
\(453\) 0 0
\(454\) −24.4975 18.6630i −1.14973 0.875897i
\(455\) −2.27138 + 8.29124i −0.106484 + 0.388699i
\(456\) 0 0
\(457\) 1.87342 1.87342i 0.0876350 0.0876350i −0.661930 0.749565i \(-0.730263\pi\)
0.749565 + 0.661930i \(0.230263\pi\)
\(458\) 7.11951 + 5.42387i 0.332673 + 0.253441i
\(459\) 0 0
\(460\) −3.07571 1.74743i −0.143406 0.0814745i
\(461\) 18.0653 + 18.0653i 0.841387 + 0.841387i 0.989039 0.147652i \(-0.0471717\pi\)
−0.147652 + 0.989039i \(0.547172\pi\)
\(462\) 0 0
\(463\) −22.9474 + 22.9474i −1.06646 + 1.06646i −0.0688283 + 0.997629i \(0.521926\pi\)
−0.997629 + 0.0688283i \(0.978074\pi\)
\(464\) −12.9223 21.6818i −0.599902 1.00655i
\(465\) 0 0
\(466\) −17.3986 + 2.35198i −0.805973 + 0.108953i
\(467\) 33.2007i 1.53634i 0.640244 + 0.768172i \(0.278833\pi\)
−0.640244 + 0.768172i \(0.721167\pi\)
\(468\) 0 0
\(469\) 4.88260i 0.225458i
\(470\) −1.44941 10.7219i −0.0668561 0.494563i
\(471\) 0 0
\(472\) 11.3464 28.2196i 0.522262 1.29891i
\(473\) 1.61138 1.61138i 0.0740913 0.0740913i
\(474\) 0 0
\(475\) −8.04399 8.04399i −0.369084 0.369084i
\(476\) −17.2894 9.82278i −0.792458 0.450226i
\(477\) 0 0
\(478\) 5.24511 6.88487i 0.239906 0.314906i
\(479\) 27.4785 27.4785i 1.25553 1.25553i 0.302320 0.953207i \(-0.402239\pi\)
0.953207 0.302320i \(-0.0977611\pi\)
\(480\) 0 0
\(481\) 4.37840 + 7.68246i 0.199638 + 0.350290i
\(482\) −5.39240 + 7.07821i −0.245617 + 0.322404i
\(483\) 0 0
\(484\) 5.81774 + 21.1249i 0.264443 + 0.960222i
\(485\) −8.82909 −0.400908
\(486\) 0 0
\(487\) 3.13453 + 3.13453i 0.142039 + 0.142039i 0.774551 0.632512i \(-0.217976\pi\)
−0.632512 + 0.774551i \(0.717976\pi\)
\(488\) −14.4150 + 6.14738i −0.652539 + 0.278279i
\(489\) 0 0
\(490\) 0.571346 + 0.435270i 0.0258108 + 0.0196635i
\(491\) 17.6844i 0.798085i −0.916932 0.399043i \(-0.869343\pi\)
0.916932 0.399043i \(-0.130657\pi\)
\(492\) 0 0
\(493\) 22.7775 1.02585
\(494\) −10.8439 + 8.28436i −0.487892 + 0.372731i
\(495\) 0 0
\(496\) 1.43572 + 0.363431i 0.0644658 + 0.0163186i
\(497\) −30.5481 −1.37027
\(498\) 0 0
\(499\) −3.09631 + 3.09631i −0.138610 + 0.138610i −0.773007 0.634397i \(-0.781248\pi\)
0.634397 + 0.773007i \(0.281248\pi\)
\(500\) 7.91131 13.9250i 0.353805 0.622743i
\(501\) 0 0
\(502\) 28.0164 3.78732i 1.25043 0.169036i
\(503\) 25.5344i 1.13852i −0.822156 0.569262i \(-0.807229\pi\)
0.822156 0.569262i \(-0.192771\pi\)
\(504\) 0 0
\(505\) −6.10180 6.10180i −0.271526 0.271526i
\(506\) −0.368677 + 0.483936i −0.0163897 + 0.0215136i
\(507\) 0 0
\(508\) 3.85130 1.06064i 0.170874 0.0470582i
\(509\) −6.27440 6.27440i −0.278108 0.278108i 0.554245 0.832353i \(-0.313007\pi\)
−0.832353 + 0.554245i \(0.813007\pi\)
\(510\) 0 0
\(511\) −22.3428 −0.988389
\(512\) −21.1651 8.00253i −0.935372 0.353665i
\(513\) 0 0
\(514\) 24.6035 3.32596i 1.08521 0.146702i
\(515\) −5.01875 5.01875i −0.221153 0.221153i
\(516\) 0 0
\(517\) −1.86072 −0.0818346
\(518\) 9.46706 1.27978i 0.415959 0.0562303i
\(519\) 0 0
\(520\) −7.02934 5.34023i −0.308257 0.234185i
\(521\) −11.7610 −0.515258 −0.257629 0.966244i \(-0.582941\pi\)
−0.257629 + 0.966244i \(0.582941\pi\)
\(522\) 0 0
\(523\) 26.1848 1.14498 0.572491 0.819911i \(-0.305977\pi\)
0.572491 + 0.819911i \(0.305977\pi\)
\(524\) 30.9346 8.51929i 1.35138 0.372167i
\(525\) 0 0
\(526\) 38.7849 5.24304i 1.69110 0.228607i
\(527\) −0.945037 + 0.945037i −0.0411664 + 0.0411664i
\(528\) 0 0
\(529\) −18.8251 −0.818480
\(530\) 6.92013 + 5.27197i 0.300591 + 0.229000i
\(531\) 0 0
\(532\) 3.91445 + 14.2138i 0.169713 + 0.616247i
\(533\) 1.14716 + 2.01285i 0.0496891 + 0.0871860i
\(534\) 0 0
\(535\) 2.97733 + 2.97733i 0.128721 + 0.128721i
\(536\) −4.65188 1.87041i −0.200931 0.0807895i
\(537\) 0 0
\(538\) −30.4416 + 4.11517i −1.31243 + 0.177418i
\(539\) 0.0873465 0.0873465i 0.00376228 0.00376228i
\(540\) 0 0
\(541\) −31.8203 + 31.8203i −1.36806 + 1.36806i −0.504859 + 0.863202i \(0.668456\pi\)
−0.863202 + 0.504859i \(0.831544\pi\)
\(542\) 19.2333 + 14.6525i 0.826140 + 0.629379i
\(543\) 0 0
\(544\) 15.9818 12.7095i 0.685214 0.544917i
\(545\) 8.19189i 0.350902i
\(546\) 0 0
\(547\) −8.93392 −0.381987 −0.190993 0.981591i \(-0.561171\pi\)
−0.190993 + 0.981591i \(0.561171\pi\)
\(548\) −30.8656 17.5359i −1.31851 0.749098i
\(549\) 0 0
\(550\) −1.00675 0.766971i −0.0429278 0.0327038i
\(551\) −11.9413 11.9413i −0.508717 0.508717i
\(552\) 0 0
\(553\) 12.5347 + 12.5347i 0.533031 + 0.533031i
\(554\) −2.13305 15.7790i −0.0906245 0.670387i
\(555\) 0 0
\(556\) −4.21192 + 1.15995i −0.178625 + 0.0491929i
\(557\) −23.9560 + 23.9560i −1.01505 + 1.01505i −0.0151623 + 0.999885i \(0.504826\pi\)
−0.999885 + 0.0151623i \(0.995174\pi\)
\(558\) 0 0
\(559\) −37.6393 10.3113i −1.59197 0.436120i
\(560\) −8.19253 + 4.88272i −0.346197 + 0.206333i
\(561\) 0 0
\(562\) −9.70559 + 12.7398i −0.409406 + 0.537397i
\(563\) 30.6698i 1.29258i 0.763093 + 0.646289i \(0.223680\pi\)
−0.763093 + 0.646289i \(0.776320\pi\)
\(564\) 0 0
\(565\) −11.1440 11.1440i −0.468832 0.468832i
\(566\) 28.6318 3.87052i 1.20349 0.162690i
\(567\) 0 0
\(568\) 11.7023 29.1046i 0.491016 1.22120i
\(569\) 0.0185644i 0.000778260i −1.00000 0.000389130i \(-0.999876\pi\)
1.00000 0.000389130i \(-0.000123864\pi\)
\(570\) 0 0
\(571\) 32.0060i 1.33941i 0.742627 + 0.669705i \(0.233580\pi\)
−0.742627 + 0.669705i \(0.766420\pi\)
\(572\) −1.07209 + 1.07498i −0.0448262 + 0.0449471i
\(573\) 0 0
\(574\) 2.48042 0.335309i 0.103531 0.0139955i
\(575\) 8.68528i 0.362201i
\(576\) 0 0
\(577\) −0.107901 + 0.107901i −0.00449198 + 0.00449198i −0.709349 0.704857i \(-0.751011\pi\)
0.704857 + 0.709349i \(0.251011\pi\)
\(578\) −0.752189 5.56425i −0.0312869 0.231442i
\(579\) 0 0
\(580\) 5.39652 9.49859i 0.224078 0.394407i
\(581\) 11.7526i 0.487579i
\(582\) 0 0
\(583\) 1.05794 1.05794i 0.0438153 0.0438153i
\(584\) 8.55903 21.2871i 0.354175 0.880865i
\(585\) 0 0
\(586\) −16.8332 12.8241i −0.695372 0.529757i
\(587\) −3.55046 + 3.55046i −0.146543 + 0.146543i −0.776572 0.630029i \(-0.783043\pi\)
0.630029 + 0.776572i \(0.283043\pi\)
\(588\) 0 0
\(589\) 0.990889 0.0408289
\(590\) 13.0456 1.76353i 0.537078 0.0726034i
\(591\) 0 0
\(592\) −2.40731 + 9.50997i −0.0989397 + 0.390857i
\(593\) −28.6328 28.6328i −1.17581 1.17581i −0.980802 0.195008i \(-0.937527\pi\)
−0.195008 0.980802i \(-0.562473\pi\)
\(594\) 0 0
\(595\) 8.60654i 0.352834i
\(596\) −7.92238 4.50101i −0.324513 0.184369i
\(597\) 0 0
\(598\) 10.3266 + 1.38182i 0.422287 + 0.0565069i
\(599\) 8.64766i 0.353334i 0.984271 + 0.176667i \(0.0565316\pi\)
−0.984271 + 0.176667i \(0.943468\pi\)
\(600\) 0 0
\(601\) 32.8764 1.34106 0.670529 0.741884i \(-0.266067\pi\)
0.670529 + 0.741884i \(0.266067\pi\)
\(602\) −25.5507 + 33.5386i −1.04137 + 1.36693i
\(603\) 0 0
\(604\) 6.64385 11.6941i 0.270335 0.475825i
\(605\) −6.70592 + 6.70592i −0.272635 + 0.272635i
\(606\) 0 0
\(607\) 15.2968i 0.620877i 0.950593 + 0.310439i \(0.100476\pi\)
−0.950593 + 0.310439i \(0.899524\pi\)
\(608\) −15.0417 1.71551i −0.610022 0.0695731i
\(609\) 0 0
\(610\) −5.39539 4.11038i −0.218453 0.166424i
\(611\) 15.7784 + 27.6852i 0.638326 + 1.12002i
\(612\) 0 0
\(613\) −12.2996 12.2996i −0.496774 0.496774i 0.413658 0.910432i \(-0.364251\pi\)
−0.910432 + 0.413658i \(0.864251\pi\)
\(614\) −4.37109 + 5.73761i −0.176403 + 0.231551i
\(615\) 0 0
\(616\) 0.643415 + 1.50875i 0.0259239 + 0.0607892i
\(617\) 25.8120 25.8120i 1.03915 1.03915i 0.0399514 0.999202i \(-0.487280\pi\)
0.999202 0.0399514i \(-0.0127203\pi\)
\(618\) 0 0
\(619\) −13.5295 13.5295i −0.543795 0.543795i 0.380844 0.924639i \(-0.375633\pi\)
−0.924639 + 0.380844i \(0.875633\pi\)
\(620\) 0.170195 + 0.617997i 0.00683518 + 0.0248194i
\(621\) 0 0
\(622\) 1.73094 + 12.8045i 0.0694044 + 0.513414i
\(623\) 27.7926 1.11349
\(624\) 0 0
\(625\) −14.3216 −0.572866
\(626\) −2.10845 15.5971i −0.0842706 0.623385i
\(627\) 0 0
\(628\) 1.03944 + 3.77433i 0.0414782 + 0.150612i
\(629\) −6.25976 6.25976i −0.249593 0.249593i
\(630\) 0 0
\(631\) 18.1643 18.1643i 0.723110 0.723110i −0.246128 0.969237i \(-0.579158\pi\)
0.969237 + 0.246128i \(0.0791583\pi\)
\(632\) −16.7442 + 7.14066i −0.666048 + 0.284040i
\(633\) 0 0
\(634\) −11.0025 + 14.4422i −0.436966 + 0.573573i
\(635\) 1.22257 + 1.22257i 0.0485160 + 0.0485160i
\(636\) 0 0
\(637\) −2.04028 0.558933i −0.0808387 0.0221457i
\(638\) −1.49452 1.13857i −0.0591685 0.0450764i
\(639\) 0 0
\(640\) −1.51363 9.67586i −0.0598315 0.382472i
\(641\) 5.37880i 0.212450i 0.994342 + 0.106225i \(0.0338764\pi\)
−0.994342 + 0.106225i \(0.966124\pi\)
\(642\) 0 0
\(643\) −7.21706 + 7.21706i −0.284613 + 0.284613i −0.834946 0.550332i \(-0.814501\pi\)
0.550332 + 0.834946i \(0.314501\pi\)
\(644\) 5.56023 9.78675i 0.219104 0.385652i
\(645\) 0 0
\(646\) 8.27919 10.8675i 0.325740 0.427575i
\(647\) 10.0155 0.393751 0.196876 0.980428i \(-0.436920\pi\)
0.196876 + 0.980428i \(0.436920\pi\)
\(648\) 0 0
\(649\) 2.26399i 0.0888695i
\(650\) −2.87465 + 21.4828i −0.112753 + 0.842625i
\(651\) 0 0
\(652\) 3.08255 + 1.75132i 0.120722 + 0.0685869i
\(653\) 36.0033i 1.40892i −0.709745 0.704459i \(-0.751190\pi\)
0.709745 0.704459i \(-0.248810\pi\)
\(654\) 0 0
\(655\) 9.81992 + 9.81992i 0.383696 + 0.383696i
\(656\) −0.630727 + 2.49166i −0.0246257 + 0.0972830i
\(657\) 0 0
\(658\) 34.1164 4.61193i 1.32999 0.179792i
\(659\) 12.2051 0.475442 0.237721 0.971333i \(-0.423600\pi\)
0.237721 + 0.971333i \(0.423600\pi\)
\(660\) 0 0
\(661\) 5.59687 5.59687i 0.217693 0.217693i −0.589833 0.807526i \(-0.700806\pi\)
0.807526 + 0.589833i \(0.200806\pi\)
\(662\) −7.22303 5.50273i −0.280731 0.213870i
\(663\) 0 0
\(664\) 11.1972 + 4.50214i 0.434537 + 0.174717i
\(665\) −4.51206 + 4.51206i −0.174970 + 0.174970i
\(666\) 0 0
\(667\) 12.8933i 0.499231i
\(668\) 1.93274 3.40188i 0.0747801 0.131623i
\(669\) 0 0
\(670\) −0.290711 2.15051i −0.0112311 0.0830815i
\(671\) −0.824838 + 0.824838i −0.0318425 + 0.0318425i
\(672\) 0 0
\(673\) 31.9994i 1.23349i −0.787164 0.616744i \(-0.788452\pi\)
0.787164 0.616744i \(-0.211548\pi\)
\(674\) 41.4273 5.60024i 1.59572 0.215713i
\(675\) 0 0
\(676\) 25.0853 + 6.83580i 0.964819 + 0.262916i
\(677\) 44.2730i 1.70155i 0.525531 + 0.850775i \(0.323867\pi\)
−0.525531 + 0.850775i \(0.676133\pi\)
\(678\) 0 0
\(679\) 28.0937i 1.07814i
\(680\) 8.19985 + 3.29697i 0.314450 + 0.126433i
\(681\) 0 0
\(682\) 0.109247 0.0147682i 0.00418327 0.000565504i
\(683\) 31.4933 + 31.4933i 1.20506 + 1.20506i 0.972608 + 0.232450i \(0.0746743\pi\)
0.232450 + 0.972608i \(0.425326\pi\)
\(684\) 0 0
\(685\) 15.3647i 0.587054i
\(686\) 15.1391 19.8719i 0.578013 0.758714i
\(687\) 0 0
\(688\) −22.1659 37.1912i −0.845065 1.41790i
\(689\) −24.7118 6.76978i −0.941444 0.257908i
\(690\) 0 0
\(691\) 24.6092 24.6092i 0.936177 0.936177i −0.0619046 0.998082i \(-0.519717\pi\)
0.998082 + 0.0619046i \(0.0197175\pi\)
\(692\) −43.0015 + 11.8425i −1.63467 + 0.450184i
\(693\) 0 0
\(694\) −1.41862 10.4941i −0.0538500 0.398351i
\(695\) −1.33704 1.33704i −0.0507168 0.0507168i
\(696\) 0 0
\(697\) −1.64009 1.64009i −0.0621228 0.0621228i
\(698\) 5.49285 + 4.18462i 0.207907 + 0.158390i
\(699\) 0 0
\(700\) 20.3597 + 11.5671i 0.769524 + 0.437196i
\(701\) 27.2407 1.02887 0.514434 0.857530i \(-0.328002\pi\)
0.514434 + 0.857530i \(0.328002\pi\)
\(702\) 0 0
\(703\) 6.56348i 0.247546i
\(704\) −1.68393 + 0.0350447i −0.0634656 + 0.00132080i
\(705\) 0 0
\(706\) −20.9148 15.9336i −0.787139 0.599667i
\(707\) 19.4156 19.4156i 0.730198 0.730198i
\(708\) 0 0
\(709\) 32.0653 32.0653i 1.20424 1.20424i 0.231374 0.972865i \(-0.425678\pi\)
0.972865 0.231374i \(-0.0743220\pi\)
\(710\) 13.4547 1.81884i 0.504946 0.0682597i
\(711\) 0 0
\(712\) −10.6467 + 26.4793i −0.399002 + 0.992354i
\(713\) −0.534943 0.534943i −0.0200338 0.0200338i
\(714\) 0 0
\(715\) −0.633755 0.173617i −0.0237011 0.00649289i
\(716\) 11.7236 + 42.5698i 0.438132 + 1.59091i
\(717\) 0 0
\(718\) −21.1108 16.0828i −0.787847 0.600207i
\(719\) 9.97340 0.371945 0.185973 0.982555i \(-0.440456\pi\)
0.185973 + 0.982555i \(0.440456\pi\)
\(720\) 0 0
\(721\) 15.9694 15.9694i 0.594731 0.594731i
\(722\) 16.5900 2.24268i 0.617417 0.0834639i
\(723\) 0 0
\(724\) −7.71247 + 2.12399i −0.286632 + 0.0789376i
\(725\) −26.8223 −0.996157
\(726\) 0 0
\(727\) 47.6868 1.76861 0.884303 0.466914i \(-0.154634\pi\)
0.884303 + 0.466914i \(0.154634\pi\)
\(728\) 16.9923 22.3669i 0.629777 0.828974i
\(729\) 0 0
\(730\) 9.84076 1.33030i 0.364223 0.0492365i
\(731\) 39.0707 1.44508
\(732\) 0 0
\(733\) 33.1754 + 33.1754i 1.22536 + 1.22536i 0.965699 + 0.259662i \(0.0836113\pi\)
0.259662 + 0.965699i \(0.416389\pi\)
\(734\) −22.3101 + 3.01594i −0.823483 + 0.111320i
\(735\) 0 0
\(736\) 7.19430 + 9.04657i 0.265185 + 0.333461i
\(737\) −0.373210 −0.0137474
\(738\) 0 0
\(739\) −22.1483 22.1483i −0.814739 0.814739i 0.170601 0.985340i \(-0.445429\pi\)
−0.985340 + 0.170601i \(0.945429\pi\)
\(740\) −4.09351 + 1.12734i −0.150480 + 0.0414419i
\(741\) 0 0
\(742\) −16.7751 + 22.0195i −0.615834 + 0.808360i
\(743\) 6.55392 + 6.55392i 0.240440 + 0.240440i 0.817032 0.576592i \(-0.195618\pi\)
−0.576592 + 0.817032i \(0.695618\pi\)
\(744\) 0 0
\(745\) 3.94371i 0.144486i
\(746\) 35.0717 4.74107i 1.28406 0.173583i
\(747\) 0 0
\(748\) 0.750821 1.32154i 0.0274527 0.0483204i
\(749\) −9.47369 + 9.47369i −0.346161 + 0.346161i
\(750\) 0 0
\(751\) −28.8367 −1.05227 −0.526133 0.850402i \(-0.676358\pi\)
−0.526133 + 0.850402i \(0.676358\pi\)
\(752\) −8.67519 + 34.2710i −0.316352 + 1.24973i
\(753\) 0 0
\(754\) −4.26742 + 31.8913i −0.155410 + 1.16141i
\(755\) 5.82122 0.211856
\(756\) 0 0
\(757\) 24.2191i 0.880257i −0.897935 0.440129i \(-0.854933\pi\)
0.897935 0.440129i \(-0.145067\pi\)
\(758\) 39.3961 + 30.0132i 1.43093 + 1.09013i
\(759\) 0 0
\(760\) −2.57039 6.02732i −0.0932377 0.218634i
\(761\) −7.48899 7.48899i −0.271476 0.271476i 0.558218 0.829694i \(-0.311485\pi\)
−0.829694 + 0.558218i \(0.811485\pi\)
\(762\) 0 0
\(763\) 26.0661 0.943658
\(764\) −8.69683 31.5792i −0.314640 1.14250i
\(765\) 0 0
\(766\) −27.0758 + 35.5403i −0.978287 + 1.28412i
\(767\) −33.6854 + 19.1980i −1.21631 + 0.693200i
\(768\) 0 0
\(769\) 5.21737 5.21737i 0.188143 0.188143i −0.606750 0.794893i \(-0.707527\pi\)
0.794893 + 0.606750i \(0.207527\pi\)
\(770\) −0.430212 + 0.564708i −0.0155038 + 0.0203506i
\(771\) 0 0
\(772\) −42.4913 24.1410i −1.52930 0.868852i
\(773\) 11.7692 + 11.7692i 0.423310 + 0.423310i 0.886342 0.463032i \(-0.153238\pi\)
−0.463032 + 0.886342i \(0.653238\pi\)
\(774\) 0 0
\(775\) 1.11286 1.11286i 0.0399750 0.0399750i
\(776\) 26.7661 + 10.7620i 0.960848 + 0.386334i
\(777\) 0 0
\(778\) 1.54681 + 11.4424i 0.0554558 + 0.410230i
\(779\) 1.71967i 0.0616134i
\(780\) 0 0
\(781\) 2.33499i 0.0835526i
\(782\) −10.3365 + 1.39732i −0.369634 + 0.0499680i
\(783\) 0 0
\(784\) −1.20152 2.01599i −0.0429115 0.0719995i
\(785\) −1.19813 + 1.19813i −0.0427631 + 0.0427631i
\(786\) 0 0
\(787\) 15.4380 + 15.4380i 0.550307 + 0.550307i 0.926529 0.376222i \(-0.122777\pi\)
−0.376222 + 0.926529i \(0.622777\pi\)
\(788\) 1.50529 + 0.855214i 0.0536238 + 0.0304657i
\(789\) 0 0
\(790\) −6.26716 4.77452i −0.222975 0.169870i
\(791\) 35.4596 35.4596i 1.26080 1.26080i
\(792\) 0 0
\(793\) 19.2669 + 5.27816i 0.684189 + 0.187433i
\(794\) −5.80119 4.41953i −0.205877 0.156843i
\(795\) 0 0
\(796\) −40.2401 + 11.0820i −1.42627 + 0.392792i
\(797\) 5.65413 0.200279 0.100140 0.994973i \(-0.468071\pi\)
0.100140 + 0.994973i \(0.468071\pi\)
\(798\) 0 0
\(799\) −22.5582 22.5582i −0.798053 0.798053i
\(800\) −18.8199 + 14.9665i −0.665383 + 0.529146i
\(801\) 0 0
\(802\) 19.2593 25.2803i 0.680070 0.892677i
\(803\) 1.70781i 0.0602674i
\(804\) 0 0
\(805\) 4.87177 0.171707
\(806\) −1.14611 1.50022i −0.0403701 0.0528431i
\(807\) 0 0
\(808\) 11.0605 + 25.9358i 0.389106 + 0.912418i
\(809\) −48.6272 −1.70964 −0.854820 0.518925i \(-0.826332\pi\)
−0.854820 + 0.518925i \(0.826332\pi\)
\(810\) 0 0
\(811\) 14.5781 14.5781i 0.511907 0.511907i −0.403203 0.915110i \(-0.632103\pi\)
0.915110 + 0.403203i \(0.132103\pi\)
\(812\) 30.2240 + 17.1714i 1.06065 + 0.602599i
\(813\) 0 0
\(814\) 0.0978221 + 0.723631i 0.00342866 + 0.0253632i
\(815\) 1.53447i 0.0537502i
\(816\) 0 0
\(817\) −20.4832 20.4832i −0.716616 0.716616i
\(818\) 37.5329 + 28.5938i 1.31231 + 0.999758i
\(819\) 0 0
\(820\) −1.07252 + 0.295369i −0.0374540 + 0.0103147i
\(821\) −6.68836 6.68836i −0.233425 0.233425i 0.580695 0.814121i \(-0.302781\pi\)
−0.814121 + 0.580695i \(0.802781\pi\)
\(822\) 0 0
\(823\) 25.4807 0.888201 0.444100 0.895977i \(-0.353523\pi\)
0.444100 + 0.895977i \(0.353523\pi\)
\(824\) 9.09728 + 21.3323i 0.316919 + 0.743146i
\(825\) 0 0
\(826\) 5.61146 + 41.5103i 0.195248 + 1.44433i
\(827\) 0.138614 + 0.138614i 0.00482008 + 0.00482008i 0.709513 0.704693i \(-0.248915\pi\)
−0.704693 + 0.709513i \(0.748915\pi\)
\(828\) 0 0
\(829\) 29.9167 1.03905 0.519525 0.854455i \(-0.326109\pi\)
0.519525 + 0.854455i \(0.326109\pi\)
\(830\) 0.699751 + 5.17635i 0.0242887 + 0.179674i
\(831\) 0 0
\(832\) 14.8007 + 24.7576i 0.513121 + 0.858316i
\(833\) 2.11787 0.0733797
\(834\) 0 0
\(835\) 1.69343 0.0586037
\(836\) −1.08646 + 0.299207i −0.0375759 + 0.0103483i
\(837\) 0 0
\(838\) 0.0388907 + 0.287691i 0.00134346 + 0.00993812i
\(839\) 27.4026 27.4026i 0.946042 0.946042i −0.0525750 0.998617i \(-0.516743\pi\)
0.998617 + 0.0525750i \(0.0167428\pi\)
\(840\) 0 0
\(841\) −10.8178 −0.373028
\(842\) 6.19376 8.13010i 0.213451 0.280182i
\(843\) 0 0
\(844\) −5.72740 + 1.57731i −0.197145 + 0.0542932i
\(845\) 2.79086 + 10.9017i 0.0960084 + 0.375029i
\(846\) 0 0
\(847\) −21.3379 21.3379i −0.733178 0.733178i
\(848\) −14.5528 24.4176i −0.499745 0.838503i
\(849\) 0 0
\(850\) −2.90688 21.5034i −0.0997053 0.737562i
\(851\) 3.54337 3.54337i 0.121465 0.121465i
\(852\) 0 0
\(853\) −29.8041 + 29.8041i −1.02047 + 1.02047i −0.0206867 + 0.999786i \(0.506585\pi\)
−0.999786 + 0.0206867i \(0.993415\pi\)
\(854\) 13.0790 17.1678i 0.447554 0.587471i
\(855\) 0 0
\(856\) −5.39687 12.6552i −0.184461 0.432545i
\(857\) 11.7552i 0.401551i −0.979637 0.200775i \(-0.935654\pi\)
0.979637 0.200775i \(-0.0643461\pi\)
\(858\) 0 0
\(859\) −46.2378 −1.57761 −0.788806 0.614642i \(-0.789300\pi\)
−0.788806 + 0.614642i \(0.789300\pi\)
\(860\) 9.25676 16.2931i 0.315653 0.555591i
\(861\) 0 0
\(862\) −19.0627 + 25.0223i −0.649280 + 0.852261i
\(863\) 37.0232 + 37.0232i 1.26029 + 1.26029i 0.950954 + 0.309332i \(0.100105\pi\)
0.309332 + 0.950954i \(0.399895\pi\)
\(864\) 0 0
\(865\) −13.6505 13.6505i −0.464130 0.464130i
\(866\) 5.04082 0.681430i 0.171294 0.0231559i
\(867\) 0 0
\(868\) −1.96643 + 0.541550i −0.0667451 + 0.0183814i
\(869\) −0.958113 + 0.958113i −0.0325018 + 0.0325018i
\(870\) 0 0
\(871\) 3.16471 + 5.55289i 0.107232 + 0.188153i
\(872\) −9.98533 + 24.8344i −0.338146 + 0.841000i
\(873\) 0 0
\(874\) 6.15159 + 4.68647i 0.208081 + 0.158522i
\(875\) 22.0564i 0.745643i
\(876\) 0 0
\(877\) −22.9678 22.9678i −0.775567 0.775567i 0.203507 0.979074i \(-0.434766\pi\)
−0.979074 + 0.203507i \(0.934766\pi\)
\(878\) −6.62719 49.0241i −0.223657 1.65448i
\(879\) 0 0
\(880\) −0.373219 0.626210i −0.0125812 0.0211095i
\(881\) 30.2662i 1.01969i −0.860265 0.509847i \(-0.829702\pi\)
0.860265 0.509847i \(-0.170298\pi\)
\(882\) 0 0
\(883\) 25.5531i 0.859932i −0.902845 0.429966i \(-0.858526\pi\)
0.902845 0.429966i \(-0.141474\pi\)
\(884\) −26.0296 + 0.0350443i −0.875472 + 0.00117867i
\(885\) 0 0
\(886\) 3.62903 + 26.8455i 0.121920 + 0.901892i
\(887\) 32.3643i 1.08669i 0.839511 + 0.543343i \(0.182842\pi\)
−0.839511 + 0.543343i \(0.817158\pi\)
\(888\) 0 0
\(889\) −3.89013 + 3.89013i −0.130471 + 0.130471i
\(890\) −12.2411 + 1.65478i −0.410322 + 0.0554682i
\(891\) 0 0
\(892\) 31.1709 + 17.7094i 1.04368 + 0.592955i
\(893\) 23.6528i 0.791509i
\(894\) 0 0
\(895\) −13.5134 + 13.5134i −0.451705 + 0.451705i
\(896\) 30.7880 4.81629i 1.02856 0.160901i
\(897\) 0 0
\(898\) −4.91684 + 6.45397i −0.164077 + 0.215372i
\(899\) 1.65204 1.65204i 0.0550986 0.0550986i
\(900\) 0 0
\(901\) 25.6515 0.854577
\(902\) 0.0256299 + 0.189595i 0.000853382 + 0.00631282i
\(903\) 0 0
\(904\) 20.2003 + 47.3678i 0.671851 + 1.57543i
\(905\) −2.44826 2.44826i −0.0813829 0.0813829i
\(906\) 0 0
\(907\) 39.0804i 1.29764i −0.760940 0.648822i \(-0.775262\pi\)
0.760940 0.648822i \(-0.224738\pi\)
\(908\) −21.5144 + 37.8682i −0.713981 + 1.25670i
\(909\) 0 0
\(910\) 12.0502 + 1.61246i 0.399460 + 0.0534524i
\(911\) 13.9748i 0.463005i −0.972834 0.231503i \(-0.925636\pi\)
0.972834 0.231503i \(-0.0743642\pi\)
\(912\) 0 0
\(913\) 0.898329 0.0297303
\(914\) −2.98047 2.27061i −0.0985850 0.0751052i
\(915\) 0 0
\(916\) 6.25256 11.0053i 0.206590 0.363626i
\(917\) −31.2464 + 31.2464i −1.03185 + 1.03185i
\(918\) 0 0
\(919\) 19.9206i 0.657121i 0.944483 + 0.328561i \(0.106564\pi\)
−0.944483 + 0.328561i \(0.893436\pi\)
\(920\) −1.86626 + 4.64157i −0.0615289 + 0.153028i
\(921\) 0 0
\(922\) 21.8954 28.7405i 0.721087 0.946518i
\(923\) −34.7417 + 19.8001i −1.14354 + 0.651727i
\(924\) 0 0
\(925\) 7.37138 + 7.37138i 0.242369 + 0.242369i
\(926\) 36.5075 + 27.8126i 1.19971 + 0.913977i
\(927\) 0 0
\(928\) −27.9381 + 22.2178i −0.917114 + 0.729336i
\(929\) 21.6587 21.6587i 0.710601 0.710601i −0.256060 0.966661i \(-0.582425\pi\)
0.966661 + 0.256060i \(0.0824246\pi\)
\(930\) 0 0
\(931\) −1.11031 1.11031i −0.0363890 0.0363890i
\(932\) 6.59243 + 23.9379i 0.215942 + 0.784112i
\(933\) 0 0
\(934\) 46.5296 6.28998i 1.52250 0.205814i
\(935\) 0.657855 0.0215142
\(936\) 0 0
\(937\) 19.8950 0.649943 0.324971 0.945724i \(-0.394645\pi\)
0.324971 + 0.945724i \(0.394645\pi\)
\(938\) 6.84280 0.925026i 0.223425 0.0302032i
\(939\) 0 0
\(940\) −14.7517 + 4.06259i −0.481149 + 0.132507i
\(941\) −0.342472 0.342472i −0.0111643 0.0111643i 0.701503 0.712667i \(-0.252513\pi\)
−0.712667 + 0.701503i \(0.752513\pi\)
\(942\) 0 0
\(943\) 0.928381 0.928381i 0.0302322 0.0302322i
\(944\) −41.6984 10.5553i −1.35717 0.343547i
\(945\) 0 0
\(946\) −2.56358 1.95301i −0.0833490 0.0634979i
\(947\) 2.42042 + 2.42042i 0.0786530 + 0.0786530i 0.745339 0.666686i \(-0.232288\pi\)
−0.666686 + 0.745339i \(0.732288\pi\)
\(948\) 0 0
\(949\) −25.4101 + 14.4817i −0.824847 + 0.470097i
\(950\) −9.74942 + 12.7973i −0.316313 + 0.415201i
\(951\) 0 0
\(952\) −10.4908 + 26.0915i −0.340008 + 0.845629i
\(953\) 47.0484i 1.52405i −0.647549 0.762024i \(-0.724206\pi\)
0.647549 0.762024i \(-0.275794\pi\)
\(954\) 0 0
\(955\) 10.0246 10.0246i 0.324387 0.324387i
\(956\) −10.6426 6.04648i −0.344207 0.195557i
\(957\) 0 0
\(958\) −43.7161 33.3043i −1.41240 1.07601i
\(959\) 48.8895 1.57872
\(960\) 0 0
\(961\) 30.8629i 0.995578i
\(962\) 9.93721 7.59165i 0.320389 0.244764i
\(963\) 0 0
\(964\) 10.9415 + 6.21628i 0.352401 + 0.200213i
\(965\) 21.1519i 0.680903i
\(966\) 0 0
\(967\) 40.3441 + 40.3441i 1.29738 + 1.29738i 0.930117 + 0.367262i \(0.119705\pi\)
0.367262 + 0.930117i \(0.380295\pi\)
\(968\) 28.5036 12.1555i 0.916141 0.390694i
\(969\) 0 0
\(970\) 1.67270 + 12.3737i 0.0537072 + 0.397294i
\(971\) 58.1744 1.86690 0.933452 0.358701i \(-0.116780\pi\)
0.933452 + 0.358701i \(0.116780\pi\)
\(972\) 0 0
\(973\) 4.25438 4.25438i 0.136389 0.136389i
\(974\) 3.79909 4.98678i 0.121731 0.159787i
\(975\) 0 0
\(976\) 11.3463 + 19.0376i 0.363187 + 0.609377i
\(977\) −6.21549 + 6.21549i −0.198851 + 0.198851i −0.799507 0.600656i \(-0.794906\pi\)
0.600656 + 0.799507i \(0.294906\pi\)
\(978\) 0 0
\(979\) 2.12437i 0.0678953i
\(980\) 0.501772 0.883186i 0.0160285 0.0282123i
\(981\) 0 0
\(982\) −24.7841 + 3.35037i −0.790892 + 0.106915i
\(983\) 5.42583 5.42583i 0.173057 0.173057i −0.615264 0.788321i \(-0.710951\pi\)
0.788321 + 0.615264i \(0.210951\pi\)
\(984\) 0 0
\(985\) 0.749323i 0.0238754i
\(986\) −4.31527 31.9219i −0.137426 1.01660i
\(987\) 0 0
\(988\) 13.6647 + 13.6279i 0.434731 + 0.433562i
\(989\) 22.1162i 0.703253i
\(990\) 0 0
\(991\) 25.8093i 0.819860i −0.912117 0.409930i \(-0.865553\pi\)
0.912117 0.409930i \(-0.134447\pi\)
\(992\) 0.237335 2.08097i 0.00753538 0.0660708i
\(993\) 0 0
\(994\) 5.78744 + 42.8121i 0.183566 + 1.35792i
\(995\) −12.7739 12.7739i −0.404960 0.404960i
\(996\) 0 0
\(997\) 49.6491i 1.57240i 0.617971 + 0.786201i \(0.287955\pi\)
−0.617971 + 0.786201i \(0.712045\pi\)
\(998\) 4.92598 + 3.75277i 0.155929 + 0.118792i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.k.811.12 yes 48
3.2 odd 2 inner 936.2.w.k.811.13 yes 48
8.3 odd 2 inner 936.2.w.k.811.24 yes 48
13.8 odd 4 inner 936.2.w.k.307.24 yes 48
24.11 even 2 inner 936.2.w.k.811.1 yes 48
39.8 even 4 inner 936.2.w.k.307.1 48
104.99 even 4 inner 936.2.w.k.307.12 yes 48
312.203 odd 4 inner 936.2.w.k.307.13 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.w.k.307.1 48 39.8 even 4 inner
936.2.w.k.307.12 yes 48 104.99 even 4 inner
936.2.w.k.307.13 yes 48 312.203 odd 4 inner
936.2.w.k.307.24 yes 48 13.8 odd 4 inner
936.2.w.k.811.1 yes 48 24.11 even 2 inner
936.2.w.k.811.12 yes 48 1.1 even 1 trivial
936.2.w.k.811.13 yes 48 3.2 odd 2 inner
936.2.w.k.811.24 yes 48 8.3 odd 2 inner