Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.w (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −1.40147 | + | 0.189453i | 0 | 1.92821 | − | 0.531025i | −0.612096 | + | 0.612096i | 0 | −1.94766 | − | 1.94766i | −2.60172 | + | 1.10952i | 0 | 0.741868 | − | 0.973796i | ||||||
307.2 | −1.38609 | − | 0.280631i | 0 | 1.84249 | + | 0.777959i | −1.86097 | + | 1.86097i | 0 | 1.43671 | + | 1.43671i | −2.33554 | − | 1.59538i | 0 | 3.10171 | − | 2.05722i | ||||||
307.3 | −1.20976 | − | 0.732456i | 0 | 0.927017 | + | 1.77218i | −0.232047 | + | 0.232047i | 0 | −1.32779 | − | 1.32779i | 0.176583 | − | 2.82291i | 0 | 0.450684 | − | 0.110756i | ||||||
307.4 | −1.20231 | − | 0.744615i | 0 | 0.891098 | + | 1.79052i | 1.32005 | − | 1.32005i | 0 | 3.23172 | + | 3.23172i | 0.261868 | − | 2.81628i | 0 | −2.57005 | + | 0.604182i | ||||||
307.5 | −1.18191 | + | 0.776588i | 0 | 0.793821 | − | 1.83571i | −2.44864 | + | 2.44864i | 0 | 2.97330 | + | 2.97330i | 0.487370 | + | 2.78612i | 0 | 0.992484 | − | 4.79565i | ||||||
307.6 | −1.07748 | + | 0.915988i | 0 | 0.321932 | − | 1.97392i | 1.17044 | − | 1.17044i | 0 | 0.308113 | + | 0.308113i | 1.46121 | + | 2.42175i | 0 | −0.189019 | + | 2.33324i | ||||||
307.7 | −0.915988 | + | 1.07748i | 0 | −0.321932 | − | 1.97392i | 1.17044 | − | 1.17044i | 0 | −0.308113 | − | 0.308113i | 2.42175 | + | 1.46121i | 0 | 0.189019 | + | 2.33324i | ||||||
307.8 | −0.776588 | + | 1.18191i | 0 | −0.793821 | − | 1.83571i | −2.44864 | + | 2.44864i | 0 | −2.97330 | − | 2.97330i | 2.78612 | + | 0.487370i | 0 | −0.992484 | − | 4.79565i | ||||||
307.9 | −0.744615 | − | 1.20231i | 0 | −0.891098 | + | 1.79052i | −1.32005 | + | 1.32005i | 0 | −3.23172 | − | 3.23172i | 2.81628 | − | 0.261868i | 0 | 2.57005 | + | 0.604182i | ||||||
307.10 | −0.732456 | − | 1.20976i | 0 | −0.927017 | + | 1.77218i | 0.232047 | − | 0.232047i | 0 | 1.32779 | + | 1.32779i | 2.82291 | − | 0.176583i | 0 | −0.450684 | − | 0.110756i | ||||||
307.11 | −0.280631 | − | 1.38609i | 0 | −1.84249 | + | 0.777959i | 1.86097 | − | 1.86097i | 0 | −1.43671 | − | 1.43671i | 1.59538 | + | 2.33554i | 0 | −3.10171 | − | 2.05722i | ||||||
307.12 | −0.189453 | + | 1.40147i | 0 | −1.92821 | − | 0.531025i | −0.612096 | + | 0.612096i | 0 | 1.94766 | + | 1.94766i | 1.10952 | − | 2.60172i | 0 | −0.741868 | − | 0.973796i | ||||||
307.13 | 0.189453 | − | 1.40147i | 0 | −1.92821 | − | 0.531025i | 0.612096 | − | 0.612096i | 0 | 1.94766 | + | 1.94766i | −1.10952 | + | 2.60172i | 0 | −0.741868 | − | 0.973796i | ||||||
307.14 | 0.280631 | + | 1.38609i | 0 | −1.84249 | + | 0.777959i | −1.86097 | + | 1.86097i | 0 | −1.43671 | − | 1.43671i | −1.59538 | − | 2.33554i | 0 | −3.10171 | − | 2.05722i | ||||||
307.15 | 0.732456 | + | 1.20976i | 0 | −0.927017 | + | 1.77218i | −0.232047 | + | 0.232047i | 0 | 1.32779 | + | 1.32779i | −2.82291 | + | 0.176583i | 0 | −0.450684 | − | 0.110756i | ||||||
307.16 | 0.744615 | + | 1.20231i | 0 | −0.891098 | + | 1.79052i | 1.32005 | − | 1.32005i | 0 | −3.23172 | − | 3.23172i | −2.81628 | + | 0.261868i | 0 | 2.57005 | + | 0.604182i | ||||||
307.17 | 0.776588 | − | 1.18191i | 0 | −0.793821 | − | 1.83571i | 2.44864 | − | 2.44864i | 0 | −2.97330 | − | 2.97330i | −2.78612 | − | 0.487370i | 0 | −0.992484 | − | 4.79565i | ||||||
307.18 | 0.915988 | − | 1.07748i | 0 | −0.321932 | − | 1.97392i | −1.17044 | + | 1.17044i | 0 | −0.308113 | − | 0.308113i | −2.42175 | − | 1.46121i | 0 | 0.189019 | + | 2.33324i | ||||||
307.19 | 1.07748 | − | 0.915988i | 0 | 0.321932 | − | 1.97392i | −1.17044 | + | 1.17044i | 0 | 0.308113 | + | 0.308113i | −1.46121 | − | 2.42175i | 0 | −0.189019 | + | 2.33324i | ||||||
307.20 | 1.18191 | − | 0.776588i | 0 | 0.793821 | − | 1.83571i | 2.44864 | − | 2.44864i | 0 | 2.97330 | + | 2.97330i | −0.487370 | − | 2.78612i | 0 | 0.992484 | − | 4.79565i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
24.f | even | 2 | 1 | inner |
39.f | even | 4 | 1 | inner |
104.m | even | 4 | 1 | inner |
312.w | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.w.k | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 936.2.w.k | ✓ | 48 |
8.d | odd | 2 | 1 | inner | 936.2.w.k | ✓ | 48 |
13.d | odd | 4 | 1 | inner | 936.2.w.k | ✓ | 48 |
24.f | even | 2 | 1 | inner | 936.2.w.k | ✓ | 48 |
39.f | even | 4 | 1 | inner | 936.2.w.k | ✓ | 48 |
104.m | even | 4 | 1 | inner | 936.2.w.k | ✓ | 48 |
312.w | odd | 4 | 1 | inner | 936.2.w.k | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.w.k | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
936.2.w.k | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
936.2.w.k | ✓ | 48 | 8.d | odd | 2 | 1 | inner |
936.2.w.k | ✓ | 48 | 13.d | odd | 4 | 1 | inner |
936.2.w.k | ✓ | 48 | 24.f | even | 2 | 1 | inner |
936.2.w.k | ✓ | 48 | 39.f | even | 4 | 1 | inner |
936.2.w.k | ✓ | 48 | 104.m | even | 4 | 1 | inner |
936.2.w.k | ✓ | 48 | 312.w | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):
\( T_{5}^{24} + 212T_{5}^{20} + 10880T_{5}^{16} + 159232T_{5}^{12} + 716800T_{5}^{8} + 361472T_{5}^{4} + 4096 \)
|
\( T_{7}^{24} + 836T_{7}^{20} + 203520T_{7}^{16} + 13320192T_{7}^{12} + 269926400T_{7}^{8} + 1673249792T_{7}^{4} + 59969536 \)
|