L(s) = 1 | + (1.18 − 0.776i)2-s + (0.793 − 1.83i)4-s + (2.44 − 2.44i)5-s + (2.97 + 2.97i)7-s + (−0.487 − 2.78i)8-s + (0.992 − 4.79i)10-s + (−2.57 + 2.57i)11-s + (3.19 − 1.66i)13-s + (5.82 + 1.20i)14-s + (−2.73 − 2.91i)16-s − 1.68i·17-s + (3.97 + 3.97i)19-s + (−2.55 − 6.43i)20-s + (−1.04 + 5.04i)22-s − 4.08·23-s + ⋯ |
L(s) = 1 | + (0.835 − 0.549i)2-s + (0.396 − 0.917i)4-s + (1.09 − 1.09i)5-s + (1.12 + 1.12i)7-s + (−0.172 − 0.985i)8-s + (0.313 − 1.51i)10-s + (−0.777 + 0.777i)11-s + (0.887 − 0.461i)13-s + (1.55 + 0.322i)14-s + (−0.684 − 0.728i)16-s − 0.408i·17-s + (0.911 + 0.911i)19-s + (−0.570 − 1.43i)20-s + (−0.222 + 1.07i)22-s − 0.850·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.350 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.350 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.74733 - 1.90431i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.74733 - 1.90431i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.18 + 0.776i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.19 + 1.66i)T \) |
good | 5 | \( 1 + (-2.44 + 2.44i)T - 5iT^{2} \) |
| 7 | \( 1 + (-2.97 - 2.97i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.57 - 2.57i)T - 11iT^{2} \) |
| 17 | \( 1 + 1.68iT - 17T^{2} \) |
| 19 | \( 1 + (-3.97 - 3.97i)T + 19iT^{2} \) |
| 23 | \( 1 + 4.08T + 23T^{2} \) |
| 29 | \( 1 - 7.65iT - 29T^{2} \) |
| 31 | \( 1 + (7.09 - 7.09i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.55 + 3.55i)T + 37iT^{2} \) |
| 41 | \( 1 + (4.64 + 4.64i)T + 41iT^{2} \) |
| 43 | \( 1 + 7.70iT - 43T^{2} \) |
| 47 | \( 1 + (6.34 + 6.34i)T + 47iT^{2} \) |
| 53 | \( 1 + 8.07iT - 53T^{2} \) |
| 59 | \( 1 + (2.25 - 2.25i)T - 59iT^{2} \) |
| 61 | \( 1 - 15.3iT - 61T^{2} \) |
| 67 | \( 1 + (3.21 + 3.21i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.81 + 2.81i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.407 + 0.407i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.13iT - 79T^{2} \) |
| 83 | \( 1 + (-3.46 - 3.46i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.16 + 9.16i)T - 89iT^{2} \) |
| 97 | \( 1 + (-0.0406 - 0.0406i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09870392316433492250570000139, −9.057761604276842372618168875507, −8.533608780711527830893004049425, −7.28545944896970797186268804101, −5.86629269239021522960199786615, −5.20267767667112149064591415277, −5.08593215760832434154090494615, −3.50136022844880671472643195306, −2.03990287148853972674350235815, −1.55405899576756074655249098973,
1.80669807004432757511133171704, 2.98580584035428949038589700149, 4.00468736135630351224746251098, 5.05982178452072209667979702091, 6.01815007406031624351150082251, 6.57232367841951582442728072887, 7.67785216573330708729478476670, 8.075220761219842020782352118733, 9.446050174945601678813436863184, 10.46345151907645170188074067286