L(s) = 1 | + (0.776 − 1.18i)2-s + (−0.793 − 1.83i)4-s + (2.44 − 2.44i)5-s + (−2.97 − 2.97i)7-s + (−2.78 − 0.487i)8-s + (−0.992 − 4.79i)10-s + (2.57 − 2.57i)11-s + (−3.19 + 1.66i)13-s + (−5.82 + 1.20i)14-s + (−2.73 + 2.91i)16-s + 1.68i·17-s + (3.97 + 3.97i)19-s + (−6.43 − 2.55i)20-s + (−1.04 − 5.04i)22-s − 4.08·23-s + ⋯ |
L(s) = 1 | + (0.549 − 0.835i)2-s + (−0.396 − 0.917i)4-s + (1.09 − 1.09i)5-s + (−1.12 − 1.12i)7-s + (−0.985 − 0.172i)8-s + (−0.313 − 1.51i)10-s + (0.777 − 0.777i)11-s + (−0.887 + 0.461i)13-s + (−1.55 + 0.322i)14-s + (−0.684 + 0.728i)16-s + 0.408i·17-s + (0.911 + 0.911i)19-s + (−1.43 − 0.570i)20-s + (−0.222 − 1.07i)22-s − 0.850·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0122i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0115983 - 1.89912i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0115983 - 1.89912i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.776 + 1.18i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.19 - 1.66i)T \) |
good | 5 | \( 1 + (-2.44 + 2.44i)T - 5iT^{2} \) |
| 7 | \( 1 + (2.97 + 2.97i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.57 + 2.57i)T - 11iT^{2} \) |
| 17 | \( 1 - 1.68iT - 17T^{2} \) |
| 19 | \( 1 + (-3.97 - 3.97i)T + 19iT^{2} \) |
| 23 | \( 1 + 4.08T + 23T^{2} \) |
| 29 | \( 1 - 7.65iT - 29T^{2} \) |
| 31 | \( 1 + (-7.09 + 7.09i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.55 - 3.55i)T + 37iT^{2} \) |
| 41 | \( 1 + (-4.64 - 4.64i)T + 41iT^{2} \) |
| 43 | \( 1 + 7.70iT - 43T^{2} \) |
| 47 | \( 1 + (6.34 + 6.34i)T + 47iT^{2} \) |
| 53 | \( 1 + 8.07iT - 53T^{2} \) |
| 59 | \( 1 + (-2.25 + 2.25i)T - 59iT^{2} \) |
| 61 | \( 1 + 15.3iT - 61T^{2} \) |
| 67 | \( 1 + (3.21 + 3.21i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.81 + 2.81i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.407 + 0.407i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.13iT - 79T^{2} \) |
| 83 | \( 1 + (3.46 + 3.46i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.16 - 9.16i)T - 89iT^{2} \) |
| 97 | \( 1 + (-0.0406 - 0.0406i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.792634173974108869159338154900, −9.299388211108273415777985101378, −8.193731627612274974530374454511, −6.68087721086212297830955610591, −6.06623195351682887653346630622, −5.13642240703844759561949297238, −4.13450710380371864979500778756, −3.29936000156101210241569103469, −1.82276562780139865255726484599, −0.74080688450359742478448363709,
2.60390141271792459825128153036, 2.87828614270983201458841626865, 4.44066491139315751662226709715, 5.61074418382037596301814034912, 6.17606332349970644788497479032, 6.84950749516974812321351323400, 7.59153648879427828786213923422, 8.974423489343924951525847197146, 9.647730382747830093807765337356, 10.01785052211947636369664414334