Properties

Label 936.2.w.k.307.13
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.13
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.k.811.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.189453 - 1.40147i) q^{2} +(-1.92821 - 0.531025i) q^{4} +(0.612096 - 0.612096i) q^{5} +(1.94766 + 1.94766i) q^{7} +(-1.10952 + 2.60172i) q^{8} +(-0.741868 - 0.973796i) q^{10} +(-0.148872 + 0.148872i) q^{11} +(0.952638 + 3.47742i) q^{13} +(3.09856 - 2.36058i) q^{14} +(3.43602 + 2.04786i) q^{16} +3.60967i q^{17} +(1.89240 + 1.89240i) q^{19} +(-1.50529 + 0.855214i) q^{20} +(0.180435 + 0.236844i) q^{22} +2.04327 q^{23} +4.25068i q^{25} +(5.05397 - 0.676280i) q^{26} +(-2.72124 - 4.78975i) q^{28} -6.31014i q^{29} +(0.261807 - 0.261807i) q^{31} +(3.52097 - 4.42750i) q^{32} +(5.05883 + 0.683863i) q^{34} +2.38430 q^{35} +(-1.73417 - 1.73417i) q^{37} +(3.01066 - 2.29362i) q^{38} +(0.913371 + 2.27164i) q^{40} +(0.454360 + 0.454360i) q^{41} +10.8239i q^{43} +(0.366113 - 0.208003i) q^{44} +(0.387104 - 2.86357i) q^{46} +(6.24940 + 6.24940i) q^{47} +0.586721i q^{49} +(5.95718 + 0.805305i) q^{50} +(0.00970845 - 7.21110i) q^{52} -7.10635i q^{53} +0.182248i q^{55} +(-7.22822 + 2.90630i) q^{56} +(-8.84344 - 1.19548i) q^{58} +(7.60381 - 7.60381i) q^{59} -5.54058i q^{61} +(-0.317314 - 0.416514i) q^{62} +(-5.53793 - 5.77333i) q^{64} +(2.71162 + 1.54541i) q^{65} +(-1.25346 - 1.25346i) q^{67} +(1.91682 - 6.96021i) q^{68} +(0.451714 - 3.34152i) q^{70} +(7.84227 - 7.84227i) q^{71} +(-5.73583 + 5.73583i) q^{73} +(-2.75892 + 2.10183i) q^{74} +(-2.64404 - 4.65387i) q^{76} -0.579904 q^{77} -6.43580i q^{79} +(3.35666 - 0.849690i) q^{80} +(0.722851 - 0.550691i) q^{82} +(-3.01711 - 3.01711i) q^{83} +(2.20946 + 2.20946i) q^{85} +(15.1693 + 2.05063i) q^{86} +(-0.222148 - 0.552501i) q^{88} +(-7.13489 + 7.13489i) q^{89} +(-4.91741 + 8.62823i) q^{91} +(-3.93986 - 1.08503i) q^{92} +(9.94229 - 7.57435i) q^{94} +2.31666 q^{95} +(7.21217 + 7.21217i) q^{97} +(0.822269 + 0.111156i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{16} - 8 q^{19} - 32 q^{22} + 24 q^{28} + 8 q^{34} + 16 q^{40} - 8 q^{46} + 24 q^{52} - 24 q^{58} + 40 q^{67} - 24 q^{70} + 56 q^{76} + 104 q^{91} - 64 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.189453 1.40147i 0.133964 0.990986i
\(3\) 0 0
\(4\) −1.92821 0.531025i −0.964107 0.265513i
\(5\) 0.612096 0.612096i 0.273738 0.273738i −0.556865 0.830603i \(-0.687996\pi\)
0.830603 + 0.556865i \(0.187996\pi\)
\(6\) 0 0
\(7\) 1.94766 + 1.94766i 0.736144 + 0.736144i 0.971829 0.235685i \(-0.0757334\pi\)
−0.235685 + 0.971829i \(0.575733\pi\)
\(8\) −1.10952 + 2.60172i −0.392275 + 0.919848i
\(9\) 0 0
\(10\) −0.741868 0.973796i −0.234599 0.307941i
\(11\) −0.148872 + 0.148872i −0.0448867 + 0.0448867i −0.729194 0.684307i \(-0.760105\pi\)
0.684307 + 0.729194i \(0.260105\pi\)
\(12\) 0 0
\(13\) 0.952638 + 3.47742i 0.264214 + 0.964464i
\(14\) 3.09856 2.36058i 0.828126 0.630892i
\(15\) 0 0
\(16\) 3.43602 + 2.04786i 0.859006 + 0.511965i
\(17\) 3.60967i 0.875473i 0.899103 + 0.437736i \(0.144220\pi\)
−0.899103 + 0.437736i \(0.855780\pi\)
\(18\) 0 0
\(19\) 1.89240 + 1.89240i 0.434147 + 0.434147i 0.890036 0.455890i \(-0.150679\pi\)
−0.455890 + 0.890036i \(0.650679\pi\)
\(20\) −1.50529 + 0.855214i −0.336593 + 0.191232i
\(21\) 0 0
\(22\) 0.180435 + 0.236844i 0.0384689 + 0.0504953i
\(23\) 2.04327 0.426051 0.213026 0.977047i \(-0.431668\pi\)
0.213026 + 0.977047i \(0.431668\pi\)
\(24\) 0 0
\(25\) 4.25068i 0.850135i
\(26\) 5.05397 0.676280i 0.991166 0.132629i
\(27\) 0 0
\(28\) −2.72124 4.78975i −0.514267 0.905178i
\(29\) 6.31014i 1.17176i −0.810397 0.585881i \(-0.800748\pi\)
0.810397 0.585881i \(-0.199252\pi\)
\(30\) 0 0
\(31\) 0.261807 0.261807i 0.0470220 0.0470220i −0.683205 0.730227i \(-0.739414\pi\)
0.730227 + 0.683205i \(0.239414\pi\)
\(32\) 3.52097 4.42750i 0.622426 0.782679i
\(33\) 0 0
\(34\) 5.05883 + 0.683863i 0.867581 + 0.117282i
\(35\) 2.38430 0.403021
\(36\) 0 0
\(37\) −1.73417 1.73417i −0.285095 0.285095i 0.550042 0.835137i \(-0.314612\pi\)
−0.835137 + 0.550042i \(0.814612\pi\)
\(38\) 3.01066 2.29362i 0.488393 0.372074i
\(39\) 0 0
\(40\) 0.913371 + 2.27164i 0.144417 + 0.359177i
\(41\) 0.454360 + 0.454360i 0.0709592 + 0.0709592i 0.741696 0.670737i \(-0.234022\pi\)
−0.670737 + 0.741696i \(0.734022\pi\)
\(42\) 0 0
\(43\) 10.8239i 1.65063i 0.564672 + 0.825315i \(0.309003\pi\)
−0.564672 + 0.825315i \(0.690997\pi\)
\(44\) 0.366113 0.208003i 0.0551936 0.0313576i
\(45\) 0 0
\(46\) 0.387104 2.86357i 0.0570754 0.422211i
\(47\) 6.24940 + 6.24940i 0.911569 + 0.911569i 0.996396 0.0848271i \(-0.0270338\pi\)
−0.0848271 + 0.996396i \(0.527034\pi\)
\(48\) 0 0
\(49\) 0.586721i 0.0838173i
\(50\) 5.95718 + 0.805305i 0.842472 + 0.113887i
\(51\) 0 0
\(52\) 0.00970845 7.21110i 0.00134632 0.999999i
\(53\) 7.10635i 0.976132i −0.872807 0.488066i \(-0.837703\pi\)
0.872807 0.488066i \(-0.162297\pi\)
\(54\) 0 0
\(55\) 0.182248i 0.0245743i
\(56\) −7.22822 + 2.90630i −0.965912 + 0.388370i
\(57\) 0 0
\(58\) −8.84344 1.19548i −1.16120 0.156974i
\(59\) 7.60381 7.60381i 0.989932 0.989932i −0.0100179 0.999950i \(-0.503189\pi\)
0.999950 + 0.0100179i \(0.00318886\pi\)
\(60\) 0 0
\(61\) 5.54058i 0.709398i −0.934981 0.354699i \(-0.884583\pi\)
0.934981 0.354699i \(-0.115417\pi\)
\(62\) −0.317314 0.416514i −0.0402989 0.0528974i
\(63\) 0 0
\(64\) −5.53793 5.77333i −0.692241 0.721666i
\(65\) 2.71162 + 1.54541i 0.336336 + 0.191685i
\(66\) 0 0
\(67\) −1.25346 1.25346i −0.153134 0.153134i 0.626382 0.779516i \(-0.284535\pi\)
−0.779516 + 0.626382i \(0.784535\pi\)
\(68\) 1.91682 6.96021i 0.232449 0.844050i
\(69\) 0 0
\(70\) 0.451714 3.34152i 0.0539902 0.399388i
\(71\) 7.84227 7.84227i 0.930706 0.930706i −0.0670439 0.997750i \(-0.521357\pi\)
0.997750 + 0.0670439i \(0.0213568\pi\)
\(72\) 0 0
\(73\) −5.73583 + 5.73583i −0.671328 + 0.671328i −0.958022 0.286694i \(-0.907444\pi\)
0.286694 + 0.958022i \(0.407444\pi\)
\(74\) −2.75892 + 2.10183i −0.320718 + 0.244333i
\(75\) 0 0
\(76\) −2.64404 4.65387i −0.303293 0.533836i
\(77\) −0.579904 −0.0660862
\(78\) 0 0
\(79\) 6.43580i 0.724085i −0.932162 0.362042i \(-0.882080\pi\)
0.932162 0.362042i \(-0.117920\pi\)
\(80\) 3.35666 0.849690i 0.375286 0.0949982i
\(81\) 0 0
\(82\) 0.722851 0.550691i 0.0798255 0.0608136i
\(83\) −3.01711 3.01711i −0.331171 0.331171i 0.521860 0.853031i \(-0.325238\pi\)
−0.853031 + 0.521860i \(0.825238\pi\)
\(84\) 0 0
\(85\) 2.20946 + 2.20946i 0.239650 + 0.239650i
\(86\) 15.1693 + 2.05063i 1.63575 + 0.221125i
\(87\) 0 0
\(88\) −0.222148 0.552501i −0.0236810 0.0588968i
\(89\) −7.13489 + 7.13489i −0.756297 + 0.756297i −0.975646 0.219350i \(-0.929606\pi\)
0.219350 + 0.975646i \(0.429606\pi\)
\(90\) 0 0
\(91\) −4.91741 + 8.62823i −0.515485 + 0.904485i
\(92\) −3.93986 1.08503i −0.410759 0.113122i
\(93\) 0 0
\(94\) 9.94229 7.57435i 1.02547 0.781235i
\(95\) 2.31666 0.237685
\(96\) 0 0
\(97\) 7.21217 + 7.21217i 0.732285 + 0.732285i 0.971072 0.238787i \(-0.0767497\pi\)
−0.238787 + 0.971072i \(0.576750\pi\)
\(98\) 0.822269 + 0.111156i 0.0830618 + 0.0112285i
\(99\) 0 0
\(100\) 2.25722 8.19622i 0.225722 0.819622i
\(101\) −9.96869 −0.991922 −0.495961 0.868345i \(-0.665184\pi\)
−0.495961 + 0.868345i \(0.665184\pi\)
\(102\) 0 0
\(103\) 8.19929 0.807900 0.403950 0.914781i \(-0.367637\pi\)
0.403950 + 0.914781i \(0.367637\pi\)
\(104\) −10.1043 1.37977i −0.990805 0.135298i
\(105\) 0 0
\(106\) −9.95930 1.34632i −0.967333 0.130766i
\(107\) 4.86415 0.470235 0.235118 0.971967i \(-0.424452\pi\)
0.235118 + 0.971967i \(0.424452\pi\)
\(108\) 0 0
\(109\) 6.69167 6.69167i 0.640946 0.640946i −0.309842 0.950788i \(-0.600276\pi\)
0.950788 + 0.309842i \(0.100276\pi\)
\(110\) 0.255415 + 0.0345275i 0.0243528 + 0.00329207i
\(111\) 0 0
\(112\) 2.70367 + 10.6807i 0.255472 + 1.00923i
\(113\) −18.2063 −1.71271 −0.856353 0.516391i \(-0.827275\pi\)
−0.856353 + 0.516391i \(0.827275\pi\)
\(114\) 0 0
\(115\) 1.25068 1.25068i 0.116626 0.116626i
\(116\) −3.35084 + 12.1673i −0.311118 + 1.12971i
\(117\) 0 0
\(118\) −9.21592 12.0971i −0.848394 1.11362i
\(119\) −7.03038 + 7.03038i −0.644474 + 0.644474i
\(120\) 0 0
\(121\) 10.9557i 0.995970i
\(122\) −7.76493 1.04968i −0.703004 0.0950337i
\(123\) 0 0
\(124\) −0.643847 + 0.365794i −0.0578191 + 0.0328493i
\(125\) 5.66230 + 5.66230i 0.506452 + 0.506452i
\(126\) 0 0
\(127\) −1.99734 −0.177235 −0.0886177 0.996066i \(-0.528245\pi\)
−0.0886177 + 0.996066i \(0.528245\pi\)
\(128\) −9.14031 + 6.66744i −0.807897 + 0.589324i
\(129\) 0 0
\(130\) 2.67957 3.50747i 0.235014 0.307625i
\(131\) 16.0431 1.40169 0.700846 0.713312i \(-0.252806\pi\)
0.700846 + 0.713312i \(0.252806\pi\)
\(132\) 0 0
\(133\) 7.37149i 0.639190i
\(134\) −1.99415 + 1.51921i −0.172268 + 0.131239i
\(135\) 0 0
\(136\) −9.39135 4.00500i −0.805302 0.343426i
\(137\) −12.5509 + 12.5509i −1.07229 + 1.07229i −0.0751182 + 0.997175i \(0.523933\pi\)
−0.997175 + 0.0751182i \(0.976067\pi\)
\(138\) 0 0
\(139\) 2.18436 0.185275 0.0926375 0.995700i \(-0.470470\pi\)
0.0926375 + 0.995700i \(0.470470\pi\)
\(140\) −4.59745 1.26612i −0.388555 0.107007i
\(141\) 0 0
\(142\) −9.50493 12.4764i −0.797636 1.04700i
\(143\) −0.659513 0.375871i −0.0551513 0.0314319i
\(144\) 0 0
\(145\) −3.86241 3.86241i −0.320756 0.320756i
\(146\) 6.95190 + 9.12525i 0.575343 + 0.755211i
\(147\) 0 0
\(148\) 2.42296 + 4.26473i 0.199166 + 0.350559i
\(149\) −3.22148 + 3.22148i −0.263914 + 0.263914i −0.826642 0.562728i \(-0.809752\pi\)
0.562728 + 0.826642i \(0.309752\pi\)
\(150\) 0 0
\(151\) −4.75516 4.75516i −0.386969 0.386969i 0.486636 0.873605i \(-0.338224\pi\)
−0.873605 + 0.486636i \(0.838224\pi\)
\(152\) −7.02317 + 2.82385i −0.569654 + 0.229044i
\(153\) 0 0
\(154\) −0.109865 + 0.812715i −0.00885315 + 0.0654905i
\(155\) 0.320502i 0.0257434i
\(156\) 0 0
\(157\) 1.95742i 0.156219i 0.996945 + 0.0781097i \(0.0248884\pi\)
−0.996945 + 0.0781097i \(0.975112\pi\)
\(158\) −9.01956 1.21928i −0.717558 0.0970011i
\(159\) 0 0
\(160\) −0.554880 4.86523i −0.0438671 0.384630i
\(161\) 3.97958 + 3.97958i 0.313635 + 0.313635i
\(162\) 0 0
\(163\) −1.25346 + 1.25346i −0.0981783 + 0.0981783i −0.754490 0.656312i \(-0.772116\pi\)
0.656312 + 0.754490i \(0.272116\pi\)
\(164\) −0.634828 1.11738i −0.0495717 0.0872528i
\(165\) 0 0
\(166\) −4.79998 + 3.65678i −0.372551 + 0.283821i
\(167\) 1.38331 + 1.38331i 0.107044 + 0.107044i 0.758600 0.651557i \(-0.225884\pi\)
−0.651557 + 0.758600i \(0.725884\pi\)
\(168\) 0 0
\(169\) −11.1850 + 6.62545i −0.860382 + 0.509650i
\(170\) 3.51508 2.67790i 0.269594 0.205385i
\(171\) 0 0
\(172\) 5.74777 20.8708i 0.438263 1.59138i
\(173\) −22.3012 −1.69553 −0.847764 0.530374i \(-0.822051\pi\)
−0.847764 + 0.530374i \(0.822051\pi\)
\(174\) 0 0
\(175\) −8.27885 + 8.27885i −0.625822 + 0.625822i
\(176\) −0.816398 + 0.206659i −0.0615384 + 0.0155775i
\(177\) 0 0
\(178\) 8.64758 + 11.3510i 0.648163 + 0.850796i
\(179\) 22.0773i 1.65014i −0.565033 0.825069i \(-0.691136\pi\)
0.565033 0.825069i \(-0.308864\pi\)
\(180\) 0 0
\(181\) 3.99980 0.297303 0.148651 0.988890i \(-0.452507\pi\)
0.148651 + 0.988890i \(0.452507\pi\)
\(182\) 11.1606 + 8.52624i 0.827276 + 0.632007i
\(183\) 0 0
\(184\) −2.26705 + 5.31602i −0.167129 + 0.391902i
\(185\) −2.12295 −0.156083
\(186\) 0 0
\(187\) −0.537379 0.537379i −0.0392971 0.0392971i
\(188\) −8.73160 15.3688i −0.636817 1.12088i
\(189\) 0 0
\(190\) 0.438900 3.24673i 0.0318411 0.235542i
\(191\) 16.3774i 1.18503i 0.805560 + 0.592515i \(0.201865\pi\)
−0.805560 + 0.592515i \(0.798135\pi\)
\(192\) 0 0
\(193\) 17.2782 17.2782i 1.24371 1.24371i 0.285265 0.958449i \(-0.407918\pi\)
0.958449 0.285265i \(-0.0920817\pi\)
\(194\) 11.4740 8.74125i 0.823784 0.627585i
\(195\) 0 0
\(196\) 0.311563 1.13132i 0.0222545 0.0808088i
\(197\) 0.612096 0.612096i 0.0436100 0.0436100i −0.684965 0.728576i \(-0.740183\pi\)
0.728576 + 0.684965i \(0.240183\pi\)
\(198\) 0 0
\(199\) 20.8691 1.47937 0.739686 0.672952i \(-0.234974\pi\)
0.739686 + 0.672952i \(0.234974\pi\)
\(200\) −11.0591 4.71621i −0.781995 0.333487i
\(201\) 0 0
\(202\) −1.88860 + 13.9708i −0.132882 + 0.982981i
\(203\) 12.2900 12.2900i 0.862587 0.862587i
\(204\) 0 0
\(205\) 0.556224 0.0388484
\(206\) 1.55338 11.4910i 0.108229 0.800618i
\(207\) 0 0
\(208\) −3.84799 + 13.8994i −0.266810 + 0.963749i
\(209\) −0.563452 −0.0389748
\(210\) 0 0
\(211\) 2.97031 0.204485 0.102242 0.994760i \(-0.467398\pi\)
0.102242 + 0.994760i \(0.467398\pi\)
\(212\) −3.77365 + 13.7026i −0.259175 + 0.941096i
\(213\) 0 0
\(214\) 0.921530 6.81694i 0.0629945 0.465997i
\(215\) 6.62527 + 6.62527i 0.451840 + 0.451840i
\(216\) 0 0
\(217\) 1.01982 0.0692299
\(218\) −8.11039 10.6459i −0.549305 0.721032i
\(219\) 0 0
\(220\) 0.0967784 0.351414i 0.00652480 0.0236923i
\(221\) −12.5523 + 3.43871i −0.844362 + 0.231312i
\(222\) 0 0
\(223\) −12.6750 + 12.6750i −0.848782 + 0.848782i −0.989981 0.141199i \(-0.954904\pi\)
0.141199 + 0.989981i \(0.454904\pi\)
\(224\) 15.4809 1.76560i 1.03436 0.117969i
\(225\) 0 0
\(226\) −3.44925 + 25.5155i −0.229441 + 1.69727i
\(227\) −15.3983 15.3983i −1.02202 1.02202i −0.999752 0.0222717i \(-0.992910\pi\)
−0.0222717 0.999752i \(-0.507090\pi\)
\(228\) 0 0
\(229\) −4.47509 4.47509i −0.295723 0.295723i 0.543613 0.839336i \(-0.317056\pi\)
−0.839336 + 0.543613i \(0.817056\pi\)
\(230\) −1.51584 1.98973i −0.0999513 0.131199i
\(231\) 0 0
\(232\) 16.4172 + 7.00122i 1.07784 + 0.459653i
\(233\) 12.4145i 0.813304i −0.913583 0.406652i \(-0.866696\pi\)
0.913583 0.406652i \(-0.133304\pi\)
\(234\) 0 0
\(235\) 7.65046 0.499061
\(236\) −18.6996 + 10.6240i −1.21724 + 0.691561i
\(237\) 0 0
\(238\) 8.52092 + 11.1848i 0.552329 + 0.725001i
\(239\) −4.32760 + 4.32760i −0.279929 + 0.279929i −0.833081 0.553151i \(-0.813425\pi\)
0.553151 + 0.833081i \(0.313425\pi\)
\(240\) 0 0
\(241\) −4.44913 + 4.44913i −0.286594 + 0.286594i −0.835732 0.549138i \(-0.814956\pi\)
0.549138 + 0.835732i \(0.314956\pi\)
\(242\) 15.3540 + 2.07559i 0.986993 + 0.133424i
\(243\) 0 0
\(244\) −2.94218 + 10.6834i −0.188354 + 0.683936i
\(245\) 0.359129 + 0.359129i 0.0229439 + 0.0229439i
\(246\) 0 0
\(247\) −4.77791 + 8.38346i −0.304011 + 0.533427i
\(248\) 0.390669 + 0.971630i 0.0248075 + 0.0616986i
\(249\) 0 0
\(250\) 9.00827 6.86278i 0.569733 0.434041i
\(251\) 19.9908i 1.26181i 0.775862 + 0.630903i \(0.217315\pi\)
−0.775862 + 0.630903i \(0.782685\pi\)
\(252\) 0 0
\(253\) −0.304186 + 0.304186i −0.0191240 + 0.0191240i
\(254\) −0.378403 + 2.79921i −0.0237431 + 0.175638i
\(255\) 0 0
\(256\) 7.61253 + 14.0730i 0.475783 + 0.879562i
\(257\) 17.5555i 1.09508i 0.836778 + 0.547542i \(0.184436\pi\)
−0.836778 + 0.547542i \(0.815564\pi\)
\(258\) 0 0
\(259\) 6.75511i 0.419742i
\(260\) −4.40794 4.41983i −0.273369 0.274106i
\(261\) 0 0
\(262\) 3.03942 22.4839i 0.187776 1.38906i
\(263\) 27.6745i 1.70649i 0.521514 + 0.853243i \(0.325367\pi\)
−0.521514 + 0.853243i \(0.674633\pi\)
\(264\) 0 0
\(265\) −4.34977 4.34977i −0.267204 0.267204i
\(266\) 10.3309 + 1.39655i 0.633428 + 0.0856282i
\(267\) 0 0
\(268\) 1.75132 + 3.08255i 0.106979 + 0.188297i
\(269\) 21.7213i 1.32437i −0.749341 0.662185i \(-0.769629\pi\)
0.749341 0.662185i \(-0.230371\pi\)
\(270\) 0 0
\(271\) −12.0894 12.0894i −0.734379 0.734379i 0.237105 0.971484i \(-0.423801\pi\)
−0.971484 + 0.237105i \(0.923801\pi\)
\(272\) −7.39209 + 12.4029i −0.448211 + 0.752036i
\(273\) 0 0
\(274\) 15.2118 + 19.9674i 0.918979 + 1.20628i
\(275\) −0.632808 0.632808i −0.0381598 0.0381598i
\(276\) 0 0
\(277\) 11.2590 0.676485 0.338242 0.941059i \(-0.390168\pi\)
0.338242 + 0.941059i \(0.390168\pi\)
\(278\) 0.413835 3.06131i 0.0248202 0.183605i
\(279\) 0 0
\(280\) −2.64543 + 6.20330i −0.158095 + 0.370718i
\(281\) 8.00783 8.00783i 0.477707 0.477707i −0.426691 0.904398i \(-0.640321\pi\)
0.904398 + 0.426691i \(0.140321\pi\)
\(282\) 0 0
\(283\) 20.4299i 1.21443i −0.794537 0.607216i \(-0.792286\pi\)
0.794537 0.607216i \(-0.207714\pi\)
\(284\) −19.2860 + 10.9571i −1.14441 + 0.650187i
\(285\) 0 0
\(286\) −0.651717 + 0.853076i −0.0385368 + 0.0504434i
\(287\) 1.76987i 0.104472i
\(288\) 0 0
\(289\) 3.97031 0.233548
\(290\) −6.14478 + 4.68129i −0.360834 + 0.274895i
\(291\) 0 0
\(292\) 14.1058 8.01405i 0.825479 0.468987i
\(293\) −10.5808 10.5808i −0.618136 0.618136i 0.326917 0.945053i \(-0.393990\pi\)
−0.945053 + 0.326917i \(0.893990\pi\)
\(294\) 0 0
\(295\) 9.30852i 0.541963i
\(296\) 6.43591 2.58773i 0.374080 0.150409i
\(297\) 0 0
\(298\) 3.90447 + 5.12511i 0.226180 + 0.296890i
\(299\) 1.94650 + 7.10531i 0.112569 + 0.410911i
\(300\) 0 0
\(301\) −21.0812 + 21.0812i −1.21510 + 1.21510i
\(302\) −7.56507 + 5.76331i −0.435321 + 0.331641i
\(303\) 0 0
\(304\) 2.62696 + 10.3777i 0.150667 + 0.595203i
\(305\) −3.39137 3.39137i −0.194189 0.194189i
\(306\) 0 0
\(307\) −3.60647 + 3.60647i −0.205832 + 0.205832i −0.802493 0.596661i \(-0.796494\pi\)
0.596661 + 0.802493i \(0.296494\pi\)
\(308\) 1.11818 + 0.307943i 0.0637142 + 0.0175467i
\(309\) 0 0
\(310\) −0.449173 0.0607202i −0.0255113 0.00344868i
\(311\) 9.13650 0.518084 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(312\) 0 0
\(313\) 11.1291 0.629055 0.314527 0.949248i \(-0.398154\pi\)
0.314527 + 0.949248i \(0.398154\pi\)
\(314\) 2.74326 + 0.370841i 0.154811 + 0.0209277i
\(315\) 0 0
\(316\) −3.41757 + 12.4096i −0.192254 + 0.698095i
\(317\) 9.07790 9.07790i 0.509866 0.509866i −0.404620 0.914485i \(-0.632596\pi\)
0.914485 + 0.404620i \(0.132596\pi\)
\(318\) 0 0
\(319\) 0.939404 + 0.939404i 0.0525965 + 0.0525965i
\(320\) −6.92358 0.144088i −0.387040 0.00805478i
\(321\) 0 0
\(322\) 6.33120 4.82331i 0.352824 0.268792i
\(323\) −6.83094 + 6.83094i −0.380084 + 0.380084i
\(324\) 0 0
\(325\) −14.7814 + 4.04936i −0.819925 + 0.224618i
\(326\) 1.51921 + 1.99415i 0.0841410 + 0.110446i
\(327\) 0 0
\(328\) −1.68624 + 0.677998i −0.0931072 + 0.0374362i
\(329\) 24.3433i 1.34209i
\(330\) 0 0
\(331\) 4.54016 + 4.54016i 0.249550 + 0.249550i 0.820786 0.571236i \(-0.193536\pi\)
−0.571236 + 0.820786i \(0.693536\pi\)
\(332\) 4.21548 + 7.41980i 0.231354 + 0.407215i
\(333\) 0 0
\(334\) 2.20073 1.67659i 0.120419 0.0917387i
\(335\) −1.53447 −0.0838372
\(336\) 0 0
\(337\) 29.5600i 1.61023i −0.593116 0.805117i \(-0.702102\pi\)
0.593116 0.805117i \(-0.297898\pi\)
\(338\) 7.16632 + 16.9306i 0.389796 + 0.920901i
\(339\) 0 0
\(340\) −3.08704 5.43360i −0.167418 0.294678i
\(341\) 0.0779517i 0.00422132i
\(342\) 0 0
\(343\) 12.4909 12.4909i 0.674443 0.674443i
\(344\) −28.1608 12.0093i −1.51833 0.647500i
\(345\) 0 0
\(346\) −4.22503 + 31.2544i −0.227139 + 1.68024i
\(347\) −7.48795 −0.401974 −0.200987 0.979594i \(-0.564415\pi\)
−0.200987 + 0.979594i \(0.564415\pi\)
\(348\) 0 0
\(349\) −3.45262 3.45262i −0.184815 0.184815i 0.608635 0.793450i \(-0.291717\pi\)
−0.793450 + 0.608635i \(0.791717\pi\)
\(350\) 10.0341 + 13.1710i 0.536344 + 0.704019i
\(351\) 0 0
\(352\) 0.134956 + 1.18331i 0.00719320 + 0.0630705i
\(353\) −13.1464 13.1464i −0.699710 0.699710i 0.264638 0.964348i \(-0.414748\pi\)
−0.964348 + 0.264638i \(0.914748\pi\)
\(354\) 0 0
\(355\) 9.60044i 0.509539i
\(356\) 17.5464 9.96879i 0.929958 0.528345i
\(357\) 0 0
\(358\) −30.9406 4.18262i −1.63526 0.221059i
\(359\) −13.2695 13.2695i −0.700339 0.700339i 0.264144 0.964483i \(-0.414911\pi\)
−0.964483 + 0.264144i \(0.914911\pi\)
\(360\) 0 0
\(361\) 11.8376i 0.623033i
\(362\) 0.757775 5.60558i 0.0398278 0.294623i
\(363\) 0 0
\(364\) 14.0636 14.0258i 0.737135 0.735153i
\(365\) 7.02176i 0.367536i
\(366\) 0 0
\(367\) 15.9191i 0.830973i 0.909599 + 0.415486i \(0.136389\pi\)
−0.909599 + 0.415486i \(0.863611\pi\)
\(368\) 7.02072 + 4.18433i 0.365981 + 0.218123i
\(369\) 0 0
\(370\) −0.402200 + 2.97525i −0.0209094 + 0.154676i
\(371\) 13.8407 13.8407i 0.718574 0.718574i
\(372\) 0 0
\(373\) 25.0250i 1.29574i −0.761749 0.647872i \(-0.775659\pi\)
0.761749 0.647872i \(-0.224341\pi\)
\(374\) −0.854927 + 0.651310i −0.0442072 + 0.0336785i
\(375\) 0 0
\(376\) −23.1930 + 9.32537i −1.19609 + 0.480919i
\(377\) 21.9430 6.01128i 1.13012 0.309596i
\(378\) 0 0
\(379\) −24.7631 24.7631i −1.27199 1.27199i −0.945040 0.326953i \(-0.893978\pi\)
−0.326953 0.945040i \(-0.606022\pi\)
\(380\) −4.46703 1.23021i −0.229154 0.0631083i
\(381\) 0 0
\(382\) 22.9524 + 3.10276i 1.17435 + 0.158751i
\(383\) 22.3395 22.3395i 1.14150 1.14150i 0.153318 0.988177i \(-0.451004\pi\)
0.988177 0.153318i \(-0.0489960\pi\)
\(384\) 0 0
\(385\) −0.354957 + 0.354957i −0.0180903 + 0.0180903i
\(386\) −20.9414 27.4883i −1.06589 1.39912i
\(387\) 0 0
\(388\) −10.0768 17.7365i −0.511571 0.900433i
\(389\) 8.16460 0.413961 0.206981 0.978345i \(-0.433636\pi\)
0.206981 + 0.978345i \(0.433636\pi\)
\(390\) 0 0
\(391\) 7.37552i 0.372996i
\(392\) −1.52649 0.650979i −0.0770992 0.0328794i
\(393\) 0 0
\(394\) −0.741868 0.973796i −0.0373748 0.0490591i
\(395\) −3.93933 3.93933i −0.198209 0.198209i
\(396\) 0 0
\(397\) 3.64644 + 3.64644i 0.183010 + 0.183010i 0.792666 0.609656i \(-0.208693\pi\)
−0.609656 + 0.792666i \(0.708693\pi\)
\(398\) 3.95372 29.2474i 0.198182 1.46604i
\(399\) 0 0
\(400\) −8.70479 + 14.6054i −0.435240 + 0.730272i
\(401\) −15.8904 + 15.8904i −0.793526 + 0.793526i −0.982066 0.188539i \(-0.939625\pi\)
0.188539 + 0.982066i \(0.439625\pi\)
\(402\) 0 0
\(403\) 1.15982 + 0.661007i 0.0577749 + 0.0329271i
\(404\) 19.2218 + 5.29362i 0.956319 + 0.263368i
\(405\) 0 0
\(406\) −14.8956 19.5523i −0.739256 0.970367i
\(407\) 0.516338 0.0255939
\(408\) 0 0
\(409\) −23.5920 23.5920i −1.16655 1.16655i −0.983013 0.183534i \(-0.941246\pi\)
−0.183534 0.983013i \(-0.558754\pi\)
\(410\) 0.105379 0.779530i 0.00520428 0.0384982i
\(411\) 0 0
\(412\) −15.8100 4.35403i −0.778903 0.214508i
\(413\) 29.6192 1.45747
\(414\) 0 0
\(415\) −3.69352 −0.181308
\(416\) 18.7505 + 8.02612i 0.919319 + 0.393513i
\(417\) 0 0
\(418\) −0.106748 + 0.789659i −0.00522121 + 0.0386235i
\(419\) 0.205279 0.0100285 0.00501426 0.999987i \(-0.498404\pi\)
0.00501426 + 0.999987i \(0.498404\pi\)
\(420\) 0 0
\(421\) 5.11031 5.11031i 0.249061 0.249061i −0.571524 0.820585i \(-0.693648\pi\)
0.820585 + 0.571524i \(0.193648\pi\)
\(422\) 0.562735 4.16279i 0.0273935 0.202641i
\(423\) 0 0
\(424\) 18.4887 + 7.88464i 0.897893 + 0.382912i
\(425\) −15.3435 −0.744270
\(426\) 0 0
\(427\) 10.7911 10.7911i 0.522220 0.522220i
\(428\) −9.37913 2.58299i −0.453357 0.124853i
\(429\) 0 0
\(430\) 10.5403 8.02991i 0.508297 0.387237i
\(431\) 15.7282 15.7282i 0.757599 0.757599i −0.218286 0.975885i \(-0.570046\pi\)
0.975885 + 0.218286i \(0.0700465\pi\)
\(432\) 0 0
\(433\) 3.59682i 0.172852i −0.996258 0.0864261i \(-0.972455\pi\)
0.996258 0.0864261i \(-0.0275446\pi\)
\(434\) 0.193208 1.42924i 0.00927430 0.0686059i
\(435\) 0 0
\(436\) −16.4564 + 9.34954i −0.788120 + 0.447762i
\(437\) 3.86669 + 3.86669i 0.184969 + 0.184969i
\(438\) 0 0
\(439\) 34.9806 1.66953 0.834766 0.550604i \(-0.185603\pi\)
0.834766 + 0.550604i \(0.185603\pi\)
\(440\) −0.474160 0.202208i −0.0226047 0.00963990i
\(441\) 0 0
\(442\) 2.44115 + 18.2432i 0.116113 + 0.867738i
\(443\) 19.1553 0.910095 0.455048 0.890467i \(-0.349622\pi\)
0.455048 + 0.890467i \(0.349622\pi\)
\(444\) 0 0
\(445\) 8.73447i 0.414054i
\(446\) 15.3623 + 20.1649i 0.727425 + 0.954838i
\(447\) 0 0
\(448\) 0.458481 22.0304i 0.0216612 1.04084i
\(449\) 4.05676 4.05676i 0.191450 0.191450i −0.604872 0.796322i \(-0.706776\pi\)
0.796322 + 0.604872i \(0.206776\pi\)
\(450\) 0 0
\(451\) −0.135283 −0.00637024
\(452\) 35.1057 + 9.66801i 1.65123 + 0.454745i
\(453\) 0 0
\(454\) −24.4975 + 18.6630i −1.14973 + 0.875897i
\(455\) 2.27138 + 8.29124i 0.106484 + 0.388699i
\(456\) 0 0
\(457\) 1.87342 + 1.87342i 0.0876350 + 0.0876350i 0.749565 0.661930i \(-0.230263\pi\)
−0.661930 + 0.749565i \(0.730263\pi\)
\(458\) −7.11951 + 5.42387i −0.332673 + 0.253441i
\(459\) 0 0
\(460\) −3.07571 + 1.74743i −0.143406 + 0.0814745i
\(461\) −18.0653 + 18.0653i −0.841387 + 0.841387i −0.989039 0.147652i \(-0.952828\pi\)
0.147652 + 0.989039i \(0.452828\pi\)
\(462\) 0 0
\(463\) −22.9474 22.9474i −1.06646 1.06646i −0.997629 0.0688283i \(-0.978074\pi\)
−0.0688283 0.997629i \(-0.521926\pi\)
\(464\) 12.9223 21.6818i 0.599902 1.00655i
\(465\) 0 0
\(466\) −17.3986 2.35198i −0.805973 0.108953i
\(467\) 33.2007i 1.53634i 0.640244 + 0.768172i \(0.278833\pi\)
−0.640244 + 0.768172i \(0.721167\pi\)
\(468\) 0 0
\(469\) 4.88260i 0.225458i
\(470\) 1.44941 10.7219i 0.0668561 0.494563i
\(471\) 0 0
\(472\) 11.3464 + 28.2196i 0.522262 + 1.29891i
\(473\) −1.61138 1.61138i −0.0740913 0.0740913i
\(474\) 0 0
\(475\) −8.04399 + 8.04399i −0.369084 + 0.369084i
\(476\) 17.2894 9.82278i 0.792458 0.450226i
\(477\) 0 0
\(478\) 5.24511 + 6.88487i 0.239906 + 0.314906i
\(479\) −27.4785 27.4785i −1.25553 1.25553i −0.953207 0.302320i \(-0.902239\pi\)
−0.302320 0.953207i \(-0.597761\pi\)
\(480\) 0 0
\(481\) 4.37840 7.68246i 0.199638 0.350290i
\(482\) 5.39240 + 7.07821i 0.245617 + 0.322404i
\(483\) 0 0
\(484\) 5.81774 21.1249i 0.264443 0.960222i
\(485\) 8.82909 0.400908
\(486\) 0 0
\(487\) 3.13453 3.13453i 0.142039 0.142039i −0.632512 0.774551i \(-0.717976\pi\)
0.774551 + 0.632512i \(0.217976\pi\)
\(488\) 14.4150 + 6.14738i 0.652539 + 0.278279i
\(489\) 0 0
\(490\) 0.571346 0.435270i 0.0258108 0.0196635i
\(491\) 17.6844i 0.798085i −0.916932 0.399043i \(-0.869343\pi\)
0.916932 0.399043i \(-0.130657\pi\)
\(492\) 0 0
\(493\) 22.7775 1.02585
\(494\) 10.8439 + 8.28436i 0.487892 + 0.372731i
\(495\) 0 0
\(496\) 1.43572 0.363431i 0.0644658 0.0163186i
\(497\) 30.5481 1.37027
\(498\) 0 0
\(499\) −3.09631 3.09631i −0.138610 0.138610i 0.634397 0.773007i \(-0.281248\pi\)
−0.773007 + 0.634397i \(0.781248\pi\)
\(500\) −7.91131 13.9250i −0.353805 0.622743i
\(501\) 0 0
\(502\) 28.0164 + 3.78732i 1.25043 + 0.169036i
\(503\) 25.5344i 1.13852i −0.822156 0.569262i \(-0.807229\pi\)
0.822156 0.569262i \(-0.192771\pi\)
\(504\) 0 0
\(505\) −6.10180 + 6.10180i −0.271526 + 0.271526i
\(506\) 0.368677 + 0.483936i 0.0163897 + 0.0215136i
\(507\) 0 0
\(508\) 3.85130 + 1.06064i 0.170874 + 0.0470582i
\(509\) 6.27440 6.27440i 0.278108 0.278108i −0.554245 0.832353i \(-0.686993\pi\)
0.832353 + 0.554245i \(0.186993\pi\)
\(510\) 0 0
\(511\) −22.3428 −0.988389
\(512\) 21.1651 8.00253i 0.935372 0.353665i
\(513\) 0 0
\(514\) 24.6035 + 3.32596i 1.08521 + 0.146702i
\(515\) 5.01875 5.01875i 0.221153 0.221153i
\(516\) 0 0
\(517\) −1.86072 −0.0818346
\(518\) −9.46706 1.27978i −0.415959 0.0562303i
\(519\) 0 0
\(520\) −7.02934 + 5.34023i −0.308257 + 0.234185i
\(521\) 11.7610 0.515258 0.257629 0.966244i \(-0.417059\pi\)
0.257629 + 0.966244i \(0.417059\pi\)
\(522\) 0 0
\(523\) 26.1848 1.14498 0.572491 0.819911i \(-0.305977\pi\)
0.572491 + 0.819911i \(0.305977\pi\)
\(524\) −30.9346 8.51929i −1.35138 0.372167i
\(525\) 0 0
\(526\) 38.7849 + 5.24304i 1.69110 + 0.228607i
\(527\) 0.945037 + 0.945037i 0.0411664 + 0.0411664i
\(528\) 0 0
\(529\) −18.8251 −0.818480
\(530\) −6.92013 + 5.27197i −0.300591 + 0.229000i
\(531\) 0 0
\(532\) 3.91445 14.2138i 0.169713 0.616247i
\(533\) −1.14716 + 2.01285i −0.0496891 + 0.0871860i
\(534\) 0 0
\(535\) 2.97733 2.97733i 0.128721 0.128721i
\(536\) 4.65188 1.87041i 0.200931 0.0807895i
\(537\) 0 0
\(538\) −30.4416 4.11517i −1.31243 0.177418i
\(539\) −0.0873465 0.0873465i −0.00376228 0.00376228i
\(540\) 0 0
\(541\) −31.8203 31.8203i −1.36806 1.36806i −0.863202 0.504859i \(-0.831544\pi\)
−0.504859 0.863202i \(-0.668456\pi\)
\(542\) −19.2333 + 14.6525i −0.826140 + 0.629379i
\(543\) 0 0
\(544\) 15.9818 + 12.7095i 0.685214 + 0.544917i
\(545\) 8.19189i 0.350902i
\(546\) 0 0
\(547\) −8.93392 −0.381987 −0.190993 0.981591i \(-0.561171\pi\)
−0.190993 + 0.981591i \(0.561171\pi\)
\(548\) 30.8656 17.5359i 1.31851 0.749098i
\(549\) 0 0
\(550\) −1.00675 + 0.766971i −0.0429278 + 0.0327038i
\(551\) 11.9413 11.9413i 0.508717 0.508717i
\(552\) 0 0
\(553\) 12.5347 12.5347i 0.533031 0.533031i
\(554\) 2.13305 15.7790i 0.0906245 0.670387i
\(555\) 0 0
\(556\) −4.21192 1.15995i −0.178625 0.0491929i
\(557\) 23.9560 + 23.9560i 1.01505 + 1.01505i 0.999885 + 0.0151623i \(0.00482650\pi\)
0.0151623 + 0.999885i \(0.495174\pi\)
\(558\) 0 0
\(559\) −37.6393 + 10.3113i −1.59197 + 0.436120i
\(560\) 8.19253 + 4.88272i 0.346197 + 0.206333i
\(561\) 0 0
\(562\) −9.70559 12.7398i −0.409406 0.537397i
\(563\) 30.6698i 1.29258i 0.763093 + 0.646289i \(0.223680\pi\)
−0.763093 + 0.646289i \(0.776320\pi\)
\(564\) 0 0
\(565\) −11.1440 + 11.1440i −0.468832 + 0.468832i
\(566\) −28.6318 3.87052i −1.20349 0.162690i
\(567\) 0 0
\(568\) 11.7023 + 29.1046i 0.491016 + 1.22120i
\(569\) 0.0185644i 0.000778260i −1.00000 0.000389130i \(-0.999876\pi\)
1.00000 0.000389130i \(-0.000123864\pi\)
\(570\) 0 0
\(571\) 32.0060i 1.33941i −0.742627 0.669705i \(-0.766420\pi\)
0.742627 0.669705i \(-0.233580\pi\)
\(572\) 1.07209 + 1.07498i 0.0448262 + 0.0449471i
\(573\) 0 0
\(574\) 2.48042 + 0.335309i 0.103531 + 0.0139955i
\(575\) 8.68528i 0.362201i
\(576\) 0 0
\(577\) −0.107901 0.107901i −0.00449198 0.00449198i 0.704857 0.709349i \(-0.251011\pi\)
−0.709349 + 0.704857i \(0.751011\pi\)
\(578\) 0.752189 5.56425i 0.0312869 0.231442i
\(579\) 0 0
\(580\) 5.39652 + 9.49859i 0.224078 + 0.394407i
\(581\) 11.7526i 0.487579i
\(582\) 0 0
\(583\) 1.05794 + 1.05794i 0.0438153 + 0.0438153i
\(584\) −8.55903 21.2871i −0.354175 0.880865i
\(585\) 0 0
\(586\) −16.8332 + 12.8241i −0.695372 + 0.529757i
\(587\) 3.55046 + 3.55046i 0.146543 + 0.146543i 0.776572 0.630029i \(-0.216957\pi\)
−0.630029 + 0.776572i \(0.716957\pi\)
\(588\) 0 0
\(589\) 0.990889 0.0408289
\(590\) −13.0456 1.76353i −0.537078 0.0726034i
\(591\) 0 0
\(592\) −2.40731 9.50997i −0.0989397 0.390857i
\(593\) 28.6328 28.6328i 1.17581 1.17581i 0.195008 0.980802i \(-0.437527\pi\)
0.980802 0.195008i \(-0.0624732\pi\)
\(594\) 0 0
\(595\) 8.60654i 0.352834i
\(596\) 7.92238 4.50101i 0.324513 0.184369i
\(597\) 0 0
\(598\) 10.3266 1.38182i 0.422287 0.0565069i
\(599\) 8.64766i 0.353334i 0.984271 + 0.176667i \(0.0565316\pi\)
−0.984271 + 0.176667i \(0.943468\pi\)
\(600\) 0 0
\(601\) 32.8764 1.34106 0.670529 0.741884i \(-0.266067\pi\)
0.670529 + 0.741884i \(0.266067\pi\)
\(602\) 25.5507 + 33.5386i 1.04137 + 1.36693i
\(603\) 0 0
\(604\) 6.64385 + 11.6941i 0.270335 + 0.475825i
\(605\) 6.70592 + 6.70592i 0.272635 + 0.272635i
\(606\) 0 0
\(607\) 15.2968i 0.620877i −0.950593 0.310439i \(-0.899524\pi\)
0.950593 0.310439i \(-0.100476\pi\)
\(608\) 15.0417 1.71551i 0.610022 0.0695731i
\(609\) 0 0
\(610\) −5.39539 + 4.11038i −0.218453 + 0.166424i
\(611\) −15.7784 + 27.6852i −0.638326 + 1.12002i
\(612\) 0 0
\(613\) −12.2996 + 12.2996i −0.496774 + 0.496774i −0.910432 0.413658i \(-0.864251\pi\)
0.413658 + 0.910432i \(0.364251\pi\)
\(614\) 4.37109 + 5.73761i 0.176403 + 0.231551i
\(615\) 0 0
\(616\) 0.643415 1.50875i 0.0259239 0.0607892i
\(617\) −25.8120 25.8120i −1.03915 1.03915i −0.999202 0.0399514i \(-0.987280\pi\)
−0.0399514 0.999202i \(-0.512720\pi\)
\(618\) 0 0
\(619\) −13.5295 + 13.5295i −0.543795 + 0.543795i −0.924639 0.380844i \(-0.875633\pi\)
0.380844 + 0.924639i \(0.375633\pi\)
\(620\) −0.170195 + 0.617997i −0.00683518 + 0.0248194i
\(621\) 0 0
\(622\) 1.73094 12.8045i 0.0694044 0.513414i
\(623\) −27.7926 −1.11349
\(624\) 0 0
\(625\) −14.3216 −0.572866
\(626\) 2.10845 15.5971i 0.0842706 0.623385i
\(627\) 0 0
\(628\) 1.03944 3.77433i 0.0414782 0.150612i
\(629\) 6.25976 6.25976i 0.249593 0.249593i
\(630\) 0 0
\(631\) 18.1643 + 18.1643i 0.723110 + 0.723110i 0.969237 0.246128i \(-0.0791583\pi\)
−0.246128 + 0.969237i \(0.579158\pi\)
\(632\) 16.7442 + 7.14066i 0.666048 + 0.284040i
\(633\) 0 0
\(634\) −11.0025 14.4422i −0.436966 0.573573i
\(635\) −1.22257 + 1.22257i −0.0485160 + 0.0485160i
\(636\) 0 0
\(637\) −2.04028 + 0.558933i −0.0808387 + 0.0221457i
\(638\) 1.49452 1.13857i 0.0591685 0.0450764i
\(639\) 0 0
\(640\) −1.51363 + 9.67586i −0.0598315 + 0.382472i
\(641\) 5.37880i 0.212450i 0.994342 + 0.106225i \(0.0338764\pi\)
−0.994342 + 0.106225i \(0.966124\pi\)
\(642\) 0 0
\(643\) −7.21706 7.21706i −0.284613 0.284613i 0.550332 0.834946i \(-0.314501\pi\)
−0.834946 + 0.550332i \(0.814501\pi\)
\(644\) −5.56023 9.78675i −0.219104 0.385652i
\(645\) 0 0
\(646\) 8.27919 + 10.8675i 0.325740 + 0.427575i
\(647\) −10.0155 −0.393751 −0.196876 0.980428i \(-0.563080\pi\)
−0.196876 + 0.980428i \(0.563080\pi\)
\(648\) 0 0
\(649\) 2.26399i 0.0888695i
\(650\) 2.87465 + 21.4828i 0.112753 + 0.842625i
\(651\) 0 0
\(652\) 3.08255 1.75132i 0.120722 0.0685869i
\(653\) 36.0033i 1.40892i −0.709745 0.704459i \(-0.751190\pi\)
0.709745 0.704459i \(-0.248810\pi\)
\(654\) 0 0
\(655\) 9.81992 9.81992i 0.383696 0.383696i
\(656\) 0.630727 + 2.49166i 0.0246257 + 0.0972830i
\(657\) 0 0
\(658\) 34.1164 + 4.61193i 1.32999 + 0.179792i
\(659\) −12.2051 −0.475442 −0.237721 0.971333i \(-0.576400\pi\)
−0.237721 + 0.971333i \(0.576400\pi\)
\(660\) 0 0
\(661\) 5.59687 + 5.59687i 0.217693 + 0.217693i 0.807526 0.589833i \(-0.200806\pi\)
−0.589833 + 0.807526i \(0.700806\pi\)
\(662\) 7.22303 5.50273i 0.280731 0.213870i
\(663\) 0 0
\(664\) 11.1972 4.50214i 0.434537 0.174717i
\(665\) 4.51206 + 4.51206i 0.174970 + 0.174970i
\(666\) 0 0
\(667\) 12.8933i 0.499231i
\(668\) −1.93274 3.40188i −0.0747801 0.131623i
\(669\) 0 0
\(670\) −0.290711 + 2.15051i −0.0112311 + 0.0830815i
\(671\) 0.824838 + 0.824838i 0.0318425 + 0.0318425i
\(672\) 0 0
\(673\) 31.9994i 1.23349i 0.787164 + 0.616744i \(0.211548\pi\)
−0.787164 + 0.616744i \(0.788452\pi\)
\(674\) −41.4273 5.60024i −1.59572 0.215713i
\(675\) 0 0
\(676\) 25.0853 6.83580i 0.964819 0.262916i
\(677\) 44.2730i 1.70155i 0.525531 + 0.850775i \(0.323867\pi\)
−0.525531 + 0.850775i \(0.676133\pi\)
\(678\) 0 0
\(679\) 28.0937i 1.07814i
\(680\) −8.19985 + 3.29697i −0.314450 + 0.126433i
\(681\) 0 0
\(682\) 0.109247 + 0.0147682i 0.00418327 + 0.000565504i
\(683\) −31.4933 + 31.4933i −1.20506 + 1.20506i −0.232450 + 0.972608i \(0.574674\pi\)
−0.972608 + 0.232450i \(0.925326\pi\)
\(684\) 0 0
\(685\) 15.3647i 0.587054i
\(686\) −15.1391 19.8719i −0.578013 0.758714i
\(687\) 0 0
\(688\) −22.1659 + 37.1912i −0.845065 + 1.41790i
\(689\) 24.7118 6.76978i 0.941444 0.257908i
\(690\) 0 0
\(691\) 24.6092 + 24.6092i 0.936177 + 0.936177i 0.998082 0.0619046i \(-0.0197175\pi\)
−0.0619046 + 0.998082i \(0.519717\pi\)
\(692\) 43.0015 + 11.8425i 1.63467 + 0.450184i
\(693\) 0 0
\(694\) −1.41862 + 10.4941i −0.0538500 + 0.398351i
\(695\) 1.33704 1.33704i 0.0507168 0.0507168i
\(696\) 0 0
\(697\) −1.64009 + 1.64009i −0.0621228 + 0.0621228i
\(698\) −5.49285 + 4.18462i −0.207907 + 0.158390i
\(699\) 0 0
\(700\) 20.3597 11.5671i 0.769524 0.437196i
\(701\) −27.2407 −1.02887 −0.514434 0.857530i \(-0.671998\pi\)
−0.514434 + 0.857530i \(0.671998\pi\)
\(702\) 0 0
\(703\) 6.56348i 0.247546i
\(704\) 1.68393 + 0.0350447i 0.0634656 + 0.00132080i
\(705\) 0 0
\(706\) −20.9148 + 15.9336i −0.787139 + 0.599667i
\(707\) −19.4156 19.4156i −0.730198 0.730198i
\(708\) 0 0
\(709\) 32.0653 + 32.0653i 1.20424 + 1.20424i 0.972865 + 0.231374i \(0.0743220\pi\)
0.231374 + 0.972865i \(0.425678\pi\)
\(710\) −13.4547 1.81884i −0.504946 0.0682597i
\(711\) 0 0
\(712\) −10.6467 26.4793i −0.399002 0.992354i
\(713\) 0.534943 0.534943i 0.0200338 0.0200338i
\(714\) 0 0
\(715\) −0.633755 + 0.173617i −0.0237011 + 0.00649289i
\(716\) −11.7236 + 42.5698i −0.438132 + 1.59091i
\(717\) 0 0
\(718\) −21.1108 + 16.0828i −0.787847 + 0.600207i
\(719\) −9.97340 −0.371945 −0.185973 0.982555i \(-0.559544\pi\)
−0.185973 + 0.982555i \(0.559544\pi\)
\(720\) 0 0
\(721\) 15.9694 + 15.9694i 0.594731 + 0.594731i
\(722\) −16.5900 2.24268i −0.617417 0.0834639i
\(723\) 0 0
\(724\) −7.71247 2.12399i −0.286632 0.0789376i
\(725\) 26.8223 0.996157
\(726\) 0 0
\(727\) 47.6868 1.76861 0.884303 0.466914i \(-0.154634\pi\)
0.884303 + 0.466914i \(0.154634\pi\)
\(728\) −16.9923 22.3669i −0.629777 0.828974i
\(729\) 0 0
\(730\) 9.84076 + 1.33030i 0.364223 + 0.0492365i
\(731\) −39.0707 −1.44508
\(732\) 0 0
\(733\) 33.1754 33.1754i 1.22536 1.22536i 0.259662 0.965699i \(-0.416389\pi\)
0.965699 0.259662i \(-0.0836113\pi\)
\(734\) 22.3101 + 3.01594i 0.823483 + 0.111320i
\(735\) 0 0
\(736\) 7.19430 9.04657i 0.265185 0.333461i
\(737\) 0.373210 0.0137474
\(738\) 0 0
\(739\) −22.1483 + 22.1483i −0.814739 + 0.814739i −0.985340 0.170601i \(-0.945429\pi\)
0.170601 + 0.985340i \(0.445429\pi\)
\(740\) 4.09351 + 1.12734i 0.150480 + 0.0414419i
\(741\) 0 0
\(742\) −16.7751 22.0195i −0.615834 0.808360i
\(743\) −6.55392 + 6.55392i −0.240440 + 0.240440i −0.817032 0.576592i \(-0.804382\pi\)
0.576592 + 0.817032i \(0.304382\pi\)
\(744\) 0 0
\(745\) 3.94371i 0.144486i
\(746\) −35.0717 4.74107i −1.28406 0.173583i
\(747\) 0 0
\(748\) 0.750821 + 1.32154i 0.0274527 + 0.0483204i
\(749\) 9.47369 + 9.47369i 0.346161 + 0.346161i
\(750\) 0 0
\(751\) −28.8367 −1.05227 −0.526133 0.850402i \(-0.676358\pi\)
−0.526133 + 0.850402i \(0.676358\pi\)
\(752\) 8.67519 + 34.2710i 0.316352 + 1.24973i
\(753\) 0 0
\(754\) −4.26742 31.8913i −0.155410 1.16141i
\(755\) −5.82122 −0.211856
\(756\) 0 0
\(757\) 24.2191i 0.880257i 0.897935 + 0.440129i \(0.145067\pi\)
−0.897935 + 0.440129i \(0.854933\pi\)
\(758\) −39.3961 + 30.0132i −1.43093 + 1.09013i
\(759\) 0 0
\(760\) −2.57039 + 6.02732i −0.0932377 + 0.218634i
\(761\) 7.48899 7.48899i 0.271476 0.271476i −0.558218 0.829694i \(-0.688515\pi\)
0.829694 + 0.558218i \(0.188515\pi\)
\(762\) 0 0
\(763\) 26.0661 0.943658
\(764\) 8.69683 31.5792i 0.314640 1.14250i
\(765\) 0 0
\(766\) −27.0758 35.5403i −0.978287 1.28412i
\(767\) 33.6854 + 19.1980i 1.21631 + 0.693200i
\(768\) 0 0
\(769\) 5.21737 + 5.21737i 0.188143 + 0.188143i 0.794893 0.606750i \(-0.207527\pi\)
−0.606750 + 0.794893i \(0.707527\pi\)
\(770\) 0.430212 + 0.564708i 0.0155038 + 0.0203506i
\(771\) 0 0
\(772\) −42.4913 + 24.1410i −1.52930 + 0.868852i
\(773\) −11.7692 + 11.7692i −0.423310 + 0.423310i −0.886342 0.463032i \(-0.846762\pi\)
0.463032 + 0.886342i \(0.346762\pi\)
\(774\) 0 0
\(775\) 1.11286 + 1.11286i 0.0399750 + 0.0399750i
\(776\) −26.7661 + 10.7620i −0.960848 + 0.386334i
\(777\) 0 0
\(778\) 1.54681 11.4424i 0.0554558 0.410230i
\(779\) 1.71967i 0.0616134i
\(780\) 0 0
\(781\) 2.33499i 0.0835526i
\(782\) 10.3365 + 1.39732i 0.369634 + 0.0499680i
\(783\) 0 0
\(784\) −1.20152 + 2.01599i −0.0429115 + 0.0719995i
\(785\) 1.19813 + 1.19813i 0.0427631 + 0.0427631i
\(786\) 0 0
\(787\) 15.4380 15.4380i 0.550307 0.550307i −0.376222 0.926529i \(-0.622777\pi\)
0.926529 + 0.376222i \(0.122777\pi\)
\(788\) −1.50529 + 0.855214i −0.0536238 + 0.0304657i
\(789\) 0 0
\(790\) −6.26716 + 4.77452i −0.222975 + 0.169870i
\(791\) −35.4596 35.4596i −1.26080 1.26080i
\(792\) 0 0
\(793\) 19.2669 5.27816i 0.684189 0.187433i
\(794\) 5.80119 4.41953i 0.205877 0.156843i
\(795\) 0 0
\(796\) −40.2401 11.0820i −1.42627 0.392792i
\(797\) −5.65413 −0.200279 −0.100140 0.994973i \(-0.531929\pi\)
−0.100140 + 0.994973i \(0.531929\pi\)
\(798\) 0 0
\(799\) −22.5582 + 22.5582i −0.798053 + 0.798053i
\(800\) 18.8199 + 14.9665i 0.665383 + 0.529146i
\(801\) 0 0
\(802\) 19.2593 + 25.2803i 0.680070 + 0.892677i
\(803\) 1.70781i 0.0602674i
\(804\) 0 0
\(805\) 4.87177 0.171707
\(806\) 1.14611 1.50022i 0.0403701 0.0528431i
\(807\) 0 0
\(808\) 11.0605 25.9358i 0.389106 0.912418i
\(809\) 48.6272 1.70964 0.854820 0.518925i \(-0.173668\pi\)
0.854820 + 0.518925i \(0.173668\pi\)
\(810\) 0 0
\(811\) 14.5781 + 14.5781i 0.511907 + 0.511907i 0.915110 0.403203i \(-0.132103\pi\)
−0.403203 + 0.915110i \(0.632103\pi\)
\(812\) −30.2240 + 17.1714i −1.06065 + 0.602599i
\(813\) 0 0
\(814\) 0.0978221 0.723631i 0.00342866 0.0253632i
\(815\) 1.53447i 0.0537502i
\(816\) 0 0
\(817\) −20.4832 + 20.4832i −0.716616 + 0.716616i
\(818\) −37.5329 + 28.5938i −1.31231 + 0.999758i
\(819\) 0 0
\(820\) −1.07252 0.295369i −0.0374540 0.0103147i
\(821\) 6.68836 6.68836i 0.233425 0.233425i −0.580695 0.814121i \(-0.697219\pi\)
0.814121 + 0.580695i \(0.197219\pi\)
\(822\) 0 0
\(823\) 25.4807 0.888201 0.444100 0.895977i \(-0.353523\pi\)
0.444100 + 0.895977i \(0.353523\pi\)
\(824\) −9.09728 + 21.3323i −0.316919 + 0.743146i
\(825\) 0 0
\(826\) 5.61146 41.5103i 0.195248 1.44433i
\(827\) −0.138614 + 0.138614i −0.00482008 + 0.00482008i −0.709513 0.704693i \(-0.751085\pi\)
0.704693 + 0.709513i \(0.251085\pi\)
\(828\) 0 0
\(829\) 29.9167 1.03905 0.519525 0.854455i \(-0.326109\pi\)
0.519525 + 0.854455i \(0.326109\pi\)
\(830\) −0.699751 + 5.17635i −0.0242887 + 0.179674i
\(831\) 0 0
\(832\) 14.8007 24.7576i 0.513121 0.858316i
\(833\) −2.11787 −0.0733797
\(834\) 0 0
\(835\) 1.69343 0.0586037
\(836\) 1.08646 + 0.299207i 0.0375759 + 0.0103483i
\(837\) 0 0
\(838\) 0.0388907 0.287691i 0.00134346 0.00993812i
\(839\) −27.4026 27.4026i −0.946042 0.946042i 0.0525750 0.998617i \(-0.483257\pi\)
−0.998617 + 0.0525750i \(0.983257\pi\)
\(840\) 0 0
\(841\) −10.8178 −0.373028
\(842\) −6.19376 8.13010i −0.213451 0.280182i
\(843\) 0 0
\(844\) −5.72740 1.57731i −0.197145 0.0542932i
\(845\) −2.79086 + 10.9017i −0.0960084 + 0.375029i
\(846\) 0 0
\(847\) −21.3379 + 21.3379i −0.733178 + 0.733178i
\(848\) 14.5528 24.4176i 0.499745 0.838503i
\(849\) 0 0
\(850\) −2.90688 + 21.5034i −0.0997053 + 0.737562i
\(851\) −3.54337 3.54337i −0.121465 0.121465i
\(852\) 0 0
\(853\) −29.8041 29.8041i −1.02047 1.02047i −0.999786 0.0206867i \(-0.993415\pi\)
−0.0206867 0.999786i \(-0.506585\pi\)
\(854\) −13.0790 17.1678i −0.447554 0.587471i
\(855\) 0 0
\(856\) −5.39687 + 12.6552i −0.184461 + 0.432545i
\(857\) 11.7552i 0.401551i −0.979637 0.200775i \(-0.935654\pi\)
0.979637 0.200775i \(-0.0643461\pi\)
\(858\) 0 0
\(859\) −46.2378 −1.57761 −0.788806 0.614642i \(-0.789300\pi\)
−0.788806 + 0.614642i \(0.789300\pi\)
\(860\) −9.25676 16.2931i −0.315653 0.555591i
\(861\) 0 0
\(862\) −19.0627 25.0223i −0.649280 0.852261i
\(863\) −37.0232 + 37.0232i −1.26029 + 1.26029i −0.309332 + 0.950954i \(0.600105\pi\)
−0.950954 + 0.309332i \(0.899895\pi\)
\(864\) 0 0
\(865\) −13.6505 + 13.6505i −0.464130 + 0.464130i
\(866\) −5.04082 0.681430i −0.171294 0.0231559i
\(867\) 0 0
\(868\) −1.96643 0.541550i −0.0667451 0.0183814i
\(869\) 0.958113 + 0.958113i 0.0325018 + 0.0325018i
\(870\) 0 0
\(871\) 3.16471 5.55289i 0.107232 0.188153i
\(872\) 9.98533 + 24.8344i 0.338146 + 0.841000i
\(873\) 0 0
\(874\) 6.15159 4.68647i 0.208081 0.158522i
\(875\) 22.0564i 0.745643i
\(876\) 0 0
\(877\) −22.9678 + 22.9678i −0.775567 + 0.775567i −0.979074 0.203507i \(-0.934766\pi\)
0.203507 + 0.979074i \(0.434766\pi\)
\(878\) 6.62719 49.0241i 0.223657 1.65448i
\(879\) 0 0
\(880\) −0.373219 + 0.626210i −0.0125812 + 0.0211095i
\(881\) 30.2662i 1.01969i −0.860265 0.509847i \(-0.829702\pi\)
0.860265 0.509847i \(-0.170298\pi\)
\(882\) 0 0
\(883\) 25.5531i 0.859932i 0.902845 + 0.429966i \(0.141474\pi\)
−0.902845 + 0.429966i \(0.858526\pi\)
\(884\) 26.0296 + 0.0350443i 0.875472 + 0.00117867i
\(885\) 0 0
\(886\) 3.62903 26.8455i 0.121920 0.901892i
\(887\) 32.3643i 1.08669i 0.839511 + 0.543343i \(0.182842\pi\)
−0.839511 + 0.543343i \(0.817158\pi\)
\(888\) 0 0
\(889\) −3.89013 3.89013i −0.130471 0.130471i
\(890\) 12.2411 + 1.65478i 0.410322 + 0.0554682i
\(891\) 0 0
\(892\) 31.1709 17.7094i 1.04368 0.592955i
\(893\) 23.6528i 0.791509i
\(894\) 0 0
\(895\) −13.5134 13.5134i −0.451705 0.451705i
\(896\) −30.7880 4.81629i −1.02856 0.160901i
\(897\) 0 0
\(898\) −4.91684 6.45397i −0.164077 0.215372i
\(899\) −1.65204 1.65204i −0.0550986 0.0550986i
\(900\) 0 0
\(901\) 25.6515 0.854577
\(902\) −0.0256299 + 0.189595i −0.000853382 + 0.00631282i
\(903\) 0 0
\(904\) 20.2003 47.3678i 0.671851 1.57543i
\(905\) 2.44826 2.44826i 0.0813829 0.0813829i
\(906\) 0 0
\(907\) 39.0804i 1.29764i 0.760940 + 0.648822i \(0.224738\pi\)
−0.760940 + 0.648822i \(0.775262\pi\)
\(908\) 21.5144 + 37.8682i 0.713981 + 1.25670i
\(909\) 0 0
\(910\) 12.0502 1.61246i 0.399460 0.0534524i
\(911\) 13.9748i 0.463005i −0.972834 0.231503i \(-0.925636\pi\)
0.972834 0.231503i \(-0.0743642\pi\)
\(912\) 0 0
\(913\) 0.898329 0.0297303
\(914\) 2.98047 2.27061i 0.0985850 0.0751052i
\(915\) 0 0
\(916\) 6.25256 + 11.0053i 0.206590 + 0.363626i
\(917\) 31.2464 + 31.2464i 1.03185 + 1.03185i
\(918\) 0 0
\(919\) 19.9206i 0.657121i −0.944483 0.328561i \(-0.893436\pi\)
0.944483 0.328561i \(-0.106564\pi\)
\(920\) 1.86626 + 4.64157i 0.0615289 + 0.153028i
\(921\) 0 0
\(922\) 21.8954 + 28.7405i 0.721087 + 0.946518i
\(923\) 34.7417 + 19.8001i 1.14354 + 0.651727i
\(924\) 0 0
\(925\) 7.37138 7.37138i 0.242369 0.242369i
\(926\) −36.5075 + 27.8126i −1.19971 + 0.913977i
\(927\) 0 0
\(928\) −27.9381 22.2178i −0.917114 0.729336i
\(929\) −21.6587 21.6587i −0.710601 0.710601i 0.256060 0.966661i \(-0.417575\pi\)
−0.966661 + 0.256060i \(0.917575\pi\)
\(930\) 0 0
\(931\) −1.11031 + 1.11031i −0.0363890 + 0.0363890i
\(932\) −6.59243 + 23.9379i −0.215942 + 0.784112i
\(933\) 0 0
\(934\) 46.5296 + 6.28998i 1.52250 + 0.205814i
\(935\) −0.657855 −0.0215142
\(936\) 0 0
\(937\) 19.8950 0.649943 0.324971 0.945724i \(-0.394645\pi\)
0.324971 + 0.945724i \(0.394645\pi\)
\(938\) −6.84280 0.925026i −0.223425 0.0302032i
\(939\) 0 0
\(940\) −14.7517 4.06259i −0.481149 0.132507i
\(941\) 0.342472 0.342472i 0.0111643 0.0111643i −0.701503 0.712667i \(-0.747487\pi\)
0.712667 + 0.701503i \(0.247487\pi\)
\(942\) 0 0
\(943\) 0.928381 + 0.928381i 0.0302322 + 0.0302322i
\(944\) 41.6984 10.5553i 1.35717 0.343547i
\(945\) 0 0
\(946\) −2.56358 + 1.95301i −0.0833490 + 0.0634979i
\(947\) −2.42042 + 2.42042i −0.0786530 + 0.0786530i −0.745339 0.666686i \(-0.767712\pi\)
0.666686 + 0.745339i \(0.267712\pi\)
\(948\) 0 0
\(949\) −25.4101 14.4817i −0.824847 0.470097i
\(950\) 9.74942 + 12.7973i 0.316313 + 0.415201i
\(951\) 0 0
\(952\) −10.4908 26.0915i −0.340008 0.845629i
\(953\) 47.0484i 1.52405i −0.647549 0.762024i \(-0.724206\pi\)
0.647549 0.762024i \(-0.275794\pi\)
\(954\) 0 0
\(955\) 10.0246 + 10.0246i 0.324387 + 0.324387i
\(956\) 10.6426 6.04648i 0.344207 0.195557i
\(957\) 0 0
\(958\) −43.7161 + 33.3043i −1.41240 + 1.07601i
\(959\) −48.8895 −1.57872
\(960\) 0 0
\(961\) 30.8629i 0.995578i
\(962\) −9.93721 7.59165i −0.320389 0.244764i
\(963\) 0 0
\(964\) 10.9415 6.21628i 0.352401 0.200213i
\(965\) 21.1519i 0.680903i
\(966\) 0 0
\(967\) 40.3441 40.3441i 1.29738 1.29738i 0.367262 0.930117i \(-0.380295\pi\)
0.930117 0.367262i \(-0.119705\pi\)
\(968\) −28.5036 12.1555i −0.916141 0.390694i
\(969\) 0 0
\(970\) 1.67270 12.3737i 0.0537072 0.397294i
\(971\) −58.1744 −1.86690 −0.933452 0.358701i \(-0.883220\pi\)
−0.933452 + 0.358701i \(0.883220\pi\)
\(972\) 0 0
\(973\) 4.25438 + 4.25438i 0.136389 + 0.136389i
\(974\) −3.79909 4.98678i −0.121731 0.159787i
\(975\) 0 0
\(976\) 11.3463 19.0376i 0.363187 0.609377i
\(977\) 6.21549 + 6.21549i 0.198851 + 0.198851i 0.799507 0.600656i \(-0.205094\pi\)
−0.600656 + 0.799507i \(0.705094\pi\)
\(978\) 0 0
\(979\) 2.12437i 0.0678953i
\(980\) −0.501772 0.883186i −0.0160285 0.0282123i
\(981\) 0 0
\(982\) −24.7841 3.35037i −0.790892 0.106915i
\(983\) −5.42583 5.42583i −0.173057 0.173057i 0.615264 0.788321i \(-0.289049\pi\)
−0.788321 + 0.615264i \(0.789049\pi\)
\(984\) 0 0
\(985\) 0.749323i 0.0238754i
\(986\) 4.31527 31.9219i 0.137426 1.01660i
\(987\) 0 0
\(988\) 13.6647 13.6279i 0.434731 0.433562i
\(989\) 22.1162i 0.703253i
\(990\) 0 0
\(991\) 25.8093i 0.819860i 0.912117 + 0.409930i \(0.134447\pi\)
−0.912117 + 0.409930i \(0.865553\pi\)
\(992\) −0.237335 2.08097i −0.00753538 0.0660708i
\(993\) 0 0
\(994\) 5.78744 42.8121i 0.183566 1.35792i
\(995\) 12.7739 12.7739i 0.404960 0.404960i
\(996\) 0 0
\(997\) 49.6491i 1.57240i −0.617971 0.786201i \(-0.712045\pi\)
0.617971 0.786201i \(-0.287955\pi\)
\(998\) −4.92598 + 3.75277i −0.155929 + 0.118792i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.k.307.13 yes 48
3.2 odd 2 inner 936.2.w.k.307.12 yes 48
8.3 odd 2 inner 936.2.w.k.307.1 48
13.5 odd 4 inner 936.2.w.k.811.1 yes 48
24.11 even 2 inner 936.2.w.k.307.24 yes 48
39.5 even 4 inner 936.2.w.k.811.24 yes 48
104.83 even 4 inner 936.2.w.k.811.13 yes 48
312.83 odd 4 inner 936.2.w.k.811.12 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.w.k.307.1 48 8.3 odd 2 inner
936.2.w.k.307.12 yes 48 3.2 odd 2 inner
936.2.w.k.307.13 yes 48 1.1 even 1 trivial
936.2.w.k.307.24 yes 48 24.11 even 2 inner
936.2.w.k.811.1 yes 48 13.5 odd 4 inner
936.2.w.k.811.12 yes 48 312.83 odd 4 inner
936.2.w.k.811.13 yes 48 104.83 even 4 inner
936.2.w.k.811.24 yes 48 39.5 even 4 inner