Properties

Label 936.2.w.k.307.23
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.23
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.k.811.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38609 + 0.280631i) q^{2} +(1.84249 + 0.777959i) q^{4} +(1.86097 - 1.86097i) q^{5} +(1.43671 + 1.43671i) q^{7} +(2.33554 + 1.59538i) q^{8} +(3.10171 - 2.05722i) q^{10} +(1.79579 - 1.79579i) q^{11} +(-1.73435 + 3.16102i) q^{13} +(1.58823 + 2.39460i) q^{14} +(2.78956 + 2.86677i) q^{16} +0.690579i q^{17} +(-4.78545 - 4.78545i) q^{19} +(4.87658 - 1.98106i) q^{20} +(2.99308 - 1.98517i) q^{22} -2.64723 q^{23} -1.92640i q^{25} +(-3.29105 + 3.89474i) q^{26} +(1.52943 + 3.76484i) q^{28} -1.62313i q^{29} +(-0.151569 + 0.151569i) q^{31} +(3.06208 + 4.75644i) q^{32} +(-0.193798 + 0.957205i) q^{34} +5.34736 q^{35} +(-2.07147 - 2.07147i) q^{37} +(-5.29012 - 7.97600i) q^{38} +(7.31532 - 1.37741i) q^{40} +(4.35600 + 4.35600i) q^{41} -4.88935i q^{43} +(4.70577 - 1.91168i) q^{44} +(-3.66929 - 0.742893i) q^{46} +(-0.307890 - 0.307890i) q^{47} -2.87170i q^{49} +(0.540607 - 2.67016i) q^{50} +(-5.65468 + 4.47489i) q^{52} +8.52080i q^{53} -6.68380i q^{55} +(1.06340 + 5.64761i) q^{56} +(0.455500 - 2.24980i) q^{58} +(4.50238 - 4.50238i) q^{59} +7.02830i q^{61} +(-0.252623 + 0.167553i) q^{62} +(2.90951 + 7.45216i) q^{64} +(2.65497 + 9.11012i) q^{65} +(-6.08794 - 6.08794i) q^{67} +(-0.537242 + 1.27239i) q^{68} +(7.41192 + 1.50063i) q^{70} +(-4.50930 + 4.50930i) q^{71} +(-5.83515 + 5.83515i) q^{73} +(-2.28992 - 3.45256i) q^{74} +(-5.09427 - 12.5400i) q^{76} +5.16007 q^{77} +8.26392i q^{79} +(10.5262 + 0.143686i) q^{80} +(4.81539 + 7.26024i) q^{82} +(-8.80676 - 8.80676i) q^{83} +(1.28515 + 1.28515i) q^{85} +(1.37210 - 6.77709i) q^{86} +(7.05910 - 1.32917i) q^{88} +(7.46873 - 7.46873i) q^{89} +(-7.03325 + 2.04970i) q^{91} +(-4.87749 - 2.05943i) q^{92} +(-0.340360 - 0.513166i) q^{94} -17.8111 q^{95} +(-13.8363 - 13.8363i) q^{97} +(0.805889 - 3.98044i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{16} - 8 q^{19} - 32 q^{22} + 24 q^{28} + 8 q^{34} + 16 q^{40} - 8 q^{46} + 24 q^{52} - 24 q^{58} + 40 q^{67} - 24 q^{70} + 56 q^{76} + 104 q^{91} - 64 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38609 + 0.280631i 0.980114 + 0.198436i
\(3\) 0 0
\(4\) 1.84249 + 0.777959i 0.921246 + 0.388980i
\(5\) 1.86097 1.86097i 0.832250 0.832250i −0.155574 0.987824i \(-0.549723\pi\)
0.987824 + 0.155574i \(0.0497228\pi\)
\(6\) 0 0
\(7\) 1.43671 + 1.43671i 0.543027 + 0.543027i 0.924415 0.381388i \(-0.124554\pi\)
−0.381388 + 0.924415i \(0.624554\pi\)
\(8\) 2.33554 + 1.59538i 0.825739 + 0.564053i
\(9\) 0 0
\(10\) 3.10171 2.05722i 0.980848 0.650551i
\(11\) 1.79579 1.79579i 0.541450 0.541450i −0.382504 0.923954i \(-0.624938\pi\)
0.923954 + 0.382504i \(0.124938\pi\)
\(12\) 0 0
\(13\) −1.73435 + 3.16102i −0.481023 + 0.876708i
\(14\) 1.58823 + 2.39460i 0.424472 + 0.639984i
\(15\) 0 0
\(16\) 2.78956 + 2.86677i 0.697390 + 0.716692i
\(17\) 0.690579i 0.167490i 0.996487 + 0.0837450i \(0.0266881\pi\)
−0.996487 + 0.0837450i \(0.973312\pi\)
\(18\) 0 0
\(19\) −4.78545 4.78545i −1.09786 1.09786i −0.994661 0.103195i \(-0.967093\pi\)
−0.103195 0.994661i \(-0.532907\pi\)
\(20\) 4.87658 1.98106i 1.09044 0.442979i
\(21\) 0 0
\(22\) 2.99308 1.98517i 0.638126 0.423240i
\(23\) −2.64723 −0.551985 −0.275992 0.961160i \(-0.589006\pi\)
−0.275992 + 0.961160i \(0.589006\pi\)
\(24\) 0 0
\(25\) 1.92640i 0.385280i
\(26\) −3.29105 + 3.89474i −0.645428 + 0.763821i
\(27\) 0 0
\(28\) 1.52943 + 3.76484i 0.289035 + 0.711488i
\(29\) 1.62313i 0.301407i −0.988579 0.150704i \(-0.951846\pi\)
0.988579 0.150704i \(-0.0481539\pi\)
\(30\) 0 0
\(31\) −0.151569 + 0.151569i −0.0272226 + 0.0272226i −0.720587 0.693364i \(-0.756128\pi\)
0.693364 + 0.720587i \(0.256128\pi\)
\(32\) 3.06208 + 4.75644i 0.541304 + 0.840827i
\(33\) 0 0
\(34\) −0.193798 + 0.957205i −0.0332360 + 0.164159i
\(35\) 5.34736 0.903868
\(36\) 0 0
\(37\) −2.07147 2.07147i −0.340547 0.340547i 0.516026 0.856573i \(-0.327411\pi\)
−0.856573 + 0.516026i \(0.827411\pi\)
\(38\) −5.29012 7.97600i −0.858170 1.29388i
\(39\) 0 0
\(40\) 7.31532 1.37741i 1.15665 0.217788i
\(41\) 4.35600 + 4.35600i 0.680294 + 0.680294i 0.960066 0.279773i \(-0.0902591\pi\)
−0.279773 + 0.960066i \(0.590259\pi\)
\(42\) 0 0
\(43\) 4.88935i 0.745620i −0.927908 0.372810i \(-0.878394\pi\)
0.927908 0.372810i \(-0.121606\pi\)
\(44\) 4.70577 1.91168i 0.709422 0.288196i
\(45\) 0 0
\(46\) −3.66929 0.742893i −0.541008 0.109534i
\(47\) −0.307890 0.307890i −0.0449103 0.0449103i 0.684295 0.729205i \(-0.260110\pi\)
−0.729205 + 0.684295i \(0.760110\pi\)
\(48\) 0 0
\(49\) 2.87170i 0.410243i
\(50\) 0.540607 2.67016i 0.0764534 0.377618i
\(51\) 0 0
\(52\) −5.65468 + 4.47489i −0.784162 + 0.620556i
\(53\) 8.52080i 1.17042i 0.810881 + 0.585211i \(0.198988\pi\)
−0.810881 + 0.585211i \(0.801012\pi\)
\(54\) 0 0
\(55\) 6.68380i 0.901244i
\(56\) 1.06340 + 5.64761i 0.142103 + 0.754694i
\(57\) 0 0
\(58\) 0.455500 2.24980i 0.0598100 0.295413i
\(59\) 4.50238 4.50238i 0.586160 0.586160i −0.350429 0.936589i \(-0.613964\pi\)
0.936589 + 0.350429i \(0.113964\pi\)
\(60\) 0 0
\(61\) 7.02830i 0.899882i 0.893058 + 0.449941i \(0.148555\pi\)
−0.893058 + 0.449941i \(0.851445\pi\)
\(62\) −0.252623 + 0.167553i −0.0320832 + 0.0212793i
\(63\) 0 0
\(64\) 2.90951 + 7.45216i 0.363689 + 0.931520i
\(65\) 2.65497 + 9.11012i 0.329309 + 1.12997i
\(66\) 0 0
\(67\) −6.08794 6.08794i −0.743761 0.743761i 0.229539 0.973299i \(-0.426278\pi\)
−0.973299 + 0.229539i \(0.926278\pi\)
\(68\) −0.537242 + 1.27239i −0.0651502 + 0.154300i
\(69\) 0 0
\(70\) 7.41192 + 1.50063i 0.885894 + 0.179360i
\(71\) −4.50930 + 4.50930i −0.535156 + 0.535156i −0.922102 0.386946i \(-0.873530\pi\)
0.386946 + 0.922102i \(0.373530\pi\)
\(72\) 0 0
\(73\) −5.83515 + 5.83515i −0.682953 + 0.682953i −0.960664 0.277712i \(-0.910424\pi\)
0.277712 + 0.960664i \(0.410424\pi\)
\(74\) −2.28992 3.45256i −0.266198 0.401351i
\(75\) 0 0
\(76\) −5.09427 12.5400i −0.584352 1.43844i
\(77\) 5.16007 0.588044
\(78\) 0 0
\(79\) 8.26392i 0.929764i 0.885373 + 0.464882i \(0.153903\pi\)
−0.885373 + 0.464882i \(0.846097\pi\)
\(80\) 10.5262 + 0.143686i 1.17687 + 0.0160646i
\(81\) 0 0
\(82\) 4.81539 + 7.26024i 0.531770 + 0.801760i
\(83\) −8.80676 8.80676i −0.966668 0.966668i 0.0327944 0.999462i \(-0.489559\pi\)
−0.999462 + 0.0327944i \(0.989559\pi\)
\(84\) 0 0
\(85\) 1.28515 + 1.28515i 0.139394 + 0.139394i
\(86\) 1.37210 6.77709i 0.147958 0.730792i
\(87\) 0 0
\(88\) 7.05910 1.32917i 0.752503 0.141690i
\(89\) 7.46873 7.46873i 0.791684 0.791684i −0.190084 0.981768i \(-0.560876\pi\)
0.981768 + 0.190084i \(0.0608760\pi\)
\(90\) 0 0
\(91\) −7.03325 + 2.04970i −0.737285 + 0.214867i
\(92\) −4.87749 2.05943i −0.508514 0.214711i
\(93\) 0 0
\(94\) −0.340360 0.513166i −0.0351054 0.0529291i
\(95\) −17.8111 −1.82738
\(96\) 0 0
\(97\) −13.8363 13.8363i −1.40487 1.40487i −0.783592 0.621276i \(-0.786615\pi\)
−0.621276 0.783592i \(-0.713385\pi\)
\(98\) 0.805889 3.98044i 0.0814071 0.402085i
\(99\) 0 0
\(100\) 1.49866 3.54938i 0.149866 0.354938i
\(101\) 17.5372 1.74502 0.872508 0.488601i \(-0.162492\pi\)
0.872508 + 0.488601i \(0.162492\pi\)
\(102\) 0 0
\(103\) −9.29992 −0.916348 −0.458174 0.888862i \(-0.651496\pi\)
−0.458174 + 0.888862i \(0.651496\pi\)
\(104\) −9.09368 + 4.61573i −0.891709 + 0.452609i
\(105\) 0 0
\(106\) −2.39120 + 11.8106i −0.232254 + 1.14715i
\(107\) 11.2640 1.08893 0.544467 0.838782i \(-0.316732\pi\)
0.544467 + 0.838782i \(0.316732\pi\)
\(108\) 0 0
\(109\) −3.99325 + 3.99325i −0.382484 + 0.382484i −0.871996 0.489512i \(-0.837175\pi\)
0.489512 + 0.871996i \(0.337175\pi\)
\(110\) 1.87568 9.26435i 0.178839 0.883322i
\(111\) 0 0
\(112\) −0.110929 + 8.12653i −0.0104818 + 0.767885i
\(113\) 2.60824 0.245363 0.122681 0.992446i \(-0.460851\pi\)
0.122681 + 0.992446i \(0.460851\pi\)
\(114\) 0 0
\(115\) −4.92640 + 4.92640i −0.459389 + 0.459389i
\(116\) 1.26273 2.99060i 0.117241 0.277670i
\(117\) 0 0
\(118\) 7.50422 4.97720i 0.690819 0.458188i
\(119\) −0.992165 + 0.992165i −0.0909516 + 0.0909516i
\(120\) 0 0
\(121\) 4.55030i 0.413663i
\(122\) −1.97236 + 9.74186i −0.178569 + 0.881987i
\(123\) 0 0
\(124\) −0.397179 + 0.161350i −0.0356678 + 0.0144897i
\(125\) 5.71987 + 5.71987i 0.511601 + 0.511601i
\(126\) 0 0
\(127\) −12.3867 −1.09915 −0.549573 0.835446i \(-0.685210\pi\)
−0.549573 + 0.835446i \(0.685210\pi\)
\(128\) 1.94154 + 11.1459i 0.171609 + 0.985165i
\(129\) 0 0
\(130\) 1.12345 + 13.3725i 0.0985328 + 1.17285i
\(131\) −21.8937 −1.91286 −0.956430 0.291961i \(-0.905692\pi\)
−0.956430 + 0.291961i \(0.905692\pi\)
\(132\) 0 0
\(133\) 13.7506i 1.19233i
\(134\) −6.72997 10.1469i −0.581381 0.876559i
\(135\) 0 0
\(136\) −1.10174 + 1.61288i −0.0944732 + 0.138303i
\(137\) −14.3005 + 14.3005i −1.22177 + 1.22177i −0.254773 + 0.967001i \(0.582001\pi\)
−0.967001 + 0.254773i \(0.917999\pi\)
\(138\) 0 0
\(139\) 15.2124 1.29030 0.645151 0.764055i \(-0.276794\pi\)
0.645151 + 0.764055i \(0.276794\pi\)
\(140\) 9.85247 + 4.16003i 0.832685 + 0.351586i
\(141\) 0 0
\(142\) −7.51575 + 4.98485i −0.630708 + 0.418319i
\(143\) 2.56198 + 8.79104i 0.214244 + 0.735144i
\(144\) 0 0
\(145\) −3.02059 3.02059i −0.250846 0.250846i
\(146\) −9.72557 + 6.45052i −0.804894 + 0.533849i
\(147\) 0 0
\(148\) −2.20514 5.42818i −0.181262 0.446193i
\(149\) 14.3605 14.3605i 1.17646 1.17646i 0.195821 0.980640i \(-0.437263\pi\)
0.980640 0.195821i \(-0.0627372\pi\)
\(150\) 0 0
\(151\) 6.57360 + 6.57360i 0.534952 + 0.534952i 0.922042 0.387090i \(-0.126520\pi\)
−0.387090 + 0.922042i \(0.626520\pi\)
\(152\) −3.54199 18.8112i −0.287294 1.52579i
\(153\) 0 0
\(154\) 7.15232 + 1.44807i 0.576350 + 0.116689i
\(155\) 0.564130i 0.0453120i
\(156\) 0 0
\(157\) 10.1738i 0.811955i −0.913883 0.405978i \(-0.866931\pi\)
0.913883 0.405978i \(-0.133069\pi\)
\(158\) −2.31911 + 11.4545i −0.184499 + 0.911275i
\(159\) 0 0
\(160\) 14.5500 + 3.15315i 1.15028 + 0.249278i
\(161\) −3.80331 3.80331i −0.299743 0.299743i
\(162\) 0 0
\(163\) −6.08794 + 6.08794i −0.476844 + 0.476844i −0.904121 0.427277i \(-0.859473\pi\)
0.427277 + 0.904121i \(0.359473\pi\)
\(164\) 4.63711 + 11.4147i 0.362098 + 0.891338i
\(165\) 0 0
\(166\) −9.73552 14.6784i −0.755623 1.13927i
\(167\) −16.1717 16.1717i −1.25140 1.25140i −0.955091 0.296311i \(-0.904243\pi\)
−0.296311 0.955091i \(-0.595757\pi\)
\(168\) 0 0
\(169\) −6.98403 10.9646i −0.537233 0.843434i
\(170\) 1.42068 + 2.14198i 0.108961 + 0.164282i
\(171\) 0 0
\(172\) 3.80372 9.00860i 0.290031 0.686899i
\(173\) −2.60835 −0.198309 −0.0991546 0.995072i \(-0.531614\pi\)
−0.0991546 + 0.995072i \(0.531614\pi\)
\(174\) 0 0
\(175\) 2.76769 2.76769i 0.209217 0.209217i
\(176\) 10.1576 + 0.138653i 0.765655 + 0.0104514i
\(177\) 0 0
\(178\) 12.4483 8.25638i 0.933039 0.618842i
\(179\) 4.28017i 0.319915i 0.987124 + 0.159957i \(0.0511357\pi\)
−0.987124 + 0.159957i \(0.948864\pi\)
\(180\) 0 0
\(181\) −16.9272 −1.25819 −0.629095 0.777329i \(-0.716574\pi\)
−0.629095 + 0.777329i \(0.716574\pi\)
\(182\) −10.3239 + 0.867330i −0.765260 + 0.0642907i
\(183\) 0 0
\(184\) −6.18271 4.22334i −0.455795 0.311348i
\(185\) −7.70986 −0.566840
\(186\) 0 0
\(187\) 1.24013 + 1.24013i 0.0906875 + 0.0906875i
\(188\) −0.327759 0.806811i −0.0239043 0.0588427i
\(189\) 0 0
\(190\) −24.6878 4.99835i −1.79104 0.362618i
\(191\) 15.8268i 1.14519i −0.819840 0.572593i \(-0.805938\pi\)
0.819840 0.572593i \(-0.194062\pi\)
\(192\) 0 0
\(193\) 7.51374 7.51374i 0.540851 0.540851i −0.382927 0.923778i \(-0.625084\pi\)
0.923778 + 0.382927i \(0.125084\pi\)
\(194\) −15.2955 23.0613i −1.09815 1.65571i
\(195\) 0 0
\(196\) 2.23407 5.29109i 0.159576 0.377935i
\(197\) 1.86097 1.86097i 0.132588 0.132588i −0.637698 0.770286i \(-0.720113\pi\)
0.770286 + 0.637698i \(0.220113\pi\)
\(198\) 0 0
\(199\) 4.07700 0.289011 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(200\) 3.07334 4.49919i 0.217318 0.318141i
\(201\) 0 0
\(202\) 24.3081 + 4.92147i 1.71031 + 0.346274i
\(203\) 2.33197 2.33197i 0.163672 0.163672i
\(204\) 0 0
\(205\) 16.2128 1.13235
\(206\) −12.8905 2.60984i −0.898126 0.181836i
\(207\) 0 0
\(208\) −13.9000 + 3.84584i −0.963790 + 0.266661i
\(209\) −17.1873 −1.18887
\(210\) 0 0
\(211\) 15.5231 1.06865 0.534327 0.845278i \(-0.320565\pi\)
0.534327 + 0.845278i \(0.320565\pi\)
\(212\) −6.62884 + 15.6995i −0.455270 + 1.07825i
\(213\) 0 0
\(214\) 15.6129 + 3.16103i 1.06728 + 0.216084i
\(215\) −9.09893 9.09893i −0.620542 0.620542i
\(216\) 0 0
\(217\) −0.435523 −0.0295652
\(218\) −6.65564 + 4.41438i −0.450777 + 0.298980i
\(219\) 0 0
\(220\) 5.19973 12.3149i 0.350566 0.830268i
\(221\) −2.18293 1.19771i −0.146840 0.0805666i
\(222\) 0 0
\(223\) −16.6555 + 16.6555i −1.11534 + 1.11534i −0.122920 + 0.992417i \(0.539226\pi\)
−0.992417 + 0.122920i \(0.960774\pi\)
\(224\) −2.43431 + 11.2330i −0.162649 + 0.750534i
\(225\) 0 0
\(226\) 3.61526 + 0.731953i 0.240483 + 0.0486888i
\(227\) −17.8604 17.8604i −1.18543 1.18543i −0.978316 0.207118i \(-0.933592\pi\)
−0.207118 0.978316i \(-0.566408\pi\)
\(228\) 0 0
\(229\) 17.7135 + 17.7135i 1.17054 + 1.17054i 0.982080 + 0.188462i \(0.0603503\pi\)
0.188462 + 0.982080i \(0.439650\pi\)
\(230\) −8.21094 + 5.44594i −0.541413 + 0.359094i
\(231\) 0 0
\(232\) 2.58951 3.79088i 0.170010 0.248884i
\(233\) 12.8071i 0.839018i 0.907751 + 0.419509i \(0.137798\pi\)
−0.907751 + 0.419509i \(0.862202\pi\)
\(234\) 0 0
\(235\) −1.14595 −0.0747533
\(236\) 11.7983 4.79294i 0.768002 0.311994i
\(237\) 0 0
\(238\) −1.65366 + 1.09680i −0.107191 + 0.0710949i
\(239\) −6.20137 + 6.20137i −0.401133 + 0.401133i −0.878632 0.477499i \(-0.841543\pi\)
0.477499 + 0.878632i \(0.341543\pi\)
\(240\) 0 0
\(241\) −0.148883 + 0.148883i −0.00959039 + 0.00959039i −0.711886 0.702295i \(-0.752159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(242\) −1.27695 + 6.30712i −0.0820857 + 0.405437i
\(243\) 0 0
\(244\) −5.46773 + 12.9496i −0.350036 + 0.829013i
\(245\) −5.34415 5.34415i −0.341425 0.341425i
\(246\) 0 0
\(247\) 23.4265 6.82721i 1.49059 0.434405i
\(248\) −0.595806 + 0.112185i −0.0378337 + 0.00712377i
\(249\) 0 0
\(250\) 6.32308 + 9.53343i 0.399907 + 0.602947i
\(251\) 13.2191i 0.834382i −0.908819 0.417191i \(-0.863015\pi\)
0.908819 0.417191i \(-0.136985\pi\)
\(252\) 0 0
\(253\) −4.75385 + 4.75385i −0.298872 + 0.298872i
\(254\) −17.1692 3.47610i −1.07729 0.218110i
\(255\) 0 0
\(256\) −0.436727 + 15.9940i −0.0272955 + 0.999627i
\(257\) 15.5812i 0.971928i 0.873979 + 0.485964i \(0.161531\pi\)
−0.873979 + 0.485964i \(0.838469\pi\)
\(258\) 0 0
\(259\) 5.95221i 0.369852i
\(260\) −2.19554 + 18.8508i −0.136162 + 1.16908i
\(261\) 0 0
\(262\) −30.3466 6.14404i −1.87482 0.379580i
\(263\) 15.6718i 0.966363i 0.875520 + 0.483181i \(0.160519\pi\)
−0.875520 + 0.483181i \(0.839481\pi\)
\(264\) 0 0
\(265\) 15.8569 + 15.8569i 0.974083 + 0.974083i
\(266\) 3.85885 19.0596i 0.236601 1.16862i
\(267\) 0 0
\(268\) −6.48082 15.9532i −0.395879 0.974494i
\(269\) 7.76842i 0.473649i −0.971552 0.236824i \(-0.923893\pi\)
0.971552 0.236824i \(-0.0761066\pi\)
\(270\) 0 0
\(271\) 9.70510 + 9.70510i 0.589543 + 0.589543i 0.937508 0.347965i \(-0.113127\pi\)
−0.347965 + 0.937508i \(0.613127\pi\)
\(272\) −1.97973 + 1.92641i −0.120039 + 0.116806i
\(273\) 0 0
\(274\) −23.8349 + 15.8086i −1.43992 + 0.955034i
\(275\) −3.45940 3.45940i −0.208610 0.208610i
\(276\) 0 0
\(277\) 9.88979 0.594220 0.297110 0.954843i \(-0.403977\pi\)
0.297110 + 0.954843i \(0.403977\pi\)
\(278\) 21.0858 + 4.26908i 1.26464 + 0.256042i
\(279\) 0 0
\(280\) 12.4890 + 8.53108i 0.746359 + 0.509829i
\(281\) 0.916519 0.916519i 0.0546749 0.0546749i −0.679241 0.733916i \(-0.737691\pi\)
0.733916 + 0.679241i \(0.237691\pi\)
\(282\) 0 0
\(283\) 0.356000i 0.0211620i −0.999944 0.0105810i \(-0.996632\pi\)
0.999944 0.0105810i \(-0.00336810\pi\)
\(284\) −11.8164 + 4.80030i −0.701175 + 0.284846i
\(285\) 0 0
\(286\) 1.08410 + 12.9041i 0.0641041 + 0.763038i
\(287\) 12.5167i 0.738836i
\(288\) 0 0
\(289\) 16.5231 0.971947
\(290\) −3.33914 5.03448i −0.196081 0.295635i
\(291\) 0 0
\(292\) −15.2907 + 6.21171i −0.894822 + 0.363513i
\(293\) 15.6762 + 15.6762i 0.915814 + 0.915814i 0.996722 0.0809073i \(-0.0257818\pi\)
−0.0809073 + 0.996722i \(0.525782\pi\)
\(294\) 0 0
\(295\) 16.7576i 0.975664i
\(296\) −1.53322 8.14278i −0.0891163 0.473289i
\(297\) 0 0
\(298\) 23.9350 15.8750i 1.38652 0.919613i
\(299\) 4.59123 8.36792i 0.265517 0.483929i
\(300\) 0 0
\(301\) 7.02461 7.02461i 0.404892 0.404892i
\(302\) 7.26684 + 10.9564i 0.418160 + 0.630467i
\(303\) 0 0
\(304\) 0.369486 27.0680i 0.0211915 1.55246i
\(305\) 13.0794 + 13.0794i 0.748927 + 0.748927i
\(306\) 0 0
\(307\) 6.36463 6.36463i 0.363249 0.363249i −0.501759 0.865008i \(-0.667314\pi\)
0.865008 + 0.501759i \(0.167314\pi\)
\(308\) 9.50738 + 4.01432i 0.541733 + 0.228737i
\(309\) 0 0
\(310\) −0.158312 + 0.781935i −0.00899153 + 0.0444109i
\(311\) 7.15541 0.405746 0.202873 0.979205i \(-0.434972\pi\)
0.202873 + 0.979205i \(0.434972\pi\)
\(312\) 0 0
\(313\) −2.19311 −0.123962 −0.0619810 0.998077i \(-0.519742\pi\)
−0.0619810 + 0.998077i \(0.519742\pi\)
\(314\) 2.85507 14.1018i 0.161121 0.795808i
\(315\) 0 0
\(316\) −6.42900 + 15.2262i −0.361659 + 0.856542i
\(317\) 9.33835 9.33835i 0.524494 0.524494i −0.394431 0.918925i \(-0.629058\pi\)
0.918925 + 0.394431i \(0.129058\pi\)
\(318\) 0 0
\(319\) −2.91479 2.91479i −0.163197 0.163197i
\(320\) 19.2827 + 8.45373i 1.07794 + 0.472578i
\(321\) 0 0
\(322\) −4.20440 6.33905i −0.234302 0.353261i
\(323\) 3.30473 3.30473i 0.183880 0.183880i
\(324\) 0 0
\(325\) 6.08938 + 3.34106i 0.337778 + 0.185329i
\(326\) −10.1469 + 6.72997i −0.561985 + 0.372739i
\(327\) 0 0
\(328\) 3.22414 + 17.1231i 0.178023 + 0.945466i
\(329\) 0.884699i 0.0487751i
\(330\) 0 0
\(331\) 13.7742 + 13.7742i 0.757099 + 0.757099i 0.975793 0.218694i \(-0.0701798\pi\)
−0.218694 + 0.975793i \(0.570180\pi\)
\(332\) −9.37509 23.0777i −0.514525 1.26655i
\(333\) 0 0
\(334\) −17.8771 26.9537i −0.978194 1.47484i
\(335\) −22.6589 −1.23799
\(336\) 0 0
\(337\) 15.0571i 0.820211i 0.912038 + 0.410106i \(0.134508\pi\)
−0.912038 + 0.410106i \(0.865492\pi\)
\(338\) −6.60348 17.1579i −0.359182 0.933267i
\(339\) 0 0
\(340\) 1.36808 + 3.36766i 0.0741945 + 0.182637i
\(341\) 0.544371i 0.0294794i
\(342\) 0 0
\(343\) 14.1828 14.1828i 0.765800 0.765800i
\(344\) 7.80039 11.4193i 0.420569 0.615687i
\(345\) 0 0
\(346\) −3.61541 0.731983i −0.194366 0.0393517i
\(347\) 17.4406 0.936262 0.468131 0.883659i \(-0.344927\pi\)
0.468131 + 0.883659i \(0.344927\pi\)
\(348\) 0 0
\(349\) −20.1757 20.1757i −1.07998 1.07998i −0.996511 0.0834674i \(-0.973401\pi\)
−0.0834674 0.996511i \(-0.526599\pi\)
\(350\) 4.61296 3.05957i 0.246573 0.163541i
\(351\) 0 0
\(352\) 14.0404 + 3.04271i 0.748355 + 0.162177i
\(353\) −7.11735 7.11735i −0.378818 0.378818i 0.491858 0.870676i \(-0.336318\pi\)
−0.870676 + 0.491858i \(0.836318\pi\)
\(354\) 0 0
\(355\) 16.7833i 0.890767i
\(356\) 19.5715 7.95071i 1.03728 0.421387i
\(357\) 0 0
\(358\) −1.20115 + 5.93270i −0.0634826 + 0.313553i
\(359\) 20.7087 + 20.7087i 1.09296 + 1.09296i 0.995211 + 0.0977514i \(0.0311650\pi\)
0.0977514 + 0.995211i \(0.468835\pi\)
\(360\) 0 0
\(361\) 26.8010i 1.41058i
\(362\) −23.4626 4.75029i −1.23317 0.249670i
\(363\) 0 0
\(364\) −14.5533 1.69501i −0.762800 0.0888429i
\(365\) 21.7180i 1.13677i
\(366\) 0 0
\(367\) 19.9759i 1.04273i −0.853333 0.521366i \(-0.825423\pi\)
0.853333 0.521366i \(-0.174577\pi\)
\(368\) −7.38459 7.58898i −0.384948 0.395603i
\(369\) 0 0
\(370\) −10.6866 2.16362i −0.555568 0.112482i
\(371\) −12.2420 + 12.2420i −0.635571 + 0.635571i
\(372\) 0 0
\(373\) 13.4282i 0.695284i 0.937627 + 0.347642i \(0.113017\pi\)
−0.937627 + 0.347642i \(0.886983\pi\)
\(374\) 1.37092 + 2.06696i 0.0708884 + 0.106880i
\(375\) 0 0
\(376\) −0.227888 1.21029i −0.0117524 0.0624160i
\(377\) 5.13073 + 2.81508i 0.264246 + 0.144984i
\(378\) 0 0
\(379\) −14.5582 14.5582i −0.747806 0.747806i 0.226261 0.974067i \(-0.427350\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(380\) −32.8169 13.8563i −1.68347 0.710815i
\(381\) 0 0
\(382\) 4.44148 21.9374i 0.227246 1.12241i
\(383\) 16.8510 16.8510i 0.861048 0.861048i −0.130412 0.991460i \(-0.541630\pi\)
0.991460 + 0.130412i \(0.0416300\pi\)
\(384\) 0 0
\(385\) 9.60271 9.60271i 0.489400 0.489400i
\(386\) 12.5233 8.30614i 0.637420 0.422771i
\(387\) 0 0
\(388\) −14.7292 36.2575i −0.747764 1.84069i
\(389\) −16.0991 −0.816254 −0.408127 0.912925i \(-0.633818\pi\)
−0.408127 + 0.912925i \(0.633818\pi\)
\(390\) 0 0
\(391\) 1.82812i 0.0924519i
\(392\) 4.58147 6.70699i 0.231399 0.338754i
\(393\) 0 0
\(394\) 3.10171 2.05722i 0.156262 0.103641i
\(395\) 15.3789 + 15.3789i 0.773796 + 0.773796i
\(396\) 0 0
\(397\) −4.70323 4.70323i −0.236048 0.236048i 0.579163 0.815211i \(-0.303379\pi\)
−0.815211 + 0.579163i \(0.803379\pi\)
\(398\) 5.65109 + 1.14413i 0.283263 + 0.0573501i
\(399\) 0 0
\(400\) 5.52254 5.37381i 0.276127 0.268690i
\(401\) 17.0366 17.0366i 0.850768 0.850768i −0.139460 0.990228i \(-0.544537\pi\)
0.990228 + 0.139460i \(0.0445366\pi\)
\(402\) 0 0
\(403\) −0.216238 0.741986i −0.0107716 0.0369610i
\(404\) 32.3121 + 13.6432i 1.60759 + 0.678775i
\(405\) 0 0
\(406\) 3.88674 2.57790i 0.192896 0.127939i
\(407\) −7.43982 −0.368778
\(408\) 0 0
\(409\) 16.9559 + 16.9559i 0.838413 + 0.838413i 0.988650 0.150237i \(-0.0480037\pi\)
−0.150237 + 0.988650i \(0.548004\pi\)
\(410\) 22.4724 + 4.54980i 1.10983 + 0.224699i
\(411\) 0 0
\(412\) −17.1350 7.23496i −0.844183 0.356441i
\(413\) 12.9373 0.636602
\(414\) 0 0
\(415\) −32.7782 −1.60902
\(416\) −20.3459 + 1.42992i −0.997539 + 0.0701078i
\(417\) 0 0
\(418\) −23.8231 4.82328i −1.16523 0.235914i
\(419\) 16.4707 0.804647 0.402323 0.915498i \(-0.368203\pi\)
0.402323 + 0.915498i \(0.368203\pi\)
\(420\) 0 0
\(421\) −25.3822 + 25.3822i −1.23705 + 1.23705i −0.275851 + 0.961201i \(0.588960\pi\)
−0.961201 + 0.275851i \(0.911040\pi\)
\(422\) 21.5164 + 4.35626i 1.04740 + 0.212059i
\(423\) 0 0
\(424\) −13.5939 + 19.9007i −0.660180 + 0.966463i
\(425\) 1.33033 0.0645306
\(426\) 0 0
\(427\) −10.0977 + 10.0977i −0.488660 + 0.488660i
\(428\) 20.7539 + 8.76295i 1.00318 + 0.423573i
\(429\) 0 0
\(430\) −10.0585 15.1654i −0.485064 0.731340i
\(431\) 8.12815 8.12815i 0.391519 0.391519i −0.483710 0.875229i \(-0.660711\pi\)
0.875229 + 0.483710i \(0.160711\pi\)
\(432\) 0 0
\(433\) 39.9622i 1.92046i 0.279212 + 0.960229i \(0.409927\pi\)
−0.279212 + 0.960229i \(0.590073\pi\)
\(434\) −0.603674 0.122221i −0.0289773 0.00586680i
\(435\) 0 0
\(436\) −10.4641 + 4.25095i −0.501141 + 0.203584i
\(437\) 12.6682 + 12.6682i 0.606000 + 0.606000i
\(438\) 0 0
\(439\) −13.1837 −0.629224 −0.314612 0.949220i \(-0.601874\pi\)
−0.314612 + 0.949220i \(0.601874\pi\)
\(440\) 10.6632 15.6103i 0.508349 0.744192i
\(441\) 0 0
\(442\) −2.68963 2.27273i −0.127932 0.108103i
\(443\) 17.6794 0.839972 0.419986 0.907531i \(-0.362035\pi\)
0.419986 + 0.907531i \(0.362035\pi\)
\(444\) 0 0
\(445\) 27.7981i 1.31776i
\(446\) −27.7601 + 18.4120i −1.31448 + 0.871834i
\(447\) 0 0
\(448\) −6.52649 + 14.8868i −0.308348 + 0.703334i
\(449\) 21.5059 21.5059i 1.01492 1.01492i 0.0150379 0.999887i \(-0.495213\pi\)
0.999887 0.0150379i \(-0.00478689\pi\)
\(450\) 0 0
\(451\) 15.6449 0.736690
\(452\) 4.80566 + 2.02911i 0.226039 + 0.0954411i
\(453\) 0 0
\(454\) −19.7439 29.7682i −0.926628 1.39709i
\(455\) −9.27421 + 16.9031i −0.434782 + 0.792428i
\(456\) 0 0
\(457\) 2.81456 + 2.81456i 0.131660 + 0.131660i 0.769866 0.638206i \(-0.220323\pi\)
−0.638206 + 0.769866i \(0.720323\pi\)
\(458\) 19.5816 + 29.5235i 0.914987 + 1.37954i
\(459\) 0 0
\(460\) −12.9094 + 5.24432i −0.601904 + 0.244518i
\(461\) 4.19670 4.19670i 0.195460 0.195460i −0.602591 0.798050i \(-0.705865\pi\)
0.798050 + 0.602591i \(0.205865\pi\)
\(462\) 0 0
\(463\) 21.2766 + 21.2766i 0.988809 + 0.988809i 0.999938 0.0111288i \(-0.00354247\pi\)
−0.0111288 + 0.999938i \(0.503542\pi\)
\(464\) 4.65313 4.52781i 0.216016 0.210198i
\(465\) 0 0
\(466\) −3.59405 + 17.7517i −0.166491 + 0.822333i
\(467\) 23.4639i 1.08578i 0.839803 + 0.542891i \(0.182670\pi\)
−0.839803 + 0.542891i \(0.817330\pi\)
\(468\) 0 0
\(469\) 17.4933i 0.807764i
\(470\) −1.58838 0.321588i −0.0732667 0.0148337i
\(471\) 0 0
\(472\) 17.6985 3.33248i 0.814640 0.153390i
\(473\) −8.78024 8.78024i −0.403716 0.403716i
\(474\) 0 0
\(475\) −9.21868 + 9.21868i −0.422982 + 0.422982i
\(476\) −2.59992 + 1.05619i −0.119167 + 0.0484105i
\(477\) 0 0
\(478\) −10.3360 + 6.85536i −0.472756 + 0.313557i
\(479\) −1.46450 1.46450i −0.0669149 0.0669149i 0.672857 0.739772i \(-0.265067\pi\)
−0.739772 + 0.672857i \(0.765067\pi\)
\(480\) 0 0
\(481\) 10.1406 2.95528i 0.462371 0.134749i
\(482\) −0.248146 + 0.164584i −0.0113027 + 0.00749659i
\(483\) 0 0
\(484\) −3.53995 + 8.38389i −0.160907 + 0.381086i
\(485\) −51.4980 −2.33840
\(486\) 0 0
\(487\) 24.8699 24.8699i 1.12696 1.12696i 0.136296 0.990668i \(-0.456480\pi\)
0.990668 0.136296i \(-0.0435198\pi\)
\(488\) −11.2128 + 16.4149i −0.507581 + 0.743068i
\(489\) 0 0
\(490\) −5.90774 8.90721i −0.266884 0.402387i
\(491\) 5.71016i 0.257696i 0.991664 + 0.128848i \(0.0411279\pi\)
−0.991664 + 0.128848i \(0.958872\pi\)
\(492\) 0 0
\(493\) 1.12090 0.0504827
\(494\) 34.3872 2.88892i 1.54715 0.129979i
\(495\) 0 0
\(496\) −0.857324 0.0117027i −0.0384950 0.000525467i
\(497\) −12.9572 −0.581208
\(498\) 0 0
\(499\) 21.9449 + 21.9449i 0.982387 + 0.982387i 0.999848 0.0174602i \(-0.00555803\pi\)
−0.0174602 + 0.999848i \(0.505558\pi\)
\(500\) 6.08899 + 14.9886i 0.272308 + 0.670313i
\(501\) 0 0
\(502\) 3.70969 18.3229i 0.165571 0.817789i
\(503\) 34.1145i 1.52109i −0.649284 0.760546i \(-0.724931\pi\)
0.649284 0.760546i \(-0.275069\pi\)
\(504\) 0 0
\(505\) 32.6361 32.6361i 1.45229 1.45229i
\(506\) −7.92335 + 5.25519i −0.352236 + 0.233622i
\(507\) 0 0
\(508\) −22.8225 9.63639i −1.01258 0.427546i
\(509\) 7.58084 7.58084i 0.336015 0.336015i −0.518850 0.854865i \(-0.673640\pi\)
0.854865 + 0.518850i \(0.173640\pi\)
\(510\) 0 0
\(511\) −16.7669 −0.741723
\(512\) −5.09376 + 22.0466i −0.225115 + 0.974332i
\(513\) 0 0
\(514\) −4.37256 + 21.5969i −0.192865 + 0.952600i
\(515\) −17.3069 + 17.3069i −0.762631 + 0.762631i
\(516\) 0 0
\(517\) −1.10581 −0.0486334
\(518\) 1.67037 8.25030i 0.0733920 0.362497i
\(519\) 0 0
\(520\) −8.33333 + 25.5128i −0.365441 + 1.11881i
\(521\) 24.1479 1.05794 0.528969 0.848641i \(-0.322579\pi\)
0.528969 + 0.848641i \(0.322579\pi\)
\(522\) 0 0
\(523\) −18.7933 −0.821774 −0.410887 0.911686i \(-0.634781\pi\)
−0.410887 + 0.911686i \(0.634781\pi\)
\(524\) −40.3390 17.0324i −1.76222 0.744064i
\(525\) 0 0
\(526\) −4.39798 + 21.7225i −0.191761 + 0.947145i
\(527\) −0.104670 0.104670i −0.00455951 0.00455951i
\(528\) 0 0
\(529\) −15.9922 −0.695313
\(530\) 17.5292 + 26.4291i 0.761419 + 1.14801i
\(531\) 0 0
\(532\) 10.6974 25.3354i 0.463793 1.09843i
\(533\) −21.3242 + 6.21454i −0.923656 + 0.269182i
\(534\) 0 0
\(535\) 20.9620 20.9620i 0.906265 0.906265i
\(536\) −4.50605 23.9312i −0.194632 1.03367i
\(537\) 0 0
\(538\) 2.18006 10.7677i 0.0939889 0.464230i
\(539\) −5.15697 5.15697i −0.222126 0.222126i
\(540\) 0 0
\(541\) 19.7610 + 19.7610i 0.849593 + 0.849593i 0.990082 0.140489i \(-0.0448675\pi\)
−0.140489 + 0.990082i \(0.544868\pi\)
\(542\) 10.7286 + 16.1757i 0.460833 + 0.694806i
\(543\) 0 0
\(544\) −3.28470 + 2.11461i −0.140830 + 0.0906630i
\(545\) 14.8626i 0.636645i
\(546\) 0 0
\(547\) 0.864037 0.0369435 0.0184718 0.999829i \(-0.494120\pi\)
0.0184718 + 0.999829i \(0.494120\pi\)
\(548\) −37.4738 + 15.2234i −1.60080 + 0.650309i
\(549\) 0 0
\(550\) −3.82423 5.76586i −0.163066 0.245857i
\(551\) −7.76739 + 7.76739i −0.330902 + 0.330902i
\(552\) 0 0
\(553\) −11.8729 + 11.8729i −0.504887 + 0.504887i
\(554\) 13.7081 + 2.77538i 0.582403 + 0.117915i
\(555\) 0 0
\(556\) 28.0288 + 11.8347i 1.18869 + 0.501901i
\(557\) −10.9293 10.9293i −0.463089 0.463089i 0.436578 0.899666i \(-0.356190\pi\)
−0.899666 + 0.436578i \(0.856190\pi\)
\(558\) 0 0
\(559\) 15.4553 + 8.47987i 0.653691 + 0.358660i
\(560\) 14.9168 + 15.3296i 0.630348 + 0.647795i
\(561\) 0 0
\(562\) 1.52758 1.01317i 0.0644371 0.0427382i
\(563\) 38.6244i 1.62782i −0.580989 0.813911i \(-0.697334\pi\)
0.580989 0.813911i \(-0.302666\pi\)
\(564\) 0 0
\(565\) 4.85385 4.85385i 0.204203 0.204203i
\(566\) 0.0999045 0.493448i 0.00419930 0.0207412i
\(567\) 0 0
\(568\) −17.7257 + 3.33760i −0.743755 + 0.140043i
\(569\) 40.1183i 1.68185i −0.541154 0.840924i \(-0.682012\pi\)
0.541154 0.840924i \(-0.317988\pi\)
\(570\) 0 0
\(571\) 3.97707i 0.166435i 0.996531 + 0.0832175i \(0.0265196\pi\)
−0.996531 + 0.0832175i \(0.973480\pi\)
\(572\) −2.11864 + 18.1905i −0.0885849 + 0.760585i
\(573\) 0 0
\(574\) −3.51256 + 17.3492i −0.146612 + 0.724143i
\(575\) 5.09962i 0.212669i
\(576\) 0 0
\(577\) −13.5025 13.5025i −0.562117 0.562117i 0.367791 0.929908i \(-0.380114\pi\)
−0.929908 + 0.367791i \(0.880114\pi\)
\(578\) 22.9025 + 4.63689i 0.952619 + 0.192869i
\(579\) 0 0
\(580\) −3.21552 7.91530i −0.133517 0.328665i
\(581\) 25.3056i 1.04985i
\(582\) 0 0
\(583\) 15.3015 + 15.3015i 0.633725 + 0.633725i
\(584\) −22.9375 + 4.31894i −0.949162 + 0.178719i
\(585\) 0 0
\(586\) 17.3294 + 26.1279i 0.715872 + 1.07933i
\(587\) 10.1322 + 10.1322i 0.418201 + 0.418201i 0.884583 0.466383i \(-0.154443\pi\)
−0.466383 + 0.884583i \(0.654443\pi\)
\(588\) 0 0
\(589\) 1.45065 0.0597730
\(590\) 4.70269 23.2275i 0.193607 0.956261i
\(591\) 0 0
\(592\) 0.159939 11.7169i 0.00657344 0.481561i
\(593\) 13.3652 13.3652i 0.548841 0.548841i −0.377264 0.926106i \(-0.623135\pi\)
0.926106 + 0.377264i \(0.123135\pi\)
\(594\) 0 0
\(595\) 3.69277i 0.151389i
\(596\) 37.6311 15.2873i 1.54143 0.626191i
\(597\) 0 0
\(598\) 8.71215 10.3103i 0.356266 0.421618i
\(599\) 5.46359i 0.223236i −0.993751 0.111618i \(-0.964397\pi\)
0.993751 0.111618i \(-0.0356033\pi\)
\(600\) 0 0
\(601\) −36.5697 −1.49171 −0.745855 0.666108i \(-0.767959\pi\)
−0.745855 + 0.666108i \(0.767959\pi\)
\(602\) 11.7081 7.76542i 0.477185 0.316495i
\(603\) 0 0
\(604\) 6.99781 + 17.2258i 0.284737 + 0.700908i
\(605\) 8.46796 + 8.46796i 0.344271 + 0.344271i
\(606\) 0 0
\(607\) 22.8716i 0.928330i 0.885749 + 0.464165i \(0.153646\pi\)
−0.885749 + 0.464165i \(0.846354\pi\)
\(608\) 8.10827 37.4151i 0.328834 1.51738i
\(609\) 0 0
\(610\) 14.4588 + 21.7998i 0.585420 + 0.882648i
\(611\) 1.50723 0.439254i 0.0609762 0.0177703i
\(612\) 0 0
\(613\) 32.4490 32.4490i 1.31060 1.31060i 0.389632 0.920971i \(-0.372602\pi\)
0.920971 0.389632i \(-0.127398\pi\)
\(614\) 10.6081 7.03584i 0.428107 0.283943i
\(615\) 0 0
\(616\) 12.0515 + 8.23228i 0.485571 + 0.331688i
\(617\) 33.0596 + 33.0596i 1.33093 + 1.33093i 0.904538 + 0.426393i \(0.140216\pi\)
0.426393 + 0.904538i \(0.359784\pi\)
\(618\) 0 0
\(619\) 26.1845 26.1845i 1.05244 1.05244i 0.0538980 0.998546i \(-0.482835\pi\)
0.998546 0.0538980i \(-0.0171646\pi\)
\(620\) −0.438870 + 1.03941i −0.0176255 + 0.0417435i
\(621\) 0 0
\(622\) 9.91804 + 2.00803i 0.397677 + 0.0805146i
\(623\) 21.4609 0.859811
\(624\) 0 0
\(625\) 30.9210 1.23684
\(626\) −3.03985 0.615455i −0.121497 0.0245985i
\(627\) 0 0
\(628\) 7.91478 18.7451i 0.315834 0.748011i
\(629\) 1.43051 1.43051i 0.0570382 0.0570382i
\(630\) 0 0
\(631\) −1.12873 1.12873i −0.0449339 0.0449339i 0.684283 0.729217i \(-0.260115\pi\)
−0.729217 + 0.684283i \(0.760115\pi\)
\(632\) −13.1841 + 19.3007i −0.524436 + 0.767742i
\(633\) 0 0
\(634\) 15.5644 10.3232i 0.618142 0.409985i
\(635\) −23.0513 + 23.0513i −0.914764 + 0.914764i
\(636\) 0 0
\(637\) 9.07750 + 4.98055i 0.359664 + 0.197337i
\(638\) −3.22218 4.85814i −0.127567 0.192336i
\(639\) 0 0
\(640\) 24.3552 + 17.1290i 0.962726 + 0.677082i
\(641\) 30.8252i 1.21752i 0.793353 + 0.608762i \(0.208333\pi\)
−0.793353 + 0.608762i \(0.791667\pi\)
\(642\) 0 0
\(643\) 10.2992 + 10.2992i 0.406161 + 0.406161i 0.880397 0.474237i \(-0.157276\pi\)
−0.474237 + 0.880397i \(0.657276\pi\)
\(644\) −4.04875 9.96638i −0.159543 0.392730i
\(645\) 0 0
\(646\) 5.50806 3.65324i 0.216712 0.143735i
\(647\) 49.1102 1.93072 0.965360 0.260922i \(-0.0840264\pi\)
0.965360 + 0.260922i \(0.0840264\pi\)
\(648\) 0 0
\(649\) 16.1706i 0.634753i
\(650\) 7.50283 + 6.33988i 0.294285 + 0.248670i
\(651\) 0 0
\(652\) −15.9532 + 6.48082i −0.624774 + 0.253808i
\(653\) 5.00990i 0.196052i 0.995184 + 0.0980262i \(0.0312529\pi\)
−0.995184 + 0.0980262i \(0.968747\pi\)
\(654\) 0 0
\(655\) −40.7434 + 40.7434i −1.59198 + 1.59198i
\(656\) −0.336329 + 24.6390i −0.0131314 + 0.961991i
\(657\) 0 0
\(658\) 0.248274 1.22627i 0.00967873 0.0478051i
\(659\) −7.81311 −0.304356 −0.152178 0.988353i \(-0.548629\pi\)
−0.152178 + 0.988353i \(0.548629\pi\)
\(660\) 0 0
\(661\) −11.5710 11.5710i −0.450060 0.450060i 0.445314 0.895374i \(-0.353092\pi\)
−0.895374 + 0.445314i \(0.853092\pi\)
\(662\) 15.2268 + 22.9578i 0.591808 + 0.892279i
\(663\) 0 0
\(664\) −6.51841 34.6187i −0.252963 1.34347i
\(665\) −25.5895 25.5895i −0.992318 0.992318i
\(666\) 0 0
\(667\) 4.29678i 0.166372i
\(668\) −17.2153 42.3771i −0.666080 1.63962i
\(669\) 0 0
\(670\) −31.4073 6.35879i −1.21337 0.245662i
\(671\) 12.6213 + 12.6213i 0.487241 + 0.487241i
\(672\) 0 0
\(673\) 3.37609i 0.130139i 0.997881 + 0.0650693i \(0.0207269\pi\)
−0.997881 + 0.0650693i \(0.979273\pi\)
\(674\) −4.22548 + 20.8705i −0.162759 + 0.803901i
\(675\) 0 0
\(676\) −4.33799 25.6356i −0.166846 0.985983i
\(677\) 8.56189i 0.329060i −0.986372 0.164530i \(-0.947389\pi\)
0.986372 0.164530i \(-0.0526108\pi\)
\(678\) 0 0
\(679\) 39.7577i 1.52576i
\(680\) 0.951213 + 5.05181i 0.0364773 + 0.193728i
\(681\) 0 0
\(682\) −0.152767 + 0.754548i −0.00584977 + 0.0288931i
\(683\) −14.2243 + 14.2243i −0.544279 + 0.544279i −0.924780 0.380501i \(-0.875751\pi\)
0.380501 + 0.924780i \(0.375751\pi\)
\(684\) 0 0
\(685\) 53.2255i 2.03364i
\(686\) 23.6388 15.6785i 0.902534 0.598609i
\(687\) 0 0
\(688\) 14.0167 13.6391i 0.534380 0.519987i
\(689\) −26.9344 14.7781i −1.02612 0.563000i
\(690\) 0 0
\(691\) −10.0702 10.0702i −0.383090 0.383090i 0.489124 0.872214i \(-0.337316\pi\)
−0.872214 + 0.489124i \(0.837316\pi\)
\(692\) −4.80587 2.02919i −0.182692 0.0771382i
\(693\) 0 0
\(694\) 24.1743 + 4.89438i 0.917644 + 0.185788i
\(695\) 28.3099 28.3099i 1.07385 1.07385i
\(696\) 0 0
\(697\) −3.00817 + 3.00817i −0.113942 + 0.113942i
\(698\) −22.3034 33.6272i −0.844195 1.27281i
\(699\) 0 0
\(700\) 7.25259 2.94629i 0.274122 0.111359i
\(701\) −44.3514 −1.67513 −0.837565 0.546337i \(-0.816022\pi\)
−0.837565 + 0.546337i \(0.816022\pi\)
\(702\) 0 0
\(703\) 19.8258i 0.747743i
\(704\) 18.6074 + 8.15764i 0.701291 + 0.307453i
\(705\) 0 0
\(706\) −7.86794 11.8626i −0.296114 0.446456i
\(707\) 25.1959 + 25.1959i 0.947590 + 0.947590i
\(708\) 0 0
\(709\) −4.99613 4.99613i −0.187634 0.187634i 0.607039 0.794672i \(-0.292357\pi\)
−0.794672 + 0.607039i \(0.792357\pi\)
\(710\) −4.70992 + 23.2632i −0.176760 + 0.873053i
\(711\) 0 0
\(712\) 29.3590 5.52805i 1.10028 0.207173i
\(713\) 0.401237 0.401237i 0.0150265 0.0150265i
\(714\) 0 0
\(715\) 21.1276 + 11.5921i 0.790128 + 0.433519i
\(716\) −3.32980 + 7.88617i −0.124440 + 0.294720i
\(717\) 0 0
\(718\) 22.8926 + 34.5156i 0.854344 + 1.28811i
\(719\) 20.9602 0.781683 0.390842 0.920458i \(-0.372184\pi\)
0.390842 + 0.920458i \(0.372184\pi\)
\(720\) 0 0
\(721\) −13.3613 13.3613i −0.497602 0.497602i
\(722\) −7.52118 + 37.1486i −0.279909 + 1.38253i
\(723\) 0 0
\(724\) −31.1882 13.1687i −1.15910 0.489410i
\(725\) −3.12679 −0.116126
\(726\) 0 0
\(727\) −3.73446 −0.138503 −0.0692516 0.997599i \(-0.522061\pi\)
−0.0692516 + 0.997599i \(0.522061\pi\)
\(728\) −19.6965 6.43355i −0.730001 0.238443i
\(729\) 0 0
\(730\) −6.09475 + 30.1032i −0.225577 + 1.11417i
\(731\) 3.37649 0.124884
\(732\) 0 0
\(733\) 3.60035 3.60035i 0.132982 0.132982i −0.637483 0.770465i \(-0.720024\pi\)
0.770465 + 0.637483i \(0.220024\pi\)
\(734\) 5.60585 27.6884i 0.206916 1.02200i
\(735\) 0 0
\(736\) −8.10601 12.5914i −0.298791 0.464124i
\(737\) −21.8653 −0.805419
\(738\) 0 0
\(739\) 27.7960 27.7960i 1.02249 1.02249i 0.0227511 0.999741i \(-0.492757\pi\)
0.999741 0.0227511i \(-0.00724252\pi\)
\(740\) −14.2054 5.99796i −0.522200 0.220489i
\(741\) 0 0
\(742\) −20.4039 + 13.5330i −0.749052 + 0.496811i
\(743\) 0.361398 0.361398i 0.0132584 0.0132584i −0.700447 0.713705i \(-0.747016\pi\)
0.713705 + 0.700447i \(0.247016\pi\)
\(744\) 0 0
\(745\) 53.4490i 1.95822i
\(746\) −3.76836 + 18.6126i −0.137969 + 0.681457i
\(747\) 0 0
\(748\) 1.32016 + 3.24971i 0.0482699 + 0.118821i
\(749\) 16.1832 + 16.1832i 0.591320 + 0.591320i
\(750\) 0 0
\(751\) −51.2313 −1.86946 −0.934728 0.355365i \(-0.884357\pi\)
−0.934728 + 0.355365i \(0.884357\pi\)
\(752\) 0.0237723 1.74153i 0.000866887 0.0635069i
\(753\) 0 0
\(754\) 6.32166 + 5.34179i 0.230221 + 0.194537i
\(755\) 24.4665 0.890427
\(756\) 0 0
\(757\) 17.2708i 0.627717i −0.949470 0.313859i \(-0.898378\pi\)
0.949470 0.313859i \(-0.101622\pi\)
\(758\) −16.0935 24.2645i −0.584543 0.881326i
\(759\) 0 0
\(760\) −41.5986 28.4155i −1.50894 1.03074i
\(761\) 18.4462 18.4462i 0.668674 0.668674i −0.288735 0.957409i \(-0.593235\pi\)
0.957409 + 0.288735i \(0.0932347\pi\)
\(762\) 0 0
\(763\) −11.4743 −0.415399
\(764\) 12.3126 29.1607i 0.445454 1.05500i
\(765\) 0 0
\(766\) 28.0860 18.6281i 1.01479 0.673062i
\(767\) 6.42337 + 22.0408i 0.231935 + 0.795848i
\(768\) 0 0
\(769\) −5.58213 5.58213i −0.201297 0.201297i 0.599259 0.800555i \(-0.295462\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(770\) 16.0050 10.6154i 0.576782 0.382553i
\(771\) 0 0
\(772\) 19.6894 7.99863i 0.708637 0.287877i
\(773\) −24.5063 + 24.5063i −0.881430 + 0.881430i −0.993680 0.112250i \(-0.964194\pi\)
0.112250 + 0.993680i \(0.464194\pi\)
\(774\) 0 0
\(775\) 0.291983 + 0.291983i 0.0104883 + 0.0104883i
\(776\) −10.2411 54.3896i −0.367634 1.95247i
\(777\) 0 0
\(778\) −22.3147 4.51789i −0.800022 0.161974i
\(779\) 41.6908i 1.49373i
\(780\) 0 0
\(781\) 16.1955i 0.579520i
\(782\) 0.513026 2.53394i 0.0183458 0.0906134i
\(783\) 0 0
\(784\) 8.23251 8.01079i 0.294018 0.286100i
\(785\) −18.9331 18.9331i −0.675750 0.675750i
\(786\) 0 0
\(787\) 4.29751 4.29751i 0.153190 0.153190i −0.626351 0.779541i \(-0.715452\pi\)
0.779541 + 0.626351i \(0.215452\pi\)
\(788\) 4.87658 1.98106i 0.173721 0.0705724i
\(789\) 0 0
\(790\) 17.0007 + 25.6323i 0.604859 + 0.911957i
\(791\) 3.74730 + 3.74730i 0.133239 + 0.133239i
\(792\) 0 0
\(793\) −22.2166 12.1896i −0.788934 0.432864i
\(794\) −5.19922 7.83897i −0.184514 0.278194i
\(795\) 0 0
\(796\) 7.51184 + 3.17174i 0.266250 + 0.112419i
\(797\) −42.5322 −1.50657 −0.753284 0.657696i \(-0.771531\pi\)
−0.753284 + 0.657696i \(0.771531\pi\)
\(798\) 0 0
\(799\) 0.212622 0.212622i 0.00752204 0.00752204i
\(800\) 9.16280 5.89878i 0.323954 0.208554i
\(801\) 0 0
\(802\) 28.3953 18.8333i 1.00267 0.665026i
\(803\) 20.9574i 0.739570i
\(804\) 0 0
\(805\) −14.1557 −0.498921
\(806\) −0.0915007 1.08914i −0.00322297 0.0383634i
\(807\) 0 0
\(808\) 40.9588 + 27.9785i 1.44093 + 0.984281i
\(809\) −40.0149 −1.40685 −0.703425 0.710769i \(-0.748347\pi\)
−0.703425 + 0.710769i \(0.748347\pi\)
\(810\) 0 0
\(811\) 8.57419 + 8.57419i 0.301081 + 0.301081i 0.841437 0.540356i \(-0.181710\pi\)
−0.540356 + 0.841437i \(0.681710\pi\)
\(812\) 6.11082 2.48246i 0.214448 0.0871173i
\(813\) 0 0
\(814\) −10.3123 2.08784i −0.361445 0.0731789i
\(815\) 22.6589i 0.793708i
\(816\) 0 0
\(817\) −23.3977 + 23.3977i −0.818583 + 0.818583i
\(818\) 18.7440 + 28.2607i 0.655369 + 0.988112i
\(819\) 0 0
\(820\) 29.8719 + 12.6129i 1.04317 + 0.440461i
\(821\) −8.87942 + 8.87942i −0.309894 + 0.309894i −0.844868 0.534974i \(-0.820321\pi\)
0.534974 + 0.844868i \(0.320321\pi\)
\(822\) 0 0
\(823\) 6.52071 0.227298 0.113649 0.993521i \(-0.463746\pi\)
0.113649 + 0.993521i \(0.463746\pi\)
\(824\) −21.7204 14.8369i −0.756664 0.516869i
\(825\) 0 0
\(826\) 17.9322 + 3.63060i 0.623942 + 0.126325i
\(827\) −24.9705 + 24.9705i −0.868308 + 0.868308i −0.992285 0.123977i \(-0.960435\pi\)
0.123977 + 0.992285i \(0.460435\pi\)
\(828\) 0 0
\(829\) −25.7131 −0.893052 −0.446526 0.894771i \(-0.647339\pi\)
−0.446526 + 0.894771i \(0.647339\pi\)
\(830\) −45.4335 9.19857i −1.57702 0.319287i
\(831\) 0 0
\(832\) −28.6025 3.72768i −0.991614 0.129234i
\(833\) 1.98314 0.0687117
\(834\) 0 0
\(835\) −60.1900 −2.08296
\(836\) −31.6674 13.3710i −1.09524 0.462446i
\(837\) 0 0
\(838\) 22.8299 + 4.62219i 0.788646 + 0.159671i
\(839\) −10.9775 10.9775i −0.378984 0.378984i 0.491751 0.870736i \(-0.336357\pi\)
−0.870736 + 0.491751i \(0.836357\pi\)
\(840\) 0 0
\(841\) 26.3655 0.909154
\(842\) −42.3050 + 28.0590i −1.45793 + 0.966976i
\(843\) 0 0
\(844\) 28.6012 + 12.0763i 0.984494 + 0.415685i
\(845\) −33.4019 7.40778i −1.14906 0.254835i
\(846\) 0 0
\(847\) −6.53748 + 6.53748i −0.224630 + 0.224630i
\(848\) −24.4272 + 23.7693i −0.838832 + 0.816240i
\(849\) 0 0
\(850\) 1.84396 + 0.373332i 0.0632473 + 0.0128052i
\(851\) 5.48364 + 5.48364i 0.187977 + 0.187977i
\(852\) 0 0
\(853\) 19.1134 + 19.1134i 0.654432 + 0.654432i 0.954057 0.299625i \(-0.0968616\pi\)
−0.299625 + 0.954057i \(0.596862\pi\)
\(854\) −16.8300 + 11.1626i −0.575910 + 0.381975i
\(855\) 0 0
\(856\) 26.3076 + 17.9704i 0.899175 + 0.614216i
\(857\) 19.3319i 0.660365i −0.943917 0.330182i \(-0.892890\pi\)
0.943917 0.330182i \(-0.107110\pi\)
\(858\) 0 0
\(859\) −18.2400 −0.622341 −0.311170 0.950354i \(-0.600721\pi\)
−0.311170 + 0.950354i \(0.600721\pi\)
\(860\) −9.68611 23.8433i −0.330294 0.813050i
\(861\) 0 0
\(862\) 13.5474 8.98533i 0.461425 0.306042i
\(863\) 26.8308 26.8308i 0.913333 0.913333i −0.0832003 0.996533i \(-0.526514\pi\)
0.996533 + 0.0832003i \(0.0265141\pi\)
\(864\) 0 0
\(865\) −4.85405 + 4.85405i −0.165043 + 0.165043i
\(866\) −11.2146 + 55.3912i −0.381088 + 1.88227i
\(867\) 0 0
\(868\) −0.802447 0.338819i −0.0272368 0.0115003i
\(869\) 14.8402 + 14.8402i 0.503421 + 0.503421i
\(870\) 0 0
\(871\) 29.8027 8.68543i 1.00983 0.294295i
\(872\) −15.6972 + 2.95564i −0.531573 + 0.100091i
\(873\) 0 0
\(874\) 14.0041 + 21.1143i 0.473697 + 0.714201i
\(875\) 16.4356i 0.555626i
\(876\) 0 0
\(877\) 7.21914 7.21914i 0.243773 0.243773i −0.574636 0.818409i \(-0.694856\pi\)
0.818409 + 0.574636i \(0.194856\pi\)
\(878\) −18.2738 3.69975i −0.616711 0.124861i
\(879\) 0 0
\(880\) 19.1609 18.6449i 0.645914 0.628518i
\(881\) 46.5683i 1.56893i −0.620175 0.784463i \(-0.712939\pi\)
0.620175 0.784463i \(-0.287061\pi\)
\(882\) 0 0
\(883\) 17.2990i 0.582156i 0.956699 + 0.291078i \(0.0940139\pi\)
−0.956699 + 0.291078i \(0.905986\pi\)
\(884\) −3.09027 3.90500i −0.103937 0.131339i
\(885\) 0 0
\(886\) 24.5052 + 4.96137i 0.823268 + 0.166681i
\(887\) 52.8158i 1.77338i 0.462363 + 0.886691i \(0.347002\pi\)
−0.462363 + 0.886691i \(0.652998\pi\)
\(888\) 0 0
\(889\) −17.7962 17.7962i −0.596866 0.596866i
\(890\) 7.80101 38.5307i 0.261491 1.29155i
\(891\) 0 0
\(892\) −43.6450 + 17.7304i −1.46134 + 0.593657i
\(893\) 2.94678i 0.0986102i
\(894\) 0 0
\(895\) 7.96525 + 7.96525i 0.266249 + 0.266249i
\(896\) −13.2240 + 18.8029i −0.441783 + 0.628160i
\(897\) 0 0
\(898\) 35.8443 23.7739i 1.19614 0.793344i
\(899\) 0.246016 + 0.246016i 0.00820509 + 0.00820509i
\(900\) 0 0
\(901\) −5.88429 −0.196034
\(902\) 21.6853 + 4.39045i 0.722040 + 0.146186i
\(903\) 0 0
\(904\) 6.09165 + 4.16114i 0.202605 + 0.138397i
\(905\) −31.5010 + 31.5010i −1.04713 + 1.04713i
\(906\) 0 0
\(907\) 37.1283i 1.23283i −0.787423 0.616413i \(-0.788585\pi\)
0.787423 0.616413i \(-0.211415\pi\)
\(908\) −19.0130 46.8022i −0.630967 1.55319i
\(909\) 0 0
\(910\) −17.5984 + 20.8266i −0.583382 + 0.690394i
\(911\) 15.7211i 0.520864i 0.965492 + 0.260432i \(0.0838650\pi\)
−0.965492 + 0.260432i \(0.916135\pi\)
\(912\) 0 0
\(913\) −31.6301 −1.04680
\(914\) 3.11139 + 4.69109i 0.102915 + 0.155168i
\(915\) 0 0
\(916\) 18.8566 + 46.4174i 0.623041 + 1.53368i
\(917\) −31.4550 31.4550i −1.03873 1.03873i
\(918\) 0 0
\(919\) 7.88215i 0.260008i −0.991513 0.130004i \(-0.958501\pi\)
0.991513 0.130004i \(-0.0414991\pi\)
\(920\) −19.3653 + 3.64632i −0.638455 + 0.120216i
\(921\) 0 0
\(922\) 6.99473 4.63928i 0.230359 0.152787i
\(923\) −6.43325 22.0747i −0.211753 0.726598i
\(924\) 0 0
\(925\) −3.99047 + 3.99047i −0.131206 + 0.131206i
\(926\) 23.5205 + 35.4622i 0.772930 + 1.16536i
\(927\) 0 0
\(928\) 7.72030 4.97014i 0.253431 0.163153i
\(929\) 8.30941 + 8.30941i 0.272623 + 0.272623i 0.830155 0.557532i \(-0.188252\pi\)
−0.557532 + 0.830155i \(0.688252\pi\)
\(930\) 0 0
\(931\) −13.7424 + 13.7424i −0.450388 + 0.450388i
\(932\) −9.96337 + 23.5969i −0.326361 + 0.772942i
\(933\) 0 0
\(934\) −6.58471 + 32.5231i −0.215458 + 1.06419i
\(935\) 4.61569 0.150949
\(936\) 0 0
\(937\) −16.5484 −0.540614 −0.270307 0.962774i \(-0.587125\pi\)
−0.270307 + 0.962774i \(0.587125\pi\)
\(938\) 4.90915 24.2472i 0.160289 0.791701i
\(939\) 0 0
\(940\) −2.11140 0.891499i −0.0688662 0.0290775i
\(941\) 25.9580 25.9580i 0.846207 0.846207i −0.143450 0.989658i \(-0.545820\pi\)
0.989658 + 0.143450i \(0.0458197\pi\)
\(942\) 0 0
\(943\) −11.5313 11.5313i −0.375512 0.375512i
\(944\) 25.4669 + 0.347631i 0.828878 + 0.0113144i
\(945\) 0 0
\(946\) −9.70620 14.6342i −0.315576 0.475799i
\(947\) −42.7738 + 42.7738i −1.38996 + 1.38996i −0.564594 + 0.825369i \(0.690967\pi\)
−0.825369 + 0.564594i \(0.809033\pi\)
\(948\) 0 0
\(949\) −8.32478 28.5652i −0.270234 0.927266i
\(950\) −15.3650 + 10.1909i −0.498506 + 0.330636i
\(951\) 0 0
\(952\) −3.90012 + 0.734360i −0.126404 + 0.0238008i
\(953\) 29.1352i 0.943782i −0.881657 0.471891i \(-0.843571\pi\)
0.881657 0.471891i \(-0.156429\pi\)
\(954\) 0 0
\(955\) −29.4531 29.4531i −0.953081 0.953081i
\(956\) −16.2504 + 6.60156i −0.525575 + 0.213510i
\(957\) 0 0
\(958\) −1.61895 2.44092i −0.0523059 0.0788625i
\(959\) −41.0915 −1.32691
\(960\) 0 0
\(961\) 30.9541i 0.998518i
\(962\) 14.8851 1.25052i 0.479915 0.0403185i
\(963\) 0 0
\(964\) −0.390140 + 0.158491i −0.0125656 + 0.00510464i
\(965\) 27.9657i 0.900247i
\(966\) 0 0
\(967\) −10.2496 + 10.2496i −0.329605 + 0.329605i −0.852436 0.522831i \(-0.824876\pi\)
0.522831 + 0.852436i \(0.324876\pi\)
\(968\) −7.25946 + 10.6274i −0.233328 + 0.341578i
\(969\) 0 0
\(970\) −71.3808 14.4519i −2.29190 0.464023i
\(971\) −35.4423 −1.13740 −0.568699 0.822546i \(-0.692553\pi\)
−0.568699 + 0.822546i \(0.692553\pi\)
\(972\) 0 0
\(973\) 21.8559 + 21.8559i 0.700669 + 0.700669i
\(974\) 41.4512 27.4927i 1.32818 0.880923i
\(975\) 0 0
\(976\) −20.1485 + 19.6059i −0.644938 + 0.627568i
\(977\) 29.5425 + 29.5425i 0.945148 + 0.945148i 0.998572 0.0534239i \(-0.0170135\pi\)
−0.0534239 + 0.998572i \(0.517013\pi\)
\(978\) 0 0
\(979\) 26.8245i 0.857315i
\(980\) −5.68902 14.0041i −0.181729 0.447344i
\(981\) 0 0
\(982\) −1.60245 + 7.91480i −0.0511362 + 0.252571i
\(983\) −3.65881 3.65881i −0.116698 0.116698i 0.646346 0.763044i \(-0.276296\pi\)
−0.763044 + 0.646346i \(0.776296\pi\)
\(984\) 0 0
\(985\) 6.92640i 0.220693i
\(986\) 1.55367 + 0.314558i 0.0494788 + 0.0100176i
\(987\) 0 0
\(988\) 48.4745 + 5.64580i 1.54218 + 0.179617i
\(989\) 12.9432i 0.411571i
\(990\) 0 0
\(991\) 39.2069i 1.24545i 0.782442 + 0.622724i \(0.213974\pi\)
−0.782442 + 0.622724i \(0.786026\pi\)
\(992\) −1.18504 0.256813i −0.0376252 0.00815381i
\(993\) 0 0
\(994\) −17.9598 3.63618i −0.569650 0.115333i
\(995\) 7.58716 7.58716i 0.240529 0.240529i
\(996\) 0 0
\(997\) 9.56104i 0.302801i 0.988472 + 0.151401i \(0.0483784\pi\)
−0.988472 + 0.151401i \(0.951622\pi\)
\(998\) 24.2592 + 36.5760i 0.767910 + 1.15779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.k.307.23 yes 48
3.2 odd 2 inner 936.2.w.k.307.2 48
8.3 odd 2 inner 936.2.w.k.307.14 yes 48
13.5 odd 4 inner 936.2.w.k.811.14 yes 48
24.11 even 2 inner 936.2.w.k.307.11 yes 48
39.5 even 4 inner 936.2.w.k.811.11 yes 48
104.83 even 4 inner 936.2.w.k.811.23 yes 48
312.83 odd 4 inner 936.2.w.k.811.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.w.k.307.2 48 3.2 odd 2 inner
936.2.w.k.307.11 yes 48 24.11 even 2 inner
936.2.w.k.307.14 yes 48 8.3 odd 2 inner
936.2.w.k.307.23 yes 48 1.1 even 1 trivial
936.2.w.k.811.2 yes 48 312.83 odd 4 inner
936.2.w.k.811.11 yes 48 39.5 even 4 inner
936.2.w.k.811.14 yes 48 13.5 odd 4 inner
936.2.w.k.811.23 yes 48 104.83 even 4 inner