Properties

Label 936.2.w.k.307.11
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.11
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.k.811.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.280631 - 1.38609i) q^{2} +(-1.84249 + 0.777959i) q^{4} +(1.86097 - 1.86097i) q^{5} +(-1.43671 - 1.43671i) q^{7} +(1.59538 + 2.33554i) q^{8} +(-3.10171 - 2.05722i) q^{10} +(-1.79579 + 1.79579i) q^{11} +(1.73435 - 3.16102i) q^{13} +(-1.58823 + 2.39460i) q^{14} +(2.78956 - 2.86677i) q^{16} -0.690579i q^{17} +(-4.78545 - 4.78545i) q^{19} +(-1.98106 + 4.87658i) q^{20} +(2.99308 + 1.98517i) q^{22} -2.64723 q^{23} -1.92640i q^{25} +(-4.86817 - 1.51689i) q^{26} +(3.76484 + 1.52943i) q^{28} -1.62313i q^{29} +(0.151569 - 0.151569i) q^{31} +(-4.75644 - 3.06208i) q^{32} +(-0.957205 + 0.193798i) q^{34} -5.34736 q^{35} +(2.07147 + 2.07147i) q^{37} +(-5.29012 + 7.97600i) q^{38} +(7.31532 + 1.37741i) q^{40} +(-4.35600 - 4.35600i) q^{41} -4.88935i q^{43} +(1.91168 - 4.70577i) q^{44} +(0.742893 + 3.66929i) q^{46} +(-0.307890 - 0.307890i) q^{47} -2.87170i q^{49} +(-2.67016 + 0.540607i) q^{50} +(-0.736393 + 7.17340i) q^{52} +8.52080i q^{53} +6.68380i q^{55} +(1.06340 - 5.64761i) q^{56} +(-2.24980 + 0.455500i) q^{58} +(-4.50238 + 4.50238i) q^{59} -7.02830i q^{61} +(-0.252623 - 0.167553i) q^{62} +(-2.90951 + 7.45216i) q^{64} +(-2.65497 - 9.11012i) q^{65} +(-6.08794 - 6.08794i) q^{67} +(0.537242 + 1.27239i) q^{68} +(1.50063 + 7.41192i) q^{70} +(-4.50930 + 4.50930i) q^{71} +(-5.83515 + 5.83515i) q^{73} +(2.28992 - 3.45256i) q^{74} +(12.5400 + 5.09427i) q^{76} +5.16007 q^{77} -8.26392i q^{79} +(-0.143686 - 10.5262i) q^{80} +(-4.81539 + 7.26024i) q^{82} +(8.80676 + 8.80676i) q^{83} +(-1.28515 - 1.28515i) q^{85} +(-6.77709 + 1.37210i) q^{86} +(-7.05910 - 1.32917i) q^{88} +(-7.46873 + 7.46873i) q^{89} +(-7.03325 + 2.04970i) q^{91} +(4.87749 - 2.05943i) q^{92} +(-0.340360 + 0.513166i) q^{94} -17.8111 q^{95} +(-13.8363 - 13.8363i) q^{97} +(-3.98044 + 0.805889i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{16} - 8 q^{19} - 32 q^{22} + 24 q^{28} + 8 q^{34} + 16 q^{40} - 8 q^{46} + 24 q^{52} - 24 q^{58} + 40 q^{67} - 24 q^{70} + 56 q^{76} + 104 q^{91} - 64 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.280631 1.38609i −0.198436 0.980114i
\(3\) 0 0
\(4\) −1.84249 + 0.777959i −0.921246 + 0.388980i
\(5\) 1.86097 1.86097i 0.832250 0.832250i −0.155574 0.987824i \(-0.549723\pi\)
0.987824 + 0.155574i \(0.0497228\pi\)
\(6\) 0 0
\(7\) −1.43671 1.43671i −0.543027 0.543027i 0.381388 0.924415i \(-0.375446\pi\)
−0.924415 + 0.381388i \(0.875446\pi\)
\(8\) 1.59538 + 2.33554i 0.564053 + 0.825739i
\(9\) 0 0
\(10\) −3.10171 2.05722i −0.980848 0.650551i
\(11\) −1.79579 + 1.79579i −0.541450 + 0.541450i −0.923954 0.382504i \(-0.875062\pi\)
0.382504 + 0.923954i \(0.375062\pi\)
\(12\) 0 0
\(13\) 1.73435 3.16102i 0.481023 0.876708i
\(14\) −1.58823 + 2.39460i −0.424472 + 0.639984i
\(15\) 0 0
\(16\) 2.78956 2.86677i 0.697390 0.716692i
\(17\) 0.690579i 0.167490i −0.996487 0.0837450i \(-0.973312\pi\)
0.996487 0.0837450i \(-0.0266881\pi\)
\(18\) 0 0
\(19\) −4.78545 4.78545i −1.09786 1.09786i −0.994661 0.103195i \(-0.967093\pi\)
−0.103195 0.994661i \(-0.532907\pi\)
\(20\) −1.98106 + 4.87658i −0.442979 + 1.09044i
\(21\) 0 0
\(22\) 2.99308 + 1.98517i 0.638126 + 0.423240i
\(23\) −2.64723 −0.551985 −0.275992 0.961160i \(-0.589006\pi\)
−0.275992 + 0.961160i \(0.589006\pi\)
\(24\) 0 0
\(25\) 1.92640i 0.385280i
\(26\) −4.86817 1.51689i −0.954726 0.297487i
\(27\) 0 0
\(28\) 3.76484 + 1.52943i 0.711488 + 0.289035i
\(29\) 1.62313i 0.301407i −0.988579 0.150704i \(-0.951846\pi\)
0.988579 0.150704i \(-0.0481539\pi\)
\(30\) 0 0
\(31\) 0.151569 0.151569i 0.0272226 0.0272226i −0.693364 0.720587i \(-0.743872\pi\)
0.720587 + 0.693364i \(0.243872\pi\)
\(32\) −4.75644 3.06208i −0.840827 0.541304i
\(33\) 0 0
\(34\) −0.957205 + 0.193798i −0.164159 + 0.0332360i
\(35\) −5.34736 −0.903868
\(36\) 0 0
\(37\) 2.07147 + 2.07147i 0.340547 + 0.340547i 0.856573 0.516026i \(-0.172589\pi\)
−0.516026 + 0.856573i \(0.672589\pi\)
\(38\) −5.29012 + 7.97600i −0.858170 + 1.29388i
\(39\) 0 0
\(40\) 7.31532 + 1.37741i 1.15665 + 0.217788i
\(41\) −4.35600 4.35600i −0.680294 0.680294i 0.279773 0.960066i \(-0.409741\pi\)
−0.960066 + 0.279773i \(0.909741\pi\)
\(42\) 0 0
\(43\) 4.88935i 0.745620i −0.927908 0.372810i \(-0.878394\pi\)
0.927908 0.372810i \(-0.121606\pi\)
\(44\) 1.91168 4.70577i 0.288196 0.709422i
\(45\) 0 0
\(46\) 0.742893 + 3.66929i 0.109534 + 0.541008i
\(47\) −0.307890 0.307890i −0.0449103 0.0449103i 0.684295 0.729205i \(-0.260110\pi\)
−0.729205 + 0.684295i \(0.760110\pi\)
\(48\) 0 0
\(49\) 2.87170i 0.410243i
\(50\) −2.67016 + 0.540607i −0.377618 + 0.0764534i
\(51\) 0 0
\(52\) −0.736393 + 7.17340i −0.102119 + 0.994772i
\(53\) 8.52080i 1.17042i 0.810881 + 0.585211i \(0.198988\pi\)
−0.810881 + 0.585211i \(0.801012\pi\)
\(54\) 0 0
\(55\) 6.68380i 0.901244i
\(56\) 1.06340 5.64761i 0.142103 0.754694i
\(57\) 0 0
\(58\) −2.24980 + 0.455500i −0.295413 + 0.0598100i
\(59\) −4.50238 + 4.50238i −0.586160 + 0.586160i −0.936589 0.350429i \(-0.886036\pi\)
0.350429 + 0.936589i \(0.386036\pi\)
\(60\) 0 0
\(61\) 7.02830i 0.899882i −0.893058 0.449941i \(-0.851445\pi\)
0.893058 0.449941i \(-0.148555\pi\)
\(62\) −0.252623 0.167553i −0.0320832 0.0212793i
\(63\) 0 0
\(64\) −2.90951 + 7.45216i −0.363689 + 0.931520i
\(65\) −2.65497 9.11012i −0.329309 1.12997i
\(66\) 0 0
\(67\) −6.08794 6.08794i −0.743761 0.743761i 0.229539 0.973299i \(-0.426278\pi\)
−0.973299 + 0.229539i \(0.926278\pi\)
\(68\) 0.537242 + 1.27239i 0.0651502 + 0.154300i
\(69\) 0 0
\(70\) 1.50063 + 7.41192i 0.179360 + 0.885894i
\(71\) −4.50930 + 4.50930i −0.535156 + 0.535156i −0.922102 0.386946i \(-0.873530\pi\)
0.386946 + 0.922102i \(0.373530\pi\)
\(72\) 0 0
\(73\) −5.83515 + 5.83515i −0.682953 + 0.682953i −0.960664 0.277712i \(-0.910424\pi\)
0.277712 + 0.960664i \(0.410424\pi\)
\(74\) 2.28992 3.45256i 0.266198 0.401351i
\(75\) 0 0
\(76\) 12.5400 + 5.09427i 1.43844 + 0.584352i
\(77\) 5.16007 0.588044
\(78\) 0 0
\(79\) 8.26392i 0.929764i −0.885373 0.464882i \(-0.846097\pi\)
0.885373 0.464882i \(-0.153903\pi\)
\(80\) −0.143686 10.5262i −0.0160646 1.17687i
\(81\) 0 0
\(82\) −4.81539 + 7.26024i −0.531770 + 0.801760i
\(83\) 8.80676 + 8.80676i 0.966668 + 0.966668i 0.999462 0.0327944i \(-0.0104407\pi\)
−0.0327944 + 0.999462i \(0.510441\pi\)
\(84\) 0 0
\(85\) −1.28515 1.28515i −0.139394 0.139394i
\(86\) −6.77709 + 1.37210i −0.730792 + 0.147958i
\(87\) 0 0
\(88\) −7.05910 1.32917i −0.752503 0.141690i
\(89\) −7.46873 + 7.46873i −0.791684 + 0.791684i −0.981768 0.190084i \(-0.939124\pi\)
0.190084 + 0.981768i \(0.439124\pi\)
\(90\) 0 0
\(91\) −7.03325 + 2.04970i −0.737285 + 0.214867i
\(92\) 4.87749 2.05943i 0.508514 0.214711i
\(93\) 0 0
\(94\) −0.340360 + 0.513166i −0.0351054 + 0.0529291i
\(95\) −17.8111 −1.82738
\(96\) 0 0
\(97\) −13.8363 13.8363i −1.40487 1.40487i −0.783592 0.621276i \(-0.786615\pi\)
−0.621276 0.783592i \(-0.713385\pi\)
\(98\) −3.98044 + 0.805889i −0.402085 + 0.0814071i
\(99\) 0 0
\(100\) 1.49866 + 3.54938i 0.149866 + 0.354938i
\(101\) 17.5372 1.74502 0.872508 0.488601i \(-0.162492\pi\)
0.872508 + 0.488601i \(0.162492\pi\)
\(102\) 0 0
\(103\) 9.29992 0.916348 0.458174 0.888862i \(-0.348504\pi\)
0.458174 + 0.888862i \(0.348504\pi\)
\(104\) 10.1496 0.992371i 0.995254 0.0973100i
\(105\) 0 0
\(106\) 11.8106 2.39120i 1.14715 0.232254i
\(107\) −11.2640 −1.08893 −0.544467 0.838782i \(-0.683268\pi\)
−0.544467 + 0.838782i \(0.683268\pi\)
\(108\) 0 0
\(109\) 3.99325 3.99325i 0.382484 0.382484i −0.489512 0.871996i \(-0.662825\pi\)
0.871996 + 0.489512i \(0.162825\pi\)
\(110\) 9.26435 1.87568i 0.883322 0.178839i
\(111\) 0 0
\(112\) −8.12653 + 0.110929i −0.767885 + 0.0104818i
\(113\) −2.60824 −0.245363 −0.122681 0.992446i \(-0.539149\pi\)
−0.122681 + 0.992446i \(0.539149\pi\)
\(114\) 0 0
\(115\) −4.92640 + 4.92640i −0.459389 + 0.459389i
\(116\) 1.26273 + 2.99060i 0.117241 + 0.277670i
\(117\) 0 0
\(118\) 7.50422 + 4.97720i 0.690819 + 0.458188i
\(119\) −0.992165 + 0.992165i −0.0909516 + 0.0909516i
\(120\) 0 0
\(121\) 4.55030i 0.413663i
\(122\) −9.74186 + 1.97236i −0.881987 + 0.178569i
\(123\) 0 0
\(124\) −0.161350 + 0.397179i −0.0144897 + 0.0356678i
\(125\) 5.71987 + 5.71987i 0.511601 + 0.511601i
\(126\) 0 0
\(127\) 12.3867 1.09915 0.549573 0.835446i \(-0.314790\pi\)
0.549573 + 0.835446i \(0.314790\pi\)
\(128\) 11.1459 + 1.94154i 0.985165 + 0.171609i
\(129\) 0 0
\(130\) −11.8824 + 6.23661i −1.04215 + 0.546987i
\(131\) 21.8937 1.91286 0.956430 0.291961i \(-0.0943077\pi\)
0.956430 + 0.291961i \(0.0943077\pi\)
\(132\) 0 0
\(133\) 13.7506i 1.19233i
\(134\) −6.72997 + 10.1469i −0.581381 + 0.876559i
\(135\) 0 0
\(136\) 1.61288 1.10174i 0.138303 0.0944732i
\(137\) 14.3005 14.3005i 1.22177 1.22177i 0.254773 0.967001i \(-0.417999\pi\)
0.967001 0.254773i \(-0.0820007\pi\)
\(138\) 0 0
\(139\) 15.2124 1.29030 0.645151 0.764055i \(-0.276794\pi\)
0.645151 + 0.764055i \(0.276794\pi\)
\(140\) 9.85247 4.16003i 0.832685 0.351586i
\(141\) 0 0
\(142\) 7.51575 + 4.98485i 0.630708 + 0.418319i
\(143\) 2.56198 + 8.79104i 0.214244 + 0.735144i
\(144\) 0 0
\(145\) −3.02059 3.02059i −0.250846 0.250846i
\(146\) 9.72557 + 6.45052i 0.804894 + 0.533849i
\(147\) 0 0
\(148\) −5.42818 2.20514i −0.446193 0.181262i
\(149\) 14.3605 14.3605i 1.17646 1.17646i 0.195821 0.980640i \(-0.437263\pi\)
0.980640 0.195821i \(-0.0627372\pi\)
\(150\) 0 0
\(151\) −6.57360 6.57360i −0.534952 0.534952i 0.387090 0.922042i \(-0.373480\pi\)
−0.922042 + 0.387090i \(0.873480\pi\)
\(152\) 3.54199 18.8112i 0.287294 1.52579i
\(153\) 0 0
\(154\) −1.44807 7.15232i −0.116689 0.576350i
\(155\) 0.564130i 0.0453120i
\(156\) 0 0
\(157\) 10.1738i 0.811955i 0.913883 + 0.405978i \(0.133069\pi\)
−0.913883 + 0.405978i \(0.866931\pi\)
\(158\) −11.4545 + 2.31911i −0.911275 + 0.184499i
\(159\) 0 0
\(160\) −14.5500 + 3.15315i −1.15028 + 0.249278i
\(161\) 3.80331 + 3.80331i 0.299743 + 0.299743i
\(162\) 0 0
\(163\) −6.08794 + 6.08794i −0.476844 + 0.476844i −0.904121 0.427277i \(-0.859473\pi\)
0.427277 + 0.904121i \(0.359473\pi\)
\(164\) 11.4147 + 4.63711i 0.891338 + 0.362098i
\(165\) 0 0
\(166\) 9.73552 14.6784i 0.755623 1.13927i
\(167\) −16.1717 16.1717i −1.25140 1.25140i −0.955091 0.296311i \(-0.904243\pi\)
−0.296311 0.955091i \(-0.595757\pi\)
\(168\) 0 0
\(169\) −6.98403 10.9646i −0.537233 0.843434i
\(170\) −1.42068 + 2.14198i −0.108961 + 0.164282i
\(171\) 0 0
\(172\) 3.80372 + 9.00860i 0.290031 + 0.686899i
\(173\) −2.60835 −0.198309 −0.0991546 0.995072i \(-0.531614\pi\)
−0.0991546 + 0.995072i \(0.531614\pi\)
\(174\) 0 0
\(175\) −2.76769 + 2.76769i −0.209217 + 0.209217i
\(176\) 0.138653 + 10.1576i 0.0104514 + 0.765655i
\(177\) 0 0
\(178\) 12.4483 + 8.25638i 0.933039 + 0.618842i
\(179\) 4.28017i 0.319915i −0.987124 0.159957i \(-0.948864\pi\)
0.987124 0.159957i \(-0.0511357\pi\)
\(180\) 0 0
\(181\) 16.9272 1.25819 0.629095 0.777329i \(-0.283426\pi\)
0.629095 + 0.777329i \(0.283426\pi\)
\(182\) 4.81482 + 9.17350i 0.356898 + 0.679985i
\(183\) 0 0
\(184\) −4.22334 6.18271i −0.311348 0.455795i
\(185\) 7.70986 0.566840
\(186\) 0 0
\(187\) 1.24013 + 1.24013i 0.0906875 + 0.0906875i
\(188\) 0.806811 + 0.327759i 0.0588427 + 0.0239043i
\(189\) 0 0
\(190\) 4.99835 + 24.6878i 0.362618 + 1.79104i
\(191\) 15.8268i 1.14519i −0.819840 0.572593i \(-0.805938\pi\)
0.819840 0.572593i \(-0.194062\pi\)
\(192\) 0 0
\(193\) 7.51374 7.51374i 0.540851 0.540851i −0.382927 0.923778i \(-0.625084\pi\)
0.923778 + 0.382927i \(0.125084\pi\)
\(194\) −15.2955 + 23.0613i −1.09815 + 1.65571i
\(195\) 0 0
\(196\) 2.23407 + 5.29109i 0.159576 + 0.377935i
\(197\) 1.86097 1.86097i 0.132588 0.132588i −0.637698 0.770286i \(-0.720113\pi\)
0.770286 + 0.637698i \(0.220113\pi\)
\(198\) 0 0
\(199\) −4.07700 −0.289011 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(200\) 4.49919 3.07334i 0.318141 0.217318i
\(201\) 0 0
\(202\) −4.92147 24.3081i −0.346274 1.71031i
\(203\) −2.33197 + 2.33197i −0.163672 + 0.163672i
\(204\) 0 0
\(205\) −16.2128 −1.13235
\(206\) −2.60984 12.8905i −0.181836 0.898126i
\(207\) 0 0
\(208\) −4.22382 13.7898i −0.292869 0.956153i
\(209\) 17.1873 1.18887
\(210\) 0 0
\(211\) 15.5231 1.06865 0.534327 0.845278i \(-0.320565\pi\)
0.534327 + 0.845278i \(0.320565\pi\)
\(212\) −6.62884 15.6995i −0.455270 1.07825i
\(213\) 0 0
\(214\) 3.16103 + 15.6129i 0.216084 + 1.06728i
\(215\) −9.09893 9.09893i −0.620542 0.620542i
\(216\) 0 0
\(217\) −0.435523 −0.0295652
\(218\) −6.65564 4.41438i −0.450777 0.298980i
\(219\) 0 0
\(220\) −5.19973 12.3149i −0.350566 0.830268i
\(221\) −2.18293 1.19771i −0.146840 0.0805666i
\(222\) 0 0
\(223\) 16.6555 16.6555i 1.11534 1.11534i 0.122920 0.992417i \(-0.460774\pi\)
0.992417 0.122920i \(-0.0392259\pi\)
\(224\) 2.43431 + 11.2330i 0.162649 + 0.750534i
\(225\) 0 0
\(226\) 0.731953 + 3.61526i 0.0486888 + 0.240483i
\(227\) 17.8604 + 17.8604i 1.18543 + 1.18543i 0.978316 + 0.207118i \(0.0664084\pi\)
0.207118 + 0.978316i \(0.433592\pi\)
\(228\) 0 0
\(229\) −17.7135 17.7135i −1.17054 1.17054i −0.982080 0.188462i \(-0.939650\pi\)
−0.188462 0.982080i \(-0.560350\pi\)
\(230\) 8.21094 + 5.44594i 0.541413 + 0.359094i
\(231\) 0 0
\(232\) 3.79088 2.58951i 0.248884 0.170010i
\(233\) 12.8071i 0.839018i −0.907751 0.419509i \(-0.862202\pi\)
0.907751 0.419509i \(-0.137798\pi\)
\(234\) 0 0
\(235\) −1.14595 −0.0747533
\(236\) 4.79294 11.7983i 0.311994 0.768002i
\(237\) 0 0
\(238\) 1.65366 + 1.09680i 0.107191 + 0.0710949i
\(239\) −6.20137 + 6.20137i −0.401133 + 0.401133i −0.878632 0.477499i \(-0.841543\pi\)
0.477499 + 0.878632i \(0.341543\pi\)
\(240\) 0 0
\(241\) −0.148883 + 0.148883i −0.00959039 + 0.00959039i −0.711886 0.702295i \(-0.752159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(242\) 6.30712 1.27695i 0.405437 0.0820857i
\(243\) 0 0
\(244\) 5.46773 + 12.9496i 0.350036 + 0.829013i
\(245\) −5.34415 5.34415i −0.341425 0.341425i
\(246\) 0 0
\(247\) −23.4265 + 6.82721i −1.49059 + 0.434405i
\(248\) 0.595806 + 0.112185i 0.0378337 + 0.00712377i
\(249\) 0 0
\(250\) 6.32308 9.53343i 0.399907 0.602947i
\(251\) 13.2191i 0.834382i 0.908819 + 0.417191i \(0.136985\pi\)
−0.908819 + 0.417191i \(0.863015\pi\)
\(252\) 0 0
\(253\) 4.75385 4.75385i 0.298872 0.298872i
\(254\) −3.47610 17.1692i −0.218110 1.07729i
\(255\) 0 0
\(256\) −0.436727 15.9940i −0.0272955 0.999627i
\(257\) 15.5812i 0.971928i −0.873979 0.485964i \(-0.838469\pi\)
0.873979 0.485964i \(-0.161531\pi\)
\(258\) 0 0
\(259\) 5.95221i 0.369852i
\(260\) 11.9791 + 14.7199i 0.742910 + 0.912888i
\(261\) 0 0
\(262\) −6.14404 30.3466i −0.379580 1.87482i
\(263\) 15.6718i 0.966363i 0.875520 + 0.483181i \(0.160519\pi\)
−0.875520 + 0.483181i \(0.839481\pi\)
\(264\) 0 0
\(265\) 15.8569 + 15.8569i 0.974083 + 0.974083i
\(266\) 19.0596 3.85885i 1.16862 0.236601i
\(267\) 0 0
\(268\) 15.9532 + 6.48082i 0.974494 + 0.395879i
\(269\) 7.76842i 0.473649i −0.971552 0.236824i \(-0.923893\pi\)
0.971552 0.236824i \(-0.0761066\pi\)
\(270\) 0 0
\(271\) −9.70510 9.70510i −0.589543 0.589543i 0.347965 0.937508i \(-0.386873\pi\)
−0.937508 + 0.347965i \(0.886873\pi\)
\(272\) −1.97973 1.92641i −0.120039 0.116806i
\(273\) 0 0
\(274\) −23.8349 15.8086i −1.43992 0.955034i
\(275\) 3.45940 + 3.45940i 0.208610 + 0.208610i
\(276\) 0 0
\(277\) −9.88979 −0.594220 −0.297110 0.954843i \(-0.596023\pi\)
−0.297110 + 0.954843i \(0.596023\pi\)
\(278\) −4.26908 21.0858i −0.256042 1.26464i
\(279\) 0 0
\(280\) −8.53108 12.4890i −0.509829 0.746359i
\(281\) −0.916519 + 0.916519i −0.0546749 + 0.0546749i −0.733916 0.679241i \(-0.762309\pi\)
0.679241 + 0.733916i \(0.262309\pi\)
\(282\) 0 0
\(283\) 0.356000i 0.0211620i −0.999944 0.0105810i \(-0.996632\pi\)
0.999944 0.0105810i \(-0.00336810\pi\)
\(284\) 4.80030 11.8164i 0.284846 0.701175i
\(285\) 0 0
\(286\) 11.4662 6.01817i 0.678011 0.355862i
\(287\) 12.5167i 0.738836i
\(288\) 0 0
\(289\) 16.5231 0.971947
\(290\) −3.33914 + 5.03448i −0.196081 + 0.295635i
\(291\) 0 0
\(292\) 6.21171 15.2907i 0.363513 0.894822i
\(293\) 15.6762 + 15.6762i 0.915814 + 0.915814i 0.996722 0.0809073i \(-0.0257818\pi\)
−0.0809073 + 0.996722i \(0.525782\pi\)
\(294\) 0 0
\(295\) 16.7576i 0.975664i
\(296\) −1.53322 + 8.14278i −0.0891163 + 0.473289i
\(297\) 0 0
\(298\) −23.9350 15.8750i −1.38652 0.919613i
\(299\) −4.59123 + 8.36792i −0.265517 + 0.483929i
\(300\) 0 0
\(301\) −7.02461 + 7.02461i −0.404892 + 0.404892i
\(302\) −7.26684 + 10.9564i −0.418160 + 0.630467i
\(303\) 0 0
\(304\) −27.0680 + 0.369486i −1.55246 + 0.0211915i
\(305\) −13.0794 13.0794i −0.748927 0.748927i
\(306\) 0 0
\(307\) 6.36463 6.36463i 0.363249 0.363249i −0.501759 0.865008i \(-0.667314\pi\)
0.865008 + 0.501759i \(0.167314\pi\)
\(308\) −9.50738 + 4.01432i −0.541733 + 0.228737i
\(309\) 0 0
\(310\) −0.781935 + 0.158312i −0.0444109 + 0.00899153i
\(311\) 7.15541 0.405746 0.202873 0.979205i \(-0.434972\pi\)
0.202873 + 0.979205i \(0.434972\pi\)
\(312\) 0 0
\(313\) −2.19311 −0.123962 −0.0619810 0.998077i \(-0.519742\pi\)
−0.0619810 + 0.998077i \(0.519742\pi\)
\(314\) 14.1018 2.85507i 0.795808 0.161121i
\(315\) 0 0
\(316\) 6.42900 + 15.2262i 0.361659 + 0.856542i
\(317\) 9.33835 9.33835i 0.524494 0.524494i −0.394431 0.918925i \(-0.629058\pi\)
0.918925 + 0.394431i \(0.129058\pi\)
\(318\) 0 0
\(319\) 2.91479 + 2.91479i 0.163197 + 0.163197i
\(320\) 8.45373 + 19.2827i 0.472578 + 1.07794i
\(321\) 0 0
\(322\) 4.20440 6.33905i 0.234302 0.353261i
\(323\) −3.30473 + 3.30473i −0.183880 + 0.183880i
\(324\) 0 0
\(325\) −6.08938 3.34106i −0.337778 0.185329i
\(326\) 10.1469 + 6.72997i 0.561985 + 0.372739i
\(327\) 0 0
\(328\) 3.22414 17.1231i 0.178023 0.945466i
\(329\) 0.884699i 0.0487751i
\(330\) 0 0
\(331\) 13.7742 + 13.7742i 0.757099 + 0.757099i 0.975793 0.218694i \(-0.0701798\pi\)
−0.218694 + 0.975793i \(0.570180\pi\)
\(332\) −23.0777 9.37509i −1.26655 0.514525i
\(333\) 0 0
\(334\) −17.8771 + 26.9537i −0.978194 + 1.47484i
\(335\) −22.6589 −1.23799
\(336\) 0 0
\(337\) 15.0571i 0.820211i 0.912038 + 0.410106i \(0.134508\pi\)
−0.912038 + 0.410106i \(0.865492\pi\)
\(338\) −13.2380 + 12.7575i −0.720055 + 0.693917i
\(339\) 0 0
\(340\) 3.36766 + 1.36808i 0.182637 + 0.0741945i
\(341\) 0.544371i 0.0294794i
\(342\) 0 0
\(343\) −14.1828 + 14.1828i −0.765800 + 0.765800i
\(344\) 11.4193 7.80039i 0.615687 0.420569i
\(345\) 0 0
\(346\) 0.731983 + 3.61541i 0.0393517 + 0.194366i
\(347\) −17.4406 −0.936262 −0.468131 0.883659i \(-0.655073\pi\)
−0.468131 + 0.883659i \(0.655073\pi\)
\(348\) 0 0
\(349\) 20.1757 + 20.1757i 1.07998 + 1.07998i 0.996511 + 0.0834674i \(0.0265995\pi\)
0.0834674 + 0.996511i \(0.473401\pi\)
\(350\) 4.61296 + 3.05957i 0.246573 + 0.163541i
\(351\) 0 0
\(352\) 14.0404 3.04271i 0.748355 0.162177i
\(353\) 7.11735 + 7.11735i 0.378818 + 0.378818i 0.870676 0.491858i \(-0.163682\pi\)
−0.491858 + 0.870676i \(0.663682\pi\)
\(354\) 0 0
\(355\) 16.7833i 0.890767i
\(356\) 7.95071 19.5715i 0.421387 1.03728i
\(357\) 0 0
\(358\) −5.93270 + 1.20115i −0.313553 + 0.0634826i
\(359\) 20.7087 + 20.7087i 1.09296 + 1.09296i 0.995211 + 0.0977514i \(0.0311650\pi\)
0.0977514 + 0.995211i \(0.468835\pi\)
\(360\) 0 0
\(361\) 26.8010i 1.41058i
\(362\) −4.75029 23.4626i −0.249670 1.23317i
\(363\) 0 0
\(364\) 11.3641 9.24815i 0.595642 0.484735i
\(365\) 21.7180i 1.13677i
\(366\) 0 0
\(367\) 19.9759i 1.04273i 0.853333 + 0.521366i \(0.174577\pi\)
−0.853333 + 0.521366i \(0.825423\pi\)
\(368\) −7.38459 + 7.58898i −0.384948 + 0.395603i
\(369\) 0 0
\(370\) −2.16362 10.6866i −0.112482 0.555568i
\(371\) 12.2420 12.2420i 0.635571 0.635571i
\(372\) 0 0
\(373\) 13.4282i 0.695284i −0.937627 0.347642i \(-0.886983\pi\)
0.937627 0.347642i \(-0.113017\pi\)
\(374\) 1.37092 2.06696i 0.0708884 0.106880i
\(375\) 0 0
\(376\) 0.227888 1.21029i 0.0117524 0.0624160i
\(377\) −5.13073 2.81508i −0.264246 0.144984i
\(378\) 0 0
\(379\) −14.5582 14.5582i −0.747806 0.747806i 0.226261 0.974067i \(-0.427350\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(380\) 32.8169 13.8563i 1.68347 0.710815i
\(381\) 0 0
\(382\) −21.9374 + 4.44148i −1.12241 + 0.227246i
\(383\) 16.8510 16.8510i 0.861048 0.861048i −0.130412 0.991460i \(-0.541630\pi\)
0.991460 + 0.130412i \(0.0416300\pi\)
\(384\) 0 0
\(385\) 9.60271 9.60271i 0.489400 0.489400i
\(386\) −12.5233 8.30614i −0.637420 0.422771i
\(387\) 0 0
\(388\) 36.2575 + 14.7292i 1.84069 + 0.747764i
\(389\) −16.0991 −0.816254 −0.408127 0.912925i \(-0.633818\pi\)
−0.408127 + 0.912925i \(0.633818\pi\)
\(390\) 0 0
\(391\) 1.82812i 0.0924519i
\(392\) 6.70699 4.58147i 0.338754 0.231399i
\(393\) 0 0
\(394\) −3.10171 2.05722i −0.156262 0.103641i
\(395\) −15.3789 15.3789i −0.773796 0.773796i
\(396\) 0 0
\(397\) 4.70323 + 4.70323i 0.236048 + 0.236048i 0.815211 0.579163i \(-0.196621\pi\)
−0.579163 + 0.815211i \(0.696621\pi\)
\(398\) 1.14413 + 5.65109i 0.0573501 + 0.283263i
\(399\) 0 0
\(400\) −5.52254 5.37381i −0.276127 0.268690i
\(401\) −17.0366 + 17.0366i −0.850768 + 0.850768i −0.990228 0.139460i \(-0.955463\pi\)
0.139460 + 0.990228i \(0.455463\pi\)
\(402\) 0 0
\(403\) −0.216238 0.741986i −0.0107716 0.0369610i
\(404\) −32.3121 + 13.6432i −1.60759 + 0.678775i
\(405\) 0 0
\(406\) 3.88674 + 2.57790i 0.192896 + 0.127939i
\(407\) −7.43982 −0.368778
\(408\) 0 0
\(409\) 16.9559 + 16.9559i 0.838413 + 0.838413i 0.988650 0.150237i \(-0.0480037\pi\)
−0.150237 + 0.988650i \(0.548004\pi\)
\(410\) 4.54980 + 22.4724i 0.224699 + 1.10983i
\(411\) 0 0
\(412\) −17.1350 + 7.23496i −0.844183 + 0.356441i
\(413\) 12.9373 0.636602
\(414\) 0 0
\(415\) 32.7782 1.60902
\(416\) −17.9286 + 9.72444i −0.879023 + 0.476780i
\(417\) 0 0
\(418\) −4.82328 23.8231i −0.235914 1.16523i
\(419\) −16.4707 −0.804647 −0.402323 0.915498i \(-0.631797\pi\)
−0.402323 + 0.915498i \(0.631797\pi\)
\(420\) 0 0
\(421\) 25.3822 25.3822i 1.23705 1.23705i 0.275851 0.961201i \(-0.411040\pi\)
0.961201 0.275851i \(-0.0889595\pi\)
\(422\) −4.35626 21.5164i −0.212059 1.04740i
\(423\) 0 0
\(424\) −19.9007 + 13.5939i −0.966463 + 0.660180i
\(425\) −1.33033 −0.0645306
\(426\) 0 0
\(427\) −10.0977 + 10.0977i −0.488660 + 0.488660i
\(428\) 20.7539 8.76295i 1.00318 0.423573i
\(429\) 0 0
\(430\) −10.0585 + 15.1654i −0.485064 + 0.731340i
\(431\) 8.12815 8.12815i 0.391519 0.391519i −0.483710 0.875229i \(-0.660711\pi\)
0.875229 + 0.483710i \(0.160711\pi\)
\(432\) 0 0
\(433\) 39.9622i 1.92046i 0.279212 + 0.960229i \(0.409927\pi\)
−0.279212 + 0.960229i \(0.590073\pi\)
\(434\) 0.122221 + 0.603674i 0.00586680 + 0.0289773i
\(435\) 0 0
\(436\) −4.25095 + 10.4641i −0.203584 + 0.501141i
\(437\) 12.6682 + 12.6682i 0.606000 + 0.606000i
\(438\) 0 0
\(439\) 13.1837 0.629224 0.314612 0.949220i \(-0.398126\pi\)
0.314612 + 0.949220i \(0.398126\pi\)
\(440\) −15.6103 + 10.6632i −0.744192 + 0.508349i
\(441\) 0 0
\(442\) −1.04753 + 3.36185i −0.0498261 + 0.159907i
\(443\) −17.6794 −0.839972 −0.419986 0.907531i \(-0.637965\pi\)
−0.419986 + 0.907531i \(0.637965\pi\)
\(444\) 0 0
\(445\) 27.7981i 1.31776i
\(446\) −27.7601 18.4120i −1.31448 0.871834i
\(447\) 0 0
\(448\) 14.8868 6.52649i 0.703334 0.308348i
\(449\) −21.5059 + 21.5059i −1.01492 + 1.01492i −0.0150379 + 0.999887i \(0.504787\pi\)
−0.999887 + 0.0150379i \(0.995213\pi\)
\(450\) 0 0
\(451\) 15.6449 0.736690
\(452\) 4.80566 2.02911i 0.226039 0.0954411i
\(453\) 0 0
\(454\) 19.7439 29.7682i 0.926628 1.39709i
\(455\) −9.27421 + 16.9031i −0.434782 + 0.792428i
\(456\) 0 0
\(457\) 2.81456 + 2.81456i 0.131660 + 0.131660i 0.769866 0.638206i \(-0.220323\pi\)
−0.638206 + 0.769866i \(0.720323\pi\)
\(458\) −19.5816 + 29.5235i −0.914987 + 1.37954i
\(459\) 0 0
\(460\) 5.24432 12.9094i 0.244518 0.601904i
\(461\) 4.19670 4.19670i 0.195460 0.195460i −0.602591 0.798050i \(-0.705865\pi\)
0.798050 + 0.602591i \(0.205865\pi\)
\(462\) 0 0
\(463\) −21.2766 21.2766i −0.988809 0.988809i 0.0111288 0.999938i \(-0.496458\pi\)
−0.999938 + 0.0111288i \(0.996458\pi\)
\(464\) −4.65313 4.52781i −0.216016 0.210198i
\(465\) 0 0
\(466\) −17.7517 + 3.59405i −0.822333 + 0.166491i
\(467\) 23.4639i 1.08578i −0.839803 0.542891i \(-0.817330\pi\)
0.839803 0.542891i \(-0.182670\pi\)
\(468\) 0 0
\(469\) 17.4933i 0.807764i
\(470\) 0.321588 + 1.58838i 0.0148337 + 0.0732667i
\(471\) 0 0
\(472\) −17.6985 3.33248i −0.814640 0.153390i
\(473\) 8.78024 + 8.78024i 0.403716 + 0.403716i
\(474\) 0 0
\(475\) −9.21868 + 9.21868i −0.422982 + 0.422982i
\(476\) 1.05619 2.59992i 0.0484105 0.119167i
\(477\) 0 0
\(478\) 10.3360 + 6.85536i 0.472756 + 0.313557i
\(479\) −1.46450 1.46450i −0.0669149 0.0669149i 0.672857 0.739772i \(-0.265067\pi\)
−0.739772 + 0.672857i \(0.765067\pi\)
\(480\) 0 0
\(481\) 10.1406 2.95528i 0.462371 0.134749i
\(482\) 0.248146 + 0.164584i 0.0113027 + 0.00749659i
\(483\) 0 0
\(484\) −3.53995 8.38389i −0.160907 0.381086i
\(485\) −51.4980 −2.33840
\(486\) 0 0
\(487\) −24.8699 + 24.8699i −1.12696 + 1.12696i −0.136296 + 0.990668i \(0.543520\pi\)
−0.990668 + 0.136296i \(0.956480\pi\)
\(488\) 16.4149 11.2128i 0.743068 0.507581i
\(489\) 0 0
\(490\) −5.90774 + 8.90721i −0.266884 + 0.402387i
\(491\) 5.71016i 0.257696i −0.991664 0.128848i \(-0.958872\pi\)
0.991664 0.128848i \(-0.0411279\pi\)
\(492\) 0 0
\(493\) −1.12090 −0.0504827
\(494\) 16.0373 + 30.5554i 0.721554 + 1.37475i
\(495\) 0 0
\(496\) −0.0117027 0.857324i −0.000525467 0.0384950i
\(497\) 12.9572 0.581208
\(498\) 0 0
\(499\) 21.9449 + 21.9449i 0.982387 + 0.982387i 0.999848 0.0174602i \(-0.00555803\pi\)
−0.0174602 + 0.999848i \(0.505558\pi\)
\(500\) −14.9886 6.08899i −0.670313 0.272308i
\(501\) 0 0
\(502\) 18.3229 3.70969i 0.817789 0.165571i
\(503\) 34.1145i 1.52109i −0.649284 0.760546i \(-0.724931\pi\)
0.649284 0.760546i \(-0.275069\pi\)
\(504\) 0 0
\(505\) 32.6361 32.6361i 1.45229 1.45229i
\(506\) −7.92335 5.25519i −0.352236 0.233622i
\(507\) 0 0
\(508\) −22.8225 + 9.63639i −1.01258 + 0.427546i
\(509\) 7.58084 7.58084i 0.336015 0.336015i −0.518850 0.854865i \(-0.673640\pi\)
0.854865 + 0.518850i \(0.173640\pi\)
\(510\) 0 0
\(511\) 16.7669 0.741723
\(512\) −22.0466 + 5.09376i −0.974332 + 0.225115i
\(513\) 0 0
\(514\) −21.5969 + 4.37256i −0.952600 + 0.192865i
\(515\) 17.3069 17.3069i 0.762631 0.762631i
\(516\) 0 0
\(517\) 1.10581 0.0486334
\(518\) −8.25030 + 1.67037i −0.362497 + 0.0733920i
\(519\) 0 0
\(520\) 17.0414 20.7349i 0.747314 0.909286i
\(521\) −24.1479 −1.05794 −0.528969 0.848641i \(-0.677421\pi\)
−0.528969 + 0.848641i \(0.677421\pi\)
\(522\) 0 0
\(523\) −18.7933 −0.821774 −0.410887 0.911686i \(-0.634781\pi\)
−0.410887 + 0.911686i \(0.634781\pi\)
\(524\) −40.3390 + 17.0324i −1.76222 + 0.744064i
\(525\) 0 0
\(526\) 21.7225 4.39798i 0.947145 0.191761i
\(527\) −0.104670 0.104670i −0.00455951 0.00455951i
\(528\) 0 0
\(529\) −15.9922 −0.695313
\(530\) 17.5292 26.4291i 0.761419 1.14801i
\(531\) 0 0
\(532\) −10.6974 25.3354i −0.463793 1.09843i
\(533\) −21.3242 + 6.21454i −0.923656 + 0.269182i
\(534\) 0 0
\(535\) −20.9620 + 20.9620i −0.906265 + 0.906265i
\(536\) 4.50605 23.9312i 0.194632 1.03367i
\(537\) 0 0
\(538\) −10.7677 + 2.18006i −0.464230 + 0.0939889i
\(539\) 5.15697 + 5.15697i 0.222126 + 0.222126i
\(540\) 0 0
\(541\) −19.7610 19.7610i −0.849593 0.849593i 0.140489 0.990082i \(-0.455132\pi\)
−0.990082 + 0.140489i \(0.955132\pi\)
\(542\) −10.7286 + 16.1757i −0.460833 + 0.694806i
\(543\) 0 0
\(544\) −2.11461 + 3.28470i −0.0906630 + 0.140830i
\(545\) 14.8626i 0.636645i
\(546\) 0 0
\(547\) 0.864037 0.0369435 0.0184718 0.999829i \(-0.494120\pi\)
0.0184718 + 0.999829i \(0.494120\pi\)
\(548\) −15.2234 + 37.4738i −0.650309 + 1.60080i
\(549\) 0 0
\(550\) 3.82423 5.76586i 0.163066 0.245857i
\(551\) −7.76739 + 7.76739i −0.330902 + 0.330902i
\(552\) 0 0
\(553\) −11.8729 + 11.8729i −0.504887 + 0.504887i
\(554\) 2.77538 + 13.7081i 0.117915 + 0.582403i
\(555\) 0 0
\(556\) −28.0288 + 11.8347i −1.18869 + 0.501901i
\(557\) −10.9293 10.9293i −0.463089 0.463089i 0.436578 0.899666i \(-0.356190\pi\)
−0.899666 + 0.436578i \(0.856190\pi\)
\(558\) 0 0
\(559\) −15.4553 8.47987i −0.653691 0.358660i
\(560\) −14.9168 + 15.3296i −0.630348 + 0.647795i
\(561\) 0 0
\(562\) 1.52758 + 1.01317i 0.0644371 + 0.0427382i
\(563\) 38.6244i 1.62782i 0.580989 + 0.813911i \(0.302666\pi\)
−0.580989 + 0.813911i \(0.697334\pi\)
\(564\) 0 0
\(565\) −4.85385 + 4.85385i −0.204203 + 0.204203i
\(566\) −0.493448 + 0.0999045i −0.0207412 + 0.00419930i
\(567\) 0 0
\(568\) −17.7257 3.33760i −0.743755 0.140043i
\(569\) 40.1183i 1.68185i 0.541154 + 0.840924i \(0.317988\pi\)
−0.541154 + 0.840924i \(0.682012\pi\)
\(570\) 0 0
\(571\) 3.97707i 0.166435i 0.996531 + 0.0832175i \(0.0265196\pi\)
−0.996531 + 0.0832175i \(0.973480\pi\)
\(572\) −11.5595 14.2043i −0.483327 0.593912i
\(573\) 0 0
\(574\) 17.3492 3.51256i 0.724143 0.146612i
\(575\) 5.09962i 0.212669i
\(576\) 0 0
\(577\) −13.5025 13.5025i −0.562117 0.562117i 0.367791 0.929908i \(-0.380114\pi\)
−0.929908 + 0.367791i \(0.880114\pi\)
\(578\) −4.63689 22.9025i −0.192869 0.952619i
\(579\) 0 0
\(580\) 7.91530 + 3.21552i 0.328665 + 0.133517i
\(581\) 25.3056i 1.04985i
\(582\) 0 0
\(583\) −15.3015 15.3015i −0.633725 0.633725i
\(584\) −22.9375 4.31894i −0.949162 0.178719i
\(585\) 0 0
\(586\) 17.3294 26.1279i 0.715872 1.07933i
\(587\) −10.1322 10.1322i −0.418201 0.418201i 0.466383 0.884583i \(-0.345557\pi\)
−0.884583 + 0.466383i \(0.845557\pi\)
\(588\) 0 0
\(589\) −1.45065 −0.0597730
\(590\) 23.2275 4.70269i 0.956261 0.193607i
\(591\) 0 0
\(592\) 11.7169 0.159939i 0.481561 0.00657344i
\(593\) −13.3652 + 13.3652i −0.548841 + 0.548841i −0.926106 0.377264i \(-0.876865\pi\)
0.377264 + 0.926106i \(0.376865\pi\)
\(594\) 0 0
\(595\) 3.69277i 0.151389i
\(596\) −15.2873 + 37.6311i −0.626191 + 1.54143i
\(597\) 0 0
\(598\) 12.8871 + 4.01556i 0.526994 + 0.164208i
\(599\) 5.46359i 0.223236i −0.993751 0.111618i \(-0.964397\pi\)
0.993751 0.111618i \(-0.0356033\pi\)
\(600\) 0 0
\(601\) −36.5697 −1.49171 −0.745855 0.666108i \(-0.767959\pi\)
−0.745855 + 0.666108i \(0.767959\pi\)
\(602\) 11.7081 + 7.76542i 0.477185 + 0.316495i
\(603\) 0 0
\(604\) 17.2258 + 6.99781i 0.700908 + 0.284737i
\(605\) 8.46796 + 8.46796i 0.344271 + 0.344271i
\(606\) 0 0
\(607\) 22.8716i 0.928330i −0.885749 0.464165i \(-0.846354\pi\)
0.885749 0.464165i \(-0.153646\pi\)
\(608\) 8.10827 + 37.4151i 0.328834 + 1.51738i
\(609\) 0 0
\(610\) −14.4588 + 21.7998i −0.585420 + 0.882648i
\(611\) −1.50723 + 0.439254i −0.0609762 + 0.0177703i
\(612\) 0 0
\(613\) −32.4490 + 32.4490i −1.31060 + 1.31060i −0.389632 + 0.920971i \(0.627398\pi\)
−0.920971 + 0.389632i \(0.872602\pi\)
\(614\) −10.6081 7.03584i −0.428107 0.283943i
\(615\) 0 0
\(616\) 8.23228 + 12.0515i 0.331688 + 0.485571i
\(617\) −33.0596 33.0596i −1.33093 1.33093i −0.904538 0.426393i \(-0.859784\pi\)
−0.426393 0.904538i \(-0.640216\pi\)
\(618\) 0 0
\(619\) 26.1845 26.1845i 1.05244 1.05244i 0.0538980 0.998546i \(-0.482835\pi\)
0.998546 0.0538980i \(-0.0171646\pi\)
\(620\) 0.438870 + 1.03941i 0.0176255 + 0.0417435i
\(621\) 0 0
\(622\) −2.00803 9.91804i −0.0805146 0.397677i
\(623\) 21.4609 0.859811
\(624\) 0 0
\(625\) 30.9210 1.23684
\(626\) 0.615455 + 3.03985i 0.0245985 + 0.121497i
\(627\) 0 0
\(628\) −7.91478 18.7451i −0.315834 0.748011i
\(629\) 1.43051 1.43051i 0.0570382 0.0570382i
\(630\) 0 0
\(631\) 1.12873 + 1.12873i 0.0449339 + 0.0449339i 0.729217 0.684283i \(-0.239885\pi\)
−0.684283 + 0.729217i \(0.739885\pi\)
\(632\) 19.3007 13.1841i 0.767742 0.524436i
\(633\) 0 0
\(634\) −15.5644 10.3232i −0.618142 0.409985i
\(635\) 23.0513 23.0513i 0.914764 0.914764i
\(636\) 0 0
\(637\) −9.07750 4.98055i −0.359664 0.197337i
\(638\) 3.22218 4.85814i 0.127567 0.192336i
\(639\) 0 0
\(640\) 24.3552 17.1290i 0.962726 0.677082i
\(641\) 30.8252i 1.21752i −0.793353 0.608762i \(-0.791667\pi\)
0.793353 0.608762i \(-0.208333\pi\)
\(642\) 0 0
\(643\) 10.2992 + 10.2992i 0.406161 + 0.406161i 0.880397 0.474237i \(-0.157276\pi\)
−0.474237 + 0.880397i \(0.657276\pi\)
\(644\) −9.96638 4.04875i −0.392730 0.159543i
\(645\) 0 0
\(646\) 5.50806 + 3.65324i 0.216712 + 0.143735i
\(647\) 49.1102 1.93072 0.965360 0.260922i \(-0.0840264\pi\)
0.965360 + 0.260922i \(0.0840264\pi\)
\(648\) 0 0
\(649\) 16.1706i 0.634753i
\(650\) −2.92214 + 9.37804i −0.114616 + 0.367837i
\(651\) 0 0
\(652\) 6.48082 15.9532i 0.253808 0.624774i
\(653\) 5.00990i 0.196052i 0.995184 + 0.0980262i \(0.0312529\pi\)
−0.995184 + 0.0980262i \(0.968747\pi\)
\(654\) 0 0
\(655\) 40.7434 40.7434i 1.59198 1.59198i
\(656\) −24.6390 + 0.336329i −0.961991 + 0.0131314i
\(657\) 0 0
\(658\) 1.22627 0.248274i 0.0478051 0.00967873i
\(659\) 7.81311 0.304356 0.152178 0.988353i \(-0.451371\pi\)
0.152178 + 0.988353i \(0.451371\pi\)
\(660\) 0 0
\(661\) 11.5710 + 11.5710i 0.450060 + 0.450060i 0.895374 0.445314i \(-0.146908\pi\)
−0.445314 + 0.895374i \(0.646908\pi\)
\(662\) 15.2268 22.9578i 0.591808 0.892279i
\(663\) 0 0
\(664\) −6.51841 + 34.6187i −0.252963 + 1.34347i
\(665\) 25.5895 + 25.5895i 0.992318 + 0.992318i
\(666\) 0 0
\(667\) 4.29678i 0.166372i
\(668\) 42.3771 + 17.2153i 1.63962 + 0.666080i
\(669\) 0 0
\(670\) 6.35879 + 31.4073i 0.245662 + 1.21337i
\(671\) 12.6213 + 12.6213i 0.487241 + 0.487241i
\(672\) 0 0
\(673\) 3.37609i 0.130139i 0.997881 + 0.0650693i \(0.0207269\pi\)
−0.997881 + 0.0650693i \(0.979273\pi\)
\(674\) 20.8705 4.22548i 0.803901 0.162759i
\(675\) 0 0
\(676\) 21.3981 + 14.7690i 0.823003 + 0.568037i
\(677\) 8.56189i 0.329060i −0.986372 0.164530i \(-0.947389\pi\)
0.986372 0.164530i \(-0.0526108\pi\)
\(678\) 0 0
\(679\) 39.7577i 1.52576i
\(680\) 0.951213 5.05181i 0.0364773 0.193728i
\(681\) 0 0
\(682\) 0.754548 0.152767i 0.0288931 0.00584977i
\(683\) 14.2243 14.2243i 0.544279 0.544279i −0.380501 0.924780i \(-0.624249\pi\)
0.924780 + 0.380501i \(0.124249\pi\)
\(684\) 0 0
\(685\) 53.2255i 2.03364i
\(686\) 23.6388 + 15.6785i 0.902534 + 0.598609i
\(687\) 0 0
\(688\) −14.0167 13.6391i −0.534380 0.519987i
\(689\) 26.9344 + 14.7781i 1.02612 + 0.563000i
\(690\) 0 0
\(691\) −10.0702 10.0702i −0.383090 0.383090i 0.489124 0.872214i \(-0.337316\pi\)
−0.872214 + 0.489124i \(0.837316\pi\)
\(692\) 4.80587 2.02919i 0.182692 0.0771382i
\(693\) 0 0
\(694\) 4.89438 + 24.1743i 0.185788 + 0.917644i
\(695\) 28.3099 28.3099i 1.07385 1.07385i
\(696\) 0 0
\(697\) −3.00817 + 3.00817i −0.113942 + 0.113942i
\(698\) 22.3034 33.6272i 0.844195 1.27281i
\(699\) 0 0
\(700\) 2.94629 7.25259i 0.111359 0.274122i
\(701\) −44.3514 −1.67513 −0.837565 0.546337i \(-0.816022\pi\)
−0.837565 + 0.546337i \(0.816022\pi\)
\(702\) 0 0
\(703\) 19.8258i 0.747743i
\(704\) −8.15764 18.6074i −0.307453 0.701291i
\(705\) 0 0
\(706\) 7.86794 11.8626i 0.296114 0.446456i
\(707\) −25.1959 25.1959i −0.947590 0.947590i
\(708\) 0 0
\(709\) 4.99613 + 4.99613i 0.187634 + 0.187634i 0.794672 0.607039i \(-0.207643\pi\)
−0.607039 + 0.794672i \(0.707643\pi\)
\(710\) 23.2632 4.70992i 0.873053 0.176760i
\(711\) 0 0
\(712\) −29.3590 5.52805i −1.10028 0.207173i
\(713\) −0.401237 + 0.401237i −0.0150265 + 0.0150265i
\(714\) 0 0
\(715\) 21.1276 + 11.5921i 0.790128 + 0.433519i
\(716\) 3.32980 + 7.88617i 0.124440 + 0.294720i
\(717\) 0 0
\(718\) 22.8926 34.5156i 0.854344 1.28811i
\(719\) 20.9602 0.781683 0.390842 0.920458i \(-0.372184\pi\)
0.390842 + 0.920458i \(0.372184\pi\)
\(720\) 0 0
\(721\) −13.3613 13.3613i −0.497602 0.497602i
\(722\) 37.1486 7.52118i 1.38253 0.279909i
\(723\) 0 0
\(724\) −31.1882 + 13.1687i −1.15910 + 0.489410i
\(725\) −3.12679 −0.116126
\(726\) 0 0
\(727\) 3.73446 0.138503 0.0692516 0.997599i \(-0.477939\pi\)
0.0692516 + 0.997599i \(0.477939\pi\)
\(728\) −16.0079 13.1564i −0.593292 0.487608i
\(729\) 0 0
\(730\) 30.1032 6.09475i 1.11417 0.225577i
\(731\) −3.37649 −0.124884
\(732\) 0 0
\(733\) −3.60035 + 3.60035i −0.132982 + 0.132982i −0.770465 0.637483i \(-0.779976\pi\)
0.637483 + 0.770465i \(0.279976\pi\)
\(734\) 27.6884 5.60585i 1.02200 0.206916i
\(735\) 0 0
\(736\) 12.5914 + 8.10601i 0.464124 + 0.298791i
\(737\) 21.8653 0.805419
\(738\) 0 0
\(739\) 27.7960 27.7960i 1.02249 1.02249i 0.0227511 0.999741i \(-0.492757\pi\)
0.999741 0.0227511i \(-0.00724252\pi\)
\(740\) −14.2054 + 5.99796i −0.522200 + 0.220489i
\(741\) 0 0
\(742\) −20.4039 13.5330i −0.749052 0.496811i
\(743\) 0.361398 0.361398i 0.0132584 0.0132584i −0.700447 0.713705i \(-0.747016\pi\)
0.713705 + 0.700447i \(0.247016\pi\)
\(744\) 0 0
\(745\) 53.4490i 1.95822i
\(746\) −18.6126 + 3.76836i −0.681457 + 0.137969i
\(747\) 0 0
\(748\) −3.24971 1.32016i −0.118821 0.0482699i
\(749\) 16.1832 + 16.1832i 0.591320 + 0.591320i
\(750\) 0 0
\(751\) 51.2313 1.86946 0.934728 0.355365i \(-0.115643\pi\)
0.934728 + 0.355365i \(0.115643\pi\)
\(752\) −1.74153 + 0.0237723i −0.0635069 + 0.000866887i
\(753\) 0 0
\(754\) −2.46211 + 7.90165i −0.0896648 + 0.287761i
\(755\) −24.4665 −0.890427
\(756\) 0 0
\(757\) 17.2708i 0.627717i 0.949470 + 0.313859i \(0.101622\pi\)
−0.949470 + 0.313859i \(0.898378\pi\)
\(758\) −16.0935 + 24.2645i −0.584543 + 0.881326i
\(759\) 0 0
\(760\) −28.4155 41.5986i −1.03074 1.50894i
\(761\) −18.4462 + 18.4462i −0.668674 + 0.668674i −0.957409 0.288735i \(-0.906765\pi\)
0.288735 + 0.957409i \(0.406765\pi\)
\(762\) 0 0
\(763\) −11.4743 −0.415399
\(764\) 12.3126 + 29.1607i 0.445454 + 1.05500i
\(765\) 0 0
\(766\) −28.0860 18.6281i −1.01479 0.673062i
\(767\) 6.42337 + 22.0408i 0.231935 + 0.795848i
\(768\) 0 0
\(769\) −5.58213 5.58213i −0.201297 0.201297i 0.599259 0.800555i \(-0.295462\pi\)
−0.800555 + 0.599259i \(0.795462\pi\)
\(770\) −16.0050 10.6154i −0.576782 0.382553i
\(771\) 0 0
\(772\) −7.99863 + 19.6894i −0.287877 + 0.708637i
\(773\) −24.5063 + 24.5063i −0.881430 + 0.881430i −0.993680 0.112250i \(-0.964194\pi\)
0.112250 + 0.993680i \(0.464194\pi\)
\(774\) 0 0
\(775\) −0.291983 0.291983i −0.0104883 0.0104883i
\(776\) 10.2411 54.3896i 0.367634 1.95247i
\(777\) 0 0
\(778\) 4.51789 + 22.3147i 0.161974 + 0.800022i
\(779\) 41.6908i 1.49373i
\(780\) 0 0
\(781\) 16.1955i 0.579520i
\(782\) 2.53394 0.513026i 0.0906134 0.0183458i
\(783\) 0 0
\(784\) −8.23251 8.01079i −0.294018 0.286100i
\(785\) 18.9331 + 18.9331i 0.675750 + 0.675750i
\(786\) 0 0
\(787\) 4.29751 4.29751i 0.153190 0.153190i −0.626351 0.779541i \(-0.715452\pi\)
0.779541 + 0.626351i \(0.215452\pi\)
\(788\) −1.98106 + 4.87658i −0.0705724 + 0.173721i
\(789\) 0 0
\(790\) −17.0007 + 25.6323i −0.604859 + 0.911957i
\(791\) 3.74730 + 3.74730i 0.133239 + 0.133239i
\(792\) 0 0
\(793\) −22.2166 12.1896i −0.788934 0.432864i
\(794\) 5.19922 7.83897i 0.184514 0.278194i
\(795\) 0 0
\(796\) 7.51184 3.17174i 0.266250 0.112419i
\(797\) −42.5322 −1.50657 −0.753284 0.657696i \(-0.771531\pi\)
−0.753284 + 0.657696i \(0.771531\pi\)
\(798\) 0 0
\(799\) −0.212622 + 0.212622i −0.00752204 + 0.00752204i
\(800\) −5.89878 + 9.16280i −0.208554 + 0.323954i
\(801\) 0 0
\(802\) 28.3953 + 18.8333i 1.00267 + 0.665026i
\(803\) 20.9574i 0.739570i
\(804\) 0 0
\(805\) 14.1557 0.498921
\(806\) −0.967777 + 0.507949i −0.0340885 + 0.0178917i
\(807\) 0 0
\(808\) 27.9785 + 40.9588i 0.984281 + 1.44093i
\(809\) 40.0149 1.40685 0.703425 0.710769i \(-0.251653\pi\)
0.703425 + 0.710769i \(0.251653\pi\)
\(810\) 0 0
\(811\) 8.57419 + 8.57419i 0.301081 + 0.301081i 0.841437 0.540356i \(-0.181710\pi\)
−0.540356 + 0.841437i \(0.681710\pi\)
\(812\) 2.48246 6.11082i 0.0871173 0.214448i
\(813\) 0 0
\(814\) 2.08784 + 10.3123i 0.0731789 + 0.361445i
\(815\) 22.6589i 0.793708i
\(816\) 0 0
\(817\) −23.3977 + 23.3977i −0.818583 + 0.818583i
\(818\) 18.7440 28.2607i 0.655369 0.988112i
\(819\) 0 0
\(820\) 29.8719 12.6129i 1.04317 0.440461i
\(821\) −8.87942 + 8.87942i −0.309894 + 0.309894i −0.844868 0.534974i \(-0.820321\pi\)
0.534974 + 0.844868i \(0.320321\pi\)
\(822\) 0 0
\(823\) −6.52071 −0.227298 −0.113649 0.993521i \(-0.536254\pi\)
−0.113649 + 0.993521i \(0.536254\pi\)
\(824\) 14.8369 + 21.7204i 0.516869 + 0.756664i
\(825\) 0 0
\(826\) −3.63060 17.9322i −0.126325 0.623942i
\(827\) 24.9705 24.9705i 0.868308 0.868308i −0.123977 0.992285i \(-0.539565\pi\)
0.992285 + 0.123977i \(0.0395649\pi\)
\(828\) 0 0
\(829\) 25.7131 0.893052 0.446526 0.894771i \(-0.352661\pi\)
0.446526 + 0.894771i \(0.352661\pi\)
\(830\) −9.19857 45.4335i −0.319287 1.57702i
\(831\) 0 0
\(832\) 18.5103 + 22.1217i 0.641728 + 0.766932i
\(833\) −1.98314 −0.0687117
\(834\) 0 0
\(835\) −60.1900 −2.08296
\(836\) −31.6674 + 13.3710i −1.09524 + 0.462446i
\(837\) 0 0
\(838\) 4.62219 + 22.8299i 0.159671 + 0.788646i
\(839\) −10.9775 10.9775i −0.378984 0.378984i 0.491751 0.870736i \(-0.336357\pi\)
−0.870736 + 0.491751i \(0.836357\pi\)
\(840\) 0 0
\(841\) 26.3655 0.909154
\(842\) −42.3050 28.0590i −1.45793 0.966976i
\(843\) 0 0
\(844\) −28.6012 + 12.0763i −0.984494 + 0.415685i
\(845\) −33.4019 7.40778i −1.14906 0.254835i
\(846\) 0 0
\(847\) 6.53748 6.53748i 0.224630 0.224630i
\(848\) 24.4272 + 23.7693i 0.838832 + 0.816240i
\(849\) 0 0
\(850\) 0.373332 + 1.84396i 0.0128052 + 0.0632473i
\(851\) −5.48364 5.48364i −0.187977 0.187977i
\(852\) 0 0
\(853\) −19.1134 19.1134i −0.654432 0.654432i 0.299625 0.954057i \(-0.403138\pi\)
−0.954057 + 0.299625i \(0.903138\pi\)
\(854\) 16.8300 + 11.1626i 0.575910 + 0.381975i
\(855\) 0 0
\(856\) −17.9704 26.3076i −0.614216 0.899175i
\(857\) 19.3319i 0.660365i 0.943917 + 0.330182i \(0.107110\pi\)
−0.943917 + 0.330182i \(0.892890\pi\)
\(858\) 0 0
\(859\) −18.2400 −0.622341 −0.311170 0.950354i \(-0.600721\pi\)
−0.311170 + 0.950354i \(0.600721\pi\)
\(860\) 23.8433 + 9.68611i 0.813050 + 0.330294i
\(861\) 0 0
\(862\) −13.5474 8.98533i −0.461425 0.306042i
\(863\) 26.8308 26.8308i 0.913333 0.913333i −0.0832003 0.996533i \(-0.526514\pi\)
0.996533 + 0.0832003i \(0.0265141\pi\)
\(864\) 0 0
\(865\) −4.85405 + 4.85405i −0.165043 + 0.165043i
\(866\) 55.3912 11.2146i 1.88227 0.381088i
\(867\) 0 0
\(868\) 0.802447 0.338819i 0.0272368 0.0115003i
\(869\) 14.8402 + 14.8402i 0.503421 + 0.503421i
\(870\) 0 0
\(871\) −29.8027 + 8.68543i −1.00983 + 0.294295i
\(872\) 15.6972 + 2.95564i 0.531573 + 0.100091i
\(873\) 0 0
\(874\) 14.0041 21.1143i 0.473697 0.714201i
\(875\) 16.4356i 0.555626i
\(876\) 0 0
\(877\) −7.21914 + 7.21914i −0.243773 + 0.243773i −0.818409 0.574636i \(-0.805144\pi\)
0.574636 + 0.818409i \(0.305144\pi\)
\(878\) −3.69975 18.2738i −0.124861 0.616711i
\(879\) 0 0
\(880\) 19.1609 + 18.6449i 0.645914 + 0.628518i
\(881\) 46.5683i 1.56893i 0.620175 + 0.784463i \(0.287061\pi\)
−0.620175 + 0.784463i \(0.712939\pi\)
\(882\) 0 0
\(883\) 17.2990i 0.582156i 0.956699 + 0.291078i \(0.0940139\pi\)
−0.956699 + 0.291078i \(0.905986\pi\)
\(884\) 4.95380 + 0.508538i 0.166614 + 0.0171040i
\(885\) 0 0
\(886\) 4.96137 + 24.5052i 0.166681 + 0.823268i
\(887\) 52.8158i 1.77338i 0.462363 + 0.886691i \(0.347002\pi\)
−0.462363 + 0.886691i \(0.652998\pi\)
\(888\) 0 0
\(889\) −17.7962 17.7962i −0.596866 0.596866i
\(890\) 38.5307 7.80101i 1.29155 0.261491i
\(891\) 0 0
\(892\) −17.7304 + 43.6450i −0.593657 + 1.46134i
\(893\) 2.94678i 0.0986102i
\(894\) 0 0
\(895\) −7.96525 7.96525i −0.266249 0.266249i
\(896\) −13.2240 18.8029i −0.441783 0.628160i
\(897\) 0 0
\(898\) 35.8443 + 23.7739i 1.19614 + 0.793344i
\(899\) −0.246016 0.246016i −0.00820509 0.00820509i
\(900\) 0 0
\(901\) 5.88429 0.196034
\(902\) −4.39045 21.6853i −0.146186 0.722040i
\(903\) 0 0
\(904\) −4.16114 6.09165i −0.138397 0.202605i
\(905\) 31.5010 31.5010i 1.04713 1.04713i
\(906\) 0 0
\(907\) 37.1283i 1.23283i −0.787423 0.616413i \(-0.788585\pi\)
0.787423 0.616413i \(-0.211415\pi\)
\(908\) −46.8022 19.0130i −1.55319 0.630967i
\(909\) 0 0
\(910\) 26.0318 + 8.11137i 0.862946 + 0.268889i
\(911\) 15.7211i 0.520864i 0.965492 + 0.260432i \(0.0838650\pi\)
−0.965492 + 0.260432i \(0.916135\pi\)
\(912\) 0 0
\(913\) −31.6301 −1.04680
\(914\) 3.11139 4.69109i 0.102915 0.155168i
\(915\) 0 0
\(916\) 46.4174 + 18.8566i 1.53368 + 0.623041i
\(917\) −31.4550 31.4550i −1.03873 1.03873i
\(918\) 0 0
\(919\) 7.88215i 0.260008i 0.991513 + 0.130004i \(0.0414991\pi\)
−0.991513 + 0.130004i \(0.958501\pi\)
\(920\) −19.3653 3.64632i −0.638455 0.120216i
\(921\) 0 0
\(922\) −6.99473 4.63928i −0.230359 0.152787i
\(923\) 6.43325 + 22.0747i 0.211753 + 0.726598i
\(924\) 0 0
\(925\) 3.99047 3.99047i 0.131206 0.131206i
\(926\) −23.5205 + 35.4622i −0.772930 + 1.16536i
\(927\) 0 0
\(928\) −4.97014 + 7.72030i −0.163153 + 0.253431i
\(929\) −8.30941 8.30941i −0.272623 0.272623i 0.557532 0.830155i \(-0.311748\pi\)
−0.830155 + 0.557532i \(0.811748\pi\)
\(930\) 0 0
\(931\) −13.7424 + 13.7424i −0.450388 + 0.450388i
\(932\) 9.96337 + 23.5969i 0.326361 + 0.772942i
\(933\) 0 0
\(934\) −32.5231 + 6.58471i −1.06419 + 0.215458i
\(935\) 4.61569 0.150949
\(936\) 0 0
\(937\) −16.5484 −0.540614 −0.270307 0.962774i \(-0.587125\pi\)
−0.270307 + 0.962774i \(0.587125\pi\)
\(938\) 24.2472 4.90915i 0.791701 0.160289i
\(939\) 0 0
\(940\) 2.11140 0.891499i 0.0688662 0.0290775i
\(941\) 25.9580 25.9580i 0.846207 0.846207i −0.143450 0.989658i \(-0.545820\pi\)
0.989658 + 0.143450i \(0.0458197\pi\)
\(942\) 0 0
\(943\) 11.5313 + 11.5313i 0.375512 + 0.375512i
\(944\) 0.347631 + 25.4669i 0.0113144 + 0.828878i
\(945\) 0 0
\(946\) 9.70620 14.6342i 0.315576 0.475799i
\(947\) 42.7738 42.7738i 1.38996 1.38996i 0.564594 0.825369i \(-0.309033\pi\)
0.825369 0.564594i \(-0.190967\pi\)
\(948\) 0 0
\(949\) 8.32478 + 28.5652i 0.270234 + 0.927266i
\(950\) 15.3650 + 10.1909i 0.498506 + 0.330636i
\(951\) 0 0
\(952\) −3.90012 0.734360i −0.126404 0.0238008i
\(953\) 29.1352i 0.943782i 0.881657 + 0.471891i \(0.156429\pi\)
−0.881657 + 0.471891i \(0.843571\pi\)
\(954\) 0 0
\(955\) −29.4531 29.4531i −0.953081 0.953081i
\(956\) 6.60156 16.2504i 0.213510 0.525575i
\(957\) 0 0
\(958\) −1.61895 + 2.44092i −0.0523059 + 0.0788625i
\(959\) −41.0915 −1.32691
\(960\) 0 0
\(961\) 30.9541i 0.998518i
\(962\) −6.94205 13.2264i −0.223821 0.426437i
\(963\) 0 0
\(964\) 0.158491 0.390140i 0.00510464 0.0125656i
\(965\) 27.9657i 0.900247i
\(966\) 0 0
\(967\) 10.2496 10.2496i 0.329605 0.329605i −0.522831 0.852436i \(-0.675124\pi\)
0.852436 + 0.522831i \(0.175124\pi\)
\(968\) −10.6274 + 7.25946i −0.341578 + 0.233328i
\(969\) 0 0
\(970\) 14.4519 + 71.3808i 0.464023 + 2.29190i
\(971\) 35.4423 1.13740 0.568699 0.822546i \(-0.307447\pi\)
0.568699 + 0.822546i \(0.307447\pi\)
\(972\) 0 0
\(973\) −21.8559 21.8559i −0.700669 0.700669i
\(974\) 41.4512 + 27.4927i 1.32818 + 0.880923i
\(975\) 0 0
\(976\) −20.1485 19.6059i −0.644938 0.627568i
\(977\) −29.5425 29.5425i −0.945148 0.945148i 0.0534239 0.998572i \(-0.482987\pi\)
−0.998572 + 0.0534239i \(0.982987\pi\)
\(978\) 0 0
\(979\) 26.8245i 0.857315i
\(980\) 14.0041 + 5.68902i 0.447344 + 0.181729i
\(981\) 0 0
\(982\) −7.91480 + 1.60245i −0.252571 + 0.0511362i
\(983\) −3.65881 3.65881i −0.116698 0.116698i 0.646346 0.763044i \(-0.276296\pi\)
−0.763044 + 0.646346i \(0.776296\pi\)
\(984\) 0 0
\(985\) 6.92640i 0.220693i
\(986\) 0.314558 + 1.55367i 0.0100176 + 0.0494788i
\(987\) 0 0
\(988\) 37.8519 30.8040i 1.20423 0.980005i
\(989\) 12.9432i 0.411571i
\(990\) 0 0
\(991\) 39.2069i 1.24545i −0.782442 0.622724i \(-0.786026\pi\)
0.782442 0.622724i \(-0.213974\pi\)
\(992\) −1.18504 + 0.256813i −0.0376252 + 0.00815381i
\(993\) 0 0
\(994\) −3.63618 17.9598i −0.115333 0.569650i
\(995\) −7.58716 + 7.58716i −0.240529 + 0.240529i
\(996\) 0 0
\(997\) 9.56104i 0.302801i −0.988472 0.151401i \(-0.951622\pi\)
0.988472 0.151401i \(-0.0483784\pi\)
\(998\) 24.2592 36.5760i 0.767910 1.15779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.k.307.11 yes 48
3.2 odd 2 inner 936.2.w.k.307.14 yes 48
8.3 odd 2 inner 936.2.w.k.307.2 48
13.5 odd 4 inner 936.2.w.k.811.2 yes 48
24.11 even 2 inner 936.2.w.k.307.23 yes 48
39.5 even 4 inner 936.2.w.k.811.23 yes 48
104.83 even 4 inner 936.2.w.k.811.11 yes 48
312.83 odd 4 inner 936.2.w.k.811.14 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.w.k.307.2 48 8.3 odd 2 inner
936.2.w.k.307.11 yes 48 1.1 even 1 trivial
936.2.w.k.307.14 yes 48 3.2 odd 2 inner
936.2.w.k.307.23 yes 48 24.11 even 2 inner
936.2.w.k.811.2 yes 48 13.5 odd 4 inner
936.2.w.k.811.11 yes 48 104.83 even 4 inner
936.2.w.k.811.14 yes 48 312.83 odd 4 inner
936.2.w.k.811.23 yes 48 39.5 even 4 inner