Properties

Label 936.2.s.f.913.1
Level $936$
Weight $2$
Character 936.913
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 913.1
Character \(\chi\) \(=\) 936.913
Dual form 936.2.s.f.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70704 - 0.293265i) q^{3} +(2.01584 - 3.49154i) q^{5} -3.11418 q^{7} +(2.82799 + 1.00123i) q^{9} +(1.33865 - 2.31861i) q^{11} +(-3.21153 - 1.63892i) q^{13} +(-4.46507 + 5.36903i) q^{15} +(3.16121 - 5.47537i) q^{17} +(-2.62008 + 4.53812i) q^{19} +(5.31604 + 0.913280i) q^{21} +3.40618 q^{23} +(-5.62723 - 9.74665i) q^{25} +(-4.53388 - 2.53850i) q^{27} +(-4.30533 + 7.45705i) q^{29} +(2.18835 - 3.79033i) q^{31} +(-2.96510 + 3.56539i) q^{33} +(-6.27770 + 10.8733i) q^{35} +(3.81043 + 6.59986i) q^{37} +(5.00159 + 3.73953i) q^{39} -6.10333 q^{41} -4.85161 q^{43} +(9.19662 - 7.85572i) q^{45} +(-1.83976 - 3.18655i) q^{47} +2.69813 q^{49} +(-7.00205 + 8.41962i) q^{51} -9.70053 q^{53} +(-5.39701 - 9.34790i) q^{55} +(5.80346 - 6.97838i) q^{57} +(-1.17078 - 2.02786i) q^{59} +7.95854 q^{61} +(-8.80688 - 3.11802i) q^{63} +(-12.1963 + 7.90940i) q^{65} -10.0871 q^{67} +(-5.81450 - 0.998913i) q^{69} +(4.55512 - 7.88971i) q^{71} -7.32900 q^{73} +(6.74758 + 18.2882i) q^{75} +(-4.16880 + 7.22057i) q^{77} +(0.0416773 + 0.0721871i) q^{79} +(6.99507 + 5.66295i) q^{81} +(2.29262 + 3.97093i) q^{83} +(-12.7450 - 22.0750i) q^{85} +(9.53628 - 11.4669i) q^{87} +(-3.92221 - 6.79347i) q^{89} +(10.0013 + 5.10388i) q^{91} +(-4.84718 + 5.82849i) q^{93} +(10.5633 + 18.2962i) q^{95} -1.75947 q^{97} +(6.10715 - 5.21671i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70704 0.293265i −0.985562 0.169317i
\(4\) 0 0
\(5\) 2.01584 3.49154i 0.901512 1.56146i 0.0759791 0.997109i \(-0.475792\pi\)
0.825533 0.564355i \(-0.190875\pi\)
\(6\) 0 0
\(7\) −3.11418 −1.17705 −0.588525 0.808479i \(-0.700291\pi\)
−0.588525 + 0.808479i \(0.700291\pi\)
\(8\) 0 0
\(9\) 2.82799 + 1.00123i 0.942664 + 0.333744i
\(10\) 0 0
\(11\) 1.33865 2.31861i 0.403618 0.699087i −0.590541 0.807007i \(-0.701086\pi\)
0.994160 + 0.107920i \(0.0344191\pi\)
\(12\) 0 0
\(13\) −3.21153 1.63892i −0.890719 0.454554i
\(14\) 0 0
\(15\) −4.46507 + 5.36903i −1.15288 + 1.38628i
\(16\) 0 0
\(17\) 3.16121 5.47537i 0.766705 1.32797i −0.172635 0.984986i \(-0.555228\pi\)
0.939340 0.342987i \(-0.111439\pi\)
\(18\) 0 0
\(19\) −2.62008 + 4.53812i −0.601088 + 1.04112i 0.391568 + 0.920149i \(0.371933\pi\)
−0.992657 + 0.120966i \(0.961401\pi\)
\(20\) 0 0
\(21\) 5.31604 + 0.913280i 1.16006 + 0.199294i
\(22\) 0 0
\(23\) 3.40618 0.710238 0.355119 0.934821i \(-0.384440\pi\)
0.355119 + 0.934821i \(0.384440\pi\)
\(24\) 0 0
\(25\) −5.62723 9.74665i −1.12545 1.94933i
\(26\) 0 0
\(27\) −4.53388 2.53850i −0.872545 0.488534i
\(28\) 0 0
\(29\) −4.30533 + 7.45705i −0.799480 + 1.38474i 0.120475 + 0.992716i \(0.461558\pi\)
−0.919955 + 0.392024i \(0.871775\pi\)
\(30\) 0 0
\(31\) 2.18835 3.79033i 0.393039 0.680764i −0.599810 0.800143i \(-0.704757\pi\)
0.992849 + 0.119379i \(0.0380904\pi\)
\(32\) 0 0
\(33\) −2.96510 + 3.56539i −0.516158 + 0.620654i
\(34\) 0 0
\(35\) −6.27770 + 10.8733i −1.06112 + 1.83792i
\(36\) 0 0
\(37\) 3.81043 + 6.59986i 0.626431 + 1.08501i 0.988262 + 0.152767i \(0.0488185\pi\)
−0.361831 + 0.932244i \(0.617848\pi\)
\(38\) 0 0
\(39\) 5.00159 + 3.73953i 0.800895 + 0.598804i
\(40\) 0 0
\(41\) −6.10333 −0.953180 −0.476590 0.879126i \(-0.658127\pi\)
−0.476590 + 0.879126i \(0.658127\pi\)
\(42\) 0 0
\(43\) −4.85161 −0.739863 −0.369932 0.929059i \(-0.620619\pi\)
−0.369932 + 0.929059i \(0.620619\pi\)
\(44\) 0 0
\(45\) 9.19662 7.85572i 1.37095 1.17106i
\(46\) 0 0
\(47\) −1.83976 3.18655i −0.268356 0.464806i 0.700082 0.714063i \(-0.253147\pi\)
−0.968437 + 0.249257i \(0.919814\pi\)
\(48\) 0 0
\(49\) 2.69813 0.385447
\(50\) 0 0
\(51\) −7.00205 + 8.41962i −0.980483 + 1.17898i
\(52\) 0 0
\(53\) −9.70053 −1.33247 −0.666235 0.745742i \(-0.732095\pi\)
−0.666235 + 0.745742i \(0.732095\pi\)
\(54\) 0 0
\(55\) −5.39701 9.34790i −0.727733 1.26047i
\(56\) 0 0
\(57\) 5.80346 6.97838i 0.768688 0.924309i
\(58\) 0 0
\(59\) −1.17078 2.02786i −0.152423 0.264005i 0.779695 0.626160i \(-0.215374\pi\)
−0.932118 + 0.362155i \(0.882041\pi\)
\(60\) 0 0
\(61\) 7.95854 1.01899 0.509493 0.860475i \(-0.329833\pi\)
0.509493 + 0.860475i \(0.329833\pi\)
\(62\) 0 0
\(63\) −8.80688 3.11802i −1.10956 0.392833i
\(64\) 0 0
\(65\) −12.1963 + 7.90940i −1.51276 + 0.981041i
\(66\) 0 0
\(67\) −10.0871 −1.23234 −0.616169 0.787614i \(-0.711316\pi\)
−0.616169 + 0.787614i \(0.711316\pi\)
\(68\) 0 0
\(69\) −5.81450 0.998913i −0.699983 0.120255i
\(70\) 0 0
\(71\) 4.55512 7.88971i 0.540594 0.936336i −0.458276 0.888810i \(-0.651533\pi\)
0.998870 0.0475260i \(-0.0151337\pi\)
\(72\) 0 0
\(73\) −7.32900 −0.857795 −0.428897 0.903353i \(-0.641098\pi\)
−0.428897 + 0.903353i \(0.641098\pi\)
\(74\) 0 0
\(75\) 6.74758 + 18.2882i 0.779143 + 2.11174i
\(76\) 0 0
\(77\) −4.16880 + 7.22057i −0.475079 + 0.822861i
\(78\) 0 0
\(79\) 0.0416773 + 0.0721871i 0.00468906 + 0.00812169i 0.868360 0.495934i \(-0.165174\pi\)
−0.863671 + 0.504055i \(0.831841\pi\)
\(80\) 0 0
\(81\) 6.99507 + 5.66295i 0.777230 + 0.629216i
\(82\) 0 0
\(83\) 2.29262 + 3.97093i 0.251647 + 0.435866i 0.963979 0.265977i \(-0.0856944\pi\)
−0.712332 + 0.701842i \(0.752361\pi\)
\(84\) 0 0
\(85\) −12.7450 22.0750i −1.38239 2.39437i
\(86\) 0 0
\(87\) 9.53628 11.4669i 1.02240 1.22938i
\(88\) 0 0
\(89\) −3.92221 6.79347i −0.415754 0.720106i 0.579754 0.814792i \(-0.303149\pi\)
−0.995507 + 0.0946855i \(0.969815\pi\)
\(90\) 0 0
\(91\) 10.0013 + 5.10388i 1.04842 + 0.535032i
\(92\) 0 0
\(93\) −4.84718 + 5.82849i −0.502629 + 0.604387i
\(94\) 0 0
\(95\) 10.5633 + 18.2962i 1.08378 + 1.87716i
\(96\) 0 0
\(97\) −1.75947 −0.178647 −0.0893236 0.996003i \(-0.528471\pi\)
−0.0893236 + 0.996003i \(0.528471\pi\)
\(98\) 0 0
\(99\) 6.10715 5.21671i 0.613792 0.524299i
\(100\) 0 0
\(101\) 2.32361 4.02462i 0.231208 0.400464i −0.726956 0.686684i \(-0.759065\pi\)
0.958164 + 0.286220i \(0.0923988\pi\)
\(102\) 0 0
\(103\) 4.49995 7.79414i 0.443393 0.767979i −0.554546 0.832153i \(-0.687108\pi\)
0.997939 + 0.0641740i \(0.0204413\pi\)
\(104\) 0 0
\(105\) 13.9051 16.7201i 1.35699 1.63172i
\(106\) 0 0
\(107\) −7.24718 12.5525i −0.700611 1.21349i −0.968252 0.249975i \(-0.919578\pi\)
0.267641 0.963519i \(-0.413756\pi\)
\(108\) 0 0
\(109\) 1.60985 0.154196 0.0770980 0.997024i \(-0.475435\pi\)
0.0770980 + 0.997024i \(0.475435\pi\)
\(110\) 0 0
\(111\) −4.56907 12.3837i −0.433677 1.17541i
\(112\) 0 0
\(113\) 2.64368 + 4.57899i 0.248697 + 0.430756i 0.963164 0.268913i \(-0.0866644\pi\)
−0.714468 + 0.699668i \(0.753331\pi\)
\(114\) 0 0
\(115\) 6.86632 11.8928i 0.640288 1.10901i
\(116\) 0 0
\(117\) −7.44126 7.85033i −0.687944 0.725763i
\(118\) 0 0
\(119\) −9.84457 + 17.0513i −0.902451 + 1.56309i
\(120\) 0 0
\(121\) 1.91603 + 3.31867i 0.174185 + 0.301697i
\(122\) 0 0
\(123\) 10.4186 + 1.78989i 0.939417 + 0.161389i
\(124\) 0 0
\(125\) −25.2160 −2.25539
\(126\) 0 0
\(127\) −1.94770 3.37351i −0.172830 0.299350i 0.766578 0.642151i \(-0.221958\pi\)
−0.939408 + 0.342801i \(0.888624\pi\)
\(128\) 0 0
\(129\) 8.28190 + 1.42281i 0.729181 + 0.125271i
\(130\) 0 0
\(131\) −9.67425 + 16.7563i −0.845244 + 1.46400i 0.0401660 + 0.999193i \(0.487211\pi\)
−0.885410 + 0.464812i \(0.846122\pi\)
\(132\) 0 0
\(133\) 8.15942 14.1325i 0.707511 1.22545i
\(134\) 0 0
\(135\) −18.0028 + 10.7130i −1.54944 + 0.922029i
\(136\) 0 0
\(137\) 13.1888 1.12679 0.563396 0.826187i \(-0.309494\pi\)
0.563396 + 0.826187i \(0.309494\pi\)
\(138\) 0 0
\(139\) 2.97394 + 5.15101i 0.252246 + 0.436903i 0.964144 0.265380i \(-0.0854974\pi\)
−0.711898 + 0.702283i \(0.752164\pi\)
\(140\) 0 0
\(141\) 2.20604 + 5.97911i 0.185782 + 0.503532i
\(142\) 0 0
\(143\) −8.09913 + 5.25236i −0.677283 + 0.439224i
\(144\) 0 0
\(145\) 17.3577 + 30.0645i 1.44148 + 2.49672i
\(146\) 0 0
\(147\) −4.60582 0.791267i −0.379882 0.0652626i
\(148\) 0 0
\(149\) −1.25054 2.16600i −0.102448 0.177446i 0.810244 0.586092i \(-0.199334\pi\)
−0.912693 + 0.408646i \(0.866001\pi\)
\(150\) 0 0
\(151\) −2.26475 3.92266i −0.184303 0.319222i 0.759039 0.651046i \(-0.225669\pi\)
−0.943341 + 0.331824i \(0.892336\pi\)
\(152\) 0 0
\(153\) 14.4220 12.3192i 1.16595 0.995949i
\(154\) 0 0
\(155\) −8.82273 15.2814i −0.708659 1.22743i
\(156\) 0 0
\(157\) 8.74024 15.1385i 0.697547 1.20819i −0.271767 0.962363i \(-0.587608\pi\)
0.969314 0.245824i \(-0.0790586\pi\)
\(158\) 0 0
\(159\) 16.5592 + 2.84482i 1.31323 + 0.225609i
\(160\) 0 0
\(161\) −10.6075 −0.835986
\(162\) 0 0
\(163\) 6.86395 11.8887i 0.537626 0.931196i −0.461405 0.887190i \(-0.652654\pi\)
0.999031 0.0440063i \(-0.0140122\pi\)
\(164\) 0 0
\(165\) 6.47152 + 17.5400i 0.503807 + 1.36549i
\(166\) 0 0
\(167\) 1.93805 0.149971 0.0749854 0.997185i \(-0.476109\pi\)
0.0749854 + 0.997185i \(0.476109\pi\)
\(168\) 0 0
\(169\) 7.62790 + 10.5269i 0.586762 + 0.809760i
\(170\) 0 0
\(171\) −11.9533 + 10.2104i −0.914090 + 0.780812i
\(172\) 0 0
\(173\) 10.7200 0.815030 0.407515 0.913199i \(-0.366395\pi\)
0.407515 + 0.913199i \(0.366395\pi\)
\(174\) 0 0
\(175\) 17.5242 + 30.3528i 1.32471 + 2.29446i
\(176\) 0 0
\(177\) 1.40388 + 3.80499i 0.105522 + 0.286001i
\(178\) 0 0
\(179\) 9.31874 + 16.1405i 0.696516 + 1.20640i 0.969667 + 0.244429i \(0.0786007\pi\)
−0.273151 + 0.961971i \(0.588066\pi\)
\(180\) 0 0
\(181\) 22.1248 1.64453 0.822263 0.569107i \(-0.192711\pi\)
0.822263 + 0.569107i \(0.192711\pi\)
\(182\) 0 0
\(183\) −13.5856 2.33396i −1.00427 0.172531i
\(184\) 0 0
\(185\) 30.7249 2.25894
\(186\) 0 0
\(187\) −8.46350 14.6592i −0.618912 1.07199i
\(188\) 0 0
\(189\) 14.1193 + 7.90534i 1.02703 + 0.575029i
\(190\) 0 0
\(191\) 24.7213 1.78877 0.894384 0.447300i \(-0.147614\pi\)
0.894384 + 0.447300i \(0.147614\pi\)
\(192\) 0 0
\(193\) −17.2791 −1.24378 −0.621890 0.783105i \(-0.713635\pi\)
−0.621890 + 0.783105i \(0.713635\pi\)
\(194\) 0 0
\(195\) 23.1391 9.92495i 1.65703 0.710740i
\(196\) 0 0
\(197\) 2.51491 + 4.35596i 0.179180 + 0.310349i 0.941600 0.336734i \(-0.109322\pi\)
−0.762420 + 0.647083i \(0.775989\pi\)
\(198\) 0 0
\(199\) −1.13337 + 1.96306i −0.0803427 + 0.139158i −0.903397 0.428805i \(-0.858935\pi\)
0.823054 + 0.567962i \(0.192268\pi\)
\(200\) 0 0
\(201\) 17.2192 + 2.95820i 1.21455 + 0.208655i
\(202\) 0 0
\(203\) 13.4076 23.2226i 0.941028 1.62991i
\(204\) 0 0
\(205\) −12.3033 + 21.3100i −0.859303 + 1.48836i
\(206\) 0 0
\(207\) 9.63265 + 3.41038i 0.669516 + 0.237037i
\(208\) 0 0
\(209\) 7.01475 + 12.1499i 0.485220 + 0.840426i
\(210\) 0 0
\(211\) −20.6009 −1.41822 −0.709112 0.705096i \(-0.750904\pi\)
−0.709112 + 0.705096i \(0.750904\pi\)
\(212\) 0 0
\(213\) −10.0896 + 12.1322i −0.691326 + 0.831285i
\(214\) 0 0
\(215\) −9.78007 + 16.9396i −0.666995 + 1.15527i
\(216\) 0 0
\(217\) −6.81492 + 11.8038i −0.462627 + 0.801293i
\(218\) 0 0
\(219\) 12.5109 + 2.14934i 0.845410 + 0.145239i
\(220\) 0 0
\(221\) −19.1260 + 12.4034i −1.28655 + 0.834342i
\(222\) 0 0
\(223\) 12.7270 22.0438i 0.852262 1.47616i −0.0269000 0.999638i \(-0.508564\pi\)
0.879162 0.476523i \(-0.158103\pi\)
\(224\) 0 0
\(225\) −6.15511 33.1976i −0.410341 2.21317i
\(226\) 0 0
\(227\) 3.26081 0.216428 0.108214 0.994128i \(-0.465487\pi\)
0.108214 + 0.994128i \(0.465487\pi\)
\(228\) 0 0
\(229\) 7.97842 13.8190i 0.527229 0.913187i −0.472268 0.881455i \(-0.656564\pi\)
0.999496 0.0317320i \(-0.0101023\pi\)
\(230\) 0 0
\(231\) 9.23386 11.1033i 0.607543 0.730541i
\(232\) 0 0
\(233\) 15.5070 1.01590 0.507950 0.861387i \(-0.330403\pi\)
0.507950 + 0.861387i \(0.330403\pi\)
\(234\) 0 0
\(235\) −14.8346 −0.967704
\(236\) 0 0
\(237\) −0.0499749 0.135449i −0.00324622 0.00879836i
\(238\) 0 0
\(239\) 1.76503 3.05712i 0.114170 0.197748i −0.803278 0.595605i \(-0.796912\pi\)
0.917448 + 0.397856i \(0.130246\pi\)
\(240\) 0 0
\(241\) 2.80620 0.180763 0.0903817 0.995907i \(-0.471191\pi\)
0.0903817 + 0.995907i \(0.471191\pi\)
\(242\) 0 0
\(243\) −10.2801 11.7183i −0.659472 0.751730i
\(244\) 0 0
\(245\) 5.43900 9.42063i 0.347485 0.601862i
\(246\) 0 0
\(247\) 15.8521 10.2802i 1.00864 0.654115i
\(248\) 0 0
\(249\) −2.74906 7.45089i −0.174215 0.472181i
\(250\) 0 0
\(251\) −0.126564 + 0.219215i −0.00798865 + 0.0138367i −0.869992 0.493066i \(-0.835876\pi\)
0.862003 + 0.506902i \(0.169210\pi\)
\(252\) 0 0
\(253\) 4.55968 7.89760i 0.286665 0.496518i
\(254\) 0 0
\(255\) 15.2824 + 41.4206i 0.957023 + 2.59386i
\(256\) 0 0
\(257\) −8.01291 −0.499832 −0.249916 0.968268i \(-0.580403\pi\)
−0.249916 + 0.968268i \(0.580403\pi\)
\(258\) 0 0
\(259\) −11.8664 20.5532i −0.737341 1.27711i
\(260\) 0 0
\(261\) −19.6417 + 16.7779i −1.21579 + 1.03852i
\(262\) 0 0
\(263\) 10.5464 18.2669i 0.650319 1.12638i −0.332727 0.943023i \(-0.607969\pi\)
0.983046 0.183362i \(-0.0586979\pi\)
\(264\) 0 0
\(265\) −19.5547 + 33.8698i −1.20124 + 2.08060i
\(266\) 0 0
\(267\) 4.70310 + 12.7470i 0.287825 + 0.780103i
\(268\) 0 0
\(269\) 2.24959 3.89641i 0.137160 0.237568i −0.789260 0.614059i \(-0.789536\pi\)
0.926421 + 0.376490i \(0.122869\pi\)
\(270\) 0 0
\(271\) −12.3274 21.3517i −0.748836 1.29702i −0.948381 0.317134i \(-0.897280\pi\)
0.199544 0.979889i \(-0.436054\pi\)
\(272\) 0 0
\(273\) −15.5759 11.6456i −0.942694 0.704823i
\(274\) 0 0
\(275\) −30.1316 −1.81700
\(276\) 0 0
\(277\) −3.96954 −0.238507 −0.119253 0.992864i \(-0.538050\pi\)
−0.119253 + 0.992864i \(0.538050\pi\)
\(278\) 0 0
\(279\) 9.98363 8.52798i 0.597704 0.510557i
\(280\) 0 0
\(281\) −12.4046 21.4854i −0.739995 1.28171i −0.952497 0.304548i \(-0.901495\pi\)
0.212502 0.977161i \(-0.431839\pi\)
\(282\) 0 0
\(283\) −14.4319 −0.857890 −0.428945 0.903331i \(-0.641115\pi\)
−0.428945 + 0.903331i \(0.641115\pi\)
\(284\) 0 0
\(285\) −12.6664 34.3303i −0.750295 2.03355i
\(286\) 0 0
\(287\) 19.0069 1.12194
\(288\) 0 0
\(289\) −11.4865 19.8951i −0.675674 1.17030i
\(290\) 0 0
\(291\) 3.00349 + 0.515991i 0.176068 + 0.0302479i
\(292\) 0 0
\(293\) −5.15086 8.92155i −0.300916 0.521203i 0.675427 0.737427i \(-0.263959\pi\)
−0.976344 + 0.216224i \(0.930626\pi\)
\(294\) 0 0
\(295\) −9.44046 −0.549645
\(296\) 0 0
\(297\) −11.9551 + 7.11413i −0.693703 + 0.412804i
\(298\) 0 0
\(299\) −10.9391 5.58245i −0.632623 0.322841i
\(300\) 0 0
\(301\) 15.1088 0.870856
\(302\) 0 0
\(303\) −5.14679 + 6.18876i −0.295675 + 0.355535i
\(304\) 0 0
\(305\) 16.0431 27.7875i 0.918628 1.59111i
\(306\) 0 0
\(307\) 11.8921 0.678721 0.339360 0.940656i \(-0.389789\pi\)
0.339360 + 0.940656i \(0.389789\pi\)
\(308\) 0 0
\(309\) −9.96735 + 11.9853i −0.567023 + 0.681817i
\(310\) 0 0
\(311\) −3.13967 + 5.43806i −0.178034 + 0.308364i −0.941207 0.337830i \(-0.890307\pi\)
0.763173 + 0.646194i \(0.223640\pi\)
\(312\) 0 0
\(313\) −13.9544 24.1697i −0.788749 1.36615i −0.926734 0.375718i \(-0.877396\pi\)
0.137985 0.990434i \(-0.455937\pi\)
\(314\) 0 0
\(315\) −28.6400 + 24.4641i −1.61368 + 1.37840i
\(316\) 0 0
\(317\) −13.7361 23.7916i −0.771495 1.33627i −0.936744 0.350016i \(-0.886176\pi\)
0.165249 0.986252i \(-0.447157\pi\)
\(318\) 0 0
\(319\) 11.5267 + 19.9648i 0.645369 + 1.11781i
\(320\) 0 0
\(321\) 8.69004 + 23.5530i 0.485031 + 1.31460i
\(322\) 0 0
\(323\) 16.5653 + 28.6919i 0.921715 + 1.59646i
\(324\) 0 0
\(325\) 2.09810 + 40.5243i 0.116382 + 2.24788i
\(326\) 0 0
\(327\) −2.74809 0.472113i −0.151970 0.0261079i
\(328\) 0 0
\(329\) 5.72933 + 9.92350i 0.315868 + 0.547100i
\(330\) 0 0
\(331\) −4.02814 −0.221407 −0.110703 0.993853i \(-0.535310\pi\)
−0.110703 + 0.993853i \(0.535310\pi\)
\(332\) 0 0
\(333\) 4.16788 + 22.4795i 0.228399 + 1.23187i
\(334\) 0 0
\(335\) −20.3341 + 35.2196i −1.11097 + 1.92425i
\(336\) 0 0
\(337\) −11.8750 + 20.5680i −0.646870 + 1.12041i 0.336996 + 0.941506i \(0.390589\pi\)
−0.983866 + 0.178906i \(0.942744\pi\)
\(338\) 0 0
\(339\) −3.17002 8.59184i −0.172172 0.466645i
\(340\) 0 0
\(341\) −5.85887 10.1479i −0.317275 0.549537i
\(342\) 0 0
\(343\) 13.3968 0.723360
\(344\) 0 0
\(345\) −15.2088 + 18.2879i −0.818817 + 0.984587i
\(346\) 0 0
\(347\) −18.4488 31.9543i −0.990384 1.71540i −0.615001 0.788526i \(-0.710845\pi\)
−0.375383 0.926870i \(-0.622489\pi\)
\(348\) 0 0
\(349\) −1.92956 + 3.34209i −0.103287 + 0.178898i −0.913037 0.407877i \(-0.866269\pi\)
0.809750 + 0.586775i \(0.199603\pi\)
\(350\) 0 0
\(351\) 10.4003 + 15.5831i 0.555128 + 0.831765i
\(352\) 0 0
\(353\) 8.14814 14.1130i 0.433682 0.751159i −0.563505 0.826113i \(-0.690548\pi\)
0.997187 + 0.0749536i \(0.0238809\pi\)
\(354\) 0 0
\(355\) −18.3648 31.8088i −0.974703 1.68824i
\(356\) 0 0
\(357\) 21.8057 26.2202i 1.15408 1.38772i
\(358\) 0 0
\(359\) 11.0745 0.584492 0.292246 0.956343i \(-0.405597\pi\)
0.292246 + 0.956343i \(0.405597\pi\)
\(360\) 0 0
\(361\) −4.22967 7.32600i −0.222614 0.385579i
\(362\) 0 0
\(363\) −2.29750 6.22701i −0.120588 0.326833i
\(364\) 0 0
\(365\) −14.7741 + 25.5895i −0.773312 + 1.33942i
\(366\) 0 0
\(367\) 8.99975 15.5880i 0.469783 0.813688i −0.529620 0.848235i \(-0.677666\pi\)
0.999403 + 0.0345470i \(0.0109988\pi\)
\(368\) 0 0
\(369\) −17.2602 6.11084i −0.898528 0.318118i
\(370\) 0 0
\(371\) 30.2092 1.56838
\(372\) 0 0
\(373\) 10.7942 + 18.6961i 0.558901 + 0.968045i 0.997589 + 0.0694055i \(0.0221102\pi\)
−0.438687 + 0.898640i \(0.644556\pi\)
\(374\) 0 0
\(375\) 43.0448 + 7.39497i 2.22282 + 0.381875i
\(376\) 0 0
\(377\) 26.0482 16.8925i 1.34155 0.870008i
\(378\) 0 0
\(379\) 1.10605 + 1.91573i 0.0568139 + 0.0984046i 0.893034 0.449990i \(-0.148572\pi\)
−0.836220 + 0.548395i \(0.815239\pi\)
\(380\) 0 0
\(381\) 2.33547 + 6.32991i 0.119650 + 0.324291i
\(382\) 0 0
\(383\) −4.62064 8.00318i −0.236104 0.408943i 0.723489 0.690336i \(-0.242537\pi\)
−0.959593 + 0.281392i \(0.909204\pi\)
\(384\) 0 0
\(385\) 16.8073 + 29.1111i 0.856578 + 1.48364i
\(386\) 0 0
\(387\) −13.7203 4.85758i −0.697442 0.246925i
\(388\) 0 0
\(389\) 8.88767 + 15.3939i 0.450623 + 0.780501i 0.998425 0.0561066i \(-0.0178687\pi\)
−0.547802 + 0.836608i \(0.684535\pi\)
\(390\) 0 0
\(391\) 10.7676 18.6501i 0.544543 0.943177i
\(392\) 0 0
\(393\) 21.4284 25.7666i 1.08092 1.29975i
\(394\) 0 0
\(395\) 0.336059 0.0169090
\(396\) 0 0
\(397\) 4.13275 7.15813i 0.207417 0.359256i −0.743483 0.668754i \(-0.766828\pi\)
0.950900 + 0.309498i \(0.100161\pi\)
\(398\) 0 0
\(399\) −18.0730 + 21.7320i −0.904784 + 1.08796i
\(400\) 0 0
\(401\) −18.2970 −0.913709 −0.456854 0.889541i \(-0.651024\pi\)
−0.456854 + 0.889541i \(0.651024\pi\)
\(402\) 0 0
\(403\) −13.2400 + 8.58626i −0.659531 + 0.427712i
\(404\) 0 0
\(405\) 33.8734 13.0080i 1.68318 0.646371i
\(406\) 0 0
\(407\) 20.4033 1.01136
\(408\) 0 0
\(409\) 3.25773 + 5.64255i 0.161084 + 0.279006i 0.935258 0.353967i \(-0.115168\pi\)
−0.774174 + 0.632973i \(0.781834\pi\)
\(410\) 0 0
\(411\) −22.5138 3.86780i −1.11052 0.190785i
\(412\) 0 0
\(413\) 3.64604 + 6.31512i 0.179410 + 0.310747i
\(414\) 0 0
\(415\) 18.4862 0.907452
\(416\) 0 0
\(417\) −3.56603 9.66515i −0.174629 0.473304i
\(418\) 0 0
\(419\) 24.8811 1.21552 0.607761 0.794120i \(-0.292068\pi\)
0.607761 + 0.794120i \(0.292068\pi\)
\(420\) 0 0
\(421\) −19.1169 33.1115i −0.931703 1.61376i −0.780411 0.625267i \(-0.784990\pi\)
−0.151292 0.988489i \(-0.548343\pi\)
\(422\) 0 0
\(423\) −2.01234 10.8536i −0.0978433 0.527718i
\(424\) 0 0
\(425\) −71.1554 −3.45154
\(426\) 0 0
\(427\) −24.7843 −1.19940
\(428\) 0 0
\(429\) 15.3659 6.59081i 0.741872 0.318207i
\(430\) 0 0
\(431\) 8.42332 + 14.5896i 0.405737 + 0.702757i 0.994407 0.105616i \(-0.0336816\pi\)
−0.588670 + 0.808373i \(0.700348\pi\)
\(432\) 0 0
\(433\) −17.7816 + 30.7987i −0.854531 + 1.48009i 0.0225475 + 0.999746i \(0.492822\pi\)
−0.877079 + 0.480346i \(0.840511\pi\)
\(434\) 0 0
\(435\) −20.8135 56.4118i −0.997933 2.70474i
\(436\) 0 0
\(437\) −8.92448 + 15.4576i −0.426916 + 0.739440i
\(438\) 0 0
\(439\) −2.26399 + 3.92135i −0.108054 + 0.187156i −0.914982 0.403495i \(-0.867795\pi\)
0.806928 + 0.590650i \(0.201129\pi\)
\(440\) 0 0
\(441\) 7.63029 + 2.70145i 0.363347 + 0.128641i
\(442\) 0 0
\(443\) 14.0231 + 24.2888i 0.666259 + 1.15399i 0.978942 + 0.204137i \(0.0654388\pi\)
−0.312683 + 0.949857i \(0.601228\pi\)
\(444\) 0 0
\(445\) −31.6262 −1.49923
\(446\) 0 0
\(447\) 1.49952 + 4.06420i 0.0709248 + 0.192230i
\(448\) 0 0
\(449\) −14.7395 + 25.5295i −0.695599 + 1.20481i 0.274380 + 0.961621i \(0.411527\pi\)
−0.969978 + 0.243191i \(0.921806\pi\)
\(450\) 0 0
\(451\) −8.17022 + 14.1512i −0.384721 + 0.666356i
\(452\) 0 0
\(453\) 2.71565 + 7.36032i 0.127592 + 0.345818i
\(454\) 0 0
\(455\) 37.9815 24.6313i 1.78060 1.15473i
\(456\) 0 0
\(457\) 6.14688 10.6467i 0.287539 0.498032i −0.685683 0.727901i \(-0.740496\pi\)
0.973222 + 0.229868i \(0.0738296\pi\)
\(458\) 0 0
\(459\) −28.2317 + 16.8000i −1.31774 + 0.784155i
\(460\) 0 0
\(461\) −24.7245 −1.15154 −0.575768 0.817613i \(-0.695297\pi\)
−0.575768 + 0.817613i \(0.695297\pi\)
\(462\) 0 0
\(463\) −16.7335 + 28.9832i −0.777670 + 1.34696i 0.155611 + 0.987818i \(0.450265\pi\)
−0.933281 + 0.359146i \(0.883068\pi\)
\(464\) 0 0
\(465\) 10.5793 + 28.6734i 0.490602 + 1.32970i
\(466\) 0 0
\(467\) 0.115149 0.00532846 0.00266423 0.999996i \(-0.499152\pi\)
0.00266423 + 0.999996i \(0.499152\pi\)
\(468\) 0 0
\(469\) 31.4132 1.45052
\(470\) 0 0
\(471\) −19.3596 + 23.2789i −0.892042 + 1.07264i
\(472\) 0 0
\(473\) −6.49460 + 11.2490i −0.298622 + 0.517229i
\(474\) 0 0
\(475\) 58.9753 2.70597
\(476\) 0 0
\(477\) −27.4330 9.71247i −1.25607 0.444704i
\(478\) 0 0
\(479\) 21.4193 37.0993i 0.978672 1.69511i 0.311431 0.950269i \(-0.399192\pi\)
0.667241 0.744842i \(-0.267475\pi\)
\(480\) 0 0
\(481\) −1.42071 27.4407i −0.0647788 1.25119i
\(482\) 0 0
\(483\) 18.1074 + 3.11080i 0.823915 + 0.141546i
\(484\) 0 0
\(485\) −3.54681 + 6.14326i −0.161053 + 0.278951i
\(486\) 0 0
\(487\) −1.61647 + 2.79981i −0.0732493 + 0.126872i −0.900324 0.435221i \(-0.856670\pi\)
0.827074 + 0.562093i \(0.190004\pi\)
\(488\) 0 0
\(489\) −15.2036 + 18.2816i −0.687531 + 0.826722i
\(490\) 0 0
\(491\) 21.6296 0.976130 0.488065 0.872807i \(-0.337703\pi\)
0.488065 + 0.872807i \(0.337703\pi\)
\(492\) 0 0
\(493\) 27.2201 + 47.1466i 1.22593 + 2.12338i
\(494\) 0 0
\(495\) −5.90329 31.8394i −0.265333 1.43108i
\(496\) 0 0
\(497\) −14.1855 + 24.5700i −0.636306 + 1.10211i
\(498\) 0 0
\(499\) −5.03855 + 8.72702i −0.225556 + 0.390675i −0.956486 0.291777i \(-0.905753\pi\)
0.730930 + 0.682453i \(0.239087\pi\)
\(500\) 0 0
\(501\) −3.30833 0.568362i −0.147805 0.0253925i
\(502\) 0 0
\(503\) −7.24603 + 12.5505i −0.323084 + 0.559598i −0.981123 0.193386i \(-0.938053\pi\)
0.658038 + 0.752984i \(0.271386\pi\)
\(504\) 0 0
\(505\) −9.36807 16.2260i −0.416874 0.722047i
\(506\) 0 0
\(507\) −9.93400 20.2068i −0.441184 0.897416i
\(508\) 0 0
\(509\) −4.28051 −0.189730 −0.0948650 0.995490i \(-0.530242\pi\)
−0.0948650 + 0.995490i \(0.530242\pi\)
\(510\) 0 0
\(511\) 22.8239 1.00967
\(512\) 0 0
\(513\) 23.3991 13.9242i 1.03310 0.614768i
\(514\) 0 0
\(515\) −18.1424 31.4235i −0.799448 1.38468i
\(516\) 0 0
\(517\) −9.85115 −0.433253
\(518\) 0 0
\(519\) −18.2996 3.14381i −0.803262 0.137998i
\(520\) 0 0
\(521\) 3.36236 0.147307 0.0736537 0.997284i \(-0.476534\pi\)
0.0736537 + 0.997284i \(0.476534\pi\)
\(522\) 0 0
\(523\) 6.02690 + 10.4389i 0.263538 + 0.456461i 0.967180 0.254094i \(-0.0817772\pi\)
−0.703641 + 0.710555i \(0.748444\pi\)
\(524\) 0 0
\(525\) −21.0132 56.9529i −0.917090 2.48563i
\(526\) 0 0
\(527\) −13.8356 23.9640i −0.602690 1.04389i
\(528\) 0 0
\(529\) −11.3979 −0.495562
\(530\) 0 0
\(531\) −1.28061 6.90699i −0.0555739 0.299738i
\(532\) 0 0
\(533\) 19.6010 + 10.0028i 0.849016 + 0.433271i
\(534\) 0 0
\(535\) −58.4366 −2.52644
\(536\) 0 0
\(537\) −11.1740 30.2855i −0.482196 1.30691i
\(538\) 0 0
\(539\) 3.61185 6.25591i 0.155573 0.269461i
\(540\) 0 0
\(541\) 2.77390 0.119259 0.0596296 0.998221i \(-0.481008\pi\)
0.0596296 + 0.998221i \(0.481008\pi\)
\(542\) 0 0
\(543\) −37.7681 6.48844i −1.62078 0.278446i
\(544\) 0 0
\(545\) 3.24521 5.62087i 0.139009 0.240771i
\(546\) 0 0
\(547\) 5.30305 + 9.18515i 0.226742 + 0.392729i 0.956841 0.290613i \(-0.0938593\pi\)
−0.730099 + 0.683342i \(0.760526\pi\)
\(548\) 0 0
\(549\) 22.5067 + 7.96834i 0.960562 + 0.340080i
\(550\) 0 0
\(551\) −22.5607 39.0762i −0.961116 1.66470i
\(552\) 0 0
\(553\) −0.129791 0.224804i −0.00551926 0.00955963i
\(554\) 0 0
\(555\) −52.4488 9.01054i −2.22633 0.382476i
\(556\) 0 0
\(557\) −3.46387 5.99960i −0.146769 0.254211i 0.783263 0.621691i \(-0.213554\pi\)
−0.930031 + 0.367480i \(0.880221\pi\)
\(558\) 0 0
\(559\) 15.5811 + 7.95138i 0.659010 + 0.336307i
\(560\) 0 0
\(561\) 10.1485 + 27.5059i 0.428471 + 1.16130i
\(562\) 0 0
\(563\) −15.4524 26.7643i −0.651239 1.12798i −0.982822 0.184554i \(-0.940916\pi\)
0.331583 0.943426i \(-0.392417\pi\)
\(564\) 0 0
\(565\) 21.3170 0.896812
\(566\) 0 0
\(567\) −21.7839 17.6354i −0.914839 0.740619i
\(568\) 0 0
\(569\) 0.268944 0.465824i 0.0112747 0.0195284i −0.860333 0.509732i \(-0.829744\pi\)
0.871608 + 0.490204i \(0.163078\pi\)
\(570\) 0 0
\(571\) 23.3527 40.4481i 0.977281 1.69270i 0.305089 0.952324i \(-0.401314\pi\)
0.672192 0.740377i \(-0.265353\pi\)
\(572\) 0 0
\(573\) −42.2003 7.24988i −1.76294 0.302868i
\(574\) 0 0
\(575\) −19.1674 33.1989i −0.799335 1.38449i
\(576\) 0 0
\(577\) 16.0641 0.668757 0.334378 0.942439i \(-0.391474\pi\)
0.334378 + 0.942439i \(0.391474\pi\)
\(578\) 0 0
\(579\) 29.4962 + 5.06736i 1.22582 + 0.210592i
\(580\) 0 0
\(581\) −7.13962 12.3662i −0.296201 0.513036i
\(582\) 0 0
\(583\) −12.9856 + 22.4917i −0.537809 + 0.931512i
\(584\) 0 0
\(585\) −42.4101 + 10.1564i −1.75344 + 0.419916i
\(586\) 0 0
\(587\) −5.24071 + 9.07718i −0.216307 + 0.374655i −0.953676 0.300835i \(-0.902735\pi\)
0.737369 + 0.675490i \(0.236068\pi\)
\(588\) 0 0
\(589\) 11.4673 + 19.8620i 0.472502 + 0.818398i
\(590\) 0 0
\(591\) −3.01561 8.17334i −0.124046 0.336206i
\(592\) 0 0
\(593\) 8.47081 0.347855 0.173927 0.984759i \(-0.444354\pi\)
0.173927 + 0.984759i \(0.444354\pi\)
\(594\) 0 0
\(595\) 39.6902 + 68.7454i 1.62714 + 2.81829i
\(596\) 0 0
\(597\) 2.51041 3.01865i 0.102744 0.123545i
\(598\) 0 0
\(599\) −15.4513 + 26.7624i −0.631322 + 1.09348i 0.355959 + 0.934501i \(0.384154\pi\)
−0.987282 + 0.158981i \(0.949179\pi\)
\(600\) 0 0
\(601\) 7.50016 12.9907i 0.305938 0.529900i −0.671532 0.740976i \(-0.734363\pi\)
0.977470 + 0.211076i \(0.0676966\pi\)
\(602\) 0 0
\(603\) −28.5263 10.0996i −1.16168 0.411285i
\(604\) 0 0
\(605\) 15.4497 0.628119
\(606\) 0 0
\(607\) −10.5692 18.3063i −0.428989 0.743031i 0.567795 0.823170i \(-0.307797\pi\)
−0.996784 + 0.0801395i \(0.974463\pi\)
\(608\) 0 0
\(609\) −29.6977 + 35.7100i −1.20341 + 1.44704i
\(610\) 0 0
\(611\) 0.685948 + 13.2489i 0.0277505 + 0.535994i
\(612\) 0 0
\(613\) 3.93979 + 6.82392i 0.159127 + 0.275615i 0.934554 0.355821i \(-0.115799\pi\)
−0.775427 + 0.631437i \(0.782466\pi\)
\(614\) 0 0
\(615\) 27.2518 32.7690i 1.09890 1.32137i
\(616\) 0 0
\(617\) −10.6252 18.4034i −0.427755 0.740894i 0.568918 0.822394i \(-0.307362\pi\)
−0.996673 + 0.0815006i \(0.974029\pi\)
\(618\) 0 0
\(619\) −12.1361 21.0204i −0.487792 0.844881i 0.512109 0.858920i \(-0.328864\pi\)
−0.999901 + 0.0140395i \(0.995531\pi\)
\(620\) 0 0
\(621\) −15.4432 8.64658i −0.619715 0.346975i
\(622\) 0 0
\(623\) 12.2145 + 21.1561i 0.489363 + 0.847601i
\(624\) 0 0
\(625\) −22.6953 + 39.3095i −0.907813 + 1.57238i
\(626\) 0 0
\(627\) −8.41134 22.7976i −0.335916 0.910448i
\(628\) 0 0
\(629\) 48.1823 1.92115
\(630\) 0 0
\(631\) 7.65676 13.2619i 0.304811 0.527948i −0.672408 0.740180i \(-0.734740\pi\)
0.977219 + 0.212232i \(0.0680734\pi\)
\(632\) 0 0
\(633\) 35.1666 + 6.04151i 1.39775 + 0.240129i
\(634\) 0 0
\(635\) −15.7050 −0.623233
\(636\) 0 0
\(637\) −8.66514 4.42201i −0.343325 0.175206i
\(638\) 0 0
\(639\) 20.7813 17.7513i 0.822094 0.702230i
\(640\) 0 0
\(641\) 0.532633 0.0210377 0.0105189 0.999945i \(-0.496652\pi\)
0.0105189 + 0.999945i \(0.496652\pi\)
\(642\) 0 0
\(643\) 9.88249 + 17.1170i 0.389727 + 0.675028i 0.992413 0.122951i \(-0.0392359\pi\)
−0.602685 + 0.797979i \(0.705903\pi\)
\(644\) 0 0
\(645\) 21.6628 26.0484i 0.852971 1.02566i
\(646\) 0 0
\(647\) 8.96131 + 15.5214i 0.352305 + 0.610211i 0.986653 0.162837i \(-0.0520645\pi\)
−0.634348 + 0.773048i \(0.718731\pi\)
\(648\) 0 0
\(649\) −6.26908 −0.246083
\(650\) 0 0
\(651\) 15.0950 18.1510i 0.591619 0.711393i
\(652\) 0 0
\(653\) −2.23891 −0.0876154 −0.0438077 0.999040i \(-0.513949\pi\)
−0.0438077 + 0.999040i \(0.513949\pi\)
\(654\) 0 0
\(655\) 39.0035 + 67.5561i 1.52399 + 2.63963i
\(656\) 0 0
\(657\) −20.7264 7.33803i −0.808612 0.286284i
\(658\) 0 0
\(659\) −5.11419 −0.199221 −0.0996103 0.995027i \(-0.531760\pi\)
−0.0996103 + 0.995027i \(0.531760\pi\)
\(660\) 0 0
\(661\) 2.17918 0.0847602 0.0423801 0.999102i \(-0.486506\pi\)
0.0423801 + 0.999102i \(0.486506\pi\)
\(662\) 0 0
\(663\) 36.2864 15.5641i 1.40925 0.604461i
\(664\) 0 0
\(665\) −32.8962 56.9778i −1.27566 2.20951i
\(666\) 0 0
\(667\) −14.6647 + 25.4001i −0.567821 + 0.983495i
\(668\) 0 0
\(669\) −28.1902 + 33.8973i −1.08990 + 1.31055i
\(670\) 0 0
\(671\) 10.6537 18.4527i 0.411281 0.712360i
\(672\) 0 0
\(673\) −1.19195 + 2.06451i −0.0459462 + 0.0795811i −0.888084 0.459681i \(-0.847964\pi\)
0.842138 + 0.539263i \(0.181297\pi\)
\(674\) 0 0
\(675\) 0.771346 + 58.4748i 0.0296891 + 2.25070i
\(676\) 0 0
\(677\) 12.4674 + 21.5942i 0.479162 + 0.829933i 0.999714 0.0238965i \(-0.00760722\pi\)
−0.520552 + 0.853830i \(0.674274\pi\)
\(678\) 0 0
\(679\) 5.47931 0.210277
\(680\) 0 0
\(681\) −5.56635 0.956281i −0.213303 0.0366448i
\(682\) 0 0
\(683\) 1.09921 1.90389i 0.0420601 0.0728503i −0.844229 0.535983i \(-0.819941\pi\)
0.886289 + 0.463132i \(0.153275\pi\)
\(684\) 0 0
\(685\) 26.5865 46.0491i 1.01582 1.75945i
\(686\) 0 0
\(687\) −17.6721 + 21.2499i −0.674234 + 0.810734i
\(688\) 0 0
\(689\) 31.1536 + 15.8984i 1.18686 + 0.605679i
\(690\) 0 0
\(691\) 13.0162 22.5448i 0.495160 0.857643i −0.504824 0.863222i \(-0.668443\pi\)
0.999984 + 0.00557936i \(0.00177597\pi\)
\(692\) 0 0
\(693\) −19.0188 + 16.2458i −0.722464 + 0.617126i
\(694\) 0 0
\(695\) 23.9799 0.909611
\(696\) 0 0
\(697\) −19.2939 + 33.4180i −0.730808 + 1.26580i
\(698\) 0 0
\(699\) −26.4712 4.54767i −1.00123 0.172009i
\(700\) 0 0
\(701\) 25.1052 0.948212 0.474106 0.880468i \(-0.342771\pi\)
0.474106 + 0.880468i \(0.342771\pi\)
\(702\) 0 0
\(703\) −39.9346 −1.50616
\(704\) 0 0
\(705\) 25.3233 + 4.35047i 0.953732 + 0.163848i
\(706\) 0 0
\(707\) −7.23616 + 12.5334i −0.272144 + 0.471367i
\(708\) 0 0
\(709\) −15.9224 −0.597977 −0.298988 0.954257i \(-0.596649\pi\)
−0.298988 + 0.954257i \(0.596649\pi\)
\(710\) 0 0
\(711\) 0.0455869 + 0.245873i 0.00170964 + 0.00922097i
\(712\) 0 0
\(713\) 7.45391 12.9106i 0.279151 0.483504i
\(714\) 0 0
\(715\) 2.01226 + 38.8663i 0.0752543 + 1.45352i
\(716\) 0 0
\(717\) −3.90952 + 4.70101i −0.146004 + 0.175562i
\(718\) 0 0
\(719\) 7.81560 13.5370i 0.291473 0.504845i −0.682686 0.730712i \(-0.739188\pi\)
0.974158 + 0.225867i \(0.0725214\pi\)
\(720\) 0 0
\(721\) −14.0137 + 24.2724i −0.521896 + 0.903950i
\(722\) 0 0
\(723\) −4.79031 0.822960i −0.178153 0.0306062i
\(724\) 0 0
\(725\) 96.9084 3.59909
\(726\) 0 0
\(727\) 13.9681 + 24.1935i 0.518049 + 0.897288i 0.999780 + 0.0209685i \(0.00667497\pi\)
−0.481731 + 0.876319i \(0.659992\pi\)
\(728\) 0 0
\(729\) 14.1121 + 23.0185i 0.522670 + 0.852535i
\(730\) 0 0
\(731\) −15.3369 + 26.5643i −0.567257 + 0.982518i
\(732\) 0 0
\(733\) 13.5016 23.3855i 0.498693 0.863762i −0.501306 0.865270i \(-0.667147\pi\)
0.999999 + 0.00150851i \(0.000480173\pi\)
\(734\) 0 0
\(735\) −12.0473 + 14.4863i −0.444373 + 0.534337i
\(736\) 0 0
\(737\) −13.5031 + 23.3881i −0.497394 + 0.861512i
\(738\) 0 0
\(739\) −4.92983 8.53872i −0.181347 0.314102i 0.760993 0.648760i \(-0.224712\pi\)
−0.942339 + 0.334659i \(0.891379\pi\)
\(740\) 0 0
\(741\) −30.0750 + 12.8999i −1.10483 + 0.473890i
\(742\) 0 0
\(743\) 36.6703 1.34530 0.672652 0.739959i \(-0.265155\pi\)
0.672652 + 0.739959i \(0.265155\pi\)
\(744\) 0 0
\(745\) −10.0836 −0.369434
\(746\) 0 0
\(747\) 2.50768 + 13.5252i 0.0917513 + 0.494861i
\(748\) 0 0
\(749\) 22.5690 + 39.0907i 0.824654 + 1.42834i
\(750\) 0 0
\(751\) 11.2712 0.411293 0.205647 0.978626i \(-0.434070\pi\)
0.205647 + 0.978626i \(0.434070\pi\)
\(752\) 0 0
\(753\) 0.280338 0.337093i 0.0102161 0.0122844i
\(754\) 0 0
\(755\) −18.2615 −0.664604
\(756\) 0 0
\(757\) −20.5518 35.5968i −0.746970 1.29379i −0.949269 0.314466i \(-0.898175\pi\)
0.202299 0.979324i \(-0.435159\pi\)
\(758\) 0 0
\(759\) −10.0997 + 12.1444i −0.366595 + 0.440812i
\(760\) 0 0
\(761\) −17.1418 29.6905i −0.621390 1.07628i −0.989227 0.146389i \(-0.953235\pi\)
0.367837 0.929890i \(-0.380098\pi\)
\(762\) 0 0
\(763\) −5.01338 −0.181496
\(764\) 0 0
\(765\) −13.9406 75.1885i −0.504022 2.71845i
\(766\) 0 0
\(767\) 0.436524 + 8.43136i 0.0157620 + 0.304439i
\(768\) 0 0
\(769\) 45.6640 1.64669 0.823344 0.567543i \(-0.192106\pi\)
0.823344 + 0.567543i \(0.192106\pi\)
\(770\) 0 0
\(771\) 13.6784 + 2.34991i 0.492615 + 0.0846298i
\(772\) 0 0
\(773\) −8.02739 + 13.9038i −0.288725 + 0.500087i −0.973506 0.228663i \(-0.926565\pi\)
0.684781 + 0.728749i \(0.259898\pi\)
\(774\) 0 0
\(775\) −49.2574 −1.76938
\(776\) 0 0
\(777\) 14.2289 + 38.5652i 0.510459 + 1.38352i
\(778\) 0 0
\(779\) 15.9912 27.6976i 0.572945 0.992370i
\(780\) 0 0
\(781\) −12.1954 21.1231i −0.436387 0.755844i
\(782\) 0 0
\(783\) 38.4495 22.8803i 1.37407 0.817675i
\(784\) 0 0
\(785\) −35.2379 61.0338i −1.25769 2.17839i
\(786\) 0 0
\(787\) −0.903838 1.56549i −0.0322183 0.0558038i 0.849467 0.527642i \(-0.176924\pi\)
−0.881685 + 0.471839i \(0.843591\pi\)
\(788\) 0 0
\(789\) −23.3602 + 28.0895i −0.831645 + 1.00001i
\(790\) 0 0
\(791\) −8.23291 14.2598i −0.292729 0.507021i
\(792\) 0 0
\(793\) −25.5591 13.0434i −0.907631 0.463184i
\(794\) 0 0
\(795\) 43.3136 52.0824i 1.53617 1.84717i
\(796\) 0 0
\(797\) 10.9121 + 18.9003i 0.386526 + 0.669482i 0.991980 0.126398i \(-0.0403417\pi\)
−0.605454 + 0.795880i \(0.707008\pi\)
\(798\) 0 0
\(799\) −23.2634 −0.823000
\(800\) 0 0
\(801\) −4.29015 23.1389i −0.151585 0.817573i
\(802\) 0 0
\(803\) −9.81097 + 16.9931i −0.346222 + 0.599673i
\(804\) 0 0
\(805\) −21.3830 + 37.0364i −0.753651 + 1.30536i
\(806\) 0 0
\(807\) −4.98283 + 5.99161i −0.175404 + 0.210915i
\(808\) 0 0
\(809\) −9.25389 16.0282i −0.325349 0.563522i 0.656234 0.754558i \(-0.272149\pi\)
−0.981583 + 0.191036i \(0.938815\pi\)
\(810\) 0 0
\(811\) −8.50964 −0.298814 −0.149407 0.988776i \(-0.547736\pi\)
−0.149407 + 0.988776i \(0.547736\pi\)
\(812\) 0 0
\(813\) 14.7817 + 40.0634i 0.518417 + 1.40509i
\(814\) 0 0
\(815\) −27.6733 47.9315i −0.969353 1.67897i
\(816\) 0 0
\(817\) 12.7116 22.0172i 0.444723 0.770283i
\(818\) 0 0
\(819\) 23.1734 + 24.4474i 0.809745 + 0.854260i
\(820\) 0 0
\(821\) −23.3962 + 40.5234i −0.816534 + 1.41428i 0.0916880 + 0.995788i \(0.470774\pi\)
−0.908222 + 0.418490i \(0.862560\pi\)
\(822\) 0 0
\(823\) −21.3354 36.9541i −0.743707 1.28814i −0.950797 0.309816i \(-0.899733\pi\)
0.207090 0.978322i \(-0.433601\pi\)
\(824\) 0 0
\(825\) 51.4359 + 8.83653i 1.79077 + 0.307649i
\(826\) 0 0
\(827\) 38.6497 1.34398 0.671991 0.740560i \(-0.265440\pi\)
0.671991 + 0.740560i \(0.265440\pi\)
\(828\) 0 0
\(829\) 3.50070 + 6.06339i 0.121584 + 0.210590i 0.920393 0.390995i \(-0.127869\pi\)
−0.798808 + 0.601586i \(0.794536\pi\)
\(830\) 0 0
\(831\) 6.77618 + 1.16413i 0.235063 + 0.0403831i
\(832\) 0 0
\(833\) 8.52935 14.7733i 0.295524 0.511863i
\(834\) 0 0
\(835\) 3.90680 6.76678i 0.135200 0.234174i
\(836\) 0 0
\(837\) −19.5434 + 11.6298i −0.675520 + 0.401984i
\(838\) 0 0
\(839\) 20.0669 0.692786 0.346393 0.938089i \(-0.387406\pi\)
0.346393 + 0.938089i \(0.387406\pi\)
\(840\) 0 0
\(841\) −22.5718 39.0954i −0.778337 1.34812i
\(842\) 0 0
\(843\) 14.8742 + 40.3142i 0.512296 + 1.38850i
\(844\) 0 0
\(845\) 52.1316 5.41262i 1.79338 0.186200i
\(846\) 0 0
\(847\) −5.96688 10.3349i −0.205024 0.355113i
\(848\) 0 0
\(849\) 24.6360 + 4.23238i 0.845504 + 0.145255i
\(850\) 0 0
\(851\) 12.9790 + 22.4803i 0.444915 + 0.770616i
\(852\) 0 0
\(853\) 0.00947654 + 0.0164138i 0.000324471 + 0.000561999i 0.866188 0.499719i \(-0.166563\pi\)
−0.865863 + 0.500281i \(0.833230\pi\)
\(854\) 0 0
\(855\) 11.5543 + 62.3180i 0.395148 + 2.13123i
\(856\) 0 0
\(857\) 7.52291 + 13.0301i 0.256978 + 0.445099i 0.965431 0.260659i \(-0.0839400\pi\)
−0.708453 + 0.705758i \(0.750607\pi\)
\(858\) 0 0
\(859\) −23.5351 + 40.7639i −0.803006 + 1.39085i 0.114624 + 0.993409i \(0.463434\pi\)
−0.917629 + 0.397438i \(0.869900\pi\)
\(860\) 0 0
\(861\) −32.4455 5.57405i −1.10574 0.189963i
\(862\) 0 0
\(863\) −14.8794 −0.506501 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(864\) 0 0
\(865\) 21.6099 37.4295i 0.734759 1.27264i
\(866\) 0 0
\(867\) 13.7733 + 37.3304i 0.467767 + 1.26781i
\(868\) 0 0
\(869\) 0.223165 0.00757036
\(870\) 0 0
\(871\) 32.3952 + 16.5320i 1.09767 + 0.560164i
\(872\) 0 0
\(873\) −4.97577 1.76164i −0.168404 0.0596224i
\(874\) 0 0
\(875\) 78.5273 2.65471
\(876\) 0 0
\(877\) −13.9902 24.2317i −0.472414 0.818245i 0.527088 0.849811i \(-0.323284\pi\)
−0.999502 + 0.0315658i \(0.989951\pi\)
\(878\) 0 0
\(879\) 6.17636 + 16.7400i 0.208324 + 0.564627i
\(880\) 0 0
\(881\) −16.9488 29.3563i −0.571021 0.989038i −0.996461 0.0840512i \(-0.973214\pi\)
0.425440 0.904987i \(-0.360119\pi\)
\(882\) 0 0
\(883\) 6.94722 0.233793 0.116896 0.993144i \(-0.462705\pi\)
0.116896 + 0.993144i \(0.462705\pi\)
\(884\) 0 0
\(885\) 16.1153 + 2.76856i 0.541709 + 0.0930640i
\(886\) 0 0
\(887\) −37.1945 −1.24887 −0.624434 0.781077i \(-0.714671\pi\)
−0.624434 + 0.781077i \(0.714671\pi\)
\(888\) 0 0
\(889\) 6.06548 + 10.5057i 0.203430 + 0.352350i
\(890\) 0 0
\(891\) 22.4941 8.63813i 0.753581 0.289388i
\(892\) 0 0
\(893\) 19.2812 0.645222
\(894\) 0 0
\(895\) 75.1404 2.51167
\(896\) 0 0
\(897\) 17.0363 + 12.7375i 0.568826 + 0.425293i
\(898\) 0 0
\(899\) 18.8431 + 32.6373i 0.628454 + 1.08851i
\(900\) 0 0
\(901\) −30.6654 + 53.1140i −1.02161 + 1.76948i
\(902\) 0 0
\(903\) −25.7913 4.43088i −0.858282 0.147450i
\(904\) 0 0
\(905\) 44.6002 77.2498i 1.48256 2.56787i
\(906\) 0 0
\(907\) 13.5700 23.5039i 0.450583 0.780433i −0.547839 0.836584i \(-0.684549\pi\)
0.998422 + 0.0561504i \(0.0178826\pi\)
\(908\) 0 0
\(909\) 10.6007 9.05511i 0.351604 0.300339i
\(910\) 0 0
\(911\) −22.6069 39.1563i −0.748999 1.29730i −0.948303 0.317367i \(-0.897201\pi\)
0.199304 0.979938i \(-0.436132\pi\)
\(912\) 0 0
\(913\) 12.2760 0.406278
\(914\) 0 0
\(915\) −35.5355 + 42.7296i −1.17477 + 1.41260i
\(916\) 0 0
\(917\) 30.1274 52.1822i 0.994894 1.72321i
\(918\) 0 0
\(919\) −22.1780 + 38.4134i −0.731585 + 1.26714i 0.224621 + 0.974446i \(0.427886\pi\)
−0.956206 + 0.292696i \(0.905448\pi\)
\(920\) 0 0
\(921\) −20.3004 3.48755i −0.668921 0.114919i
\(922\) 0 0
\(923\) −27.5595 + 17.8726i −0.907132 + 0.588284i
\(924\) 0 0
\(925\) 42.8844 74.2779i 1.41003 2.44224i
\(926\) 0 0
\(927\) 20.5296 17.5363i 0.674279 0.575967i
\(928\) 0 0
\(929\) 5.04006 0.165359 0.0826796 0.996576i \(-0.473652\pi\)
0.0826796 + 0.996576i \(0.473652\pi\)
\(930\) 0 0
\(931\) −7.06932 + 12.2444i −0.231688 + 0.401295i
\(932\) 0 0
\(933\) 6.95434 8.36226i 0.227675 0.273768i
\(934\) 0 0
\(935\) −68.2443 −2.23183
\(936\) 0 0
\(937\) 12.0649 0.394144 0.197072 0.980389i \(-0.436857\pi\)
0.197072 + 0.980389i \(0.436857\pi\)
\(938\) 0 0
\(939\) 16.7326 + 45.3511i 0.546048 + 1.47998i
\(940\) 0 0
\(941\) 17.6379 30.5497i 0.574979 0.995892i −0.421065 0.907030i \(-0.638344\pi\)
0.996044 0.0888620i \(-0.0283230\pi\)
\(942\) 0 0
\(943\) −20.7890 −0.676984
\(944\) 0 0
\(945\) 56.0641 33.3623i 1.82377 1.08527i
\(946\) 0 0
\(947\) −10.0210 + 17.3569i −0.325639 + 0.564024i −0.981642 0.190735i \(-0.938913\pi\)
0.656002 + 0.754759i \(0.272246\pi\)
\(948\) 0 0
\(949\) 23.5373 + 12.0116i 0.764055 + 0.389914i
\(950\) 0 0
\(951\) 16.4708 + 44.6416i 0.534103 + 1.44760i
\(952\) 0 0
\(953\) −2.65975 + 4.60682i −0.0861577 + 0.149230i −0.905884 0.423526i \(-0.860792\pi\)
0.819726 + 0.572756i \(0.194126\pi\)
\(954\) 0 0
\(955\) 49.8342 86.3153i 1.61260 2.79310i
\(956\) 0 0
\(957\) −13.8215 37.4611i −0.446787 1.21094i
\(958\) 0 0
\(959\) −41.0722 −1.32629
\(960\) 0 0
\(961\) 5.92226 + 10.2577i 0.191041 + 0.330892i
\(962\) 0 0
\(963\) −7.92702 42.7544i −0.255445 1.37774i
\(964\) 0 0
\(965\) −34.8320 + 60.3308i −1.12128 + 1.94212i
\(966\) 0 0
\(967\) 1.03787 1.79765i 0.0333757 0.0578084i −0.848855 0.528626i \(-0.822708\pi\)
0.882231 + 0.470817i \(0.156041\pi\)
\(968\) 0 0
\(969\) −19.8633 53.8362i −0.638101 1.72947i
\(970\) 0 0
\(971\) −19.8093 + 34.3106i −0.635709 + 1.10108i 0.350655 + 0.936505i \(0.385959\pi\)
−0.986364 + 0.164576i \(0.947374\pi\)
\(972\) 0 0
\(973\) −9.26138 16.0412i −0.296906 0.514257i
\(974\) 0 0
\(975\) 8.30280 69.7920i 0.265902 2.23513i
\(976\) 0 0
\(977\) 33.2351 1.06329 0.531643 0.846968i \(-0.321575\pi\)
0.531643 + 0.846968i \(0.321575\pi\)
\(978\) 0 0
\(979\) −21.0019 −0.671223
\(980\) 0 0
\(981\) 4.55265 + 1.61184i 0.145355 + 0.0514619i
\(982\) 0 0
\(983\) 24.5472 + 42.5171i 0.782936 + 1.35608i 0.930225 + 0.366991i \(0.119612\pi\)
−0.147289 + 0.989094i \(0.547055\pi\)
\(984\) 0 0
\(985\) 20.2787 0.646132
\(986\) 0 0
\(987\) −6.87000 18.6200i −0.218675 0.592683i
\(988\) 0 0
\(989\) −16.5255 −0.525479
\(990\) 0 0
\(991\) 13.4804 + 23.3487i 0.428219 + 0.741697i 0.996715 0.0809893i \(-0.0258080\pi\)
−0.568496 + 0.822686i \(0.692475\pi\)
\(992\) 0 0
\(993\) 6.87621 + 1.18131i 0.218210 + 0.0374878i
\(994\) 0 0
\(995\) 4.56940 + 7.91444i 0.144860 + 0.250905i
\(996\) 0 0
\(997\) 0.549038 0.0173882 0.00869410 0.999962i \(-0.497233\pi\)
0.00869410 + 0.999962i \(0.497233\pi\)
\(998\) 0 0
\(999\) −0.522311 39.5957i −0.0165252 1.25275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.913.1 yes 40
3.2 odd 2 2808.2.s.f.1225.1 40
9.2 odd 6 2808.2.r.f.289.1 40
9.7 even 3 936.2.r.f.601.13 40
13.9 even 3 936.2.r.f.841.13 yes 40
39.35 odd 6 2808.2.r.f.2089.1 40
117.61 even 3 inner 936.2.s.f.529.1 yes 40
117.74 odd 6 2808.2.s.f.1153.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.13 40 9.7 even 3
936.2.r.f.841.13 yes 40 13.9 even 3
936.2.s.f.529.1 yes 40 117.61 even 3 inner
936.2.s.f.913.1 yes 40 1.1 even 1 trivial
2808.2.r.f.289.1 40 9.2 odd 6
2808.2.r.f.2089.1 40 39.35 odd 6
2808.2.s.f.1153.1 40 117.74 odd 6
2808.2.s.f.1225.1 40 3.2 odd 2