Properties

Label 2808.2.r.f.2089.1
Level $2808$
Weight $2$
Character 2808.2089
Analytic conductor $22.422$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(289,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-1,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2089.1
Character \(\chi\) \(=\) 2808.2089
Dual form 2808.2.r.f.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.01584 + 3.49154i) q^{5} +(1.55709 - 2.69696i) q^{7} +2.67730 q^{11} +(3.02511 + 1.96181i) q^{13} +(-3.16121 - 5.47537i) q^{17} +(-2.62008 - 4.53812i) q^{19} +(1.70309 + 2.94984i) q^{23} +(-5.62723 - 9.74665i) q^{25} -8.61066 q^{29} +(2.18835 - 3.79033i) q^{31} +(6.27770 + 10.8733i) q^{35} +(3.81043 - 6.59986i) q^{37} +(-3.05166 - 5.28564i) q^{41} +(2.42580 - 4.20161i) q^{43} +(1.83976 + 3.18655i) q^{47} +(-1.34906 - 2.33665i) q^{49} +9.70053 q^{53} +(-5.39701 + 9.34790i) q^{55} -2.34157 q^{59} +(-3.97927 + 6.89230i) q^{61} +(-12.9479 + 6.60759i) q^{65} +(5.04356 + 8.73571i) q^{67} +(-4.55512 - 7.88971i) q^{71} -7.32900 q^{73} +(4.16880 - 7.22057i) q^{77} +(0.0416773 + 0.0721871i) q^{79} +(-2.29262 - 3.97093i) q^{83} +25.4900 q^{85} +(3.92221 - 6.79347i) q^{89} +(10.0013 - 5.10388i) q^{91} +21.1267 q^{95} +(0.879736 - 1.52375i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - q^{5} + 7 q^{7} + q^{17} + 2 q^{19} + q^{23} - 23 q^{25} + 24 q^{29} + 8 q^{31} + 12 q^{35} + 18 q^{37} + 3 q^{41} + 8 q^{43} - 4 q^{47} - 23 q^{49} + 40 q^{53} - 14 q^{55} - 8 q^{59} - 3 q^{61}+ \cdots + 35 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.01584 + 3.49154i −0.901512 + 1.56146i −0.0759791 + 0.997109i \(0.524208\pi\)
−0.825533 + 0.564355i \(0.809125\pi\)
\(6\) 0 0
\(7\) 1.55709 2.69696i 0.588525 1.01936i −0.405901 0.913917i \(-0.633042\pi\)
0.994426 0.105438i \(-0.0336245\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.67730 0.807236 0.403618 0.914928i \(-0.367752\pi\)
0.403618 + 0.914928i \(0.367752\pi\)
\(12\) 0 0
\(13\) 3.02511 + 1.96181i 0.839015 + 0.544109i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.16121 5.47537i −0.766705 1.32797i −0.939340 0.342987i \(-0.888561\pi\)
0.172635 0.984986i \(-0.444772\pi\)
\(18\) 0 0
\(19\) −2.62008 4.53812i −0.601088 1.04112i −0.992657 0.120966i \(-0.961401\pi\)
0.391568 0.920149i \(-0.371933\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.70309 + 2.94984i 0.355119 + 0.615084i 0.987138 0.159869i \(-0.0511070\pi\)
−0.632019 + 0.774953i \(0.717774\pi\)
\(24\) 0 0
\(25\) −5.62723 9.74665i −1.12545 1.94933i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.61066 −1.59896 −0.799480 0.600693i \(-0.794892\pi\)
−0.799480 + 0.600693i \(0.794892\pi\)
\(30\) 0 0
\(31\) 2.18835 3.79033i 0.393039 0.680764i −0.599810 0.800143i \(-0.704757\pi\)
0.992849 + 0.119379i \(0.0380904\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.27770 + 10.8733i 1.06112 + 1.83792i
\(36\) 0 0
\(37\) 3.81043 6.59986i 0.626431 1.08501i −0.361831 0.932244i \(-0.617848\pi\)
0.988262 0.152767i \(-0.0488185\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.05166 5.28564i −0.476590 0.825478i 0.523050 0.852302i \(-0.324794\pi\)
−0.999640 + 0.0268240i \(0.991461\pi\)
\(42\) 0 0
\(43\) 2.42580 4.20161i 0.369932 0.640740i −0.619623 0.784900i \(-0.712714\pi\)
0.989554 + 0.144159i \(0.0460478\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.83976 + 3.18655i 0.268356 + 0.464806i 0.968437 0.249257i \(-0.0801864\pi\)
−0.700082 + 0.714063i \(0.746853\pi\)
\(48\) 0 0
\(49\) −1.34906 2.33665i −0.192724 0.333807i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.70053 1.33247 0.666235 0.745742i \(-0.267905\pi\)
0.666235 + 0.745742i \(0.267905\pi\)
\(54\) 0 0
\(55\) −5.39701 + 9.34790i −0.727733 + 1.26047i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.34157 −0.304846 −0.152423 0.988315i \(-0.548708\pi\)
−0.152423 + 0.988315i \(0.548708\pi\)
\(60\) 0 0
\(61\) −3.97927 + 6.89230i −0.509493 + 0.882468i 0.490446 + 0.871471i \(0.336834\pi\)
−0.999940 + 0.0109967i \(0.996500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.9479 + 6.60759i −1.60599 + 0.819571i
\(66\) 0 0
\(67\) 5.04356 + 8.73571i 0.616169 + 1.06724i 0.990178 + 0.139812i \(0.0446497\pi\)
−0.374009 + 0.927425i \(0.622017\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.55512 7.88971i −0.540594 0.936336i −0.998870 0.0475260i \(-0.984866\pi\)
0.458276 0.888810i \(-0.348467\pi\)
\(72\) 0 0
\(73\) −7.32900 −0.857795 −0.428897 0.903353i \(-0.641098\pi\)
−0.428897 + 0.903353i \(0.641098\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.16880 7.22057i 0.475079 0.822861i
\(78\) 0 0
\(79\) 0.0416773 + 0.0721871i 0.00468906 + 0.00812169i 0.868360 0.495934i \(-0.165174\pi\)
−0.863671 + 0.504055i \(0.831841\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.29262 3.97093i −0.251647 0.435866i 0.712332 0.701842i \(-0.247639\pi\)
−0.963979 + 0.265977i \(0.914306\pi\)
\(84\) 0 0
\(85\) 25.4900 2.76478
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.92221 6.79347i 0.415754 0.720106i −0.579754 0.814792i \(-0.696851\pi\)
0.995507 + 0.0946855i \(0.0301846\pi\)
\(90\) 0 0
\(91\) 10.0013 5.10388i 1.04842 0.535032i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 21.1267 2.16755
\(96\) 0 0
\(97\) 0.879736 1.52375i 0.0893236 0.154713i −0.817902 0.575358i \(-0.804863\pi\)
0.907225 + 0.420645i \(0.138196\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.64723 0.462416 0.231208 0.972904i \(-0.425732\pi\)
0.231208 + 0.972904i \(0.425732\pi\)
\(102\) 0 0
\(103\) 4.49995 7.79414i 0.443393 0.767979i −0.554546 0.832153i \(-0.687108\pi\)
0.997939 + 0.0641740i \(0.0204413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.24718 12.5525i 0.700611 1.21349i −0.267641 0.963519i \(-0.586244\pi\)
0.968252 0.249975i \(-0.0804225\pi\)
\(108\) 0 0
\(109\) 1.60985 0.154196 0.0770980 0.997024i \(-0.475435\pi\)
0.0770980 + 0.997024i \(0.475435\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.28737 0.497394 0.248697 0.968581i \(-0.419998\pi\)
0.248697 + 0.968581i \(0.419998\pi\)
\(114\) 0 0
\(115\) −13.7326 −1.28058
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −19.6891 −1.80490
\(120\) 0 0
\(121\) −3.83207 −0.348370
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 25.2160 2.25539
\(126\) 0 0
\(127\) −1.94770 + 3.37351i −0.172830 + 0.299350i −0.939408 0.342801i \(-0.888624\pi\)
0.766578 + 0.642151i \(0.221958\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.67425 16.7563i 0.845244 1.46400i −0.0401660 0.999193i \(-0.512789\pi\)
0.885410 0.464812i \(-0.153878\pi\)
\(132\) 0 0
\(133\) −16.3188 −1.41502
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.59439 11.4218i 0.563396 0.975831i −0.433800 0.901009i \(-0.642828\pi\)
0.997197 0.0748223i \(-0.0238389\pi\)
\(138\) 0 0
\(139\) −5.94787 −0.504492 −0.252246 0.967663i \(-0.581169\pi\)
−0.252246 + 0.967663i \(0.581169\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.09913 + 5.25236i 0.677283 + 0.439224i
\(144\) 0 0
\(145\) 17.3577 30.0645i 1.44148 2.49672i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.50109 −0.204897 −0.102448 0.994738i \(-0.532668\pi\)
−0.102448 + 0.994738i \(0.532668\pi\)
\(150\) 0 0
\(151\) −2.26475 3.92266i −0.184303 0.319222i 0.759039 0.651046i \(-0.225669\pi\)
−0.943341 + 0.331824i \(0.892336\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.82273 + 15.2814i 0.708659 + 1.22743i
\(156\) 0 0
\(157\) 8.74024 15.1385i 0.697547 1.20819i −0.271767 0.962363i \(-0.587608\pi\)
0.969314 0.245824i \(-0.0790586\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.6075 0.835986
\(162\) 0 0
\(163\) 6.86395 + 11.8887i 0.537626 + 0.931196i 0.999031 + 0.0440063i \(0.0140122\pi\)
−0.461405 + 0.887190i \(0.652654\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.969025 + 1.67840i 0.0749854 + 0.129879i 0.901080 0.433653i \(-0.142776\pi\)
−0.826095 + 0.563532i \(0.809442\pi\)
\(168\) 0 0
\(169\) 5.30259 + 11.8694i 0.407891 + 0.913030i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.36002 9.28383i 0.407515 0.705837i −0.587096 0.809518i \(-0.699729\pi\)
0.994611 + 0.103681i \(0.0330621\pi\)
\(174\) 0 0
\(175\) −35.0485 −2.64941
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.31874 + 16.1405i −0.696516 + 1.20640i 0.273151 + 0.961971i \(0.411934\pi\)
−0.969667 + 0.244429i \(0.921399\pi\)
\(180\) 0 0
\(181\) 22.1248 1.64453 0.822263 0.569107i \(-0.192711\pi\)
0.822263 + 0.569107i \(0.192711\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.3625 + 26.6086i 1.12947 + 1.95630i
\(186\) 0 0
\(187\) −8.46350 14.6592i −0.618912 1.07199i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.3606 21.4092i 0.894384 1.54912i 0.0598191 0.998209i \(-0.480948\pi\)
0.834565 0.550909i \(-0.185719\pi\)
\(192\) 0 0
\(193\) 8.63957 + 14.9642i 0.621890 + 1.07714i 0.989134 + 0.147020i \(0.0469682\pi\)
−0.367244 + 0.930125i \(0.619698\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.51491 + 4.35596i −0.179180 + 0.310349i −0.941600 0.336734i \(-0.890678\pi\)
0.762420 + 0.647083i \(0.224011\pi\)
\(198\) 0 0
\(199\) −1.13337 1.96306i −0.0803427 0.139158i 0.823054 0.567962i \(-0.192268\pi\)
−0.903397 + 0.428805i \(0.858935\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −13.4076 + 23.2226i −0.941028 + 1.62991i
\(204\) 0 0
\(205\) 24.6067 1.71861
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.01475 12.1499i −0.485220 0.840426i
\(210\) 0 0
\(211\) 10.3004 + 17.8409i 0.709112 + 1.22822i 0.965187 + 0.261560i \(0.0842371\pi\)
−0.256076 + 0.966657i \(0.582430\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.78007 + 16.9396i 0.666995 + 1.15527i
\(216\) 0 0
\(217\) −6.81492 11.8038i −0.462627 0.801293i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.17865 22.7653i 0.0792844 1.53136i
\(222\) 0 0
\(223\) −25.4540 −1.70452 −0.852262 0.523115i \(-0.824770\pi\)
−0.852262 + 0.523115i \(0.824770\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.63041 2.82395i 0.108214 0.187432i −0.806833 0.590780i \(-0.798820\pi\)
0.915047 + 0.403348i \(0.132154\pi\)
\(228\) 0 0
\(229\) 7.97842 13.8190i 0.527229 0.913187i −0.472268 0.881455i \(-0.656564\pi\)
0.999496 0.0317320i \(-0.0101023\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.5070 −1.01590 −0.507950 0.861387i \(-0.669597\pi\)
−0.507950 + 0.861387i \(0.669597\pi\)
\(234\) 0 0
\(235\) −14.8346 −0.967704
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.76503 + 3.05712i −0.114170 + 0.197748i −0.917448 0.397856i \(-0.869754\pi\)
0.803278 + 0.595605i \(0.203088\pi\)
\(240\) 0 0
\(241\) −1.40310 + 2.43024i −0.0903817 + 0.156546i −0.907672 0.419681i \(-0.862142\pi\)
0.817290 + 0.576226i \(0.195475\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.8780 0.694970
\(246\) 0 0
\(247\) 0.976891 18.8684i 0.0621581 1.20057i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.126564 + 0.219215i 0.00798865 + 0.0138367i 0.869992 0.493066i \(-0.164124\pi\)
−0.862003 + 0.506902i \(0.830790\pi\)
\(252\) 0 0
\(253\) 4.55968 + 7.89760i 0.286665 + 0.496518i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.00646 6.93939i −0.249916 0.432867i 0.713586 0.700567i \(-0.247070\pi\)
−0.963502 + 0.267700i \(0.913736\pi\)
\(258\) 0 0
\(259\) −11.8664 20.5532i −0.737341 1.27711i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.0928 1.30064 0.650319 0.759662i \(-0.274635\pi\)
0.650319 + 0.759662i \(0.274635\pi\)
\(264\) 0 0
\(265\) −19.5547 + 33.8698i −1.20124 + 2.08060i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.24959 3.89641i −0.137160 0.237568i 0.789260 0.614059i \(-0.210464\pi\)
−0.926421 + 0.376490i \(0.877131\pi\)
\(270\) 0 0
\(271\) −12.3274 + 21.3517i −0.748836 + 1.29702i 0.199544 + 0.979889i \(0.436054\pi\)
−0.948381 + 0.317134i \(0.897280\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0658 26.0947i −0.908501 1.57357i
\(276\) 0 0
\(277\) 1.98477 3.43772i 0.119253 0.206553i −0.800219 0.599708i \(-0.795283\pi\)
0.919472 + 0.393156i \(0.128617\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.4046 + 21.4854i 0.739995 + 1.28171i 0.952497 + 0.304548i \(0.0985055\pi\)
−0.212502 + 0.977161i \(0.568161\pi\)
\(282\) 0 0
\(283\) 7.21597 + 12.4984i 0.428945 + 0.742955i 0.996780 0.0801880i \(-0.0255521\pi\)
−0.567835 + 0.823143i \(0.692219\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.0069 −1.12194
\(288\) 0 0
\(289\) −11.4865 + 19.8951i −0.675674 + 1.17030i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3017 −0.601833 −0.300916 0.953651i \(-0.597293\pi\)
−0.300916 + 0.953651i \(0.597293\pi\)
\(294\) 0 0
\(295\) 4.72023 8.17568i 0.274823 0.476007i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.634993 + 12.2647i −0.0367226 + 0.709288i
\(300\) 0 0
\(301\) −7.55439 13.0846i −0.435428 0.754183i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.0431 27.7875i −0.918628 1.59111i
\(306\) 0 0
\(307\) 11.8921 0.678721 0.339360 0.940656i \(-0.389789\pi\)
0.339360 + 0.940656i \(0.389789\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.13967 5.43806i 0.178034 0.308364i −0.763173 0.646194i \(-0.776360\pi\)
0.941207 + 0.337830i \(0.109693\pi\)
\(312\) 0 0
\(313\) −13.9544 24.1697i −0.788749 1.36615i −0.926734 0.375718i \(-0.877396\pi\)
0.137985 0.990434i \(-0.455937\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.7361 + 23.7916i 0.771495 + 1.33627i 0.936744 + 0.350016i \(0.113824\pi\)
−0.165249 + 0.986252i \(0.552843\pi\)
\(318\) 0 0
\(319\) −23.0533 −1.29074
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.5653 + 28.6919i −0.921715 + 1.59646i
\(324\) 0 0
\(325\) 2.09810 40.5243i 0.116382 2.24788i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.4587 0.631737
\(330\) 0 0
\(331\) 2.01407 3.48847i 0.110703 0.191744i −0.805351 0.592799i \(-0.798023\pi\)
0.916054 + 0.401055i \(0.131356\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −40.6681 −2.22194
\(336\) 0 0
\(337\) −11.8750 + 20.5680i −0.646870 + 1.12041i 0.336996 + 0.941506i \(0.390589\pi\)
−0.983866 + 0.178906i \(0.942744\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.85887 10.1479i 0.317275 0.549537i
\(342\) 0 0
\(343\) 13.3968 0.723360
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −36.8976 −1.98077 −0.990384 0.138344i \(-0.955822\pi\)
−0.990384 + 0.138344i \(0.955822\pi\)
\(348\) 0 0
\(349\) 3.85911 0.206574 0.103287 0.994652i \(-0.467064\pi\)
0.103287 + 0.994652i \(0.467064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.2963 0.867364 0.433682 0.901066i \(-0.357214\pi\)
0.433682 + 0.901066i \(0.357214\pi\)
\(354\) 0 0
\(355\) 36.7296 1.94941
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.0745 −0.584492 −0.292246 0.956343i \(-0.594403\pi\)
−0.292246 + 0.956343i \(0.594403\pi\)
\(360\) 0 0
\(361\) −4.22967 + 7.32600i −0.222614 + 0.385579i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7741 25.5895i 0.773312 1.33942i
\(366\) 0 0
\(367\) −17.9995 −0.939566 −0.469783 0.882782i \(-0.655668\pi\)
−0.469783 + 0.882782i \(0.655668\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.1046 26.1619i 0.784192 1.35826i
\(372\) 0 0
\(373\) −21.5883 −1.11780 −0.558901 0.829234i \(-0.688777\pi\)
−0.558901 + 0.829234i \(0.688777\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.0482 16.8925i −1.34155 0.870008i
\(378\) 0 0
\(379\) 1.10605 1.91573i 0.0568139 0.0984046i −0.836220 0.548395i \(-0.815239\pi\)
0.893034 + 0.449990i \(0.148572\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.24127 −0.472207 −0.236104 0.971728i \(-0.575870\pi\)
−0.236104 + 0.971728i \(0.575870\pi\)
\(384\) 0 0
\(385\) 16.8073 + 29.1111i 0.856578 + 1.48364i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.88767 15.3939i −0.450623 0.780501i 0.547802 0.836608i \(-0.315465\pi\)
−0.998425 + 0.0561066i \(0.982131\pi\)
\(390\) 0 0
\(391\) 10.7676 18.6501i 0.544543 0.943177i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.336059 −0.0169090
\(396\) 0 0
\(397\) 4.13275 + 7.15813i 0.207417 + 0.359256i 0.950900 0.309498i \(-0.100161\pi\)
−0.743483 + 0.668754i \(0.766828\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.14850 15.8457i −0.456854 0.791295i 0.541938 0.840418i \(-0.317691\pi\)
−0.998793 + 0.0491231i \(0.984357\pi\)
\(402\) 0 0
\(403\) 14.0559 7.17304i 0.700175 0.357315i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.2017 17.6698i 0.505678 0.875860i
\(408\) 0 0
\(409\) −6.51546 −0.322169 −0.161084 0.986941i \(-0.551499\pi\)
−0.161084 + 0.986941i \(0.551499\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.64604 + 6.31512i −0.179410 + 0.310747i
\(414\) 0 0
\(415\) 18.4862 0.907452
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.4406 + 21.5477i 0.607761 + 1.05267i 0.991609 + 0.129276i \(0.0412654\pi\)
−0.383848 + 0.923396i \(0.625401\pi\)
\(420\) 0 0
\(421\) −19.1169 33.1115i −0.931703 1.61376i −0.780411 0.625267i \(-0.784990\pi\)
−0.151292 0.988489i \(-0.548343\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −35.5777 + 61.6224i −1.72577 + 2.98912i
\(426\) 0 0
\(427\) 12.3922 + 21.4639i 0.599699 + 1.03871i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.42332 + 14.5896i −0.405737 + 0.702757i −0.994407 0.105616i \(-0.966318\pi\)
0.588670 + 0.808373i \(0.299652\pi\)
\(432\) 0 0
\(433\) −17.7816 30.7987i −0.854531 1.48009i −0.877079 0.480346i \(-0.840511\pi\)
0.0225475 0.999746i \(-0.492822\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.92448 15.4576i 0.426916 0.739440i
\(438\) 0 0
\(439\) 4.52799 0.216109 0.108054 0.994145i \(-0.465538\pi\)
0.108054 + 0.994145i \(0.465538\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.0231 24.2888i −0.666259 1.15399i −0.978942 0.204137i \(-0.934561\pi\)
0.312683 0.949857i \(-0.398772\pi\)
\(444\) 0 0
\(445\) 15.8131 + 27.3891i 0.749613 + 1.29837i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.7395 + 25.5295i 0.695599 + 1.20481i 0.969978 + 0.243191i \(0.0781941\pi\)
−0.274380 + 0.961621i \(0.588473\pi\)
\(450\) 0 0
\(451\) −8.17022 14.1512i −0.384721 0.666356i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.34062 + 45.2086i −0.109730 + 2.11941i
\(456\) 0 0
\(457\) −12.2938 −0.575078 −0.287539 0.957769i \(-0.592837\pi\)
−0.287539 + 0.957769i \(0.592837\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.3623 + 21.4121i −0.575768 + 0.997260i 0.420189 + 0.907436i \(0.361964\pi\)
−0.995958 + 0.0898237i \(0.971370\pi\)
\(462\) 0 0
\(463\) −16.7335 + 28.9832i −0.777670 + 1.34696i 0.155611 + 0.987818i \(0.450265\pi\)
−0.933281 + 0.359146i \(0.883068\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.115149 −0.00532846 −0.00266423 0.999996i \(-0.500848\pi\)
−0.00266423 + 0.999996i \(0.500848\pi\)
\(468\) 0 0
\(469\) 31.4132 1.45052
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.49460 11.2490i 0.298622 0.517229i
\(474\) 0 0
\(475\) −29.4876 + 51.0741i −1.35299 + 2.34344i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 42.8386 1.95734 0.978672 0.205427i \(-0.0658582\pi\)
0.978672 + 0.205427i \(0.0658582\pi\)
\(480\) 0 0
\(481\) 24.4747 12.4900i 1.11595 0.569493i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.54681 + 6.14326i 0.161053 + 0.278951i
\(486\) 0 0
\(487\) −1.61647 2.79981i −0.0732493 0.126872i 0.827074 0.562093i \(-0.190004\pi\)
−0.900324 + 0.435221i \(0.856670\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.8148 + 18.7318i 0.488065 + 0.845353i 0.999906 0.0137269i \(-0.00436955\pi\)
−0.511841 + 0.859080i \(0.671036\pi\)
\(492\) 0 0
\(493\) 27.2201 + 47.1466i 1.22593 + 2.12338i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.3710 −1.27261
\(498\) 0 0
\(499\) −5.03855 + 8.72702i −0.225556 + 0.390675i −0.956486 0.291777i \(-0.905753\pi\)
0.730930 + 0.682453i \(0.239087\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.24603 + 12.5505i 0.323084 + 0.559598i 0.981123 0.193386i \(-0.0619469\pi\)
−0.658038 + 0.752984i \(0.728614\pi\)
\(504\) 0 0
\(505\) −9.36807 + 16.2260i −0.416874 + 0.722047i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.14025 3.70703i −0.0948650 0.164311i 0.814687 0.579901i \(-0.196909\pi\)
−0.909552 + 0.415590i \(0.863575\pi\)
\(510\) 0 0
\(511\) −11.4119 + 19.7660i −0.504834 + 0.874398i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.1424 + 31.4235i 0.799448 + 1.38468i
\(516\) 0 0
\(517\) 4.92558 + 8.53135i 0.216627 + 0.375208i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.36236 −0.147307 −0.0736537 0.997284i \(-0.523466\pi\)
−0.0736537 + 0.997284i \(0.523466\pi\)
\(522\) 0 0
\(523\) 6.02690 10.4389i 0.263538 0.456461i −0.703641 0.710555i \(-0.748444\pi\)
0.967180 + 0.254094i \(0.0817772\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.6713 −1.20538
\(528\) 0 0
\(529\) 5.69896 9.87090i 0.247781 0.429169i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.13781 21.9764i 0.0492838 0.951905i
\(534\) 0 0
\(535\) 29.2183 + 50.6076i 1.26322 + 2.18796i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.61185 6.25591i −0.155573 0.269461i
\(540\) 0 0
\(541\) 2.77390 0.119259 0.0596296 0.998221i \(-0.481008\pi\)
0.0596296 + 0.998221i \(0.481008\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.24521 + 5.62087i −0.139009 + 0.240771i
\(546\) 0 0
\(547\) 5.30305 + 9.18515i 0.226742 + 0.392729i 0.956841 0.290613i \(-0.0938593\pi\)
−0.730099 + 0.683342i \(0.760526\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.5607 + 39.0762i 0.961116 + 1.66470i
\(552\) 0 0
\(553\) 0.259581 0.0110385
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.46387 5.99960i 0.146769 0.254211i −0.783263 0.621691i \(-0.786446\pi\)
0.930031 + 0.367480i \(0.119779\pi\)
\(558\) 0 0
\(559\) 15.5811 7.95138i 0.659010 0.336307i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −30.9047 −1.30248 −0.651239 0.758872i \(-0.725751\pi\)
−0.651239 + 0.758872i \(0.725751\pi\)
\(564\) 0 0
\(565\) −10.6585 + 18.4610i −0.448406 + 0.776662i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.537887 0.0225494 0.0112747 0.999936i \(-0.496411\pi\)
0.0112747 + 0.999936i \(0.496411\pi\)
\(570\) 0 0
\(571\) 23.3527 40.4481i 0.977281 1.69270i 0.305089 0.952324i \(-0.401314\pi\)
0.672192 0.740377i \(-0.265353\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.1674 33.1989i 0.799335 1.38449i
\(576\) 0 0
\(577\) 16.0641 0.668757 0.334378 0.942439i \(-0.391474\pi\)
0.334378 + 0.942439i \(0.391474\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.2792 −0.592403
\(582\) 0 0
\(583\) 25.9712 1.07562
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.4814 −0.432615 −0.216307 0.976325i \(-0.569401\pi\)
−0.216307 + 0.976325i \(0.569401\pi\)
\(588\) 0 0
\(589\) −22.9346 −0.945005
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.47081 −0.347855 −0.173927 0.984759i \(-0.555646\pi\)
−0.173927 + 0.984759i \(0.555646\pi\)
\(594\) 0 0
\(595\) 39.6902 68.7454i 1.62714 2.81829i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15.4513 26.7624i 0.631322 1.09348i −0.355959 0.934501i \(-0.615846\pi\)
0.987282 0.158981i \(-0.0508208\pi\)
\(600\) 0 0
\(601\) −15.0003 −0.611876 −0.305938 0.952051i \(-0.598970\pi\)
−0.305938 + 0.952051i \(0.598970\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.72484 13.3798i 0.314059 0.543967i
\(606\) 0 0
\(607\) 21.1383 0.857978 0.428989 0.903310i \(-0.358870\pi\)
0.428989 + 0.903310i \(0.358870\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.685948 + 13.2489i −0.0277505 + 0.535994i
\(612\) 0 0
\(613\) 3.93979 6.82392i 0.159127 0.275615i −0.775427 0.631437i \(-0.782466\pi\)
0.934554 + 0.355821i \(0.115799\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.2504 −0.855510 −0.427755 0.903895i \(-0.640695\pi\)
−0.427755 + 0.903895i \(0.640695\pi\)
\(618\) 0 0
\(619\) −12.1361 21.0204i −0.487792 0.844881i 0.512109 0.858920i \(-0.328864\pi\)
−0.999901 + 0.0140395i \(0.995531\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.2145 21.1561i −0.489363 0.847601i
\(624\) 0 0
\(625\) −22.6953 + 39.3095i −0.907813 + 1.57238i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −48.1823 −1.92115
\(630\) 0 0
\(631\) 7.65676 + 13.2619i 0.304811 + 0.527948i 0.977219 0.212232i \(-0.0680734\pi\)
−0.672408 + 0.740180i \(0.734740\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.85249 13.6009i −0.311617 0.539736i
\(636\) 0 0
\(637\) 0.502995 9.71523i 0.0199294 0.384932i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.266316 0.461273i 0.0105189 0.0182192i −0.860718 0.509082i \(-0.829985\pi\)
0.871237 + 0.490863i \(0.163318\pi\)
\(642\) 0 0
\(643\) −19.7650 −0.779455 −0.389727 0.920930i \(-0.627431\pi\)
−0.389727 + 0.920930i \(0.627431\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.96131 + 15.5214i −0.352305 + 0.610211i −0.986653 0.162837i \(-0.947935\pi\)
0.634348 + 0.773048i \(0.281269\pi\)
\(648\) 0 0
\(649\) −6.26908 −0.246083
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.11946 1.93896i −0.0438077 0.0758772i 0.843290 0.537459i \(-0.180616\pi\)
−0.887098 + 0.461581i \(0.847282\pi\)
\(654\) 0 0
\(655\) 39.0035 + 67.5561i 1.52399 + 2.63963i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.55709 + 4.42902i −0.0996103 + 0.172530i −0.911523 0.411248i \(-0.865093\pi\)
0.811913 + 0.583778i \(0.198426\pi\)
\(660\) 0 0
\(661\) −1.08959 1.88722i −0.0423801 0.0734045i 0.844057 0.536253i \(-0.180161\pi\)
−0.886437 + 0.462849i \(0.846827\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.8962 56.9778i 1.27566 2.20951i
\(666\) 0 0
\(667\) −14.6647 25.4001i −0.567821 0.983495i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.6537 + 18.4527i −0.411281 + 0.712360i
\(672\) 0 0
\(673\) 2.38389 0.0918924 0.0459462 0.998944i \(-0.485370\pi\)
0.0459462 + 0.998944i \(0.485370\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.4674 21.5942i −0.479162 0.829933i 0.520552 0.853830i \(-0.325726\pi\)
−0.999714 + 0.0238965i \(0.992393\pi\)
\(678\) 0 0
\(679\) −2.73966 4.74522i −0.105138 0.182105i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.09921 1.90389i −0.0420601 0.0728503i 0.844229 0.535983i \(-0.180059\pi\)
−0.886289 + 0.463132i \(0.846725\pi\)
\(684\) 0 0
\(685\) 26.5865 + 46.0491i 1.01582 + 1.75945i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.3452 + 19.0306i 1.11796 + 0.725009i
\(690\) 0 0
\(691\) −26.0324 −0.990321 −0.495160 0.868802i \(-0.664891\pi\)
−0.495160 + 0.868802i \(0.664891\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.9900 20.7672i 0.454805 0.787746i
\(696\) 0 0
\(697\) −19.2939 + 33.4180i −0.730808 + 1.26580i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.1052 −0.948212 −0.474106 0.880468i \(-0.657229\pi\)
−0.474106 + 0.880468i \(0.657229\pi\)
\(702\) 0 0
\(703\) −39.9346 −1.50616
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.23616 12.5334i 0.272144 0.471367i
\(708\) 0 0
\(709\) 7.96118 13.7892i 0.298988 0.517863i −0.676916 0.736060i \(-0.736684\pi\)
0.975905 + 0.218197i \(0.0700175\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.9078 0.558302
\(714\) 0 0
\(715\) −34.6654 + 17.6905i −1.29641 + 0.661587i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.81560 13.5370i −0.291473 0.504845i 0.682686 0.730712i \(-0.260812\pi\)
−0.974158 + 0.225867i \(0.927479\pi\)
\(720\) 0 0
\(721\) −14.0137 24.2724i −0.521896 0.903950i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 48.4542 + 83.9251i 1.79954 + 3.11690i
\(726\) 0 0
\(727\) 13.9681 + 24.1935i 0.518049 + 0.897288i 0.999780 + 0.0209685i \(0.00667497\pi\)
−0.481731 + 0.876319i \(0.659992\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −30.6739 −1.13451
\(732\) 0 0
\(733\) 13.5016 23.3855i 0.498693 0.863762i −0.501306 0.865270i \(-0.667147\pi\)
0.999999 + 0.00150851i \(0.000480173\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.5031 + 23.3881i 0.497394 + 0.861512i
\(738\) 0 0
\(739\) −4.92983 + 8.53872i −0.181347 + 0.314102i −0.942339 0.334659i \(-0.891379\pi\)
0.760993 + 0.648760i \(0.224712\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.3352 + 31.7574i 0.672652 + 1.16507i 0.977149 + 0.212554i \(0.0681781\pi\)
−0.304498 + 0.952513i \(0.598489\pi\)
\(744\) 0 0
\(745\) 5.04179 8.73264i 0.184717 0.319939i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.5690 39.0907i −0.824654 1.42834i
\(750\) 0 0
\(751\) −5.63561 9.76117i −0.205647 0.356190i 0.744692 0.667408i \(-0.232596\pi\)
−0.950339 + 0.311218i \(0.899263\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.2615 0.664604
\(756\) 0 0
\(757\) −20.5518 + 35.5968i −0.746970 + 1.29379i 0.202299 + 0.979324i \(0.435159\pi\)
−0.949269 + 0.314466i \(0.898175\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.2836 −1.24278 −0.621390 0.783501i \(-0.713432\pi\)
−0.621390 + 0.783501i \(0.713432\pi\)
\(762\) 0 0
\(763\) 2.50669 4.34171i 0.0907482 0.157180i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.08351 4.59372i −0.255771 0.165870i
\(768\) 0 0
\(769\) −22.8320 39.5462i −0.823344 1.42607i −0.903178 0.429265i \(-0.858773\pi\)
0.0798346 0.996808i \(-0.474561\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.02739 + 13.9038i 0.288725 + 0.500087i 0.973506 0.228663i \(-0.0734353\pi\)
−0.684781 + 0.728749i \(0.740102\pi\)
\(774\) 0 0
\(775\) −49.2574 −1.76938
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.9912 + 27.6976i −0.572945 + 0.992370i
\(780\) 0 0
\(781\) −12.1954 21.1231i −0.436387 0.755844i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 35.2379 + 61.0338i 1.25769 + 2.17839i
\(786\) 0 0
\(787\) 1.80768 0.0644367 0.0322183 0.999481i \(-0.489743\pi\)
0.0322183 + 0.999481i \(0.489743\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.23291 14.2598i 0.292729 0.507021i
\(792\) 0 0
\(793\) −25.5591 + 13.0434i −0.907631 + 0.463184i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.8242 0.773051 0.386526 0.922279i \(-0.373675\pi\)
0.386526 + 0.922279i \(0.373675\pi\)
\(798\) 0 0
\(799\) 11.6317 20.1467i 0.411500 0.712739i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.6219 −0.692443
\(804\) 0 0
\(805\) −21.3830 + 37.0364i −0.753651 + 1.30536i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.25389 16.0282i 0.325349 0.563522i −0.656234 0.754558i \(-0.727851\pi\)
0.981583 + 0.191036i \(0.0611848\pi\)
\(810\) 0 0
\(811\) −8.50964 −0.298814 −0.149407 0.988776i \(-0.547736\pi\)
−0.149407 + 0.988776i \(0.547736\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −55.3466 −1.93871
\(816\) 0 0
\(817\) −25.4232 −0.889446
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46.7924 −1.63307 −0.816534 0.577298i \(-0.804107\pi\)
−0.816534 + 0.577298i \(0.804107\pi\)
\(822\) 0 0
\(823\) 42.6709 1.48741 0.743707 0.668506i \(-0.233066\pi\)
0.743707 + 0.668506i \(0.233066\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38.6497 −1.34398 −0.671991 0.740560i \(-0.734560\pi\)
−0.671991 + 0.740560i \(0.734560\pi\)
\(828\) 0 0
\(829\) 3.50070 6.06339i 0.121584 0.210590i −0.798808 0.601586i \(-0.794536\pi\)
0.920393 + 0.390995i \(0.127869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.52935 + 14.7733i −0.295524 + 0.511863i
\(834\) 0 0
\(835\) −7.81360 −0.270401
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.0334 17.3784i 0.346393 0.599970i −0.639213 0.769030i \(-0.720740\pi\)
0.985606 + 0.169059i \(0.0540730\pi\)
\(840\) 0 0
\(841\) 45.1435 1.55667
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −52.1316 5.41262i −1.79338 0.186200i
\(846\) 0 0
\(847\) −5.96688 + 10.3349i −0.205024 + 0.355113i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 25.9581 0.889831
\(852\) 0 0
\(853\) 0.00947654 + 0.0164138i 0.000324471 + 0.000561999i 0.866188 0.499719i \(-0.166563\pi\)
−0.865863 + 0.500281i \(0.833230\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.52291 13.0301i −0.256978 0.445099i 0.708453 0.705758i \(-0.249393\pi\)
−0.965431 + 0.260659i \(0.916060\pi\)
\(858\) 0 0
\(859\) −23.5351 + 40.7639i −0.803006 + 1.39085i 0.114624 + 0.993409i \(0.463434\pi\)
−0.917629 + 0.397438i \(0.869900\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.8794 0.506501 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(864\) 0 0
\(865\) 21.6099 + 37.4295i 0.734759 + 1.27264i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.111583 + 0.193267i 0.00378518 + 0.00655612i
\(870\) 0 0
\(871\) −1.88048 + 36.3210i −0.0637176 + 1.23069i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 39.2636 68.0066i 1.32735 2.29904i
\(876\) 0 0
\(877\) 27.9803 0.944828 0.472414 0.881377i \(-0.343383\pi\)
0.472414 + 0.881377i \(0.343383\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.9488 29.3563i 0.571021 0.989038i −0.425440 0.904987i \(-0.639881\pi\)
0.996461 0.0840512i \(-0.0267859\pi\)
\(882\) 0 0
\(883\) 6.94722 0.233793 0.116896 0.993144i \(-0.462705\pi\)
0.116896 + 0.993144i \(0.462705\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.5972 32.2114i −0.624434 1.08155i −0.988650 0.150238i \(-0.951996\pi\)
0.364215 0.931315i \(-0.381337\pi\)
\(888\) 0 0
\(889\) 6.06548 + 10.5057i 0.203430 + 0.352350i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.64062 16.6980i 0.322611 0.558779i
\(894\) 0 0
\(895\) −37.5702 65.0735i −1.25583 2.17517i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.8431 + 32.6373i −0.628454 + 1.08851i
\(900\) 0 0
\(901\) −30.6654 53.1140i −1.02161 1.76948i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −44.6002 + 77.2498i −1.48256 + 2.56787i
\(906\) 0 0
\(907\) −27.1399 −0.901167 −0.450583 0.892734i \(-0.648784\pi\)
−0.450583 + 0.892734i \(0.648784\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.6069 + 39.1563i 0.748999 + 1.29730i 0.948303 + 0.317367i \(0.102799\pi\)
−0.199304 + 0.979938i \(0.563868\pi\)
\(912\) 0 0
\(913\) −6.13802 10.6314i −0.203139 0.351847i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −30.1274 52.1822i −0.994894 1.72321i
\(918\) 0 0
\(919\) −22.1780 38.4134i −0.731585 1.26714i −0.956206 0.292696i \(-0.905448\pi\)
0.224621 0.974446i \(-0.427886\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.69837 32.8035i 0.0559024 1.07974i
\(924\) 0 0
\(925\) −85.7688 −2.82006
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.52003 4.36482i 0.0826796 0.143205i −0.821721 0.569891i \(-0.806986\pi\)
0.904400 + 0.426685i \(0.140319\pi\)
\(930\) 0 0
\(931\) −7.06932 + 12.2444i −0.231688 + 0.401295i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 68.2443 2.23183
\(936\) 0 0
\(937\) 12.0649 0.394144 0.197072 0.980389i \(-0.436857\pi\)
0.197072 + 0.980389i \(0.436857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.6379 + 30.5497i −0.574979 + 0.995892i 0.421065 + 0.907030i \(0.361656\pi\)
−0.996044 + 0.0888620i \(0.971677\pi\)
\(942\) 0 0
\(943\) 10.3945 18.0038i 0.338492 0.586286i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0420 −0.651279 −0.325639 0.945494i \(-0.605580\pi\)
−0.325639 + 0.945494i \(0.605580\pi\)
\(948\) 0 0
\(949\) −22.1710 14.3781i −0.719703 0.466734i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.65975 + 4.60682i 0.0861577 + 0.149230i 0.905884 0.423526i \(-0.139208\pi\)
−0.819726 + 0.572756i \(0.805874\pi\)
\(954\) 0 0
\(955\) 49.8342 + 86.3153i 1.61260 + 2.79310i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −20.5361 35.5696i −0.663146 1.14860i
\(960\) 0 0
\(961\) 5.92226 + 10.2577i 0.191041 + 0.330892i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −69.6640 −2.24256
\(966\) 0 0
\(967\) 1.03787 1.79765i 0.0333757 0.0578084i −0.848855 0.528626i \(-0.822708\pi\)
0.882231 + 0.470817i \(0.156041\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.8093 + 34.3106i 0.635709 + 1.10108i 0.986364 + 0.164576i \(0.0526256\pi\)
−0.350655 + 0.936505i \(0.614041\pi\)
\(972\) 0 0
\(973\) −9.26138 + 16.0412i −0.296906 + 0.514257i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.6176 + 28.7825i 0.531643 + 0.920833i 0.999318 + 0.0369323i \(0.0117586\pi\)
−0.467675 + 0.883901i \(0.654908\pi\)
\(978\) 0 0
\(979\) 10.5009 18.1882i 0.335611 0.581296i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −24.5472 42.5171i −0.782936 1.35608i −0.930225 0.366991i \(-0.880388\pi\)
0.147289 0.989094i \(-0.452945\pi\)
\(984\) 0 0
\(985\) −10.1393 17.5618i −0.323066 0.559566i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.5255 0.525479
\(990\) 0 0
\(991\) 13.4804 23.3487i 0.428219 0.741697i −0.568496 0.822686i \(-0.692475\pi\)
0.996715 + 0.0809893i \(0.0258080\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.13881 0.289720
\(996\) 0 0
\(997\) −0.274519 + 0.475481i −0.00869410 + 0.0150586i −0.870340 0.492452i \(-0.836101\pi\)
0.861646 + 0.507510i \(0.169434\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.r.f.2089.1 40
3.2 odd 2 936.2.r.f.841.13 yes 40
9.2 odd 6 936.2.s.f.529.1 yes 40
9.7 even 3 2808.2.s.f.1153.1 40
13.3 even 3 2808.2.s.f.1225.1 40
39.29 odd 6 936.2.s.f.913.1 yes 40
117.16 even 3 inner 2808.2.r.f.289.1 40
117.29 odd 6 936.2.r.f.601.13 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.13 40 117.29 odd 6
936.2.r.f.841.13 yes 40 3.2 odd 2
936.2.s.f.529.1 yes 40 9.2 odd 6
936.2.s.f.913.1 yes 40 39.29 odd 6
2808.2.r.f.289.1 40 117.16 even 3 inner
2808.2.r.f.2089.1 40 1.1 even 1 trivial
2808.2.s.f.1153.1 40 9.7 even 3
2808.2.s.f.1225.1 40 13.3 even 3