Properties

Label 936.2.s.f.529.4
Level $936$
Weight $2$
Character 936.529
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.4
Character \(\chi\) \(=\) 936.529
Dual form 936.2.s.f.913.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26687 + 1.18112i) q^{3} +(0.0819095 + 0.141871i) q^{5} -1.18267 q^{7} +(0.209912 - 2.99265i) q^{9} +(-1.14747 - 1.98747i) q^{11} +(2.69631 - 2.39372i) q^{13} +(-0.271336 - 0.0829876i) q^{15} +(3.94208 + 6.82788i) q^{17} +(3.06904 + 5.31573i) q^{19} +(1.49829 - 1.39688i) q^{21} -1.14677 q^{23} +(2.48658 - 4.30689i) q^{25} +(3.26874 + 4.03922i) q^{27} +(0.784660 + 1.35907i) q^{29} +(-0.925310 - 1.60268i) q^{31} +(3.80113 + 1.16257i) q^{33} +(-0.0968723 - 0.167788i) q^{35} +(-5.72598 + 9.91769i) q^{37} +(-0.588603 + 6.21720i) q^{39} +5.90934 q^{41} -1.48613 q^{43} +(0.441765 - 0.215346i) q^{45} +(-4.66028 + 8.07184i) q^{47} -5.60128 q^{49} +(-13.0586 - 3.99396i) q^{51} -2.44339 q^{53} +(0.187977 - 0.325586i) q^{55} +(-10.1666 - 3.10943i) q^{57} +(-6.20503 + 10.7474i) q^{59} +12.8936 q^{61} +(-0.248258 + 3.53933i) q^{63} +(0.560454 + 0.186461i) q^{65} +12.1454 q^{67} +(1.45280 - 1.35447i) q^{69} +(4.54262 + 7.86805i) q^{71} +7.68457 q^{73} +(1.93678 + 8.39321i) q^{75} +(1.35708 + 2.35053i) q^{77} +(6.50531 - 11.2675i) q^{79} +(-8.91187 - 1.25639i) q^{81} +(-0.0150208 + 0.0260167i) q^{83} +(-0.645787 + 1.11854i) q^{85} +(-2.59929 - 0.794987i) q^{87} +(7.59038 - 13.1469i) q^{89} +(-3.18886 + 2.83099i) q^{91} +(3.06521 + 0.937488i) q^{93} +(-0.502767 + 0.870818i) q^{95} +2.74145 q^{97} +(-6.18866 + 3.01677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.26687 + 1.18112i −0.731427 + 0.681920i
\(4\) 0 0
\(5\) 0.0819095 + 0.141871i 0.0366311 + 0.0634469i 0.883760 0.467941i \(-0.155004\pi\)
−0.847129 + 0.531388i \(0.821671\pi\)
\(6\) 0 0
\(7\) −1.18267 −0.447009 −0.223504 0.974703i \(-0.571750\pi\)
−0.223504 + 0.974703i \(0.571750\pi\)
\(8\) 0 0
\(9\) 0.209912 2.99265i 0.0699707 0.997549i
\(10\) 0 0
\(11\) −1.14747 1.98747i −0.345974 0.599245i 0.639556 0.768744i \(-0.279118\pi\)
−0.985530 + 0.169500i \(0.945785\pi\)
\(12\) 0 0
\(13\) 2.69631 2.39372i 0.747823 0.663899i
\(14\) 0 0
\(15\) −0.271336 0.0829876i −0.0700586 0.0214273i
\(16\) 0 0
\(17\) 3.94208 + 6.82788i 0.956094 + 1.65600i 0.731845 + 0.681471i \(0.238660\pi\)
0.224249 + 0.974532i \(0.428007\pi\)
\(18\) 0 0
\(19\) 3.06904 + 5.31573i 0.704085 + 1.21951i 0.967021 + 0.254698i \(0.0819760\pi\)
−0.262935 + 0.964813i \(0.584691\pi\)
\(20\) 0 0
\(21\) 1.49829 1.39688i 0.326954 0.304824i
\(22\) 0 0
\(23\) −1.14677 −0.239118 −0.119559 0.992827i \(-0.538148\pi\)
−0.119559 + 0.992827i \(0.538148\pi\)
\(24\) 0 0
\(25\) 2.48658 4.30689i 0.497316 0.861377i
\(26\) 0 0
\(27\) 3.26874 + 4.03922i 0.629070 + 0.777349i
\(28\) 0 0
\(29\) 0.784660 + 1.35907i 0.145708 + 0.252373i 0.929637 0.368477i \(-0.120121\pi\)
−0.783929 + 0.620850i \(0.786787\pi\)
\(30\) 0 0
\(31\) −0.925310 1.60268i −0.166191 0.287851i 0.770887 0.636972i \(-0.219813\pi\)
−0.937077 + 0.349122i \(0.886480\pi\)
\(32\) 0 0
\(33\) 3.80113 + 1.16257i 0.661692 + 0.202377i
\(34\) 0 0
\(35\) −0.0968723 0.167788i −0.0163744 0.0283613i
\(36\) 0 0
\(37\) −5.72598 + 9.91769i −0.941346 + 1.63046i −0.178438 + 0.983951i \(0.557105\pi\)
−0.762907 + 0.646508i \(0.776229\pi\)
\(38\) 0 0
\(39\) −0.588603 + 6.21720i −0.0942519 + 0.995548i
\(40\) 0 0
\(41\) 5.90934 0.922884 0.461442 0.887170i \(-0.347332\pi\)
0.461442 + 0.887170i \(0.347332\pi\)
\(42\) 0 0
\(43\) −1.48613 −0.226633 −0.113317 0.993559i \(-0.536147\pi\)
−0.113317 + 0.993559i \(0.536147\pi\)
\(44\) 0 0
\(45\) 0.441765 0.215346i 0.0658545 0.0321019i
\(46\) 0 0
\(47\) −4.66028 + 8.07184i −0.679771 + 1.17740i 0.295278 + 0.955411i \(0.404588\pi\)
−0.975050 + 0.221987i \(0.928746\pi\)
\(48\) 0 0
\(49\) −5.60128 −0.800183
\(50\) 0 0
\(51\) −13.0586 3.99396i −1.82857 0.559266i
\(52\) 0 0
\(53\) −2.44339 −0.335626 −0.167813 0.985819i \(-0.553670\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(54\) 0 0
\(55\) 0.187977 0.325586i 0.0253468 0.0439020i
\(56\) 0 0
\(57\) −10.1666 3.10943i −1.34660 0.411854i
\(58\) 0 0
\(59\) −6.20503 + 10.7474i −0.807826 + 1.39920i 0.106540 + 0.994308i \(0.466023\pi\)
−0.914366 + 0.404888i \(0.867310\pi\)
\(60\) 0 0
\(61\) 12.8936 1.65085 0.825427 0.564509i \(-0.190934\pi\)
0.825427 + 0.564509i \(0.190934\pi\)
\(62\) 0 0
\(63\) −0.248258 + 3.53933i −0.0312775 + 0.445913i
\(64\) 0 0
\(65\) 0.560454 + 0.186461i 0.0695158 + 0.0231277i
\(66\) 0 0
\(67\) 12.1454 1.48380 0.741899 0.670512i \(-0.233925\pi\)
0.741899 + 0.670512i \(0.233925\pi\)
\(68\) 0 0
\(69\) 1.45280 1.35447i 0.174897 0.163059i
\(70\) 0 0
\(71\) 4.54262 + 7.86805i 0.539110 + 0.933766i 0.998952 + 0.0457654i \(0.0145727\pi\)
−0.459842 + 0.888001i \(0.652094\pi\)
\(72\) 0 0
\(73\) 7.68457 0.899411 0.449705 0.893177i \(-0.351529\pi\)
0.449705 + 0.893177i \(0.351529\pi\)
\(74\) 0 0
\(75\) 1.93678 + 8.39321i 0.223640 + 0.969164i
\(76\) 0 0
\(77\) 1.35708 + 2.35053i 0.154654 + 0.267868i
\(78\) 0 0
\(79\) 6.50531 11.2675i 0.731904 1.26769i −0.224164 0.974551i \(-0.571965\pi\)
0.956068 0.293144i \(-0.0947014\pi\)
\(80\) 0 0
\(81\) −8.91187 1.25639i −0.990208 0.139598i
\(82\) 0 0
\(83\) −0.0150208 + 0.0260167i −0.00164874 + 0.00285571i −0.866849 0.498571i \(-0.833858\pi\)
0.865200 + 0.501427i \(0.167191\pi\)
\(84\) 0 0
\(85\) −0.645787 + 1.11854i −0.0700455 + 0.121322i
\(86\) 0 0
\(87\) −2.59929 0.794987i −0.278673 0.0852315i
\(88\) 0 0
\(89\) 7.59038 13.1469i 0.804578 1.39357i −0.111997 0.993709i \(-0.535725\pi\)
0.916575 0.399862i \(-0.130942\pi\)
\(90\) 0 0
\(91\) −3.18886 + 2.83099i −0.334283 + 0.296769i
\(92\) 0 0
\(93\) 3.06521 + 0.937488i 0.317847 + 0.0972130i
\(94\) 0 0
\(95\) −0.502767 + 0.870818i −0.0515828 + 0.0893440i
\(96\) 0 0
\(97\) 2.74145 0.278352 0.139176 0.990268i \(-0.455555\pi\)
0.139176 + 0.990268i \(0.455555\pi\)
\(98\) 0 0
\(99\) −6.18866 + 3.01677i −0.621984 + 0.303197i
\(100\) 0 0
\(101\) 7.11858 + 12.3297i 0.708326 + 1.22686i 0.965478 + 0.260485i \(0.0838825\pi\)
−0.257152 + 0.966371i \(0.582784\pi\)
\(102\) 0 0
\(103\) 3.14211 + 5.44230i 0.309602 + 0.536246i 0.978275 0.207310i \(-0.0664710\pi\)
−0.668674 + 0.743556i \(0.733138\pi\)
\(104\) 0 0
\(105\) 0.320902 + 0.0981472i 0.0313168 + 0.00957819i
\(106\) 0 0
\(107\) −5.10344 + 8.83941i −0.493368 + 0.854538i −0.999971 0.00764122i \(-0.997568\pi\)
0.506603 + 0.862180i \(0.330901\pi\)
\(108\) 0 0
\(109\) −7.43590 −0.712230 −0.356115 0.934442i \(-0.615899\pi\)
−0.356115 + 0.934442i \(0.615899\pi\)
\(110\) 0 0
\(111\) −4.45992 19.3275i −0.423317 1.83448i
\(112\) 0 0
\(113\) −5.02265 + 8.69948i −0.472491 + 0.818378i −0.999504 0.0314788i \(-0.989978\pi\)
0.527014 + 0.849857i \(0.323312\pi\)
\(114\) 0 0
\(115\) −0.0939313 0.162694i −0.00875914 0.0151713i
\(116\) 0 0
\(117\) −6.59757 8.57158i −0.609946 0.792443i
\(118\) 0 0
\(119\) −4.66219 8.07515i −0.427382 0.740248i
\(120\) 0 0
\(121\) 2.86664 4.96517i 0.260604 0.451379i
\(122\) 0 0
\(123\) −7.48636 + 6.97964i −0.675022 + 0.629333i
\(124\) 0 0
\(125\) 1.63379 0.146131
\(126\) 0 0
\(127\) 8.84715 15.3237i 0.785058 1.35976i −0.143907 0.989591i \(-0.545967\pi\)
0.928965 0.370169i \(-0.120700\pi\)
\(128\) 0 0
\(129\) 1.88273 1.75530i 0.165766 0.154546i
\(130\) 0 0
\(131\) 1.77284 + 3.07065i 0.154894 + 0.268284i 0.933020 0.359823i \(-0.117163\pi\)
−0.778126 + 0.628108i \(0.783830\pi\)
\(132\) 0 0
\(133\) −3.62967 6.28677i −0.314732 0.545132i
\(134\) 0 0
\(135\) −0.305309 + 0.794592i −0.0262768 + 0.0683876i
\(136\) 0 0
\(137\) −0.675667 −0.0577262 −0.0288631 0.999583i \(-0.509189\pi\)
−0.0288631 + 0.999583i \(0.509189\pi\)
\(138\) 0 0
\(139\) −0.645552 + 1.11813i −0.0547550 + 0.0948385i −0.892104 0.451831i \(-0.850771\pi\)
0.837349 + 0.546669i \(0.184104\pi\)
\(140\) 0 0
\(141\) −3.62985 15.7303i −0.305688 1.32473i
\(142\) 0 0
\(143\) −7.85138 2.61213i −0.656565 0.218437i
\(144\) 0 0
\(145\) −0.128542 + 0.222642i −0.0106749 + 0.0184894i
\(146\) 0 0
\(147\) 7.09609 6.61578i 0.585275 0.545661i
\(148\) 0 0
\(149\) −9.69336 + 16.7894i −0.794111 + 1.37544i 0.129291 + 0.991607i \(0.458730\pi\)
−0.923402 + 0.383834i \(0.874603\pi\)
\(150\) 0 0
\(151\) 2.65901 4.60555i 0.216387 0.374794i −0.737313 0.675551i \(-0.763906\pi\)
0.953701 + 0.300757i \(0.0972392\pi\)
\(152\) 0 0
\(153\) 21.2609 10.3640i 1.71884 0.837879i
\(154\) 0 0
\(155\) 0.151583 0.262550i 0.0121755 0.0210885i
\(156\) 0 0
\(157\) −6.44003 11.1545i −0.513971 0.890223i −0.999869 0.0162076i \(-0.994841\pi\)
0.485898 0.874015i \(-0.338493\pi\)
\(158\) 0 0
\(159\) 3.09546 2.88594i 0.245486 0.228870i
\(160\) 0 0
\(161\) 1.35625 0.106888
\(162\) 0 0
\(163\) 9.15301 + 15.8535i 0.716919 + 1.24174i 0.962215 + 0.272292i \(0.0877817\pi\)
−0.245295 + 0.969448i \(0.578885\pi\)
\(164\) 0 0
\(165\) 0.146414 + 0.634497i 0.0113983 + 0.0493956i
\(166\) 0 0
\(167\) 11.7326 0.907897 0.453948 0.891028i \(-0.350015\pi\)
0.453948 + 0.891028i \(0.350015\pi\)
\(168\) 0 0
\(169\) 1.54020 12.9084i 0.118477 0.992957i
\(170\) 0 0
\(171\) 16.5523 8.06871i 1.26579 0.617029i
\(172\) 0 0
\(173\) −11.1193 −0.845387 −0.422693 0.906273i \(-0.638915\pi\)
−0.422693 + 0.906273i \(0.638915\pi\)
\(174\) 0 0
\(175\) −2.94082 + 5.09364i −0.222305 + 0.385043i
\(176\) 0 0
\(177\) −4.83304 20.9445i −0.363274 1.57428i
\(178\) 0 0
\(179\) 9.27406 16.0631i 0.693176 1.20062i −0.277616 0.960692i \(-0.589544\pi\)
0.970792 0.239924i \(-0.0771224\pi\)
\(180\) 0 0
\(181\) −11.4050 −0.847725 −0.423863 0.905727i \(-0.639326\pi\)
−0.423863 + 0.905727i \(0.639326\pi\)
\(182\) 0 0
\(183\) −16.3345 + 15.2289i −1.20748 + 1.12575i
\(184\) 0 0
\(185\) −1.87605 −0.137930
\(186\) 0 0
\(187\) 9.04680 15.6695i 0.661568 1.14587i
\(188\) 0 0
\(189\) −3.86586 4.77708i −0.281200 0.347482i
\(190\) 0 0
\(191\) −15.3679 −1.11198 −0.555991 0.831188i \(-0.687661\pi\)
−0.555991 + 0.831188i \(0.687661\pi\)
\(192\) 0 0
\(193\) 13.5254 0.973583 0.486792 0.873518i \(-0.338167\pi\)
0.486792 + 0.873518i \(0.338167\pi\)
\(194\) 0 0
\(195\) −0.930255 + 0.425742i −0.0666170 + 0.0304880i
\(196\) 0 0
\(197\) 6.58807 11.4109i 0.469380 0.812991i −0.530007 0.847993i \(-0.677811\pi\)
0.999387 + 0.0350026i \(0.0111439\pi\)
\(198\) 0 0
\(199\) −11.9218 20.6492i −0.845117 1.46379i −0.885520 0.464602i \(-0.846197\pi\)
0.0404027 0.999183i \(-0.487136\pi\)
\(200\) 0 0
\(201\) −15.3866 + 14.3452i −1.08529 + 1.01183i
\(202\) 0 0
\(203\) −0.927997 1.60734i −0.0651326 0.112813i
\(204\) 0 0
\(205\) 0.484032 + 0.838367i 0.0338062 + 0.0585541i
\(206\) 0 0
\(207\) −0.240721 + 3.43187i −0.0167312 + 0.238532i
\(208\) 0 0
\(209\) 7.04323 12.1992i 0.487191 0.843839i
\(210\) 0 0
\(211\) −8.79225 −0.605283 −0.302642 0.953104i \(-0.597869\pi\)
−0.302642 + 0.953104i \(0.597869\pi\)
\(212\) 0 0
\(213\) −15.0480 4.60241i −1.03107 0.315352i
\(214\) 0 0
\(215\) −0.121728 0.210840i −0.00830181 0.0143792i
\(216\) 0 0
\(217\) 1.09434 + 1.89545i 0.0742887 + 0.128672i
\(218\) 0 0
\(219\) −9.73534 + 9.07640i −0.657853 + 0.613326i
\(220\) 0 0
\(221\) 26.9731 + 8.97386i 1.81441 + 0.603647i
\(222\) 0 0
\(223\) −3.06781 5.31360i −0.205436 0.355825i 0.744836 0.667248i \(-0.232528\pi\)
−0.950271 + 0.311423i \(0.899194\pi\)
\(224\) 0 0
\(225\) −12.3670 8.34553i −0.824468 0.556369i
\(226\) 0 0
\(227\) 7.31465 0.485490 0.242745 0.970090i \(-0.421952\pi\)
0.242745 + 0.970090i \(0.421952\pi\)
\(228\) 0 0
\(229\) 0.942882 + 1.63312i 0.0623074 + 0.107920i 0.895496 0.445069i \(-0.146821\pi\)
−0.833189 + 0.552988i \(0.813487\pi\)
\(230\) 0 0
\(231\) −4.49550 1.37494i −0.295782 0.0904644i
\(232\) 0 0
\(233\) −1.27460 −0.0835016 −0.0417508 0.999128i \(-0.513294\pi\)
−0.0417508 + 0.999128i \(0.513294\pi\)
\(234\) 0 0
\(235\) −1.52688 −0.0996030
\(236\) 0 0
\(237\) 5.06692 + 21.9580i 0.329132 + 1.42633i
\(238\) 0 0
\(239\) −9.08366 15.7334i −0.587573 1.01771i −0.994549 0.104267i \(-0.966750\pi\)
0.406976 0.913439i \(-0.366583\pi\)
\(240\) 0 0
\(241\) −13.7221 −0.883918 −0.441959 0.897035i \(-0.645716\pi\)
−0.441959 + 0.897035i \(0.645716\pi\)
\(242\) 0 0
\(243\) 12.7741 8.93432i 0.819460 0.573137i
\(244\) 0 0
\(245\) −0.458798 0.794662i −0.0293116 0.0507691i
\(246\) 0 0
\(247\) 20.9994 + 6.98645i 1.33616 + 0.444537i
\(248\) 0 0
\(249\) −0.0116995 0.0507011i −0.000741428 0.00321305i
\(250\) 0 0
\(251\) 6.05088 + 10.4804i 0.381928 + 0.661519i 0.991338 0.131337i \(-0.0419269\pi\)
−0.609410 + 0.792855i \(0.708594\pi\)
\(252\) 0 0
\(253\) 1.31588 + 2.27917i 0.0827286 + 0.143290i
\(254\) 0 0
\(255\) −0.502998 2.17979i −0.0314989 0.136504i
\(256\) 0 0
\(257\) 10.2709 0.640681 0.320340 0.947303i \(-0.396203\pi\)
0.320340 + 0.947303i \(0.396203\pi\)
\(258\) 0 0
\(259\) 6.77197 11.7294i 0.420790 0.728829i
\(260\) 0 0
\(261\) 4.23193 2.06292i 0.261950 0.127692i
\(262\) 0 0
\(263\) −15.4194 26.7072i −0.950802 1.64684i −0.743696 0.668518i \(-0.766929\pi\)
−0.207106 0.978319i \(-0.566404\pi\)
\(264\) 0 0
\(265\) −0.200137 0.346648i −0.0122943 0.0212944i
\(266\) 0 0
\(267\) 5.91207 + 25.6206i 0.361813 + 1.56795i
\(268\) 0 0
\(269\) −3.97010 6.87641i −0.242061 0.419262i 0.719240 0.694762i \(-0.244490\pi\)
−0.961301 + 0.275500i \(0.911157\pi\)
\(270\) 0 0
\(271\) −1.39269 + 2.41221i −0.0845997 + 0.146531i −0.905221 0.424942i \(-0.860294\pi\)
0.820621 + 0.571473i \(0.193628\pi\)
\(272\) 0 0
\(273\) 0.696125 7.35292i 0.0421314 0.445019i
\(274\) 0 0
\(275\) −11.4131 −0.688234
\(276\) 0 0
\(277\) 14.9691 0.899404 0.449702 0.893179i \(-0.351530\pi\)
0.449702 + 0.893179i \(0.351530\pi\)
\(278\) 0 0
\(279\) −4.99050 + 2.43270i −0.298774 + 0.145642i
\(280\) 0 0
\(281\) −3.99438 + 6.91847i −0.238285 + 0.412722i −0.960222 0.279237i \(-0.909919\pi\)
0.721937 + 0.691958i \(0.243252\pi\)
\(282\) 0 0
\(283\) 27.1077 1.61139 0.805694 0.592332i \(-0.201793\pi\)
0.805694 + 0.592332i \(0.201793\pi\)
\(284\) 0 0
\(285\) −0.391600 1.69704i −0.0231964 0.100524i
\(286\) 0 0
\(287\) −6.98883 −0.412537
\(288\) 0 0
\(289\) −22.5799 + 39.1096i −1.32823 + 2.30056i
\(290\) 0 0
\(291\) −3.47305 + 3.23798i −0.203594 + 0.189814i
\(292\) 0 0
\(293\) −2.06161 + 3.57082i −0.120441 + 0.208610i −0.919942 0.392055i \(-0.871764\pi\)
0.799501 + 0.600665i \(0.205097\pi\)
\(294\) 0 0
\(295\) −2.03301 −0.118366
\(296\) 0 0
\(297\) 4.27706 11.1314i 0.248180 0.645910i
\(298\) 0 0
\(299\) −3.09205 + 2.74504i −0.178818 + 0.158750i
\(300\) 0 0
\(301\) 1.75761 0.101307
\(302\) 0 0
\(303\) −23.5812 7.21227i −1.35471 0.414334i
\(304\) 0 0
\(305\) 1.05611 + 1.82923i 0.0604725 + 0.104742i
\(306\) 0 0
\(307\) −1.14030 −0.0650801 −0.0325401 0.999470i \(-0.510360\pi\)
−0.0325401 + 0.999470i \(0.510360\pi\)
\(308\) 0 0
\(309\) −10.4086 3.18347i −0.592127 0.181101i
\(310\) 0 0
\(311\) −4.33348 7.50580i −0.245729 0.425615i 0.716607 0.697477i \(-0.245694\pi\)
−0.962336 + 0.271862i \(0.912361\pi\)
\(312\) 0 0
\(313\) −15.7844 + 27.3395i −0.892189 + 1.54532i −0.0549444 + 0.998489i \(0.517498\pi\)
−0.837245 + 0.546828i \(0.815835\pi\)
\(314\) 0 0
\(315\) −0.522464 + 0.254684i −0.0294375 + 0.0143498i
\(316\) 0 0
\(317\) −14.7648 + 25.5734i −0.829276 + 1.43635i 0.0693313 + 0.997594i \(0.477913\pi\)
−0.898607 + 0.438754i \(0.855420\pi\)
\(318\) 0 0
\(319\) 1.80074 3.11898i 0.100822 0.174629i
\(320\) 0 0
\(321\) −3.97502 17.2261i −0.221864 0.961470i
\(322\) 0 0
\(323\) −24.1968 + 41.9100i −1.34634 + 2.33193i
\(324\) 0 0
\(325\) −3.60488 17.5649i −0.199963 0.974325i
\(326\) 0 0
\(327\) 9.42031 8.78269i 0.520944 0.485684i
\(328\) 0 0
\(329\) 5.51159 9.54635i 0.303864 0.526307i
\(330\) 0 0
\(331\) −10.2310 −0.562346 −0.281173 0.959657i \(-0.590724\pi\)
−0.281173 + 0.959657i \(0.590724\pi\)
\(332\) 0 0
\(333\) 28.4782 + 19.2177i 1.56060 + 1.05312i
\(334\) 0 0
\(335\) 0.994825 + 1.72309i 0.0543531 + 0.0941423i
\(336\) 0 0
\(337\) 5.89434 + 10.2093i 0.321085 + 0.556136i 0.980712 0.195457i \(-0.0626190\pi\)
−0.659627 + 0.751593i \(0.729286\pi\)
\(338\) 0 0
\(339\) −3.91209 16.9534i −0.212476 0.920784i
\(340\) 0 0
\(341\) −2.12352 + 3.67805i −0.114995 + 0.199178i
\(342\) 0 0
\(343\) 14.9032 0.804698
\(344\) 0 0
\(345\) 0.311159 + 0.0951675i 0.0167523 + 0.00512365i
\(346\) 0 0
\(347\) 10.7366 18.5963i 0.576371 0.998304i −0.419520 0.907746i \(-0.637802\pi\)
0.995891 0.0905577i \(-0.0288650\pi\)
\(348\) 0 0
\(349\) −12.0382 20.8507i −0.644388 1.11611i −0.984442 0.175707i \(-0.943779\pi\)
0.340054 0.940406i \(-0.389555\pi\)
\(350\) 0 0
\(351\) 18.4823 + 3.06655i 0.986513 + 0.163680i
\(352\) 0 0
\(353\) 11.2383 + 19.4653i 0.598153 + 1.03603i 0.993094 + 0.117325i \(0.0374318\pi\)
−0.394941 + 0.918707i \(0.629235\pi\)
\(354\) 0 0
\(355\) −0.744168 + 1.28894i −0.0394964 + 0.0684097i
\(356\) 0 0
\(357\) 15.4441 + 4.72355i 0.817389 + 0.249997i
\(358\) 0 0
\(359\) 10.8784 0.574142 0.287071 0.957909i \(-0.407319\pi\)
0.287071 + 0.957909i \(0.407319\pi\)
\(360\) 0 0
\(361\) −9.33797 + 16.1738i −0.491472 + 0.851255i
\(362\) 0 0
\(363\) 2.23280 + 9.67606i 0.117192 + 0.507861i
\(364\) 0 0
\(365\) 0.629439 + 1.09022i 0.0329464 + 0.0570648i
\(366\) 0 0
\(367\) −3.74815 6.49199i −0.195652 0.338879i 0.751462 0.659776i \(-0.229349\pi\)
−0.947114 + 0.320897i \(0.896016\pi\)
\(368\) 0 0
\(369\) 1.24044 17.6846i 0.0645749 0.920622i
\(370\) 0 0
\(371\) 2.88974 0.150028
\(372\) 0 0
\(373\) 1.73616 3.00712i 0.0898950 0.155703i −0.817572 0.575827i \(-0.804680\pi\)
0.907467 + 0.420124i \(0.138014\pi\)
\(374\) 0 0
\(375\) −2.06980 + 1.92971i −0.106884 + 0.0996496i
\(376\) 0 0
\(377\) 5.36892 + 1.78622i 0.276514 + 0.0919952i
\(378\) 0 0
\(379\) −3.64926 + 6.32070i −0.187450 + 0.324673i −0.944399 0.328801i \(-0.893356\pi\)
0.756949 + 0.653473i \(0.226689\pi\)
\(380\) 0 0
\(381\) 6.89097 + 29.8627i 0.353035 + 1.52991i
\(382\) 0 0
\(383\) −4.93410 + 8.54611i −0.252121 + 0.436686i −0.964109 0.265505i \(-0.914461\pi\)
0.711989 + 0.702191i \(0.247795\pi\)
\(384\) 0 0
\(385\) −0.222315 + 0.385062i −0.0113302 + 0.0196246i
\(386\) 0 0
\(387\) −0.311957 + 4.44747i −0.0158577 + 0.226078i
\(388\) 0 0
\(389\) −3.98393 + 6.90036i −0.201993 + 0.349862i −0.949171 0.314762i \(-0.898075\pi\)
0.747177 + 0.664625i \(0.231409\pi\)
\(390\) 0 0
\(391\) −4.52065 7.82999i −0.228619 0.395980i
\(392\) 0 0
\(393\) −5.87277 1.79617i −0.296242 0.0906050i
\(394\) 0 0
\(395\) 2.13139 0.107242
\(396\) 0 0
\(397\) 0.689713 + 1.19462i 0.0346157 + 0.0599562i 0.882814 0.469722i \(-0.155646\pi\)
−0.848199 + 0.529678i \(0.822313\pi\)
\(398\) 0 0
\(399\) 12.0237 + 3.67744i 0.601940 + 0.184102i
\(400\) 0 0
\(401\) −16.3224 −0.815101 −0.407550 0.913183i \(-0.633617\pi\)
−0.407550 + 0.913183i \(0.633617\pi\)
\(402\) 0 0
\(403\) −6.33130 2.10640i −0.315385 0.104927i
\(404\) 0 0
\(405\) −0.551722 1.36725i −0.0274153 0.0679392i
\(406\) 0 0
\(407\) 26.2815 1.30273
\(408\) 0 0
\(409\) −10.6877 + 18.5116i −0.528471 + 0.915338i 0.470978 + 0.882145i \(0.343901\pi\)
−0.999449 + 0.0331934i \(0.989432\pi\)
\(410\) 0 0
\(411\) 0.855982 0.798044i 0.0422225 0.0393646i
\(412\) 0 0
\(413\) 7.33853 12.7107i 0.361106 0.625453i
\(414\) 0 0
\(415\) −0.00492138 −0.000241581
\(416\) 0 0
\(417\) −0.502815 2.17900i −0.0246229 0.106706i
\(418\) 0 0
\(419\) −14.3571 −0.701391 −0.350696 0.936489i \(-0.614055\pi\)
−0.350696 + 0.936489i \(0.614055\pi\)
\(420\) 0 0
\(421\) 11.9163 20.6396i 0.580765 1.00591i −0.414624 0.909993i \(-0.636087\pi\)
0.995389 0.0959216i \(-0.0305798\pi\)
\(422\) 0 0
\(423\) 23.1779 + 15.6409i 1.12695 + 0.760489i
\(424\) 0 0
\(425\) 39.2092 1.90192
\(426\) 0 0
\(427\) −15.2489 −0.737946
\(428\) 0 0
\(429\) 13.0319 5.96420i 0.629186 0.287954i
\(430\) 0 0
\(431\) 8.70791 15.0825i 0.419445 0.726501i −0.576438 0.817141i \(-0.695558\pi\)
0.995884 + 0.0906400i \(0.0288913\pi\)
\(432\) 0 0
\(433\) −11.2829 19.5426i −0.542222 0.939156i −0.998776 0.0494604i \(-0.984250\pi\)
0.456554 0.889696i \(-0.349084\pi\)
\(434\) 0 0
\(435\) −0.100120 0.433882i −0.00480041 0.0208030i
\(436\) 0 0
\(437\) −3.51947 6.09591i −0.168359 0.291607i
\(438\) 0 0
\(439\) −3.95556 6.85124i −0.188789 0.326992i 0.756058 0.654505i \(-0.227123\pi\)
−0.944847 + 0.327513i \(0.893789\pi\)
\(440\) 0 0
\(441\) −1.17578 + 16.7627i −0.0559894 + 0.798222i
\(442\) 0 0
\(443\) 15.4761 26.8054i 0.735292 1.27356i −0.219304 0.975657i \(-0.570379\pi\)
0.954595 0.297906i \(-0.0962881\pi\)
\(444\) 0 0
\(445\) 2.48690 0.117890
\(446\) 0 0
\(447\) −7.55007 32.7190i −0.357106 1.54755i
\(448\) 0 0
\(449\) −8.11874 14.0621i −0.383147 0.663631i 0.608363 0.793659i \(-0.291826\pi\)
−0.991510 + 0.130028i \(0.958493\pi\)
\(450\) 0 0
\(451\) −6.78077 11.7446i −0.319294 0.553034i
\(452\) 0 0
\(453\) 2.07108 + 8.97523i 0.0973079 + 0.421693i
\(454\) 0 0
\(455\) −0.662835 0.220523i −0.0310742 0.0103383i
\(456\) 0 0
\(457\) 9.05061 + 15.6761i 0.423370 + 0.733298i 0.996267 0.0863294i \(-0.0275137\pi\)
−0.572897 + 0.819628i \(0.694180\pi\)
\(458\) 0 0
\(459\) −14.6937 + 38.2415i −0.685842 + 1.78496i
\(460\) 0 0
\(461\) −5.25520 −0.244759 −0.122380 0.992483i \(-0.539053\pi\)
−0.122380 + 0.992483i \(0.539053\pi\)
\(462\) 0 0
\(463\) −0.365876 0.633715i −0.0170037 0.0294513i 0.857398 0.514653i \(-0.172079\pi\)
−0.874402 + 0.485202i \(0.838746\pi\)
\(464\) 0 0
\(465\) 0.118067 + 0.511655i 0.00547522 + 0.0237274i
\(466\) 0 0
\(467\) −14.0792 −0.651509 −0.325755 0.945454i \(-0.605618\pi\)
−0.325755 + 0.945454i \(0.605618\pi\)
\(468\) 0 0
\(469\) −14.3641 −0.663271
\(470\) 0 0
\(471\) 21.3334 + 6.52479i 0.982993 + 0.300646i
\(472\) 0 0
\(473\) 1.70529 + 2.95364i 0.0784092 + 0.135809i
\(474\) 0 0
\(475\) 30.5256 1.40061
\(476\) 0 0
\(477\) −0.512898 + 7.31221i −0.0234840 + 0.334803i
\(478\) 0 0
\(479\) −5.82835 10.0950i −0.266304 0.461252i 0.701600 0.712571i \(-0.252469\pi\)
−0.967904 + 0.251318i \(0.919136\pi\)
\(480\) 0 0
\(481\) 8.30115 + 40.4476i 0.378500 + 1.84425i
\(482\) 0 0
\(483\) −1.71819 + 1.60190i −0.0781806 + 0.0728889i
\(484\) 0 0
\(485\) 0.224551 + 0.388933i 0.0101963 + 0.0176605i
\(486\) 0 0
\(487\) 11.8331 + 20.4956i 0.536211 + 0.928744i 0.999104 + 0.0423299i \(0.0134780\pi\)
−0.462893 + 0.886414i \(0.653189\pi\)
\(488\) 0 0
\(489\) −30.3205 9.27347i −1.37114 0.419361i
\(490\) 0 0
\(491\) 23.7959 1.07390 0.536948 0.843616i \(-0.319577\pi\)
0.536948 + 0.843616i \(0.319577\pi\)
\(492\) 0 0
\(493\) −6.18638 + 10.7151i −0.278620 + 0.482585i
\(494\) 0 0
\(495\) −0.934904 0.630893i −0.0420208 0.0283565i
\(496\) 0 0
\(497\) −5.37244 9.30534i −0.240987 0.417402i
\(498\) 0 0
\(499\) 10.6364 + 18.4229i 0.476153 + 0.824720i 0.999627 0.0273211i \(-0.00869766\pi\)
−0.523474 + 0.852042i \(0.675364\pi\)
\(500\) 0 0
\(501\) −14.8637 + 13.8576i −0.664060 + 0.619113i
\(502\) 0 0
\(503\) −5.15430 8.92750i −0.229819 0.398058i 0.727936 0.685646i \(-0.240480\pi\)
−0.957754 + 0.287588i \(0.907147\pi\)
\(504\) 0 0
\(505\) −1.16616 + 2.01985i −0.0518934 + 0.0898821i
\(506\) 0 0
\(507\) 13.2952 + 18.1725i 0.590460 + 0.807067i
\(508\) 0 0
\(509\) −34.9518 −1.54921 −0.774606 0.632445i \(-0.782052\pi\)
−0.774606 + 0.632445i \(0.782052\pi\)
\(510\) 0 0
\(511\) −9.08834 −0.402044
\(512\) 0 0
\(513\) −11.4395 + 29.7723i −0.505067 + 1.31448i
\(514\) 0 0
\(515\) −0.514738 + 0.891552i −0.0226821 + 0.0392865i
\(516\) 0 0
\(517\) 21.3901 0.940733
\(518\) 0 0
\(519\) 14.0867 13.1333i 0.618339 0.576486i
\(520\) 0 0
\(521\) 16.5589 0.725460 0.362730 0.931894i \(-0.381845\pi\)
0.362730 + 0.931894i \(0.381845\pi\)
\(522\) 0 0
\(523\) −8.46864 + 14.6681i −0.370308 + 0.641392i −0.989613 0.143759i \(-0.954081\pi\)
0.619305 + 0.785151i \(0.287414\pi\)
\(524\) 0 0
\(525\) −2.29057 9.92643i −0.0999689 0.433225i
\(526\) 0 0
\(527\) 7.29529 12.6358i 0.317788 0.550424i
\(528\) 0 0
\(529\) −21.6849 −0.942823
\(530\) 0 0
\(531\) 30.8608 + 20.8255i 1.33924 + 0.903749i
\(532\) 0 0
\(533\) 15.9334 14.1453i 0.690154 0.612702i
\(534\) 0 0
\(535\) −1.67208 −0.0722904
\(536\) 0 0
\(537\) 7.22348 + 31.3037i 0.311716 + 1.35085i
\(538\) 0 0
\(539\) 6.42728 + 11.1324i 0.276843 + 0.479506i
\(540\) 0 0
\(541\) −19.8748 −0.854484 −0.427242 0.904137i \(-0.640515\pi\)
−0.427242 + 0.904137i \(0.640515\pi\)
\(542\) 0 0
\(543\) 14.4486 13.4706i 0.620049 0.578081i
\(544\) 0 0
\(545\) −0.609071 1.05494i −0.0260897 0.0451888i
\(546\) 0 0
\(547\) −10.1868 + 17.6440i −0.435556 + 0.754405i −0.997341 0.0728786i \(-0.976781\pi\)
0.561785 + 0.827283i \(0.310115\pi\)
\(548\) 0 0
\(549\) 2.70652 38.5859i 0.115511 1.64681i
\(550\) 0 0
\(551\) −4.81630 + 8.34208i −0.205181 + 0.355384i
\(552\) 0 0
\(553\) −7.69366 + 13.3258i −0.327168 + 0.566671i
\(554\) 0 0
\(555\) 2.37671 2.21584i 0.100886 0.0940572i
\(556\) 0 0
\(557\) 1.87658 3.25032i 0.0795131 0.137721i −0.823527 0.567277i \(-0.807997\pi\)
0.903040 + 0.429557i \(0.141330\pi\)
\(558\) 0 0
\(559\) −4.00708 + 3.55739i −0.169481 + 0.150461i
\(560\) 0 0
\(561\) 7.04647 + 30.5366i 0.297502 + 1.28926i
\(562\) 0 0
\(563\) 18.2529 31.6149i 0.769267 1.33241i −0.168694 0.985668i \(-0.553955\pi\)
0.937961 0.346741i \(-0.112712\pi\)
\(564\) 0 0
\(565\) −1.64561 −0.0692314
\(566\) 0 0
\(567\) 10.5398 + 1.48589i 0.442632 + 0.0624017i
\(568\) 0 0
\(569\) 3.38857 + 5.86917i 0.142056 + 0.246048i 0.928271 0.371905i \(-0.121295\pi\)
−0.786215 + 0.617953i \(0.787962\pi\)
\(570\) 0 0
\(571\) 6.78237 + 11.7474i 0.283834 + 0.491614i 0.972326 0.233630i \(-0.0750604\pi\)
−0.688492 + 0.725244i \(0.741727\pi\)
\(572\) 0 0
\(573\) 19.4691 18.1513i 0.813334 0.758283i
\(574\) 0 0
\(575\) −2.85153 + 4.93900i −0.118917 + 0.205971i
\(576\) 0 0
\(577\) −16.9396 −0.705207 −0.352603 0.935773i \(-0.614704\pi\)
−0.352603 + 0.935773i \(0.614704\pi\)
\(578\) 0 0
\(579\) −17.1350 + 15.9752i −0.712105 + 0.663906i
\(580\) 0 0
\(581\) 0.0177647 0.0307693i 0.000737003 0.00127653i
\(582\) 0 0
\(583\) 2.80371 + 4.85617i 0.116118 + 0.201122i
\(584\) 0 0
\(585\) 0.675659 1.63810i 0.0279351 0.0677272i
\(586\) 0 0
\(587\) −7.03680 12.1881i −0.290440 0.503057i 0.683474 0.729975i \(-0.260468\pi\)
−0.973914 + 0.226918i \(0.927135\pi\)
\(588\) 0 0
\(589\) 5.67962 9.83739i 0.234025 0.405343i
\(590\) 0 0
\(591\) 5.13139 + 22.2374i 0.211077 + 0.914723i
\(592\) 0 0
\(593\) −7.05390 −0.289669 −0.144835 0.989456i \(-0.546265\pi\)
−0.144835 + 0.989456i \(0.546265\pi\)
\(594\) 0 0
\(595\) 0.763756 1.32286i 0.0313109 0.0542321i
\(596\) 0 0
\(597\) 39.4926 + 12.0787i 1.61633 + 0.494350i
\(598\) 0 0
\(599\) −17.0464 29.5252i −0.696497 1.20637i −0.969673 0.244405i \(-0.921408\pi\)
0.273176 0.961964i \(-0.411926\pi\)
\(600\) 0 0
\(601\) −1.71200 2.96527i −0.0698338 0.120956i 0.828994 0.559257i \(-0.188914\pi\)
−0.898828 + 0.438301i \(0.855580\pi\)
\(602\) 0 0
\(603\) 2.54947 36.3469i 0.103822 1.48016i
\(604\) 0 0
\(605\) 0.939221 0.0381848
\(606\) 0 0
\(607\) 6.61130 11.4511i 0.268344 0.464786i −0.700090 0.714055i \(-0.746857\pi\)
0.968434 + 0.249269i \(0.0801902\pi\)
\(608\) 0 0
\(609\) 3.07411 + 0.940210i 0.124569 + 0.0380992i
\(610\) 0 0
\(611\) 6.75616 + 32.9196i 0.273325 + 1.33178i
\(612\) 0 0
\(613\) −18.3185 + 31.7287i −0.739879 + 1.28151i 0.212670 + 0.977124i \(0.431784\pi\)
−0.952549 + 0.304384i \(0.901549\pi\)
\(614\) 0 0
\(615\) −1.60342 0.490402i −0.0646560 0.0197749i
\(616\) 0 0
\(617\) −6.02525 + 10.4360i −0.242567 + 0.420139i −0.961445 0.274998i \(-0.911323\pi\)
0.718877 + 0.695137i \(0.244656\pi\)
\(618\) 0 0
\(619\) −7.09064 + 12.2814i −0.284997 + 0.493629i −0.972608 0.232450i \(-0.925326\pi\)
0.687611 + 0.726079i \(0.258659\pi\)
\(620\) 0 0
\(621\) −3.74849 4.63205i −0.150422 0.185878i
\(622\) 0 0
\(623\) −8.97694 + 15.5485i −0.359654 + 0.622938i
\(624\) 0 0
\(625\) −12.2991 21.3026i −0.491963 0.852106i
\(626\) 0 0
\(627\) 5.48591 + 23.7737i 0.219086 + 0.949431i
\(628\) 0 0
\(629\) −90.2891 −3.60006
\(630\) 0 0
\(631\) 0.0480189 + 0.0831713i 0.00191160 + 0.00331100i 0.866980 0.498344i \(-0.166058\pi\)
−0.865068 + 0.501655i \(0.832725\pi\)
\(632\) 0 0
\(633\) 11.1386 10.3847i 0.442721 0.412755i
\(634\) 0 0
\(635\) 2.89866 0.115030
\(636\) 0 0
\(637\) −15.1028 + 13.4079i −0.598395 + 0.531240i
\(638\) 0 0
\(639\) 24.4999 11.9429i 0.969199 0.472453i
\(640\) 0 0
\(641\) 41.2230 1.62821 0.814106 0.580716i \(-0.197227\pi\)
0.814106 + 0.580716i \(0.197227\pi\)
\(642\) 0 0
\(643\) 12.7277 22.0450i 0.501931 0.869369i −0.498067 0.867139i \(-0.665957\pi\)
0.999998 0.00223082i \(-0.000710091\pi\)
\(644\) 0 0
\(645\) 0.403241 + 0.123331i 0.0158776 + 0.00485613i
\(646\) 0 0
\(647\) 0.857829 1.48580i 0.0337248 0.0584130i −0.848670 0.528922i \(-0.822596\pi\)
0.882395 + 0.470509i \(0.155930\pi\)
\(648\) 0 0
\(649\) 28.4803 1.11795
\(650\) 0 0
\(651\) −3.62514 1.10874i −0.142081 0.0434551i
\(652\) 0 0
\(653\) 12.6813 0.496259 0.248129 0.968727i \(-0.420184\pi\)
0.248129 + 0.968727i \(0.420184\pi\)
\(654\) 0 0
\(655\) −0.290425 + 0.503032i −0.0113479 + 0.0196551i
\(656\) 0 0
\(657\) 1.61308 22.9972i 0.0629324 0.897206i
\(658\) 0 0
\(659\) −6.36837 −0.248076 −0.124038 0.992277i \(-0.539585\pi\)
−0.124038 + 0.992277i \(0.539585\pi\)
\(660\) 0 0
\(661\) −16.0940 −0.625985 −0.312992 0.949756i \(-0.601331\pi\)
−0.312992 + 0.949756i \(0.601331\pi\)
\(662\) 0 0
\(663\) −44.7706 + 20.4898i −1.73875 + 0.795756i
\(664\) 0 0
\(665\) 0.594609 1.02989i 0.0230580 0.0399376i
\(666\) 0 0
\(667\) −0.899823 1.55854i −0.0348413 0.0603469i
\(668\) 0 0
\(669\) 10.1625 + 3.10818i 0.392905 + 0.120169i
\(670\) 0 0
\(671\) −14.7950 25.6256i −0.571153 0.989266i
\(672\) 0 0
\(673\) −4.21806 7.30589i −0.162594 0.281621i 0.773204 0.634157i \(-0.218653\pi\)
−0.935798 + 0.352536i \(0.885319\pi\)
\(674\) 0 0
\(675\) 25.5245 4.03425i 0.982437 0.155278i
\(676\) 0 0
\(677\) −1.55850 + 2.69939i −0.0598978 + 0.103746i −0.894419 0.447229i \(-0.852411\pi\)
0.834522 + 0.550975i \(0.185744\pi\)
\(678\) 0 0
\(679\) −3.24224 −0.124426
\(680\) 0 0
\(681\) −9.26670 + 8.63948i −0.355101 + 0.331065i
\(682\) 0 0
\(683\) 3.44327 + 5.96391i 0.131753 + 0.228203i 0.924352 0.381540i \(-0.124606\pi\)
−0.792599 + 0.609743i \(0.791273\pi\)
\(684\) 0 0
\(685\) −0.0553436 0.0958579i −0.00211457 0.00366254i
\(686\) 0 0
\(687\) −3.12342 0.955291i −0.119166 0.0364466i
\(688\) 0 0
\(689\) −6.58815 + 5.84880i −0.250989 + 0.222821i
\(690\) 0 0
\(691\) −13.5109 23.4015i −0.513978 0.890236i −0.999869 0.0162163i \(-0.994838\pi\)
0.485891 0.874020i \(-0.338495\pi\)
\(692\) 0 0
\(693\) 7.31917 3.56785i 0.278032 0.135532i
\(694\) 0 0
\(695\) −0.211507 −0.00802294
\(696\) 0 0
\(697\) 23.2951 + 40.3483i 0.882364 + 1.52830i
\(698\) 0 0
\(699\) 1.61475 1.50545i 0.0610753 0.0569414i
\(700\) 0 0
\(701\) 40.7031 1.53733 0.768667 0.639649i \(-0.220920\pi\)
0.768667 + 0.639649i \(0.220920\pi\)
\(702\) 0 0
\(703\) −70.2930 −2.65115
\(704\) 0 0
\(705\) 1.93436 1.80343i 0.0728523 0.0679213i
\(706\) 0 0
\(707\) −8.41896 14.5821i −0.316628 0.548415i
\(708\) 0 0
\(709\) −22.8066 −0.856518 −0.428259 0.903656i \(-0.640873\pi\)
−0.428259 + 0.903656i \(0.640873\pi\)
\(710\) 0 0
\(711\) −32.3542 21.8333i −1.21338 0.818812i
\(712\) 0 0
\(713\) 1.06112 + 1.83791i 0.0397391 + 0.0688302i
\(714\) 0 0
\(715\) −0.272516 1.32784i −0.0101915 0.0496586i
\(716\) 0 0
\(717\) 30.0908 + 9.20321i 1.12376 + 0.343700i
\(718\) 0 0
\(719\) 3.49446 + 6.05258i 0.130321 + 0.225723i 0.923800 0.382874i \(-0.125066\pi\)
−0.793479 + 0.608598i \(0.791732\pi\)
\(720\) 0 0
\(721\) −3.71609 6.43646i −0.138395 0.239706i
\(722\) 0 0
\(723\) 17.3841 16.2074i 0.646522 0.602761i
\(724\) 0 0
\(725\) 7.80448 0.289851
\(726\) 0 0
\(727\) −13.2103 + 22.8809i −0.489943 + 0.848606i −0.999933 0.0115742i \(-0.996316\pi\)
0.509990 + 0.860180i \(0.329649\pi\)
\(728\) 0 0
\(729\) −5.63063 + 26.4064i −0.208542 + 0.978013i
\(730\) 0 0
\(731\) −5.85845 10.1471i −0.216683 0.375305i
\(732\) 0 0
\(733\) −5.54271 9.60025i −0.204725 0.354593i 0.745320 0.666706i \(-0.232297\pi\)
−0.950045 + 0.312113i \(0.898963\pi\)
\(734\) 0 0
\(735\) 1.51983 + 0.464837i 0.0560597 + 0.0171458i
\(736\) 0 0
\(737\) −13.9365 24.1386i −0.513356 0.889158i
\(738\) 0 0
\(739\) 4.41564 7.64811i 0.162432 0.281340i −0.773308 0.634030i \(-0.781400\pi\)
0.935740 + 0.352690i \(0.114733\pi\)
\(740\) 0 0
\(741\) −34.8554 + 15.9520i −1.28044 + 0.586010i
\(742\) 0 0
\(743\) 40.5105 1.48619 0.743093 0.669189i \(-0.233358\pi\)
0.743093 + 0.669189i \(0.233358\pi\)
\(744\) 0 0
\(745\) −3.17592 −0.116357
\(746\) 0 0
\(747\) 0.0747059 + 0.0504131i 0.00273334 + 0.00184452i
\(748\) 0 0
\(749\) 6.03570 10.4541i 0.220540 0.381986i
\(750\) 0 0
\(751\) 41.6133 1.51849 0.759245 0.650805i \(-0.225568\pi\)
0.759245 + 0.650805i \(0.225568\pi\)
\(752\) 0 0
\(753\) −20.0443 6.13051i −0.730455 0.223408i
\(754\) 0 0
\(755\) 0.871194 0.0317060
\(756\) 0 0
\(757\) −1.58406 + 2.74368i −0.0575738 + 0.0997207i −0.893376 0.449310i \(-0.851670\pi\)
0.835802 + 0.549031i \(0.185003\pi\)
\(758\) 0 0
\(759\) −4.35902 1.33320i −0.158222 0.0483920i
\(760\) 0 0
\(761\) −0.937881 + 1.62446i −0.0339982 + 0.0588866i −0.882524 0.470268i \(-0.844157\pi\)
0.848526 + 0.529154i \(0.177491\pi\)
\(762\) 0 0
\(763\) 8.79425 0.318373
\(764\) 0 0
\(765\) 3.21183 + 2.16741i 0.116124 + 0.0783628i
\(766\) 0 0
\(767\) 8.99564 + 43.8316i 0.324814 + 1.58267i
\(768\) 0 0
\(769\) −4.43029 −0.159760 −0.0798801 0.996804i \(-0.525454\pi\)
−0.0798801 + 0.996804i \(0.525454\pi\)
\(770\) 0 0
\(771\) −13.0119 + 12.1312i −0.468611 + 0.436893i
\(772\) 0 0
\(773\) −10.0735 17.4478i −0.362319 0.627554i 0.626023 0.779804i \(-0.284681\pi\)
−0.988342 + 0.152250i \(0.951348\pi\)
\(774\) 0 0
\(775\) −9.20344 −0.330597
\(776\) 0 0
\(777\) 5.27463 + 22.8581i 0.189226 + 0.820030i
\(778\) 0 0
\(779\) 18.1360 + 31.4125i 0.649789 + 1.12547i
\(780\) 0 0
\(781\) 10.4250 18.0567i 0.373036 0.646118i
\(782\) 0 0
\(783\) −2.92474 + 7.61187i −0.104522 + 0.272026i
\(784\) 0 0
\(785\) 1.05500 1.82731i 0.0376546 0.0652196i
\(786\) 0 0
\(787\) −14.7573 + 25.5603i −0.526040 + 0.911128i 0.473500 + 0.880794i \(0.342990\pi\)
−0.999540 + 0.0303338i \(0.990343\pi\)
\(788\) 0 0
\(789\) 51.0788 + 15.6223i 1.81845 + 0.556170i
\(790\) 0 0
\(791\) 5.94015 10.2886i 0.211208 0.365822i
\(792\) 0 0
\(793\) 34.7651 30.8636i 1.23455 1.09600i
\(794\) 0 0
\(795\) 0.662980 + 0.202771i 0.0235135 + 0.00719155i
\(796\) 0 0
\(797\) 6.91905 11.9841i 0.245085 0.424500i −0.717070 0.697001i \(-0.754517\pi\)
0.962156 + 0.272501i \(0.0878507\pi\)
\(798\) 0 0
\(799\) −73.4847 −2.59970
\(800\) 0 0
\(801\) −37.7508 25.4750i −1.33386 0.900115i
\(802\) 0 0
\(803\) −8.81778 15.2729i −0.311173 0.538967i
\(804\) 0 0
\(805\) 0.111090 + 0.192414i 0.00391541 + 0.00678169i
\(806\) 0 0
\(807\) 13.1515 + 4.02235i 0.462953 + 0.141593i
\(808\) 0 0
\(809\) 11.0274 19.1000i 0.387702 0.671520i −0.604438 0.796652i \(-0.706602\pi\)
0.992140 + 0.125132i \(0.0399356\pi\)
\(810\) 0 0
\(811\) 13.8289 0.485599 0.242799 0.970076i \(-0.421934\pi\)
0.242799 + 0.970076i \(0.421934\pi\)
\(812\) 0 0
\(813\) −1.08475 4.70088i −0.0380439 0.164867i
\(814\) 0 0
\(815\) −1.49944 + 2.59710i −0.0525230 + 0.0909726i
\(816\) 0 0
\(817\) −4.56099 7.89987i −0.159569 0.276382i
\(818\) 0 0
\(819\) 7.80278 + 10.1374i 0.272651 + 0.354229i
\(820\) 0 0
\(821\) −22.6616 39.2511i −0.790896 1.36987i −0.925412 0.378961i \(-0.876281\pi\)
0.134516 0.990911i \(-0.457052\pi\)
\(822\) 0 0
\(823\) −21.4007 + 37.0670i −0.745980 + 1.29207i 0.203756 + 0.979022i \(0.434685\pi\)
−0.949736 + 0.313053i \(0.898648\pi\)
\(824\) 0 0
\(825\) 14.4589 13.4802i 0.503393 0.469321i
\(826\) 0 0
\(827\) −50.1954 −1.74546 −0.872732 0.488199i \(-0.837654\pi\)
−0.872732 + 0.488199i \(0.837654\pi\)
\(828\) 0 0
\(829\) 23.8288 41.2727i 0.827609 1.43346i −0.0722999 0.997383i \(-0.523034\pi\)
0.899909 0.436078i \(-0.143633\pi\)
\(830\) 0 0
\(831\) −18.9638 + 17.6803i −0.657848 + 0.613321i
\(832\) 0 0
\(833\) −22.0807 38.2449i −0.765050 1.32511i
\(834\) 0 0
\(835\) 0.961013 + 1.66452i 0.0332572 + 0.0576032i
\(836\) 0 0
\(837\) 3.44900 8.97630i 0.119215 0.310266i
\(838\) 0 0
\(839\) −41.3824 −1.42868 −0.714340 0.699799i \(-0.753273\pi\)
−0.714340 + 0.699799i \(0.753273\pi\)
\(840\) 0 0
\(841\) 13.2686 22.9819i 0.457539 0.792480i
\(842\) 0 0
\(843\) −3.11119 13.4826i −0.107155 0.464367i
\(844\) 0 0
\(845\) 1.95750 0.838813i 0.0673399 0.0288561i
\(846\) 0 0
\(847\) −3.39030 + 5.87218i −0.116492 + 0.201770i
\(848\) 0 0
\(849\) −34.3419 + 32.0175i −1.17861 + 1.09884i
\(850\) 0 0
\(851\) 6.56638 11.3733i 0.225092 0.389872i
\(852\) 0 0
\(853\) 16.3296 28.2836i 0.559113 0.968413i −0.438457 0.898752i \(-0.644475\pi\)
0.997571 0.0696609i \(-0.0221917\pi\)
\(854\) 0 0
\(855\) 2.50051 + 1.68740i 0.0855157 + 0.0577078i
\(856\) 0 0
\(857\) 26.1956 45.3722i 0.894826 1.54988i 0.0608053 0.998150i \(-0.480633\pi\)
0.834020 0.551734i \(-0.186034\pi\)
\(858\) 0 0
\(859\) 17.0308 + 29.4983i 0.581085 + 1.00647i 0.995351 + 0.0963126i \(0.0307049\pi\)
−0.414266 + 0.910156i \(0.635962\pi\)
\(860\) 0 0
\(861\) 8.85392 8.25464i 0.301741 0.281317i
\(862\) 0 0
\(863\) 53.1301 1.80857 0.904286 0.426928i \(-0.140404\pi\)
0.904286 + 0.426928i \(0.140404\pi\)
\(864\) 0 0
\(865\) −0.910779 1.57752i −0.0309674 0.0536371i
\(866\) 0 0
\(867\) −17.5873 76.2163i −0.597296 2.58844i
\(868\) 0 0
\(869\) −29.8585 −1.01288
\(870\) 0 0
\(871\) 32.7478 29.0727i 1.10962 0.985092i
\(872\) 0 0
\(873\) 0.575463 8.20418i 0.0194765 0.277669i
\(874\) 0 0
\(875\) −1.93225 −0.0653219
\(876\) 0 0
\(877\) 12.0497 20.8707i 0.406889 0.704753i −0.587650 0.809115i \(-0.699947\pi\)
0.994539 + 0.104362i \(0.0332802\pi\)
\(878\) 0 0
\(879\) −1.60577 6.95878i −0.0541614 0.234714i
\(880\) 0 0
\(881\) −11.0492 + 19.1378i −0.372258 + 0.644770i −0.989913 0.141680i \(-0.954750\pi\)
0.617654 + 0.786450i \(0.288083\pi\)
\(882\) 0 0
\(883\) −39.3399 −1.32389 −0.661947 0.749551i \(-0.730270\pi\)
−0.661947 + 0.749551i \(0.730270\pi\)
\(884\) 0 0
\(885\) 2.57555 2.40122i 0.0865762 0.0807162i
\(886\) 0 0
\(887\) 15.9591 0.535855 0.267927 0.963439i \(-0.413661\pi\)
0.267927 + 0.963439i \(0.413661\pi\)
\(888\) 0 0
\(889\) −10.4633 + 18.1230i −0.350928 + 0.607825i
\(890\) 0 0
\(891\) 7.72905 + 19.1537i 0.258933 + 0.641675i
\(892\) 0 0
\(893\) −57.2102 −1.91447
\(894\) 0 0
\(895\) 3.03854 0.101567
\(896\) 0 0
\(897\) 0.674991 7.12969i 0.0225373 0.238053i
\(898\) 0 0
\(899\) 1.45211 2.51512i 0.0484305 0.0838841i
\(900\) 0 0
\(901\) −9.63204 16.6832i −0.320890 0.555797i
\(902\) 0 0
\(903\) −2.22666 + 2.07595i −0.0740987 + 0.0690832i
\(904\) 0 0
\(905\) −0.934176 1.61804i −0.0310531 0.0537855i
\(906\) 0 0
\(907\) −1.04964 1.81803i −0.0348528 0.0603669i 0.848073 0.529880i \(-0.177763\pi\)
−0.882926 + 0.469513i \(0.844430\pi\)
\(908\) 0 0
\(909\) 38.3929 18.7152i 1.27341 0.620746i
\(910\) 0 0
\(911\) 13.9916 24.2342i 0.463563 0.802915i −0.535572 0.844489i \(-0.679904\pi\)
0.999135 + 0.0415744i \(0.0132374\pi\)
\(912\) 0 0
\(913\) 0.0689433 0.00228169
\(914\) 0 0
\(915\) −3.49849 1.07001i −0.115657 0.0353733i
\(916\) 0 0
\(917\) −2.09670 3.63158i −0.0692390 0.119925i
\(918\) 0 0
\(919\) 11.9398 + 20.6803i 0.393857 + 0.682180i 0.992955 0.118496i \(-0.0378073\pi\)
−0.599098 + 0.800676i \(0.704474\pi\)
\(920\) 0 0
\(921\) 1.44461 1.34683i 0.0476014 0.0443794i
\(922\) 0 0
\(923\) 31.0823 + 10.3410i 1.02308 + 0.340377i
\(924\) 0 0
\(925\) 28.4762 + 49.3223i 0.936293 + 1.62171i
\(926\) 0 0
\(927\) 16.9464 8.26083i 0.556594 0.271321i
\(928\) 0 0
\(929\) 57.0357 1.87128 0.935641 0.352954i \(-0.114823\pi\)
0.935641 + 0.352954i \(0.114823\pi\)
\(930\) 0 0
\(931\) −17.1905 29.7749i −0.563397 0.975832i
\(932\) 0 0
\(933\) 14.3552 + 4.39051i 0.469968 + 0.143739i
\(934\) 0 0
\(935\) 2.96408 0.0969357
\(936\) 0 0
\(937\) 10.0024 0.326765 0.163383 0.986563i \(-0.447759\pi\)
0.163383 + 0.986563i \(0.447759\pi\)
\(938\) 0 0
\(939\) −12.2944 53.2788i −0.401211 1.73869i
\(940\) 0 0
\(941\) 4.14330 + 7.17640i 0.135068 + 0.233944i 0.925623 0.378446i \(-0.123542\pi\)
−0.790556 + 0.612390i \(0.790208\pi\)
\(942\) 0 0
\(943\) −6.77665 −0.220678
\(944\) 0 0
\(945\) 0.361081 0.939744i 0.0117460 0.0305699i
\(946\) 0 0
\(947\) −11.7790 20.4018i −0.382766 0.662971i 0.608690 0.793408i \(-0.291695\pi\)
−0.991457 + 0.130437i \(0.958362\pi\)
\(948\) 0 0
\(949\) 20.7200 18.3947i 0.672600 0.597118i
\(950\) 0 0
\(951\) −11.5002 49.8372i −0.372919 1.61608i
\(952\) 0 0
\(953\) −0.311414 0.539385i −0.0100877 0.0174724i 0.860937 0.508711i \(-0.169878\pi\)
−0.871025 + 0.491238i \(0.836544\pi\)
\(954\) 0 0
\(955\) −1.25878 2.18027i −0.0407331 0.0705518i
\(956\) 0 0
\(957\) 1.40258 + 6.07823i 0.0453390 + 0.196481i
\(958\) 0 0
\(959\) 0.799094 0.0258041
\(960\) 0 0
\(961\) 13.7876 23.8808i 0.444761 0.770349i
\(962\) 0 0
\(963\) 25.3820 + 17.1283i 0.817923 + 0.551951i
\(964\) 0 0
\(965\) 1.10786 + 1.91888i 0.0356634 + 0.0617708i
\(966\) 0 0
\(967\) 6.51911 + 11.2914i 0.209641 + 0.363108i 0.951601 0.307335i \(-0.0994373\pi\)
−0.741961 + 0.670443i \(0.766104\pi\)
\(968\) 0 0
\(969\) −18.8466 81.6737i −0.605441 2.62374i
\(970\) 0 0
\(971\) −19.1696 33.2028i −0.615183 1.06553i −0.990352 0.138572i \(-0.955749\pi\)
0.375169 0.926956i \(-0.377585\pi\)
\(972\) 0 0
\(973\) 0.763478 1.32238i 0.0244760 0.0423936i
\(974\) 0 0
\(975\) 25.3132 + 17.9946i 0.810670 + 0.576289i
\(976\) 0 0
\(977\) −33.2040 −1.06229 −0.531145 0.847281i \(-0.678238\pi\)
−0.531145 + 0.847281i \(0.678238\pi\)
\(978\) 0 0
\(979\) −34.8388 −1.11345
\(980\) 0 0
\(981\) −1.56089 + 22.2530i −0.0498352 + 0.710484i
\(982\) 0 0
\(983\) −19.9244 + 34.5101i −0.635491 + 1.10070i 0.350920 + 0.936405i \(0.385869\pi\)
−0.986411 + 0.164297i \(0.947464\pi\)
\(984\) 0 0
\(985\) 2.15850 0.0687756
\(986\) 0 0
\(987\) 4.29293 + 18.6038i 0.136645 + 0.592166i
\(988\) 0 0
\(989\) 1.70425 0.0541920
\(990\) 0 0
\(991\) 6.71711 11.6344i 0.213376 0.369578i −0.739393 0.673274i \(-0.764887\pi\)
0.952769 + 0.303696i \(0.0982208\pi\)
\(992\) 0 0
\(993\) 12.9613 12.0840i 0.411315 0.383475i
\(994\) 0 0
\(995\) 1.95303 3.38274i 0.0619151 0.107240i
\(996\) 0 0
\(997\) 27.5085 0.871202 0.435601 0.900140i \(-0.356536\pi\)
0.435601 + 0.900140i \(0.356536\pi\)
\(998\) 0 0
\(999\) −58.7765 + 9.28988i −1.85961 + 0.293919i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.529.4 yes 40
3.2 odd 2 2808.2.s.f.1153.11 40
9.4 even 3 936.2.r.f.841.10 yes 40
9.5 odd 6 2808.2.r.f.2089.11 40
13.3 even 3 936.2.r.f.601.10 40
39.29 odd 6 2808.2.r.f.289.11 40
117.68 odd 6 2808.2.s.f.1225.11 40
117.94 even 3 inner 936.2.s.f.913.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.10 40 13.3 even 3
936.2.r.f.841.10 yes 40 9.4 even 3
936.2.s.f.529.4 yes 40 1.1 even 1 trivial
936.2.s.f.913.4 yes 40 117.94 even 3 inner
2808.2.r.f.289.11 40 39.29 odd 6
2808.2.r.f.2089.11 40 9.5 odd 6
2808.2.s.f.1153.11 40 3.2 odd 2
2808.2.s.f.1225.11 40 117.68 odd 6