Properties

Label 936.2.r.f.841.10
Level $936$
Weight $2$
Character 936.841
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(601,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.r (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 841.10
Character \(\chi\) \(=\) 936.841
Dual form 936.2.r.f.601.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.389445 + 1.68770i) q^{3} +(0.0819095 - 0.141871i) q^{5} +(0.591337 - 1.02423i) q^{7} +(-2.69666 - 1.31453i) q^{9} +2.29493 q^{11} +(-3.42118 - 1.13821i) q^{13} +(0.207537 + 0.193490i) q^{15} +(3.94208 + 6.82788i) q^{17} +(3.06904 + 5.31573i) q^{19} +(1.49829 + 1.39688i) q^{21} +(0.573384 + 0.993131i) q^{23} +(2.48658 + 4.30689i) q^{25} +(3.26874 - 4.03922i) q^{27} -1.56932 q^{29} +(-0.925310 + 1.60268i) q^{31} +(-0.893751 + 3.87316i) q^{33} +(-0.0968723 - 0.167788i) q^{35} +(-5.72598 + 9.91769i) q^{37} +(3.25333 - 5.33065i) q^{39} +(-2.95467 - 5.11764i) q^{41} +(0.743066 - 1.28703i) q^{43} +(-0.407378 + 0.274907i) q^{45} +(-4.66028 - 8.07184i) q^{47} +(2.80064 + 4.85085i) q^{49} +(-13.0586 + 3.99396i) q^{51} -2.44339 q^{53} +(0.187977 - 0.325586i) q^{55} +(-10.1666 + 3.10943i) q^{57} +12.4101 q^{59} +(-6.44679 + 11.1662i) q^{61} +(-2.94102 + 1.98466i) q^{63} +(-0.441707 + 0.392137i) q^{65} +(-6.07271 - 10.5182i) q^{67} +(-1.89941 + 0.580930i) q^{69} +(4.54262 + 7.86805i) q^{71} +7.68457 q^{73} +(-8.23712 + 2.51931i) q^{75} +(1.35708 - 2.35053i) q^{77} +(6.50531 + 11.2675i) q^{79} +(5.54400 + 7.08972i) q^{81} +(-0.0150208 - 0.0260167i) q^{83} +1.29157 q^{85} +(0.611164 - 2.64854i) q^{87} +(7.59038 - 13.1469i) q^{89} +(-3.18886 + 2.83099i) q^{91} +(-2.34449 - 2.18580i) q^{93} +1.00553 q^{95} +(-1.37072 + 2.37416i) q^{97} +(-6.18866 - 3.01677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{5} + 7 q^{7} + 6 q^{9} + 11 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} - q^{23} - 23 q^{25} - 3 q^{27} - 24 q^{29} + 8 q^{31} + 4 q^{33} - 12 q^{35} + 18 q^{37} + 6 q^{39} - 3 q^{41} + 8 q^{43}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.389445 + 1.68770i −0.224846 + 0.974394i
\(4\) 0 0
\(5\) 0.0819095 0.141871i 0.0366311 0.0634469i −0.847129 0.531388i \(-0.821671\pi\)
0.883760 + 0.467941i \(0.155004\pi\)
\(6\) 0 0
\(7\) 0.591337 1.02423i 0.223504 0.387121i −0.732365 0.680912i \(-0.761584\pi\)
0.955870 + 0.293791i \(0.0949170\pi\)
\(8\) 0 0
\(9\) −2.69666 1.31453i −0.898888 0.438178i
\(10\) 0 0
\(11\) 2.29493 0.691948 0.345974 0.938244i \(-0.387548\pi\)
0.345974 + 0.938244i \(0.387548\pi\)
\(12\) 0 0
\(13\) −3.42118 1.13821i −0.948864 0.315684i
\(14\) 0 0
\(15\) 0.207537 + 0.193490i 0.0535859 + 0.0499589i
\(16\) 0 0
\(17\) 3.94208 + 6.82788i 0.956094 + 1.65600i 0.731845 + 0.681471i \(0.238660\pi\)
0.224249 + 0.974532i \(0.428007\pi\)
\(18\) 0 0
\(19\) 3.06904 + 5.31573i 0.704085 + 1.21951i 0.967021 + 0.254698i \(0.0819760\pi\)
−0.262935 + 0.964813i \(0.584691\pi\)
\(20\) 0 0
\(21\) 1.49829 + 1.39688i 0.326954 + 0.304824i
\(22\) 0 0
\(23\) 0.573384 + 0.993131i 0.119559 + 0.207082i 0.919593 0.392873i \(-0.128519\pi\)
−0.800034 + 0.599955i \(0.795185\pi\)
\(24\) 0 0
\(25\) 2.48658 + 4.30689i 0.497316 + 0.861377i
\(26\) 0 0
\(27\) 3.26874 4.03922i 0.629070 0.777349i
\(28\) 0 0
\(29\) −1.56932 −0.291415 −0.145708 0.989328i \(-0.546546\pi\)
−0.145708 + 0.989328i \(0.546546\pi\)
\(30\) 0 0
\(31\) −0.925310 + 1.60268i −0.166191 + 0.287851i −0.937077 0.349122i \(-0.886480\pi\)
0.770887 + 0.636972i \(0.219813\pi\)
\(32\) 0 0
\(33\) −0.893751 + 3.87316i −0.155582 + 0.674231i
\(34\) 0 0
\(35\) −0.0968723 0.167788i −0.0163744 0.0283613i
\(36\) 0 0
\(37\) −5.72598 + 9.91769i −0.941346 + 1.63046i −0.178438 + 0.983951i \(0.557105\pi\)
−0.762907 + 0.646508i \(0.776229\pi\)
\(38\) 0 0
\(39\) 3.25333 5.33065i 0.520949 0.853588i
\(40\) 0 0
\(41\) −2.95467 5.11764i −0.461442 0.799241i 0.537591 0.843206i \(-0.319334\pi\)
−0.999033 + 0.0439645i \(0.986001\pi\)
\(42\) 0 0
\(43\) 0.743066 1.28703i 0.113317 0.196270i −0.803789 0.594914i \(-0.797186\pi\)
0.917106 + 0.398644i \(0.130519\pi\)
\(44\) 0 0
\(45\) −0.407378 + 0.274907i −0.0607283 + 0.0409807i
\(46\) 0 0
\(47\) −4.66028 8.07184i −0.679771 1.17740i −0.975050 0.221987i \(-0.928746\pi\)
0.295278 0.955411i \(-0.404588\pi\)
\(48\) 0 0
\(49\) 2.80064 + 4.85085i 0.400092 + 0.692979i
\(50\) 0 0
\(51\) −13.0586 + 3.99396i −1.82857 + 0.559266i
\(52\) 0 0
\(53\) −2.44339 −0.335626 −0.167813 0.985819i \(-0.553670\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(54\) 0 0
\(55\) 0.187977 0.325586i 0.0253468 0.0439020i
\(56\) 0 0
\(57\) −10.1666 + 3.10943i −1.34660 + 0.411854i
\(58\) 0 0
\(59\) 12.4101 1.61565 0.807826 0.589420i \(-0.200644\pi\)
0.807826 + 0.589420i \(0.200644\pi\)
\(60\) 0 0
\(61\) −6.44679 + 11.1662i −0.825427 + 1.42968i 0.0761655 + 0.997095i \(0.475732\pi\)
−0.901592 + 0.432586i \(0.857601\pi\)
\(62\) 0 0
\(63\) −2.94102 + 1.98466i −0.370533 + 0.250044i
\(64\) 0 0
\(65\) −0.441707 + 0.392137i −0.0547871 + 0.0486386i
\(66\) 0 0
\(67\) −6.07271 10.5182i −0.741899 1.28501i −0.951630 0.307248i \(-0.900592\pi\)
0.209731 0.977759i \(-0.432741\pi\)
\(68\) 0 0
\(69\) −1.89941 + 0.580930i −0.228662 + 0.0699358i
\(70\) 0 0
\(71\) 4.54262 + 7.86805i 0.539110 + 0.933766i 0.998952 + 0.0457654i \(0.0145727\pi\)
−0.459842 + 0.888001i \(0.652094\pi\)
\(72\) 0 0
\(73\) 7.68457 0.899411 0.449705 0.893177i \(-0.351529\pi\)
0.449705 + 0.893177i \(0.351529\pi\)
\(74\) 0 0
\(75\) −8.23712 + 2.51931i −0.951141 + 0.290905i
\(76\) 0 0
\(77\) 1.35708 2.35053i 0.154654 0.267868i
\(78\) 0 0
\(79\) 6.50531 + 11.2675i 0.731904 + 1.26769i 0.956068 + 0.293144i \(0.0947014\pi\)
−0.224164 + 0.974551i \(0.571965\pi\)
\(80\) 0 0
\(81\) 5.54400 + 7.08972i 0.616000 + 0.787746i
\(82\) 0 0
\(83\) −0.0150208 0.0260167i −0.00164874 0.00285571i 0.865200 0.501427i \(-0.167191\pi\)
−0.866849 + 0.498571i \(0.833858\pi\)
\(84\) 0 0
\(85\) 1.29157 0.140091
\(86\) 0 0
\(87\) 0.611164 2.64854i 0.0655237 0.283953i
\(88\) 0 0
\(89\) 7.59038 13.1469i 0.804578 1.39357i −0.111997 0.993709i \(-0.535725\pi\)
0.916575 0.399862i \(-0.130942\pi\)
\(90\) 0 0
\(91\) −3.18886 + 2.83099i −0.334283 + 0.296769i
\(92\) 0 0
\(93\) −2.34449 2.18580i −0.243113 0.226657i
\(94\) 0 0
\(95\) 1.00553 0.103166
\(96\) 0 0
\(97\) −1.37072 + 2.37416i −0.139176 + 0.241060i −0.927185 0.374604i \(-0.877779\pi\)
0.788009 + 0.615664i \(0.211112\pi\)
\(98\) 0 0
\(99\) −6.18866 3.01677i −0.621984 0.303197i
\(100\) 0 0
\(101\) −14.2372 −1.41665 −0.708326 0.705886i \(-0.750549\pi\)
−0.708326 + 0.705886i \(0.750549\pi\)
\(102\) 0 0
\(103\) 3.14211 5.44230i 0.309602 0.536246i −0.668674 0.743556i \(-0.733138\pi\)
0.978275 + 0.207310i \(0.0664710\pi\)
\(104\) 0 0
\(105\) 0.320902 0.0981472i 0.0313168 0.00957819i
\(106\) 0 0
\(107\) −5.10344 + 8.83941i −0.493368 + 0.854538i −0.999971 0.00764122i \(-0.997568\pi\)
0.506603 + 0.862180i \(0.330901\pi\)
\(108\) 0 0
\(109\) −7.43590 −0.712230 −0.356115 0.934442i \(-0.615899\pi\)
−0.356115 + 0.934442i \(0.615899\pi\)
\(110\) 0 0
\(111\) −14.5081 13.5261i −1.37705 1.28384i
\(112\) 0 0
\(113\) 10.0453 0.944981 0.472491 0.881336i \(-0.343355\pi\)
0.472491 + 0.881336i \(0.343355\pi\)
\(114\) 0 0
\(115\) 0.187863 0.0175183
\(116\) 0 0
\(117\) 7.72955 + 7.56664i 0.714597 + 0.699536i
\(118\) 0 0
\(119\) 9.32438 0.854765
\(120\) 0 0
\(121\) −5.73328 −0.521207
\(122\) 0 0
\(123\) 9.78773 2.99356i 0.882530 0.269920i
\(124\) 0 0
\(125\) 1.63379 0.146131
\(126\) 0 0
\(127\) 8.84715 15.3237i 0.785058 1.35976i −0.143907 0.989591i \(-0.545967\pi\)
0.928965 0.370169i \(-0.120700\pi\)
\(128\) 0 0
\(129\) 1.88273 + 1.75530i 0.165766 + 0.154546i
\(130\) 0 0
\(131\) 1.77284 3.07065i 0.154894 0.268284i −0.778126 0.628108i \(-0.783830\pi\)
0.933020 + 0.359823i \(0.117163\pi\)
\(132\) 0 0
\(133\) 7.25934 0.629465
\(134\) 0 0
\(135\) −0.305309 0.794592i −0.0262768 0.0683876i
\(136\) 0 0
\(137\) 0.337834 0.585145i 0.0288631 0.0499923i −0.851233 0.524788i \(-0.824145\pi\)
0.880096 + 0.474796i \(0.157478\pi\)
\(138\) 0 0
\(139\) 1.29110 0.109510 0.0547550 0.998500i \(-0.482562\pi\)
0.0547550 + 0.998500i \(0.482562\pi\)
\(140\) 0 0
\(141\) 15.4378 4.72161i 1.30009 0.397631i
\(142\) 0 0
\(143\) −7.85138 2.61213i −0.656565 0.218437i
\(144\) 0 0
\(145\) −0.128542 + 0.222642i −0.0106749 + 0.0184894i
\(146\) 0 0
\(147\) −9.27748 + 2.83750i −0.765194 + 0.234033i
\(148\) 0 0
\(149\) 19.3867 1.58822 0.794111 0.607772i \(-0.207937\pi\)
0.794111 + 0.607772i \(0.207937\pi\)
\(150\) 0 0
\(151\) 2.65901 + 4.60555i 0.216387 + 0.374794i 0.953701 0.300757i \(-0.0972392\pi\)
−0.737313 + 0.675551i \(0.763906\pi\)
\(152\) 0 0
\(153\) −1.65498 23.5945i −0.133797 1.90750i
\(154\) 0 0
\(155\) 0.151583 + 0.262550i 0.0121755 + 0.0210885i
\(156\) 0 0
\(157\) −6.44003 + 11.1545i −0.513971 + 0.890223i 0.485898 + 0.874015i \(0.338493\pi\)
−0.999869 + 0.0162076i \(0.994841\pi\)
\(158\) 0 0
\(159\) 0.951568 4.12371i 0.0754643 0.327032i
\(160\) 0 0
\(161\) 1.35625 0.106888
\(162\) 0 0
\(163\) 9.15301 + 15.8535i 0.716919 + 1.24174i 0.962215 + 0.272292i \(0.0877817\pi\)
−0.245295 + 0.969448i \(0.578885\pi\)
\(164\) 0 0
\(165\) 0.476284 + 0.444047i 0.0370787 + 0.0345690i
\(166\) 0 0
\(167\) −5.86630 10.1607i −0.453948 0.786261i 0.544679 0.838645i \(-0.316652\pi\)
−0.998627 + 0.0523833i \(0.983318\pi\)
\(168\) 0 0
\(169\) 10.4089 + 7.78807i 0.800687 + 0.599083i
\(170\) 0 0
\(171\) −1.28846 18.3691i −0.0985307 1.40472i
\(172\) 0 0
\(173\) 5.55966 9.62962i 0.422693 0.732126i −0.573509 0.819200i \(-0.694418\pi\)
0.996202 + 0.0870733i \(0.0277514\pi\)
\(174\) 0 0
\(175\) 5.88163 0.444610
\(176\) 0 0
\(177\) −4.83304 + 20.9445i −0.363274 + 1.57428i
\(178\) 0 0
\(179\) 9.27406 16.0631i 0.693176 1.20062i −0.277616 0.960692i \(-0.589544\pi\)
0.970792 0.239924i \(-0.0771224\pi\)
\(180\) 0 0
\(181\) −11.4050 −0.847725 −0.423863 0.905727i \(-0.639326\pi\)
−0.423863 + 0.905727i \(0.639326\pi\)
\(182\) 0 0
\(183\) −16.3345 15.2289i −1.20748 1.12575i
\(184\) 0 0
\(185\) 0.938025 + 1.62471i 0.0689650 + 0.119451i
\(186\) 0 0
\(187\) 9.04680 + 15.6695i 0.661568 + 1.14587i
\(188\) 0 0
\(189\) −2.20415 5.73647i −0.160328 0.417267i
\(190\) 0 0
\(191\) 7.68395 13.3090i 0.555991 0.963005i −0.441835 0.897096i \(-0.645672\pi\)
0.997826 0.0659081i \(-0.0209944\pi\)
\(192\) 0 0
\(193\) −6.76272 11.7134i −0.486792 0.843148i 0.513093 0.858333i \(-0.328500\pi\)
−0.999885 + 0.0151852i \(0.995166\pi\)
\(194\) 0 0
\(195\) −0.489789 0.898186i −0.0350745 0.0643204i
\(196\) 0 0
\(197\) 6.58807 11.4109i 0.469380 0.812991i −0.530007 0.847993i \(-0.677811\pi\)
0.999387 + 0.0350026i \(0.0111439\pi\)
\(198\) 0 0
\(199\) −11.9218 20.6492i −0.845117 1.46379i −0.885520 0.464602i \(-0.846197\pi\)
0.0404027 0.999183i \(-0.487136\pi\)
\(200\) 0 0
\(201\) 20.1166 6.15263i 1.41892 0.433973i
\(202\) 0 0
\(203\) −0.927997 + 1.60734i −0.0651326 + 0.112813i
\(204\) 0 0
\(205\) −0.968063 −0.0676125
\(206\) 0 0
\(207\) −0.240721 3.43187i −0.0167312 0.238532i
\(208\) 0 0
\(209\) 7.04323 + 12.1992i 0.487191 + 0.843839i
\(210\) 0 0
\(211\) 4.39612 + 7.61431i 0.302642 + 0.524191i 0.976733 0.214457i \(-0.0687981\pi\)
−0.674092 + 0.738648i \(0.735465\pi\)
\(212\) 0 0
\(213\) −15.0480 + 4.60241i −1.03107 + 0.315352i
\(214\) 0 0
\(215\) −0.121728 0.210840i −0.00830181 0.0143792i
\(216\) 0 0
\(217\) 1.09434 + 1.89545i 0.0742887 + 0.128672i
\(218\) 0 0
\(219\) −2.99272 + 12.9692i −0.202229 + 0.876381i
\(220\) 0 0
\(221\) −5.71496 27.8463i −0.384430 1.87315i
\(222\) 0 0
\(223\) 6.13562 0.410871 0.205436 0.978671i \(-0.434139\pi\)
0.205436 + 0.978671i \(0.434139\pi\)
\(224\) 0 0
\(225\) −1.04393 14.8829i −0.0695951 0.992195i
\(226\) 0 0
\(227\) −3.65732 + 6.33467i −0.242745 + 0.420447i −0.961495 0.274822i \(-0.911381\pi\)
0.718750 + 0.695268i \(0.244715\pi\)
\(228\) 0 0
\(229\) 0.942882 1.63312i 0.0623074 0.107920i −0.833189 0.552988i \(-0.813487\pi\)
0.895496 + 0.445069i \(0.146821\pi\)
\(230\) 0 0
\(231\) 3.43848 + 3.20575i 0.226235 + 0.210923i
\(232\) 0 0
\(233\) −1.27460 −0.0835016 −0.0417508 0.999128i \(-0.513294\pi\)
−0.0417508 + 0.999128i \(0.513294\pi\)
\(234\) 0 0
\(235\) −1.52688 −0.0996030
\(236\) 0 0
\(237\) −21.5497 + 6.59092i −1.39980 + 0.428126i
\(238\) 0 0
\(239\) −9.08366 + 15.7334i −0.587573 + 1.01771i 0.406976 + 0.913439i \(0.366583\pi\)
−0.994549 + 0.104267i \(0.966750\pi\)
\(240\) 0 0
\(241\) 6.86105 11.8837i 0.441959 0.765496i −0.555876 0.831265i \(-0.687617\pi\)
0.997835 + 0.0657698i \(0.0209503\pi\)
\(242\) 0 0
\(243\) −14.1244 + 6.59555i −0.906081 + 0.423105i
\(244\) 0 0
\(245\) 0.917597 0.0586231
\(246\) 0 0
\(247\) −4.44928 21.6793i −0.283101 1.37942i
\(248\) 0 0
\(249\) 0.0497582 0.0152185i 0.00315330 0.000964430i
\(250\) 0 0
\(251\) 6.05088 + 10.4804i 0.381928 + 0.661519i 0.991338 0.131337i \(-0.0419269\pi\)
−0.609410 + 0.792855i \(0.708594\pi\)
\(252\) 0 0
\(253\) 1.31588 + 2.27917i 0.0827286 + 0.143290i
\(254\) 0 0
\(255\) −0.502998 + 2.17979i −0.0314989 + 0.136504i
\(256\) 0 0
\(257\) −5.13545 8.89485i −0.320340 0.554846i 0.660218 0.751074i \(-0.270464\pi\)
−0.980558 + 0.196228i \(0.937131\pi\)
\(258\) 0 0
\(259\) 6.77197 + 11.7294i 0.420790 + 0.728829i
\(260\) 0 0
\(261\) 4.23193 + 2.06292i 0.261950 + 0.127692i
\(262\) 0 0
\(263\) 30.8388 1.90160 0.950802 0.309800i \(-0.100262\pi\)
0.950802 + 0.309800i \(0.100262\pi\)
\(264\) 0 0
\(265\) −0.200137 + 0.346648i −0.0122943 + 0.0212944i
\(266\) 0 0
\(267\) 19.2320 + 17.9303i 1.17698 + 1.09732i
\(268\) 0 0
\(269\) −3.97010 6.87641i −0.242061 0.419262i 0.719240 0.694762i \(-0.244490\pi\)
−0.961301 + 0.275500i \(0.911157\pi\)
\(270\) 0 0
\(271\) −1.39269 + 2.41221i −0.0845997 + 0.146531i −0.905221 0.424942i \(-0.860294\pi\)
0.820621 + 0.571473i \(0.193628\pi\)
\(272\) 0 0
\(273\) −3.53598 6.48436i −0.214007 0.392451i
\(274\) 0 0
\(275\) 5.70654 + 9.88402i 0.344117 + 0.596029i
\(276\) 0 0
\(277\) −7.48453 + 12.9636i −0.449702 + 0.778907i −0.998366 0.0571360i \(-0.981803\pi\)
0.548664 + 0.836043i \(0.315136\pi\)
\(278\) 0 0
\(279\) 4.60203 3.10555i 0.275517 0.185924i
\(280\) 0 0
\(281\) −3.99438 6.91847i −0.238285 0.412722i 0.721937 0.691958i \(-0.243252\pi\)
−0.960222 + 0.279237i \(0.909919\pi\)
\(282\) 0 0
\(283\) −13.5539 23.4760i −0.805694 1.39550i −0.915822 0.401585i \(-0.868459\pi\)
0.110128 0.993917i \(-0.464874\pi\)
\(284\) 0 0
\(285\) −0.391600 + 1.69704i −0.0231964 + 0.100524i
\(286\) 0 0
\(287\) −6.98883 −0.412537
\(288\) 0 0
\(289\) −22.5799 + 39.1096i −1.32823 + 2.30056i
\(290\) 0 0
\(291\) −3.47305 3.23798i −0.203594 0.189814i
\(292\) 0 0
\(293\) 4.12323 0.240882 0.120441 0.992721i \(-0.461569\pi\)
0.120441 + 0.992721i \(0.461569\pi\)
\(294\) 0 0
\(295\) 1.01650 1.76063i 0.0591831 0.102508i
\(296\) 0 0
\(297\) 7.50155 9.26974i 0.435284 0.537885i
\(298\) 0 0
\(299\) −0.831254 4.05031i −0.0480727 0.234236i
\(300\) 0 0
\(301\) −0.878805 1.52214i −0.0506535 0.0877344i
\(302\) 0 0
\(303\) 5.54460 24.0281i 0.318529 1.38038i
\(304\) 0 0
\(305\) 1.05611 + 1.82923i 0.0604725 + 0.104742i
\(306\) 0 0
\(307\) −1.14030 −0.0650801 −0.0325401 0.999470i \(-0.510360\pi\)
−0.0325401 + 0.999470i \(0.510360\pi\)
\(308\) 0 0
\(309\) 7.96129 + 7.42242i 0.452902 + 0.422247i
\(310\) 0 0
\(311\) −4.33348 + 7.50580i −0.245729 + 0.425615i −0.962336 0.271862i \(-0.912361\pi\)
0.716607 + 0.697477i \(0.245694\pi\)
\(312\) 0 0
\(313\) −15.7844 27.3395i −0.892189 1.54532i −0.837245 0.546828i \(-0.815835\pi\)
−0.0549444 0.998489i \(-0.517498\pi\)
\(314\) 0 0
\(315\) 0.0406693 + 0.579809i 0.00229146 + 0.0326685i
\(316\) 0 0
\(317\) −14.7648 25.5734i −0.829276 1.43635i −0.898607 0.438754i \(-0.855420\pi\)
0.0693313 0.997594i \(-0.477913\pi\)
\(318\) 0 0
\(319\) −3.60148 −0.201644
\(320\) 0 0
\(321\) −12.9308 12.0555i −0.721725 0.672875i
\(322\) 0 0
\(323\) −24.1968 + 41.9100i −1.34634 + 2.33193i
\(324\) 0 0
\(325\) −3.60488 17.5649i −0.199963 0.974325i
\(326\) 0 0
\(327\) 2.89588 12.5496i 0.160142 0.693993i
\(328\) 0 0
\(329\) −11.0232 −0.607728
\(330\) 0 0
\(331\) 5.11550 8.86030i 0.281173 0.487006i −0.690501 0.723332i \(-0.742610\pi\)
0.971674 + 0.236325i \(0.0759432\pi\)
\(332\) 0 0
\(333\) 28.4782 19.2177i 1.56060 1.05312i
\(334\) 0 0
\(335\) −1.98965 −0.108706
\(336\) 0 0
\(337\) 5.89434 10.2093i 0.321085 0.556136i −0.659627 0.751593i \(-0.729286\pi\)
0.980712 + 0.195457i \(0.0626190\pi\)
\(338\) 0 0
\(339\) −3.91209 + 16.9534i −0.212476 + 0.920784i
\(340\) 0 0
\(341\) −2.12352 + 3.67805i −0.114995 + 0.199178i
\(342\) 0 0
\(343\) 14.9032 0.804698
\(344\) 0 0
\(345\) −0.0731622 + 0.317056i −0.00393892 + 0.0170697i
\(346\) 0 0
\(347\) −21.4732 −1.15274 −0.576371 0.817188i \(-0.695532\pi\)
−0.576371 + 0.817188i \(0.695532\pi\)
\(348\) 0 0
\(349\) 24.0763 1.28878 0.644388 0.764699i \(-0.277112\pi\)
0.644388 + 0.764699i \(0.277112\pi\)
\(350\) 0 0
\(351\) −15.7805 + 10.0984i −0.842299 + 0.539011i
\(352\) 0 0
\(353\) −22.4765 −1.19631 −0.598153 0.801382i \(-0.704098\pi\)
−0.598153 + 0.801382i \(0.704098\pi\)
\(354\) 0 0
\(355\) 1.48834 0.0789927
\(356\) 0 0
\(357\) −3.63134 + 15.7368i −0.192191 + 0.832878i
\(358\) 0 0
\(359\) 10.8784 0.574142 0.287071 0.957909i \(-0.407319\pi\)
0.287071 + 0.957909i \(0.407319\pi\)
\(360\) 0 0
\(361\) −9.33797 + 16.1738i −0.491472 + 0.851255i
\(362\) 0 0
\(363\) 2.23280 9.67606i 0.117192 0.507861i
\(364\) 0 0
\(365\) 0.629439 1.09022i 0.0329464 0.0570648i
\(366\) 0 0
\(367\) 7.49630 0.391304 0.195652 0.980673i \(-0.437318\pi\)
0.195652 + 0.980673i \(0.437318\pi\)
\(368\) 0 0
\(369\) 1.24044 + 17.6846i 0.0645749 + 0.920622i
\(370\) 0 0
\(371\) −1.44487 + 2.50259i −0.0750138 + 0.129928i
\(372\) 0 0
\(373\) −3.47232 −0.179790 −0.0898950 0.995951i \(-0.528653\pi\)
−0.0898950 + 0.995951i \(0.528653\pi\)
\(374\) 0 0
\(375\) −0.636274 + 2.75736i −0.0328570 + 0.142389i
\(376\) 0 0
\(377\) 5.36892 + 1.78622i 0.276514 + 0.0919952i
\(378\) 0 0
\(379\) −3.64926 + 6.32070i −0.187450 + 0.324673i −0.944399 0.328801i \(-0.893356\pi\)
0.756949 + 0.653473i \(0.226689\pi\)
\(380\) 0 0
\(381\) 22.4164 + 20.8991i 1.14842 + 1.07069i
\(382\) 0 0
\(383\) 9.86819 0.504241 0.252121 0.967696i \(-0.418872\pi\)
0.252121 + 0.967696i \(0.418872\pi\)
\(384\) 0 0
\(385\) −0.222315 0.385062i −0.0113302 0.0196246i
\(386\) 0 0
\(387\) −3.69564 + 2.49390i −0.187860 + 0.126772i
\(388\) 0 0
\(389\) −3.98393 6.90036i −0.201993 0.349862i 0.747177 0.664625i \(-0.231409\pi\)
−0.949171 + 0.314762i \(0.898075\pi\)
\(390\) 0 0
\(391\) −4.52065 + 7.82999i −0.228619 + 0.395980i
\(392\) 0 0
\(393\) 4.49192 + 4.18788i 0.226587 + 0.211251i
\(394\) 0 0
\(395\) 2.13139 0.107242
\(396\) 0 0
\(397\) 0.689713 + 1.19462i 0.0346157 + 0.0599562i 0.882814 0.469722i \(-0.155646\pi\)
−0.848199 + 0.529678i \(0.822313\pi\)
\(398\) 0 0
\(399\) −2.82712 + 12.2516i −0.141533 + 0.613347i
\(400\) 0 0
\(401\) 8.16119 + 14.1356i 0.407550 + 0.705898i 0.994615 0.103642i \(-0.0330498\pi\)
−0.587064 + 0.809540i \(0.699716\pi\)
\(402\) 0 0
\(403\) 4.98985 4.42987i 0.248562 0.220667i
\(404\) 0 0
\(405\) 1.45994 0.205820i 0.0725448 0.0102273i
\(406\) 0 0
\(407\) −13.1407 + 22.7604i −0.651363 + 1.12819i
\(408\) 0 0
\(409\) 21.3753 1.05694 0.528471 0.848951i \(-0.322766\pi\)
0.528471 + 0.848951i \(0.322766\pi\)
\(410\) 0 0
\(411\) 0.855982 + 0.798044i 0.0422225 + 0.0393646i
\(412\) 0 0
\(413\) 7.33853 12.7107i 0.361106 0.625453i
\(414\) 0 0
\(415\) −0.00492138 −0.000241581
\(416\) 0 0
\(417\) −0.502815 + 2.17900i −0.0246229 + 0.106706i
\(418\) 0 0
\(419\) 7.17856 + 12.4336i 0.350696 + 0.607423i 0.986372 0.164533i \(-0.0526118\pi\)
−0.635676 + 0.771956i \(0.719278\pi\)
\(420\) 0 0
\(421\) 11.9163 + 20.6396i 0.580765 + 1.00591i 0.995389 + 0.0959216i \(0.0305798\pi\)
−0.414624 + 0.909993i \(0.636087\pi\)
\(422\) 0 0
\(423\) 1.95650 + 27.8931i 0.0951281 + 1.35621i
\(424\) 0 0
\(425\) −19.6046 + 33.9561i −0.950962 + 1.64711i
\(426\) 0 0
\(427\) 7.62445 + 13.2059i 0.368973 + 0.639080i
\(428\) 0 0
\(429\) 7.46617 12.2335i 0.360470 0.590639i
\(430\) 0 0
\(431\) 8.70791 15.0825i 0.419445 0.726501i −0.576438 0.817141i \(-0.695558\pi\)
0.995884 + 0.0906400i \(0.0288913\pi\)
\(432\) 0 0
\(433\) −11.2829 19.5426i −0.542222 0.939156i −0.998776 0.0494604i \(-0.984250\pi\)
0.456554 0.889696i \(-0.349084\pi\)
\(434\) 0 0
\(435\) −0.325692 0.303648i −0.0156158 0.0145588i
\(436\) 0 0
\(437\) −3.51947 + 6.09591i −0.168359 + 0.291607i
\(438\) 0 0
\(439\) 7.91113 0.377578 0.188789 0.982018i \(-0.439544\pi\)
0.188789 + 0.982018i \(0.439544\pi\)
\(440\) 0 0
\(441\) −1.17578 16.7627i −0.0559894 0.798222i
\(442\) 0 0
\(443\) 15.4761 + 26.8054i 0.735292 + 1.27356i 0.954595 + 0.297906i \(0.0962881\pi\)
−0.219304 + 0.975657i \(0.570379\pi\)
\(444\) 0 0
\(445\) −1.24345 2.15372i −0.0589451 0.102096i
\(446\) 0 0
\(447\) −7.55007 + 32.7190i −0.357106 + 1.54755i
\(448\) 0 0
\(449\) −8.11874 14.0621i −0.383147 0.663631i 0.608363 0.793659i \(-0.291826\pi\)
−0.991510 + 0.130028i \(0.958493\pi\)
\(450\) 0 0
\(451\) −6.78077 11.7446i −0.319294 0.553034i
\(452\) 0 0
\(453\) −8.80832 + 2.69401i −0.413851 + 0.126576i
\(454\) 0 0
\(455\) 0.140439 + 0.684293i 0.00658388 + 0.0320802i
\(456\) 0 0
\(457\) −18.1012 −0.846740 −0.423370 0.905957i \(-0.639153\pi\)
−0.423370 + 0.905957i \(0.639153\pi\)
\(458\) 0 0
\(459\) 40.4649 + 6.39566i 1.88874 + 0.298524i
\(460\) 0 0
\(461\) 2.62760 4.55114i 0.122380 0.211968i −0.798326 0.602226i \(-0.794281\pi\)
0.920706 + 0.390258i \(0.127614\pi\)
\(462\) 0 0
\(463\) −0.365876 + 0.633715i −0.0170037 + 0.0294513i −0.874402 0.485202i \(-0.838746\pi\)
0.857398 + 0.514653i \(0.172079\pi\)
\(464\) 0 0
\(465\) −0.502140 + 0.153578i −0.0232862 + 0.00712203i
\(466\) 0 0
\(467\) −14.0792 −0.651509 −0.325755 0.945454i \(-0.605618\pi\)
−0.325755 + 0.945454i \(0.605618\pi\)
\(468\) 0 0
\(469\) −14.3641 −0.663271
\(470\) 0 0
\(471\) −16.3173 15.2129i −0.751864 0.700973i
\(472\) 0 0
\(473\) 1.70529 2.95364i 0.0784092 0.135809i
\(474\) 0 0
\(475\) −15.2628 + 26.4360i −0.700306 + 1.21297i
\(476\) 0 0
\(477\) 6.58901 + 3.21192i 0.301690 + 0.147064i
\(478\) 0 0
\(479\) 11.6567 0.532608 0.266304 0.963889i \(-0.414197\pi\)
0.266304 + 0.963889i \(0.414197\pi\)
\(480\) 0 0
\(481\) 30.8781 27.4128i 1.40792 1.24992i
\(482\) 0 0
\(483\) −0.528187 + 2.28895i −0.0240333 + 0.104151i
\(484\) 0 0
\(485\) 0.224551 + 0.388933i 0.0101963 + 0.0176605i
\(486\) 0 0
\(487\) 11.8331 + 20.4956i 0.536211 + 0.928744i 0.999104 + 0.0423299i \(0.0134780\pi\)
−0.462893 + 0.886414i \(0.653189\pi\)
\(488\) 0 0
\(489\) −30.3205 + 9.27347i −1.37114 + 0.419361i
\(490\) 0 0
\(491\) −11.8980 20.6079i −0.536948 0.930021i −0.999066 0.0432026i \(-0.986244\pi\)
0.462119 0.886818i \(-0.347089\pi\)
\(492\) 0 0
\(493\) −6.18638 10.7151i −0.278620 0.482585i
\(494\) 0 0
\(495\) −0.934904 + 0.630893i −0.0420208 + 0.0283565i
\(496\) 0 0
\(497\) 10.7449 0.481974
\(498\) 0 0
\(499\) 10.6364 18.4229i 0.476153 0.824720i −0.523474 0.852042i \(-0.675364\pi\)
0.999627 + 0.0273211i \(0.00869766\pi\)
\(500\) 0 0
\(501\) 19.4329 5.94351i 0.868197 0.265536i
\(502\) 0 0
\(503\) −5.15430 8.92750i −0.229819 0.398058i 0.727936 0.685646i \(-0.240480\pi\)
−0.957754 + 0.287588i \(0.907147\pi\)
\(504\) 0 0
\(505\) −1.16616 + 2.01985i −0.0518934 + 0.0898821i
\(506\) 0 0
\(507\) −17.1976 + 14.5341i −0.763774 + 0.645483i
\(508\) 0 0
\(509\) 17.4759 + 30.2691i 0.774606 + 1.34166i 0.935016 + 0.354606i \(0.115385\pi\)
−0.160410 + 0.987050i \(0.551282\pi\)
\(510\) 0 0
\(511\) 4.54417 7.87073i 0.201022 0.348181i
\(512\) 0 0
\(513\) 31.5033 + 4.97923i 1.39090 + 0.219838i
\(514\) 0 0
\(515\) −0.514738 0.891552i −0.0226821 0.0392865i
\(516\) 0 0
\(517\) −10.6950 18.5243i −0.470367 0.814699i
\(518\) 0 0
\(519\) 14.0867 + 13.1333i 0.618339 + 0.576486i
\(520\) 0 0
\(521\) 16.5589 0.725460 0.362730 0.931894i \(-0.381845\pi\)
0.362730 + 0.931894i \(0.381845\pi\)
\(522\) 0 0
\(523\) −8.46864 + 14.6681i −0.370308 + 0.641392i −0.989613 0.143759i \(-0.954081\pi\)
0.619305 + 0.785151i \(0.287414\pi\)
\(524\) 0 0
\(525\) −2.29057 + 9.92643i −0.0999689 + 0.433225i
\(526\) 0 0
\(527\) −14.5906 −0.635575
\(528\) 0 0
\(529\) 10.8425 18.7797i 0.471411 0.816508i
\(530\) 0 0
\(531\) −33.4658 16.3135i −1.45229 0.707944i
\(532\) 0 0
\(533\) 4.28348 + 20.8714i 0.185538 + 0.904041i
\(534\) 0 0
\(535\) 0.836040 + 1.44806i 0.0361452 + 0.0626053i
\(536\) 0 0
\(537\) 23.4980 + 21.9076i 1.01401 + 0.945381i
\(538\) 0 0
\(539\) 6.42728 + 11.1324i 0.276843 + 0.479506i
\(540\) 0 0
\(541\) −19.8748 −0.854484 −0.427242 0.904137i \(-0.640515\pi\)
−0.427242 + 0.904137i \(0.640515\pi\)
\(542\) 0 0
\(543\) 4.44162 19.2482i 0.190608 0.826018i
\(544\) 0 0
\(545\) −0.609071 + 1.05494i −0.0260897 + 0.0451888i
\(546\) 0 0
\(547\) −10.1868 17.6440i −0.435556 0.754405i 0.561785 0.827283i \(-0.310115\pi\)
−0.997341 + 0.0728786i \(0.976781\pi\)
\(548\) 0 0
\(549\) 32.0631 21.6369i 1.36842 0.923440i
\(550\) 0 0
\(551\) −4.81630 8.34208i −0.205181 0.355384i
\(552\) 0 0
\(553\) 15.3873 0.654335
\(554\) 0 0
\(555\) −3.10733 + 0.950371i −0.131899 + 0.0403410i
\(556\) 0 0
\(557\) 1.87658 3.25032i 0.0795131 0.137721i −0.823527 0.567277i \(-0.807997\pi\)
0.903040 + 0.429557i \(0.141330\pi\)
\(558\) 0 0
\(559\) −4.00708 + 3.55739i −0.169481 + 0.150461i
\(560\) 0 0
\(561\) −29.9687 + 9.16587i −1.26528 + 0.386983i
\(562\) 0 0
\(563\) −36.5057 −1.53853 −0.769267 0.638928i \(-0.779378\pi\)
−0.769267 + 0.638928i \(0.779378\pi\)
\(564\) 0 0
\(565\) 0.822805 1.42514i 0.0346157 0.0599561i
\(566\) 0 0
\(567\) 10.5398 1.48589i 0.442632 0.0624017i
\(568\) 0 0
\(569\) −6.77713 −0.284112 −0.142056 0.989859i \(-0.545371\pi\)
−0.142056 + 0.989859i \(0.545371\pi\)
\(570\) 0 0
\(571\) 6.78237 11.7474i 0.283834 0.491614i −0.688492 0.725244i \(-0.741727\pi\)
0.972326 + 0.233630i \(0.0750604\pi\)
\(572\) 0 0
\(573\) 19.4691 + 18.1513i 0.813334 + 0.758283i
\(574\) 0 0
\(575\) −2.85153 + 4.93900i −0.118917 + 0.205971i
\(576\) 0 0
\(577\) −16.9396 −0.705207 −0.352603 0.935773i \(-0.614704\pi\)
−0.352603 + 0.935773i \(0.614704\pi\)
\(578\) 0 0
\(579\) 22.4024 6.85173i 0.931012 0.284748i
\(580\) 0 0
\(581\) −0.0355293 −0.00147401
\(582\) 0 0
\(583\) −5.60742 −0.232236
\(584\) 0 0
\(585\) 1.70661 0.476823i 0.0705598 0.0197142i
\(586\) 0 0
\(587\) 14.0736 0.580880 0.290440 0.956893i \(-0.406198\pi\)
0.290440 + 0.956893i \(0.406198\pi\)
\(588\) 0 0
\(589\) −11.3592 −0.468049
\(590\) 0 0
\(591\) 16.6924 + 15.5626i 0.686635 + 0.640160i
\(592\) 0 0
\(593\) −7.05390 −0.289669 −0.144835 0.989456i \(-0.546265\pi\)
−0.144835 + 0.989456i \(0.546265\pi\)
\(594\) 0 0
\(595\) 0.763756 1.32286i 0.0313109 0.0542321i
\(596\) 0 0
\(597\) 39.4926 12.0787i 1.61633 0.494350i
\(598\) 0 0
\(599\) −17.0464 + 29.5252i −0.696497 + 1.20637i 0.273176 + 0.961964i \(0.411926\pi\)
−0.969673 + 0.244405i \(0.921408\pi\)
\(600\) 0 0
\(601\) 3.42399 0.139668 0.0698338 0.997559i \(-0.477753\pi\)
0.0698338 + 0.997559i \(0.477753\pi\)
\(602\) 0 0
\(603\) 2.54947 + 36.3469i 0.103822 + 1.48016i
\(604\) 0 0
\(605\) −0.469610 + 0.813389i −0.0190924 + 0.0330690i
\(606\) 0 0
\(607\) −13.2226 −0.536689 −0.268344 0.963323i \(-0.586476\pi\)
−0.268344 + 0.963323i \(0.586476\pi\)
\(608\) 0 0
\(609\) −2.35130 2.19215i −0.0952795 0.0888304i
\(610\) 0 0
\(611\) 6.75616 + 32.9196i 0.273325 + 1.33178i
\(612\) 0 0
\(613\) −18.3185 + 31.7287i −0.739879 + 1.28151i 0.212670 + 0.977124i \(0.431784\pi\)
−0.952549 + 0.304384i \(0.901549\pi\)
\(614\) 0 0
\(615\) 0.377008 1.63380i 0.0152024 0.0658812i
\(616\) 0 0
\(617\) 12.0505 0.485135 0.242567 0.970135i \(-0.422010\pi\)
0.242567 + 0.970135i \(0.422010\pi\)
\(618\) 0 0
\(619\) −7.09064 12.2814i −0.284997 0.493629i 0.687611 0.726079i \(-0.258659\pi\)
−0.972608 + 0.232450i \(0.925326\pi\)
\(620\) 0 0
\(621\) 5.88572 + 0.930263i 0.236186 + 0.0373302i
\(622\) 0 0
\(623\) −8.97694 15.5485i −0.359654 0.622938i
\(624\) 0 0
\(625\) −12.2991 + 21.3026i −0.491963 + 0.852106i
\(626\) 0 0
\(627\) −23.3316 + 7.13593i −0.931775 + 0.284982i
\(628\) 0 0
\(629\) −90.2891 −3.60006
\(630\) 0 0
\(631\) 0.0480189 + 0.0831713i 0.00191160 + 0.00331100i 0.866980 0.498344i \(-0.166058\pi\)
−0.865068 + 0.501655i \(0.832725\pi\)
\(632\) 0 0
\(633\) −14.5627 + 4.45398i −0.578816 + 0.177030i
\(634\) 0 0
\(635\) −1.44933 2.51032i −0.0575150 0.0996189i
\(636\) 0 0
\(637\) −4.06018 19.7834i −0.160870 0.783846i
\(638\) 0 0
\(639\) −1.90710 27.1889i −0.0754438 1.07558i
\(640\) 0 0
\(641\) −20.6115 + 35.7002i −0.814106 + 1.41007i 0.0958621 + 0.995395i \(0.469439\pi\)
−0.909968 + 0.414678i \(0.863894\pi\)
\(642\) 0 0
\(643\) −25.4554 −1.00386 −0.501931 0.864908i \(-0.667377\pi\)
−0.501931 + 0.864908i \(0.667377\pi\)
\(644\) 0 0
\(645\) 0.403241 0.123331i 0.0158776 0.00485613i
\(646\) 0 0
\(647\) 0.857829 1.48580i 0.0337248 0.0584130i −0.848670 0.528922i \(-0.822596\pi\)
0.882395 + 0.470509i \(0.155930\pi\)
\(648\) 0 0
\(649\) 28.4803 1.11795
\(650\) 0 0
\(651\) −3.62514 + 1.10874i −0.142081 + 0.0434551i
\(652\) 0 0
\(653\) −6.34066 10.9824i −0.248129 0.429773i 0.714877 0.699250i \(-0.246482\pi\)
−0.963007 + 0.269477i \(0.913149\pi\)
\(654\) 0 0
\(655\) −0.290425 0.503032i −0.0113479 0.0196551i
\(656\) 0 0
\(657\) −20.7227 10.1016i −0.808470 0.394102i
\(658\) 0 0
\(659\) 3.18418 5.51517i 0.124038 0.214840i −0.797318 0.603559i \(-0.793749\pi\)
0.921357 + 0.388718i \(0.127082\pi\)
\(660\) 0 0
\(661\) 8.04701 + 13.9378i 0.312992 + 0.542119i 0.979009 0.203819i \(-0.0653353\pi\)
−0.666016 + 0.745937i \(0.732002\pi\)
\(662\) 0 0
\(663\) 49.2219 + 1.19948i 1.91162 + 0.0465841i
\(664\) 0 0
\(665\) 0.594609 1.02989i 0.0230580 0.0399376i
\(666\) 0 0
\(667\) −0.899823 1.55854i −0.0348413 0.0603469i
\(668\) 0 0
\(669\) −2.38949 + 10.3551i −0.0923830 + 0.400351i
\(670\) 0 0
\(671\) −14.7950 + 25.6256i −0.571153 + 0.989266i
\(672\) 0 0
\(673\) 8.43612 0.325188 0.162594 0.986693i \(-0.448014\pi\)
0.162594 + 0.986693i \(0.448014\pi\)
\(674\) 0 0
\(675\) 25.5245 + 4.03425i 0.982437 + 0.155278i
\(676\) 0 0
\(677\) −1.55850 2.69939i −0.0598978 0.103746i 0.834522 0.550975i \(-0.185744\pi\)
−0.894419 + 0.447229i \(0.852411\pi\)
\(678\) 0 0
\(679\) 1.62112 + 2.80786i 0.0622128 + 0.107756i
\(680\) 0 0
\(681\) −9.26670 8.63948i −0.355101 0.331065i
\(682\) 0 0
\(683\) 3.44327 + 5.96391i 0.131753 + 0.228203i 0.924352 0.381540i \(-0.124606\pi\)
−0.792599 + 0.609743i \(0.791273\pi\)
\(684\) 0 0
\(685\) −0.0553436 0.0958579i −0.00211457 0.00366254i
\(686\) 0 0
\(687\) 2.38901 + 2.22731i 0.0911466 + 0.0849773i
\(688\) 0 0
\(689\) 8.35928 + 2.78111i 0.318463 + 0.105952i
\(690\) 0 0
\(691\) 27.0218 1.02796 0.513978 0.857803i \(-0.328171\pi\)
0.513978 + 0.857803i \(0.328171\pi\)
\(692\) 0 0
\(693\) −6.74944 + 4.55466i −0.256390 + 0.173017i
\(694\) 0 0
\(695\) 0.105754 0.183171i 0.00401147 0.00694807i
\(696\) 0 0
\(697\) 23.2951 40.3483i 0.882364 1.52830i
\(698\) 0 0
\(699\) 0.496386 2.15114i 0.0187750 0.0813635i
\(700\) 0 0
\(701\) 40.7031 1.53733 0.768667 0.639649i \(-0.220920\pi\)
0.768667 + 0.639649i \(0.220920\pi\)
\(702\) 0 0
\(703\) −70.2930 −2.65115
\(704\) 0 0
\(705\) 0.594638 2.57692i 0.0223954 0.0970526i
\(706\) 0 0
\(707\) −8.41896 + 14.5821i −0.316628 + 0.548415i
\(708\) 0 0
\(709\) 11.4033 19.7511i 0.428259 0.741766i −0.568460 0.822711i \(-0.692460\pi\)
0.996719 + 0.0809449i \(0.0257938\pi\)
\(710\) 0 0
\(711\) −2.73108 38.9362i −0.102424 1.46022i
\(712\) 0 0
\(713\) −2.12223 −0.0794782
\(714\) 0 0
\(715\) −1.01369 + 0.899929i −0.0379098 + 0.0336554i
\(716\) 0 0
\(717\) −23.0156 21.4578i −0.859533 0.801355i
\(718\) 0 0
\(719\) 3.49446 + 6.05258i 0.130321 + 0.225723i 0.923800 0.382874i \(-0.125066\pi\)
−0.793479 + 0.608598i \(0.791732\pi\)
\(720\) 0 0
\(721\) −3.71609 6.43646i −0.138395 0.239706i
\(722\) 0 0
\(723\) 17.3841 + 16.2074i 0.646522 + 0.602761i
\(724\) 0 0
\(725\) −3.90224 6.75888i −0.144926 0.251019i
\(726\) 0 0
\(727\) −13.2103 22.8809i −0.489943 0.848606i 0.509990 0.860180i \(-0.329649\pi\)
−0.999933 + 0.0115742i \(0.996316\pi\)
\(728\) 0 0
\(729\) −5.63063 26.4064i −0.208542 0.978013i
\(730\) 0 0
\(731\) 11.7169 0.433365
\(732\) 0 0
\(733\) −5.54271 + 9.60025i −0.204725 + 0.354593i −0.950045 0.312113i \(-0.898963\pi\)
0.745320 + 0.666706i \(0.232297\pi\)
\(734\) 0 0
\(735\) −0.357354 + 1.54863i −0.0131812 + 0.0571220i
\(736\) 0 0
\(737\) −13.9365 24.1386i −0.513356 0.889158i
\(738\) 0 0
\(739\) 4.41564 7.64811i 0.162432 0.281340i −0.773308 0.634030i \(-0.781400\pi\)
0.935740 + 0.352690i \(0.114733\pi\)
\(740\) 0 0
\(741\) 38.3209 + 0.933838i 1.40775 + 0.0343054i
\(742\) 0 0
\(743\) −20.2552 35.0831i −0.743093 1.28707i −0.951081 0.308943i \(-0.900025\pi\)
0.207988 0.978131i \(-0.433308\pi\)
\(744\) 0 0
\(745\) 1.58796 2.75042i 0.0581783 0.100768i
\(746\) 0 0
\(747\) 0.00630608 + 0.0899037i 0.000230727 + 0.00328941i
\(748\) 0 0
\(749\) 6.03570 + 10.4541i 0.220540 + 0.381986i
\(750\) 0 0
\(751\) −20.8066 36.0382i −0.759245 1.31505i −0.943236 0.332123i \(-0.892235\pi\)
0.183991 0.982928i \(-0.441098\pi\)
\(752\) 0 0
\(753\) −20.0443 + 6.13051i −0.730455 + 0.223408i
\(754\) 0 0
\(755\) 0.871194 0.0317060
\(756\) 0 0
\(757\) −1.58406 + 2.74368i −0.0575738 + 0.0997207i −0.893376 0.449310i \(-0.851670\pi\)
0.835802 + 0.549031i \(0.185003\pi\)
\(758\) 0 0
\(759\) −4.35902 + 1.33320i −0.158222 + 0.0483920i
\(760\) 0 0
\(761\) 1.87576 0.0679963 0.0339982 0.999422i \(-0.489176\pi\)
0.0339982 + 0.999422i \(0.489176\pi\)
\(762\) 0 0
\(763\) −4.39712 + 7.61604i −0.159187 + 0.275719i
\(764\) 0 0
\(765\) −3.48294 1.69782i −0.125926 0.0613848i
\(766\) 0 0
\(767\) −42.4571 14.1253i −1.53304 0.510036i
\(768\) 0 0
\(769\) 2.21514 + 3.83674i 0.0798801 + 0.138356i 0.903198 0.429224i \(-0.141213\pi\)
−0.823318 + 0.567580i \(0.807880\pi\)
\(770\) 0 0
\(771\) 17.0118 5.20303i 0.612666 0.187383i
\(772\) 0 0
\(773\) −10.0735 17.4478i −0.362319 0.627554i 0.626023 0.779804i \(-0.284681\pi\)
−0.988342 + 0.152250i \(0.951348\pi\)
\(774\) 0 0
\(775\) −9.20344 −0.330597
\(776\) 0 0
\(777\) −22.4330 + 6.86110i −0.804780 + 0.246141i
\(778\) 0 0
\(779\) 18.1360 31.4125i 0.649789 1.12547i
\(780\) 0 0
\(781\) 10.4250 + 18.0567i 0.373036 + 0.646118i
\(782\) 0 0
\(783\) −5.12970 + 6.33883i −0.183321 + 0.226531i
\(784\) 0 0
\(785\) 1.05500 + 1.82731i 0.0376546 + 0.0652196i
\(786\) 0 0
\(787\) 29.5145 1.05208 0.526040 0.850460i \(-0.323676\pi\)
0.526040 + 0.850460i \(0.323676\pi\)
\(788\) 0 0
\(789\) −12.0100 + 52.0467i −0.427569 + 1.85291i
\(790\) 0 0
\(791\) 5.94015 10.2886i 0.211208 0.365822i
\(792\) 0 0
\(793\) 34.7651 30.8636i 1.23455 1.09600i
\(794\) 0 0
\(795\) −0.507095 0.472772i −0.0179848 0.0167675i
\(796\) 0 0
\(797\) −13.8381 −0.490170 −0.245085 0.969502i \(-0.578816\pi\)
−0.245085 + 0.969502i \(0.578816\pi\)
\(798\) 0 0
\(799\) 36.7423 63.6396i 1.29985 2.25141i
\(800\) 0 0
\(801\) −37.7508 + 25.4750i −1.33386 + 0.900115i
\(802\) 0 0
\(803\) 17.6356 0.622346
\(804\) 0 0
\(805\) 0.111090 0.192414i 0.00391541 0.00678169i
\(806\) 0 0
\(807\) 13.1515 4.02235i 0.462953 0.141593i
\(808\) 0 0
\(809\) 11.0274 19.1000i 0.387702 0.671520i −0.604438 0.796652i \(-0.706602\pi\)
0.992140 + 0.125132i \(0.0399356\pi\)
\(810\) 0 0
\(811\) 13.8289 0.485599 0.242799 0.970076i \(-0.421934\pi\)
0.242799 + 0.970076i \(0.421934\pi\)
\(812\) 0 0
\(813\) −3.52870 3.28986i −0.123757 0.115380i
\(814\) 0 0
\(815\) 2.99888 0.105046
\(816\) 0 0
\(817\) 9.12199 0.319138
\(818\) 0 0
\(819\) 12.3207 3.44237i 0.430521 0.120286i
\(820\) 0 0
\(821\) 45.3233 1.58179 0.790896 0.611950i \(-0.209615\pi\)
0.790896 + 0.611950i \(0.209615\pi\)
\(822\) 0 0
\(823\) 42.8013 1.49196 0.745980 0.665969i \(-0.231982\pi\)
0.745980 + 0.665969i \(0.231982\pi\)
\(824\) 0 0
\(825\) −18.9036 + 5.78164i −0.658140 + 0.201291i
\(826\) 0 0
\(827\) −50.1954 −1.74546 −0.872732 0.488199i \(-0.837654\pi\)
−0.872732 + 0.488199i \(0.837654\pi\)
\(828\) 0 0
\(829\) 23.8288 41.2727i 0.827609 1.43346i −0.0722999 0.997383i \(-0.523034\pi\)
0.899909 0.436078i \(-0.143633\pi\)
\(830\) 0 0
\(831\) −18.9638 17.6803i −0.657848 0.613321i
\(832\) 0 0
\(833\) −22.0807 + 38.2449i −0.765050 + 1.32511i
\(834\) 0 0
\(835\) −1.92203 −0.0665144
\(836\) 0 0
\(837\) 3.44900 + 8.97630i 0.119215 + 0.310266i
\(838\) 0 0
\(839\) 20.6912 35.8382i 0.714340 1.23727i −0.248874 0.968536i \(-0.580060\pi\)
0.963214 0.268737i \(-0.0866062\pi\)
\(840\) 0 0
\(841\) −26.5372 −0.915077
\(842\) 0 0
\(843\) 13.2319 4.04695i 0.455731 0.139384i
\(844\) 0 0
\(845\) 1.95750 0.838813i 0.0673399 0.0288561i
\(846\) 0 0
\(847\) −3.39030 + 5.87218i −0.116492 + 0.201770i
\(848\) 0 0
\(849\) 44.8989 13.7323i 1.54093 0.471290i
\(850\) 0 0
\(851\) −13.1328 −0.450185
\(852\) 0 0
\(853\) 16.3296 + 28.2836i 0.559113 + 0.968413i 0.997571 + 0.0696609i \(0.0221917\pi\)
−0.438457 + 0.898752i \(0.644475\pi\)
\(854\) 0 0
\(855\) −2.71159 1.32181i −0.0927343 0.0452049i
\(856\) 0 0
\(857\) 26.1956 + 45.3722i 0.894826 + 1.54988i 0.834020 + 0.551734i \(0.186034\pi\)
0.0608053 + 0.998150i \(0.480633\pi\)
\(858\) 0 0
\(859\) 17.0308 29.4983i 0.581085 1.00647i −0.414266 0.910156i \(-0.635962\pi\)
0.995351 0.0963126i \(-0.0307049\pi\)
\(860\) 0 0
\(861\) 2.72177 11.7950i 0.0927576 0.401974i
\(862\) 0 0
\(863\) 53.1301 1.80857 0.904286 0.426928i \(-0.140404\pi\)
0.904286 + 0.426928i \(0.140404\pi\)
\(864\) 0 0
\(865\) −0.910779 1.57752i −0.0309674 0.0536371i
\(866\) 0 0
\(867\) −57.2116 53.3392i −1.94301 1.81149i
\(868\) 0 0
\(869\) 14.9292 + 25.8582i 0.506440 + 0.877179i
\(870\) 0 0
\(871\) 8.80380 + 42.8968i 0.298305 + 1.45350i
\(872\) 0 0
\(873\) 6.81730 4.60046i 0.230731 0.155702i
\(874\) 0 0
\(875\) 0.966123 1.67337i 0.0326609 0.0565704i
\(876\) 0 0
\(877\) −24.0994 −0.813778 −0.406889 0.913478i \(-0.633386\pi\)
−0.406889 + 0.913478i \(0.633386\pi\)
\(878\) 0 0
\(879\) −1.60577 + 6.95878i −0.0541614 + 0.234714i
\(880\) 0 0
\(881\) −11.0492 + 19.1378i −0.372258 + 0.644770i −0.989913 0.141680i \(-0.954750\pi\)
0.617654 + 0.786450i \(0.288083\pi\)
\(882\) 0 0
\(883\) −39.3399 −1.32389 −0.661947 0.749551i \(-0.730270\pi\)
−0.661947 + 0.749551i \(0.730270\pi\)
\(884\) 0 0
\(885\) 2.57555 + 2.40122i 0.0865762 + 0.0807162i
\(886\) 0 0
\(887\) −7.97956 13.8210i −0.267927 0.464064i 0.700399 0.713751i \(-0.253005\pi\)
−0.968326 + 0.249688i \(0.919672\pi\)
\(888\) 0 0
\(889\) −10.4633 18.1230i −0.350928 0.607825i
\(890\) 0 0
\(891\) 12.7231 + 16.2704i 0.426240 + 0.545080i
\(892\) 0 0
\(893\) 28.6051 49.5455i 0.957234 1.65798i
\(894\) 0 0
\(895\) −1.51927 2.63145i −0.0507835 0.0879597i
\(896\) 0 0
\(897\) 7.15944 + 0.174468i 0.239047 + 0.00582531i
\(898\) 0 0
\(899\) 1.45211 2.51512i 0.0484305 0.0838841i
\(900\) 0 0
\(901\) −9.63204 16.6832i −0.320890 0.555797i
\(902\) 0 0
\(903\) 2.91115 0.890371i 0.0968772 0.0296297i
\(904\) 0 0
\(905\) −0.934176 + 1.61804i −0.0310531 + 0.0537855i
\(906\) 0 0
\(907\) 2.09929 0.0697056 0.0348528 0.999392i \(-0.488904\pi\)
0.0348528 + 0.999392i \(0.488904\pi\)
\(908\) 0 0
\(909\) 38.3929 + 18.7152i 1.27341 + 0.620746i
\(910\) 0 0
\(911\) 13.9916 + 24.2342i 0.463563 + 0.802915i 0.999135 0.0415744i \(-0.0132374\pi\)
−0.535572 + 0.844489i \(0.679904\pi\)
\(912\) 0 0
\(913\) −0.0344717 0.0597067i −0.00114085 0.00197600i
\(914\) 0 0
\(915\) −3.49849 + 1.07001i −0.115657 + 0.0353733i
\(916\) 0 0
\(917\) −2.09670 3.63158i −0.0692390 0.119925i
\(918\) 0 0
\(919\) 11.9398 + 20.6803i 0.393857 + 0.682180i 0.992955 0.118496i \(-0.0378073\pi\)
−0.599098 + 0.800676i \(0.704474\pi\)
\(920\) 0 0
\(921\) 0.444083 1.92448i 0.0146330 0.0634137i
\(922\) 0 0
\(923\) −6.58559 32.0885i −0.216767 1.05621i
\(924\) 0 0
\(925\) −56.9525 −1.87259
\(926\) 0 0
\(927\) −15.6273 + 10.5456i −0.513268 + 0.346364i
\(928\) 0 0
\(929\) −28.5179 + 49.3944i −0.935641 + 1.62058i −0.162153 + 0.986766i \(0.551844\pi\)
−0.773488 + 0.633811i \(0.781490\pi\)
\(930\) 0 0
\(931\) −17.1905 + 29.7749i −0.563397 + 0.975832i
\(932\) 0 0
\(933\) −10.9799 10.2367i −0.359466 0.335135i
\(934\) 0 0
\(935\) 2.96408 0.0969357
\(936\) 0 0
\(937\) 10.0024 0.326765 0.163383 0.986563i \(-0.447759\pi\)
0.163383 + 0.986563i \(0.447759\pi\)
\(938\) 0 0
\(939\) 52.2880 15.9922i 1.70635 0.521885i
\(940\) 0 0
\(941\) 4.14330 7.17640i 0.135068 0.233944i −0.790556 0.612390i \(-0.790208\pi\)
0.925623 + 0.378446i \(0.123542\pi\)
\(942\) 0 0
\(943\) 3.38832 5.86875i 0.110339 0.191113i
\(944\) 0 0
\(945\) −0.994383 0.157166i −0.0323473 0.00511262i
\(946\) 0 0
\(947\) 23.5580 0.765533 0.382766 0.923845i \(-0.374971\pi\)
0.382766 + 0.923845i \(0.374971\pi\)
\(948\) 0 0
\(949\) −26.2903 8.74669i −0.853419 0.283930i
\(950\) 0 0
\(951\) 48.9104 14.9592i 1.58603 0.485084i
\(952\) 0 0
\(953\) −0.311414 0.539385i −0.0100877 0.0174724i 0.860937 0.508711i \(-0.169878\pi\)
−0.871025 + 0.491238i \(0.836544\pi\)
\(954\) 0 0
\(955\) −1.25878 2.18027i −0.0407331 0.0705518i
\(956\) 0 0
\(957\) 1.40258 6.07823i 0.0453390 0.196481i
\(958\) 0 0
\(959\) −0.399547 0.692036i −0.0129020 0.0223470i
\(960\) 0 0
\(961\) 13.7876 + 23.8808i 0.444761 + 0.770349i
\(962\) 0 0
\(963\) 25.3820 17.1283i 0.817923 0.551951i
\(964\) 0 0
\(965\) −2.21573 −0.0713268
\(966\) 0 0
\(967\) 6.51911 11.2914i 0.209641 0.363108i −0.741961 0.670443i \(-0.766104\pi\)
0.951601 + 0.307335i \(0.0994373\pi\)
\(968\) 0 0
\(969\) −61.3082 57.1585i −1.96950 1.83620i
\(970\) 0 0
\(971\) −19.1696 33.2028i −0.615183 1.06553i −0.990352 0.138572i \(-0.955749\pi\)
0.375169 0.926956i \(-0.377585\pi\)
\(972\) 0 0
\(973\) 0.763478 1.32238i 0.0244760 0.0423936i
\(974\) 0 0
\(975\) 31.0482 + 0.756611i 0.994337 + 0.0242309i
\(976\) 0 0
\(977\) 16.6020 + 28.7555i 0.531145 + 0.919971i 0.999339 + 0.0363451i \(0.0115715\pi\)
−0.468194 + 0.883626i \(0.655095\pi\)
\(978\) 0 0
\(979\) 17.4194 30.1713i 0.556727 0.964279i
\(980\) 0 0
\(981\) 20.0521 + 9.77475i 0.640215 + 0.312084i
\(982\) 0 0
\(983\) −19.9244 34.5101i −0.635491 1.10070i −0.986411 0.164297i \(-0.947464\pi\)
0.350920 0.936405i \(-0.385869\pi\)
\(984\) 0 0
\(985\) −1.07925 1.86932i −0.0343878 0.0595614i
\(986\) 0 0
\(987\) 4.29293 18.6038i 0.136645 0.592166i
\(988\) 0 0
\(989\) 1.70425 0.0541920
\(990\) 0 0
\(991\) 6.71711 11.6344i 0.213376 0.369578i −0.739393 0.673274i \(-0.764887\pi\)
0.952769 + 0.303696i \(0.0982208\pi\)
\(992\) 0 0
\(993\) 12.9613 + 12.0840i 0.411315 + 0.383475i
\(994\) 0 0
\(995\) −3.90605 −0.123830
\(996\) 0 0
\(997\) −13.7542 + 23.8230i −0.435601 + 0.754483i −0.997344 0.0728285i \(-0.976797\pi\)
0.561744 + 0.827311i \(0.310131\pi\)
\(998\) 0 0
\(999\) 21.3430 + 55.5469i 0.675262 + 1.75743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.r.f.841.10 yes 40
3.2 odd 2 2808.2.r.f.2089.11 40
9.2 odd 6 2808.2.s.f.1153.11 40
9.7 even 3 936.2.s.f.529.4 yes 40
13.3 even 3 936.2.s.f.913.4 yes 40
39.29 odd 6 2808.2.s.f.1225.11 40
117.16 even 3 inner 936.2.r.f.601.10 40
117.29 odd 6 2808.2.r.f.289.11 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.10 40 117.16 even 3 inner
936.2.r.f.841.10 yes 40 1.1 even 1 trivial
936.2.s.f.529.4 yes 40 9.7 even 3
936.2.s.f.913.4 yes 40 13.3 even 3
2808.2.r.f.289.11 40 117.29 odd 6
2808.2.r.f.2089.11 40 3.2 odd 2
2808.2.s.f.1153.11 40 9.2 odd 6
2808.2.s.f.1225.11 40 39.29 odd 6