Properties

Label 936.2.s.f.529.3
Level $936$
Weight $2$
Character 936.529
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.3
Character \(\chi\) \(=\) 936.529
Dual form 936.2.s.f.913.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69053 - 0.376974i) q^{3} +(-0.185033 - 0.320487i) q^{5} +0.220829 q^{7} +(2.71578 + 1.27457i) q^{9} +(-2.10430 - 3.64475i) q^{11} +(-0.829056 + 3.50894i) q^{13} +(0.191989 + 0.611546i) q^{15} +(-1.24758 - 2.16087i) q^{17} +(0.226112 + 0.391637i) q^{19} +(-0.373317 - 0.0832466i) q^{21} -2.05243 q^{23} +(2.43153 - 4.21153i) q^{25} +(-4.11063 - 3.17848i) q^{27} +(1.85085 + 3.20576i) q^{29} +(-0.816082 - 1.41349i) q^{31} +(2.18340 + 6.95482i) q^{33} +(-0.0408606 - 0.0707727i) q^{35} +(-5.00558 + 8.66991i) q^{37} +(2.72432 - 5.61944i) q^{39} -4.07176 q^{41} -11.5147 q^{43} +(-0.0940265 - 1.10621i) q^{45} +(0.918184 - 1.59034i) q^{47} -6.95123 q^{49} +(1.29447 + 4.12331i) q^{51} -7.12781 q^{53} +(-0.778731 + 1.34880i) q^{55} +(-0.234611 - 0.747311i) q^{57} +(2.40843 - 4.17152i) q^{59} -7.82801 q^{61} +(0.599722 + 0.281462i) q^{63} +(1.27797 - 0.383569i) q^{65} -11.6595 q^{67} +(3.46970 + 0.773714i) q^{69} +(-6.89204 - 11.9374i) q^{71} +8.58734 q^{73} +(-5.69820 + 6.20309i) q^{75} +(-0.464689 - 0.804865i) q^{77} +(-6.36242 + 11.0200i) q^{79} +(5.75094 + 6.92291i) q^{81} +(-5.54460 + 9.60353i) q^{83} +(-0.461686 + 0.799664i) q^{85} +(-1.92043 - 6.11716i) q^{87} +(-0.114134 + 0.197686i) q^{89} +(-0.183079 + 0.774874i) q^{91} +(0.846760 + 2.69720i) q^{93} +(0.0836763 - 0.144932i) q^{95} +10.2261 q^{97} +(-1.06932 - 12.5804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69053 0.376974i −0.976028 0.217646i
\(4\) 0 0
\(5\) −0.185033 0.320487i −0.0827494 0.143326i 0.821681 0.569948i \(-0.193037\pi\)
−0.904430 + 0.426622i \(0.859703\pi\)
\(6\) 0 0
\(7\) 0.220829 0.0834653 0.0417327 0.999129i \(-0.486712\pi\)
0.0417327 + 0.999129i \(0.486712\pi\)
\(8\) 0 0
\(9\) 2.71578 + 1.27457i 0.905260 + 0.424857i
\(10\) 0 0
\(11\) −2.10430 3.64475i −0.634470 1.09893i −0.986627 0.162993i \(-0.947885\pi\)
0.352158 0.935941i \(-0.385448\pi\)
\(12\) 0 0
\(13\) −0.829056 + 3.50894i −0.229939 + 0.973205i
\(14\) 0 0
\(15\) 0.191989 + 0.611546i 0.0495714 + 0.157900i
\(16\) 0 0
\(17\) −1.24758 2.16087i −0.302582 0.524087i 0.674138 0.738605i \(-0.264515\pi\)
−0.976720 + 0.214518i \(0.931182\pi\)
\(18\) 0 0
\(19\) 0.226112 + 0.391637i 0.0518735 + 0.0898476i 0.890796 0.454403i \(-0.150147\pi\)
−0.838923 + 0.544251i \(0.816814\pi\)
\(20\) 0 0
\(21\) −0.373317 0.0832466i −0.0814645 0.0181659i
\(22\) 0 0
\(23\) −2.05243 −0.427962 −0.213981 0.976838i \(-0.568643\pi\)
−0.213981 + 0.976838i \(0.568643\pi\)
\(24\) 0 0
\(25\) 2.43153 4.21153i 0.486305 0.842305i
\(26\) 0 0
\(27\) −4.11063 3.17848i −0.791091 0.611699i
\(28\) 0 0
\(29\) 1.85085 + 3.20576i 0.343694 + 0.595295i 0.985116 0.171893i \(-0.0549884\pi\)
−0.641422 + 0.767189i \(0.721655\pi\)
\(30\) 0 0
\(31\) −0.816082 1.41349i −0.146573 0.253871i 0.783386 0.621536i \(-0.213491\pi\)
−0.929959 + 0.367664i \(0.880158\pi\)
\(32\) 0 0
\(33\) 2.18340 + 6.95482i 0.380082 + 1.21068i
\(34\) 0 0
\(35\) −0.0408606 0.0707727i −0.00690671 0.0119628i
\(36\) 0 0
\(37\) −5.00558 + 8.66991i −0.822912 + 1.42533i 0.0805930 + 0.996747i \(0.474319\pi\)
−0.903505 + 0.428578i \(0.859015\pi\)
\(38\) 0 0
\(39\) 2.72432 5.61944i 0.436241 0.899830i
\(40\) 0 0
\(41\) −4.07176 −0.635902 −0.317951 0.948107i \(-0.602995\pi\)
−0.317951 + 0.948107i \(0.602995\pi\)
\(42\) 0 0
\(43\) −11.5147 −1.75597 −0.877985 0.478688i \(-0.841112\pi\)
−0.877985 + 0.478688i \(0.841112\pi\)
\(44\) 0 0
\(45\) −0.0940265 1.10621i −0.0140166 0.164904i
\(46\) 0 0
\(47\) 0.918184 1.59034i 0.133931 0.231975i −0.791258 0.611483i \(-0.790573\pi\)
0.925189 + 0.379508i \(0.123907\pi\)
\(48\) 0 0
\(49\) −6.95123 −0.993034
\(50\) 0 0
\(51\) 1.29447 + 4.12331i 0.181263 + 0.577379i
\(52\) 0 0
\(53\) −7.12781 −0.979080 −0.489540 0.871981i \(-0.662835\pi\)
−0.489540 + 0.871981i \(0.662835\pi\)
\(54\) 0 0
\(55\) −0.778731 + 1.34880i −0.105004 + 0.181872i
\(56\) 0 0
\(57\) −0.234611 0.747311i −0.0310750 0.0989838i
\(58\) 0 0
\(59\) 2.40843 4.17152i 0.313550 0.543085i −0.665578 0.746328i \(-0.731815\pi\)
0.979128 + 0.203243i \(0.0651482\pi\)
\(60\) 0 0
\(61\) −7.82801 −1.00227 −0.501137 0.865368i \(-0.667085\pi\)
−0.501137 + 0.865368i \(0.667085\pi\)
\(62\) 0 0
\(63\) 0.599722 + 0.281462i 0.0755579 + 0.0354608i
\(64\) 0 0
\(65\) 1.27797 0.383569i 0.158513 0.0475759i
\(66\) 0 0
\(67\) −11.6595 −1.42443 −0.712216 0.701960i \(-0.752308\pi\)
−0.712216 + 0.701960i \(0.752308\pi\)
\(68\) 0 0
\(69\) 3.46970 + 0.773714i 0.417703 + 0.0931442i
\(70\) 0 0
\(71\) −6.89204 11.9374i −0.817935 1.41670i −0.907201 0.420697i \(-0.861786\pi\)
0.0892667 0.996008i \(-0.471548\pi\)
\(72\) 0 0
\(73\) 8.58734 1.00507 0.502536 0.864556i \(-0.332400\pi\)
0.502536 + 0.864556i \(0.332400\pi\)
\(74\) 0 0
\(75\) −5.69820 + 6.20309i −0.657972 + 0.716271i
\(76\) 0 0
\(77\) −0.464689 0.804865i −0.0529562 0.0917229i
\(78\) 0 0
\(79\) −6.36242 + 11.0200i −0.715828 + 1.23985i 0.246812 + 0.969063i \(0.420617\pi\)
−0.962639 + 0.270786i \(0.912716\pi\)
\(80\) 0 0
\(81\) 5.75094 + 6.92291i 0.638993 + 0.769212i
\(82\) 0 0
\(83\) −5.54460 + 9.60353i −0.608599 + 1.05412i 0.382873 + 0.923801i \(0.374935\pi\)
−0.991472 + 0.130323i \(0.958399\pi\)
\(84\) 0 0
\(85\) −0.461686 + 0.799664i −0.0500769 + 0.0867358i
\(86\) 0 0
\(87\) −1.92043 6.11716i −0.205891 0.655829i
\(88\) 0 0
\(89\) −0.114134 + 0.197686i −0.0120982 + 0.0209546i −0.872011 0.489486i \(-0.837184\pi\)
0.859913 + 0.510441i \(0.170518\pi\)
\(90\) 0 0
\(91\) −0.183079 + 0.774874i −0.0191919 + 0.0812289i
\(92\) 0 0
\(93\) 0.846760 + 2.69720i 0.0878049 + 0.279686i
\(94\) 0 0
\(95\) 0.0836763 0.144932i 0.00858501 0.0148697i
\(96\) 0 0
\(97\) 10.2261 1.03831 0.519153 0.854681i \(-0.326247\pi\)
0.519153 + 0.854681i \(0.326247\pi\)
\(98\) 0 0
\(99\) −1.06932 12.5804i −0.107471 1.26438i
\(100\) 0 0
\(101\) −3.97569 6.88610i −0.395596 0.685193i 0.597581 0.801809i \(-0.296129\pi\)
−0.993177 + 0.116616i \(0.962795\pi\)
\(102\) 0 0
\(103\) 3.16273 + 5.47801i 0.311633 + 0.539764i 0.978716 0.205219i \(-0.0657908\pi\)
−0.667083 + 0.744983i \(0.732457\pi\)
\(104\) 0 0
\(105\) 0.0423967 + 0.135047i 0.00413749 + 0.0131792i
\(106\) 0 0
\(107\) 2.59608 4.49654i 0.250973 0.434697i −0.712821 0.701346i \(-0.752583\pi\)
0.963794 + 0.266648i \(0.0859162\pi\)
\(108\) 0 0
\(109\) 13.6259 1.30513 0.652564 0.757733i \(-0.273693\pi\)
0.652564 + 0.757733i \(0.273693\pi\)
\(110\) 0 0
\(111\) 11.7304 12.7698i 1.11340 1.21205i
\(112\) 0 0
\(113\) 1.15288 1.99685i 0.108454 0.187848i −0.806690 0.590975i \(-0.798743\pi\)
0.915144 + 0.403127i \(0.132077\pi\)
\(114\) 0 0
\(115\) 0.379769 + 0.657779i 0.0354136 + 0.0613382i
\(116\) 0 0
\(117\) −6.72393 + 8.47283i −0.621627 + 0.783313i
\(118\) 0 0
\(119\) −0.275500 0.477181i −0.0252551 0.0437431i
\(120\) 0 0
\(121\) −3.35614 + 5.81300i −0.305103 + 0.528455i
\(122\) 0 0
\(123\) 6.88343 + 1.53495i 0.620658 + 0.138401i
\(124\) 0 0
\(125\) −3.64999 −0.326465
\(126\) 0 0
\(127\) 5.26106 9.11243i 0.466844 0.808597i −0.532439 0.846469i \(-0.678724\pi\)
0.999283 + 0.0378713i \(0.0120577\pi\)
\(128\) 0 0
\(129\) 19.4659 + 4.34073i 1.71388 + 0.382180i
\(130\) 0 0
\(131\) −1.94010 3.36036i −0.169508 0.293596i 0.768739 0.639562i \(-0.220884\pi\)
−0.938247 + 0.345967i \(0.887551\pi\)
\(132\) 0 0
\(133\) 0.0499319 + 0.0864845i 0.00432964 + 0.00749916i
\(134\) 0 0
\(135\) −0.258058 + 1.90553i −0.0222101 + 0.164002i
\(136\) 0 0
\(137\) −11.5781 −0.989188 −0.494594 0.869124i \(-0.664683\pi\)
−0.494594 + 0.869124i \(0.664683\pi\)
\(138\) 0 0
\(139\) −2.65932 + 4.60607i −0.225560 + 0.390682i −0.956487 0.291774i \(-0.905755\pi\)
0.730927 + 0.682456i \(0.239088\pi\)
\(140\) 0 0
\(141\) −2.15174 + 2.34239i −0.181209 + 0.197265i
\(142\) 0 0
\(143\) 14.5338 4.36215i 1.21538 0.364782i
\(144\) 0 0
\(145\) 0.684938 1.18635i 0.0568810 0.0985207i
\(146\) 0 0
\(147\) 11.7513 + 2.62043i 0.969228 + 0.216130i
\(148\) 0 0
\(149\) 8.88135 15.3830i 0.727589 1.26022i −0.230311 0.973117i \(-0.573974\pi\)
0.957900 0.287104i \(-0.0926924\pi\)
\(150\) 0 0
\(151\) −8.56540 + 14.8357i −0.697043 + 1.20731i 0.272445 + 0.962171i \(0.412168\pi\)
−0.969487 + 0.245142i \(0.921166\pi\)
\(152\) 0 0
\(153\) −0.633968 7.45856i −0.0512533 0.602989i
\(154\) 0 0
\(155\) −0.302005 + 0.523087i −0.0242576 + 0.0420154i
\(156\) 0 0
\(157\) −3.23205 5.59807i −0.257946 0.446775i 0.707746 0.706467i \(-0.249712\pi\)
−0.965691 + 0.259692i \(0.916379\pi\)
\(158\) 0 0
\(159\) 12.0498 + 2.68700i 0.955609 + 0.213093i
\(160\) 0 0
\(161\) −0.453236 −0.0357200
\(162\) 0 0
\(163\) 0.657316 + 1.13851i 0.0514850 + 0.0891746i 0.890619 0.454750i \(-0.150271\pi\)
−0.839134 + 0.543924i \(0.816938\pi\)
\(164\) 0 0
\(165\) 1.82493 1.98663i 0.142071 0.154659i
\(166\) 0 0
\(167\) 18.5920 1.43869 0.719346 0.694652i \(-0.244442\pi\)
0.719346 + 0.694652i \(0.244442\pi\)
\(168\) 0 0
\(169\) −11.6253 5.81822i −0.894256 0.447555i
\(170\) 0 0
\(171\) 0.114901 + 1.35179i 0.00878668 + 0.103374i
\(172\) 0 0
\(173\) −2.06795 −0.157223 −0.0786116 0.996905i \(-0.525049\pi\)
−0.0786116 + 0.996905i \(0.525049\pi\)
\(174\) 0 0
\(175\) 0.536950 0.930025i 0.0405896 0.0703033i
\(176\) 0 0
\(177\) −5.64407 + 6.14416i −0.424234 + 0.461823i
\(178\) 0 0
\(179\) 9.02646 15.6343i 0.674669 1.16856i −0.301896 0.953341i \(-0.597620\pi\)
0.976565 0.215221i \(-0.0690471\pi\)
\(180\) 0 0
\(181\) 12.5383 0.931962 0.465981 0.884795i \(-0.345701\pi\)
0.465981 + 0.884795i \(0.345701\pi\)
\(182\) 0 0
\(183\) 13.2335 + 2.95096i 0.978248 + 0.218141i
\(184\) 0 0
\(185\) 3.70480 0.272382
\(186\) 0 0
\(187\) −5.25054 + 9.09421i −0.383958 + 0.665034i
\(188\) 0 0
\(189\) −0.907744 0.701899i −0.0660287 0.0510556i
\(190\) 0 0
\(191\) −6.39211 −0.462517 −0.231259 0.972892i \(-0.574284\pi\)
−0.231259 + 0.972892i \(0.574284\pi\)
\(192\) 0 0
\(193\) 3.64109 0.262091 0.131046 0.991376i \(-0.458167\pi\)
0.131046 + 0.991376i \(0.458167\pi\)
\(194\) 0 0
\(195\) −2.30505 + 0.166673i −0.165068 + 0.0119357i
\(196\) 0 0
\(197\) −5.16259 + 8.94187i −0.367820 + 0.637082i −0.989224 0.146408i \(-0.953229\pi\)
0.621405 + 0.783490i \(0.286562\pi\)
\(198\) 0 0
\(199\) 4.21204 + 7.29547i 0.298584 + 0.517162i 0.975812 0.218611i \(-0.0701524\pi\)
−0.677228 + 0.735773i \(0.736819\pi\)
\(200\) 0 0
\(201\) 19.7107 + 4.39532i 1.39029 + 0.310022i
\(202\) 0 0
\(203\) 0.408720 + 0.707924i 0.0286865 + 0.0496865i
\(204\) 0 0
\(205\) 0.753411 + 1.30495i 0.0526205 + 0.0911414i
\(206\) 0 0
\(207\) −5.57396 2.61597i −0.387417 0.181823i
\(208\) 0 0
\(209\) 0.951612 1.64824i 0.0658244 0.114011i
\(210\) 0 0
\(211\) 12.3539 0.850475 0.425238 0.905082i \(-0.360191\pi\)
0.425238 + 0.905082i \(0.360191\pi\)
\(212\) 0 0
\(213\) 7.15112 + 22.7786i 0.489987 + 1.56076i
\(214\) 0 0
\(215\) 2.13060 + 3.69030i 0.145306 + 0.251677i
\(216\) 0 0
\(217\) −0.180214 0.312140i −0.0122337 0.0211894i
\(218\) 0 0
\(219\) −14.5172 3.23720i −0.980978 0.218750i
\(220\) 0 0
\(221\) 8.61666 2.58619i 0.579619 0.173966i
\(222\) 0 0
\(223\) 2.78229 + 4.81907i 0.186316 + 0.322709i 0.944019 0.329891i \(-0.107012\pi\)
−0.757703 + 0.652599i \(0.773679\pi\)
\(224\) 0 0
\(225\) 11.9714 8.33843i 0.798092 0.555895i
\(226\) 0 0
\(227\) 19.7955 1.31387 0.656937 0.753945i \(-0.271852\pi\)
0.656937 + 0.753945i \(0.271852\pi\)
\(228\) 0 0
\(229\) −9.03568 15.6502i −0.597094 1.03420i −0.993248 0.116013i \(-0.962988\pi\)
0.396153 0.918184i \(-0.370345\pi\)
\(230\) 0 0
\(231\) 0.482158 + 1.53582i 0.0317236 + 0.101050i
\(232\) 0 0
\(233\) −18.0216 −1.18063 −0.590317 0.807172i \(-0.700997\pi\)
−0.590317 + 0.807172i \(0.700997\pi\)
\(234\) 0 0
\(235\) −0.679579 −0.0443308
\(236\) 0 0
\(237\) 14.9101 16.2312i 0.968516 1.05433i
\(238\) 0 0
\(239\) −0.100774 0.174546i −0.00651853 0.0112904i 0.862748 0.505635i \(-0.168742\pi\)
−0.869266 + 0.494344i \(0.835408\pi\)
\(240\) 0 0
\(241\) 0.922329 0.0594124 0.0297062 0.999559i \(-0.490543\pi\)
0.0297062 + 0.999559i \(0.490543\pi\)
\(242\) 0 0
\(243\) −7.11237 13.8713i −0.456259 0.889847i
\(244\) 0 0
\(245\) 1.28621 + 2.22778i 0.0821730 + 0.142328i
\(246\) 0 0
\(247\) −1.56169 + 0.468723i −0.0993679 + 0.0298241i
\(248\) 0 0
\(249\) 12.9936 14.1449i 0.823435 0.896395i
\(250\) 0 0
\(251\) 4.59028 + 7.95060i 0.289736 + 0.501838i 0.973747 0.227635i \(-0.0730991\pi\)
−0.684011 + 0.729472i \(0.739766\pi\)
\(252\) 0 0
\(253\) 4.31893 + 7.48061i 0.271529 + 0.470302i
\(254\) 0 0
\(255\) 1.08195 1.17781i 0.0677542 0.0737575i
\(256\) 0 0
\(257\) 7.06935 0.440974 0.220487 0.975390i \(-0.429235\pi\)
0.220487 + 0.975390i \(0.429235\pi\)
\(258\) 0 0
\(259\) −1.10537 + 1.91456i −0.0686846 + 0.118965i
\(260\) 0 0
\(261\) 0.940527 + 11.0652i 0.0582172 + 0.684918i
\(262\) 0 0
\(263\) 0.936478 + 1.62203i 0.0577457 + 0.100019i 0.893453 0.449156i \(-0.148275\pi\)
−0.835707 + 0.549175i \(0.814942\pi\)
\(264\) 0 0
\(265\) 1.31888 + 2.28437i 0.0810183 + 0.140328i
\(266\) 0 0
\(267\) 0.267469 0.291168i 0.0163688 0.0178192i
\(268\) 0 0
\(269\) −13.4883 23.3625i −0.822399 1.42444i −0.903891 0.427763i \(-0.859302\pi\)
0.0814922 0.996674i \(-0.474031\pi\)
\(270\) 0 0
\(271\) 5.17186 8.95793i 0.314168 0.544155i −0.665092 0.746761i \(-0.731608\pi\)
0.979260 + 0.202606i \(0.0649410\pi\)
\(272\) 0 0
\(273\) 0.601608 1.24093i 0.0364110 0.0751046i
\(274\) 0 0
\(275\) −20.4666 −1.23418
\(276\) 0 0
\(277\) −9.20237 −0.552917 −0.276458 0.961026i \(-0.589161\pi\)
−0.276458 + 0.961026i \(0.589161\pi\)
\(278\) 0 0
\(279\) −0.414700 4.87890i −0.0248274 0.292092i
\(280\) 0 0
\(281\) −4.27672 + 7.40750i −0.255128 + 0.441894i −0.964930 0.262507i \(-0.915451\pi\)
0.709802 + 0.704401i \(0.248784\pi\)
\(282\) 0 0
\(283\) −16.8025 −0.998803 −0.499402 0.866371i \(-0.666447\pi\)
−0.499402 + 0.866371i \(0.666447\pi\)
\(284\) 0 0
\(285\) −0.196093 + 0.213468i −0.0116155 + 0.0126447i
\(286\) 0 0
\(287\) −0.899160 −0.0530758
\(288\) 0 0
\(289\) 5.38711 9.33074i 0.316889 0.548867i
\(290\) 0 0
\(291\) −17.2876 3.85498i −1.01342 0.225983i
\(292\) 0 0
\(293\) 8.67333 15.0226i 0.506701 0.877632i −0.493269 0.869877i \(-0.664198\pi\)
0.999970 0.00775536i \(-0.00246863\pi\)
\(294\) 0 0
\(295\) −1.78256 −0.103784
\(296\) 0 0
\(297\) −2.93477 + 21.6707i −0.170293 + 1.25746i
\(298\) 0 0
\(299\) 1.70158 7.20187i 0.0984051 0.416495i
\(300\) 0 0
\(301\) −2.54277 −0.146563
\(302\) 0 0
\(303\) 4.12515 + 13.1399i 0.236984 + 0.754867i
\(304\) 0 0
\(305\) 1.44844 + 2.50878i 0.0829376 + 0.143652i
\(306\) 0 0
\(307\) −4.98311 −0.284401 −0.142201 0.989838i \(-0.545418\pi\)
−0.142201 + 0.989838i \(0.545418\pi\)
\(308\) 0 0
\(309\) −3.28162 10.4530i −0.186685 0.594650i
\(310\) 0 0
\(311\) 13.8571 + 24.0011i 0.785762 + 1.36098i 0.928543 + 0.371226i \(0.121062\pi\)
−0.142781 + 0.989754i \(0.545604\pi\)
\(312\) 0 0
\(313\) −6.97711 + 12.0847i −0.394369 + 0.683068i −0.993020 0.117942i \(-0.962370\pi\)
0.598651 + 0.801010i \(0.295704\pi\)
\(314\) 0 0
\(315\) −0.0207637 0.244283i −0.00116990 0.0137638i
\(316\) 0 0
\(317\) −15.2734 + 26.4544i −0.857842 + 1.48583i 0.0161410 + 0.999870i \(0.494862\pi\)
−0.873983 + 0.485956i \(0.838471\pi\)
\(318\) 0 0
\(319\) 7.78947 13.4918i 0.436127 0.755394i
\(320\) 0 0
\(321\) −6.08383 + 6.62289i −0.339566 + 0.369654i
\(322\) 0 0
\(323\) 0.564183 0.977193i 0.0313920 0.0543725i
\(324\) 0 0
\(325\) 12.7621 + 12.0237i 0.707915 + 0.666953i
\(326\) 0 0
\(327\) −23.0351 5.13663i −1.27384 0.284056i
\(328\) 0 0
\(329\) 0.202761 0.351193i 0.0111786 0.0193619i
\(330\) 0 0
\(331\) −3.85832 −0.212072 −0.106036 0.994362i \(-0.533816\pi\)
−0.106036 + 0.994362i \(0.533816\pi\)
\(332\) 0 0
\(333\) −24.6445 + 17.1656i −1.35051 + 0.940671i
\(334\) 0 0
\(335\) 2.15739 + 3.73671i 0.117871 + 0.204159i
\(336\) 0 0
\(337\) −4.54153 7.86617i −0.247393 0.428497i 0.715409 0.698706i \(-0.246241\pi\)
−0.962802 + 0.270209i \(0.912907\pi\)
\(338\) 0 0
\(339\) −2.70174 + 2.94113i −0.146739 + 0.159740i
\(340\) 0 0
\(341\) −3.43456 + 5.94883i −0.185992 + 0.322147i
\(342\) 0 0
\(343\) −3.08083 −0.166349
\(344\) 0 0
\(345\) −0.394045 1.25516i −0.0212147 0.0675754i
\(346\) 0 0
\(347\) −15.5277 + 26.8948i −0.833573 + 1.44379i 0.0616141 + 0.998100i \(0.480375\pi\)
−0.895187 + 0.445691i \(0.852958\pi\)
\(348\) 0 0
\(349\) 7.16311 + 12.4069i 0.383432 + 0.664124i 0.991550 0.129722i \(-0.0414086\pi\)
−0.608118 + 0.793847i \(0.708075\pi\)
\(350\) 0 0
\(351\) 14.5610 11.7888i 0.777211 0.629241i
\(352\) 0 0
\(353\) −12.6460 21.9035i −0.673079 1.16581i −0.977026 0.213118i \(-0.931638\pi\)
0.303948 0.952689i \(-0.401695\pi\)
\(354\) 0 0
\(355\) −2.55051 + 4.41762i −0.135367 + 0.234463i
\(356\) 0 0
\(357\) 0.285857 + 0.910545i 0.0151292 + 0.0481911i
\(358\) 0 0
\(359\) 7.28756 0.384623 0.192311 0.981334i \(-0.438402\pi\)
0.192311 + 0.981334i \(0.438402\pi\)
\(360\) 0 0
\(361\) 9.39775 16.2774i 0.494618 0.856704i
\(362\) 0 0
\(363\) 7.86500 8.56188i 0.412806 0.449382i
\(364\) 0 0
\(365\) −1.58894 2.75213i −0.0831692 0.144053i
\(366\) 0 0
\(367\) 11.9161 + 20.6393i 0.622017 + 1.07736i 0.989110 + 0.147180i \(0.0470198\pi\)
−0.367093 + 0.930184i \(0.619647\pi\)
\(368\) 0 0
\(369\) −11.0580 5.18974i −0.575657 0.270167i
\(370\) 0 0
\(371\) −1.57402 −0.0817193
\(372\) 0 0
\(373\) 6.15807 10.6661i 0.318853 0.552269i −0.661396 0.750037i \(-0.730036\pi\)
0.980249 + 0.197767i \(0.0633691\pi\)
\(374\) 0 0
\(375\) 6.17041 + 1.37595i 0.318639 + 0.0710537i
\(376\) 0 0
\(377\) −12.7833 + 3.83676i −0.658373 + 0.197603i
\(378\) 0 0
\(379\) −7.07147 + 12.2481i −0.363237 + 0.629145i −0.988492 0.151276i \(-0.951662\pi\)
0.625255 + 0.780421i \(0.284995\pi\)
\(380\) 0 0
\(381\) −12.3291 + 13.4215i −0.631640 + 0.687607i
\(382\) 0 0
\(383\) 4.08658 7.07816i 0.208814 0.361677i −0.742527 0.669816i \(-0.766373\pi\)
0.951341 + 0.308139i \(0.0997062\pi\)
\(384\) 0 0
\(385\) −0.171966 + 0.297854i −0.00876420 + 0.0151800i
\(386\) 0 0
\(387\) −31.2713 14.6763i −1.58961 0.746036i
\(388\) 0 0
\(389\) 18.8420 32.6353i 0.955326 1.65467i 0.221706 0.975114i \(-0.428838\pi\)
0.733620 0.679559i \(-0.237829\pi\)
\(390\) 0 0
\(391\) 2.56057 + 4.43503i 0.129493 + 0.224289i
\(392\) 0 0
\(393\) 2.01304 + 6.41215i 0.101544 + 0.323450i
\(394\) 0 0
\(395\) 4.70904 0.236937
\(396\) 0 0
\(397\) 8.81974 + 15.2762i 0.442650 + 0.766692i 0.997885 0.0650010i \(-0.0207051\pi\)
−0.555235 + 0.831693i \(0.687372\pi\)
\(398\) 0 0
\(399\) −0.0518089 0.165028i −0.00259369 0.00826172i
\(400\) 0 0
\(401\) −31.4806 −1.57207 −0.786034 0.618183i \(-0.787869\pi\)
−0.786034 + 0.618183i \(0.787869\pi\)
\(402\) 0 0
\(403\) 5.63645 1.69172i 0.280771 0.0842704i
\(404\) 0 0
\(405\) 1.15459 3.12407i 0.0573720 0.155236i
\(406\) 0 0
\(407\) 42.1329 2.08845
\(408\) 0 0
\(409\) 17.9819 31.1455i 0.889147 1.54005i 0.0482615 0.998835i \(-0.484632\pi\)
0.840885 0.541213i \(-0.182035\pi\)
\(410\) 0 0
\(411\) 19.5732 + 4.36466i 0.965475 + 0.215293i
\(412\) 0 0
\(413\) 0.531849 0.921190i 0.0261706 0.0453288i
\(414\) 0 0
\(415\) 4.10374 0.201445
\(416\) 0 0
\(417\) 6.23202 6.78421i 0.305183 0.332224i
\(418\) 0 0
\(419\) −27.3743 −1.33732 −0.668661 0.743567i \(-0.733132\pi\)
−0.668661 + 0.743567i \(0.733132\pi\)
\(420\) 0 0
\(421\) 8.31205 14.3969i 0.405104 0.701661i −0.589229 0.807966i \(-0.700568\pi\)
0.994334 + 0.106304i \(0.0339018\pi\)
\(422\) 0 0
\(423\) 4.52059 3.14873i 0.219799 0.153096i
\(424\) 0 0
\(425\) −12.1341 −0.588588
\(426\) 0 0
\(427\) −1.72865 −0.0836552
\(428\) 0 0
\(429\) −26.2142 + 1.89549i −1.26564 + 0.0915151i
\(430\) 0 0
\(431\) 6.96462 12.0631i 0.335474 0.581058i −0.648102 0.761554i \(-0.724437\pi\)
0.983576 + 0.180496i \(0.0577703\pi\)
\(432\) 0 0
\(433\) −19.6355 34.0097i −0.943621 1.63440i −0.758489 0.651686i \(-0.774062\pi\)
−0.185133 0.982714i \(-0.559271\pi\)
\(434\) 0 0
\(435\) −1.60513 + 1.74735i −0.0769600 + 0.0837791i
\(436\) 0 0
\(437\) −0.464079 0.803808i −0.0221999 0.0384514i
\(438\) 0 0
\(439\) −17.9844 31.1498i −0.858347 1.48670i −0.873505 0.486815i \(-0.838159\pi\)
0.0151587 0.999885i \(-0.495175\pi\)
\(440\) 0 0
\(441\) −18.8780 8.85984i −0.898954 0.421897i
\(442\) 0 0
\(443\) −7.79412 + 13.4998i −0.370310 + 0.641395i −0.989613 0.143757i \(-0.954082\pi\)
0.619303 + 0.785152i \(0.287415\pi\)
\(444\) 0 0
\(445\) 0.0844743 0.00400446
\(446\) 0 0
\(447\) −20.8132 + 22.6573i −0.984429 + 1.07165i
\(448\) 0 0
\(449\) 18.9254 + 32.7797i 0.893143 + 1.54697i 0.836086 + 0.548598i \(0.184838\pi\)
0.0570564 + 0.998371i \(0.481829\pi\)
\(450\) 0 0
\(451\) 8.56819 + 14.8405i 0.403460 + 0.698814i
\(452\) 0 0
\(453\) 20.0727 21.8513i 0.943100 1.02666i
\(454\) 0 0
\(455\) 0.282213 0.0847030i 0.0132304 0.00397094i
\(456\) 0 0
\(457\) 3.37506 + 5.84577i 0.157878 + 0.273453i 0.934103 0.357003i \(-0.116201\pi\)
−0.776225 + 0.630456i \(0.782868\pi\)
\(458\) 0 0
\(459\) −1.73994 + 12.8479i −0.0812135 + 0.599689i
\(460\) 0 0
\(461\) 22.3590 1.04136 0.520681 0.853752i \(-0.325678\pi\)
0.520681 + 0.853752i \(0.325678\pi\)
\(462\) 0 0
\(463\) −1.62174 2.80893i −0.0753686 0.130542i 0.825878 0.563849i \(-0.190680\pi\)
−0.901246 + 0.433307i \(0.857347\pi\)
\(464\) 0 0
\(465\) 0.707738 0.770447i 0.0328206 0.0357286i
\(466\) 0 0
\(467\) 15.5291 0.718603 0.359302 0.933221i \(-0.383015\pi\)
0.359302 + 0.933221i \(0.383015\pi\)
\(468\) 0 0
\(469\) −2.57475 −0.118891
\(470\) 0 0
\(471\) 3.35355 + 10.6821i 0.154523 + 0.492205i
\(472\) 0 0
\(473\) 24.2303 + 41.9681i 1.11411 + 1.92969i
\(474\) 0 0
\(475\) 2.19918 0.100905
\(476\) 0 0
\(477\) −19.3576 9.08490i −0.886322 0.415969i
\(478\) 0 0
\(479\) −1.82016 3.15262i −0.0831654 0.144047i 0.821443 0.570291i \(-0.193170\pi\)
−0.904608 + 0.426245i \(0.859836\pi\)
\(480\) 0 0
\(481\) −26.2723 24.7521i −1.19791 1.12860i
\(482\) 0 0
\(483\) 0.766209 + 0.170858i 0.0348637 + 0.00777431i
\(484\) 0 0
\(485\) −1.89217 3.27734i −0.0859192 0.148816i
\(486\) 0 0
\(487\) 10.2651 + 17.7797i 0.465157 + 0.805676i 0.999209 0.0397759i \(-0.0126644\pi\)
−0.534051 + 0.845452i \(0.679331\pi\)
\(488\) 0 0
\(489\) −0.682026 2.17247i −0.0308423 0.0982424i
\(490\) 0 0
\(491\) −43.3226 −1.95512 −0.977561 0.210651i \(-0.932442\pi\)
−0.977561 + 0.210651i \(0.932442\pi\)
\(492\) 0 0
\(493\) 4.61815 7.99887i 0.207991 0.360251i
\(494\) 0 0
\(495\) −3.83400 + 2.67050i −0.172326 + 0.120030i
\(496\) 0 0
\(497\) −1.52196 2.63611i −0.0682692 0.118246i
\(498\) 0 0
\(499\) −7.22040 12.5061i −0.323229 0.559850i 0.657923 0.753085i \(-0.271435\pi\)
−0.981152 + 0.193235i \(0.938102\pi\)
\(500\) 0 0
\(501\) −31.4303 7.00869i −1.40420 0.313125i
\(502\) 0 0
\(503\) 10.9732 + 19.0061i 0.489269 + 0.847439i 0.999924 0.0123470i \(-0.00393026\pi\)
−0.510655 + 0.859786i \(0.670597\pi\)
\(504\) 0 0
\(505\) −1.47127 + 2.54832i −0.0654708 + 0.113399i
\(506\) 0 0
\(507\) 17.4597 + 14.2183i 0.775410 + 0.631458i
\(508\) 0 0
\(509\) −5.53986 −0.245550 −0.122775 0.992435i \(-0.539179\pi\)
−0.122775 + 0.992435i \(0.539179\pi\)
\(510\) 0 0
\(511\) 1.89633 0.0838887
\(512\) 0 0
\(513\) 0.315348 2.32856i 0.0139230 0.102809i
\(514\) 0 0
\(515\) 1.17042 2.02723i 0.0515749 0.0893303i
\(516\) 0 0
\(517\) −7.72853 −0.339900
\(518\) 0 0
\(519\) 3.49593 + 0.779562i 0.153454 + 0.0342190i
\(520\) 0 0
\(521\) −22.2041 −0.972779 −0.486390 0.873742i \(-0.661686\pi\)
−0.486390 + 0.873742i \(0.661686\pi\)
\(522\) 0 0
\(523\) −10.1092 + 17.5096i −0.442043 + 0.765641i −0.997841 0.0656764i \(-0.979080\pi\)
0.555798 + 0.831317i \(0.312413\pi\)
\(524\) 0 0
\(525\) −1.25833 + 1.36982i −0.0549178 + 0.0597838i
\(526\) 0 0
\(527\) −2.03625 + 3.52689i −0.0887004 + 0.153634i
\(528\) 0 0
\(529\) −18.7875 −0.816848
\(530\) 0 0
\(531\) 11.8577 8.25922i 0.514578 0.358420i
\(532\) 0 0
\(533\) 3.37572 14.2876i 0.146218 0.618863i
\(534\) 0 0
\(535\) −1.92145 −0.0830714
\(536\) 0 0
\(537\) −21.1532 + 23.0275i −0.912829 + 0.993709i
\(538\) 0 0
\(539\) 14.6275 + 25.3355i 0.630050 + 1.09128i
\(540\) 0 0
\(541\) 27.3228 1.17470 0.587349 0.809334i \(-0.300172\pi\)
0.587349 + 0.809334i \(0.300172\pi\)
\(542\) 0 0
\(543\) −21.1963 4.72660i −0.909621 0.202838i
\(544\) 0 0
\(545\) −2.52125 4.36694i −0.107999 0.187059i
\(546\) 0 0
\(547\) −17.0211 + 29.4815i −0.727771 + 1.26054i 0.230052 + 0.973178i \(0.426110\pi\)
−0.957823 + 0.287358i \(0.907223\pi\)
\(548\) 0 0
\(549\) −21.2592 9.97736i −0.907319 0.425823i
\(550\) 0 0
\(551\) −0.836996 + 1.44972i −0.0356572 + 0.0617602i
\(552\) 0 0
\(553\) −1.40500 + 2.43354i −0.0597468 + 0.103485i
\(554\) 0 0
\(555\) −6.26307 1.39661i −0.265852 0.0592828i
\(556\) 0 0
\(557\) −15.8408 + 27.4371i −0.671196 + 1.16255i 0.306369 + 0.951913i \(0.400886\pi\)
−0.977565 + 0.210633i \(0.932447\pi\)
\(558\) 0 0
\(559\) 9.54630 40.4043i 0.403766 1.70892i
\(560\) 0 0
\(561\) 12.3045 13.3947i 0.519496 0.565525i
\(562\) 0 0
\(563\) 18.9329 32.7927i 0.797925 1.38205i −0.123041 0.992402i \(-0.539265\pi\)
0.920965 0.389644i \(-0.127402\pi\)
\(564\) 0 0
\(565\) −0.853287 −0.0358981
\(566\) 0 0
\(567\) 1.26997 + 1.52878i 0.0533338 + 0.0642026i
\(568\) 0 0
\(569\) 6.13065 + 10.6186i 0.257010 + 0.445155i 0.965440 0.260627i \(-0.0839293\pi\)
−0.708429 + 0.705782i \(0.750596\pi\)
\(570\) 0 0
\(571\) −9.51424 16.4791i −0.398158 0.689631i 0.595340 0.803474i \(-0.297017\pi\)
−0.993499 + 0.113843i \(0.963684\pi\)
\(572\) 0 0
\(573\) 10.8061 + 2.40966i 0.451430 + 0.100665i
\(574\) 0 0
\(575\) −4.99055 + 8.64388i −0.208120 + 0.360475i
\(576\) 0 0
\(577\) −14.0939 −0.586735 −0.293368 0.956000i \(-0.594776\pi\)
−0.293368 + 0.956000i \(0.594776\pi\)
\(578\) 0 0
\(579\) −6.15537 1.37260i −0.255809 0.0570432i
\(580\) 0 0
\(581\) −1.22441 + 2.12073i −0.0507969 + 0.0879828i
\(582\) 0 0
\(583\) 14.9990 + 25.9791i 0.621197 + 1.07594i
\(584\) 0 0
\(585\) 3.95958 + 0.587178i 0.163709 + 0.0242768i
\(586\) 0 0
\(587\) 11.9125 + 20.6330i 0.491681 + 0.851616i 0.999954 0.00957978i \(-0.00304938\pi\)
−0.508273 + 0.861196i \(0.669716\pi\)
\(588\) 0 0
\(589\) 0.369051 0.639215i 0.0152065 0.0263384i
\(590\) 0 0
\(591\) 12.0984 13.1703i 0.497660 0.541755i
\(592\) 0 0
\(593\) 0.951141 0.0390587 0.0195293 0.999809i \(-0.493783\pi\)
0.0195293 + 0.999809i \(0.493783\pi\)
\(594\) 0 0
\(595\) −0.101954 + 0.176589i −0.00417969 + 0.00723943i
\(596\) 0 0
\(597\) −4.37038 13.9210i −0.178868 0.569750i
\(598\) 0 0
\(599\) 3.59422 + 6.22538i 0.146856 + 0.254362i 0.930064 0.367398i \(-0.119751\pi\)
−0.783208 + 0.621760i \(0.786418\pi\)
\(600\) 0 0
\(601\) 14.5771 + 25.2483i 0.594613 + 1.02990i 0.993601 + 0.112945i \(0.0360282\pi\)
−0.398988 + 0.916956i \(0.630638\pi\)
\(602\) 0 0
\(603\) −31.6646 14.8608i −1.28948 0.605180i
\(604\) 0 0
\(605\) 2.48399 0.100989
\(606\) 0 0
\(607\) 12.8603 22.2747i 0.521984 0.904102i −0.477689 0.878529i \(-0.658526\pi\)
0.999673 0.0255732i \(-0.00814109\pi\)
\(608\) 0 0
\(609\) −0.424085 1.35084i −0.0171848 0.0547390i
\(610\) 0 0
\(611\) 4.81919 + 4.54034i 0.194964 + 0.183682i
\(612\) 0 0
\(613\) 10.8372 18.7706i 0.437711 0.758138i −0.559802 0.828627i \(-0.689123\pi\)
0.997513 + 0.0704890i \(0.0224560\pi\)
\(614\) 0 0
\(615\) −0.781733 2.49007i −0.0315225 0.100409i
\(616\) 0 0
\(617\) −11.9349 + 20.6718i −0.480480 + 0.832216i −0.999749 0.0223946i \(-0.992871\pi\)
0.519269 + 0.854611i \(0.326204\pi\)
\(618\) 0 0
\(619\) 14.1119 24.4426i 0.567206 0.982430i −0.429634 0.903003i \(-0.641358\pi\)
0.996841 0.0794271i \(-0.0253091\pi\)
\(620\) 0 0
\(621\) 8.43680 + 6.52362i 0.338557 + 0.261784i
\(622\) 0 0
\(623\) −0.0252040 + 0.0436546i −0.00100978 + 0.00174899i
\(624\) 0 0
\(625\) −11.4823 19.8879i −0.459290 0.795514i
\(626\) 0 0
\(627\) −2.23007 + 2.42767i −0.0890605 + 0.0969516i
\(628\) 0 0
\(629\) 24.9794 0.995992
\(630\) 0 0
\(631\) 1.90270 + 3.29557i 0.0757453 + 0.131195i 0.901410 0.432966i \(-0.142533\pi\)
−0.825665 + 0.564161i \(0.809200\pi\)
\(632\) 0 0
\(633\) −20.8846 4.65708i −0.830087 0.185102i
\(634\) 0 0
\(635\) −3.89389 −0.154524
\(636\) 0 0
\(637\) 5.76296 24.3915i 0.228337 0.966425i
\(638\) 0 0
\(639\) −3.50226 41.2037i −0.138547 1.62999i
\(640\) 0 0
\(641\) −36.3468 −1.43561 −0.717806 0.696243i \(-0.754854\pi\)
−0.717806 + 0.696243i \(0.754854\pi\)
\(642\) 0 0
\(643\) 4.94485 8.56473i 0.195006 0.337760i −0.751897 0.659281i \(-0.770861\pi\)
0.946902 + 0.321521i \(0.104194\pi\)
\(644\) 0 0
\(645\) −2.21069 7.04174i −0.0870458 0.277268i
\(646\) 0 0
\(647\) −5.31723 + 9.20972i −0.209042 + 0.362071i −0.951413 0.307918i \(-0.900368\pi\)
0.742371 + 0.669989i \(0.233701\pi\)
\(648\) 0 0
\(649\) −20.2722 −0.795753
\(650\) 0 0
\(651\) 0.186989 + 0.595618i 0.00732867 + 0.0233441i
\(652\) 0 0
\(653\) −0.759157 −0.0297081 −0.0148541 0.999890i \(-0.504728\pi\)
−0.0148541 + 0.999890i \(0.504728\pi\)
\(654\) 0 0
\(655\) −0.717968 + 1.24356i −0.0280533 + 0.0485898i
\(656\) 0 0
\(657\) 23.3213 + 10.9452i 0.909852 + 0.427012i
\(658\) 0 0
\(659\) −26.7401 −1.04165 −0.520824 0.853664i \(-0.674375\pi\)
−0.520824 + 0.853664i \(0.674375\pi\)
\(660\) 0 0
\(661\) −8.93479 −0.347523 −0.173761 0.984788i \(-0.555592\pi\)
−0.173761 + 0.984788i \(0.555592\pi\)
\(662\) 0 0
\(663\) −15.5416 + 1.12378i −0.603588 + 0.0436440i
\(664\) 0 0
\(665\) 0.0184781 0.0320051i 0.000716551 0.00124110i
\(666\) 0 0
\(667\) −3.79875 6.57962i −0.147088 0.254764i
\(668\) 0 0
\(669\) −2.88688 9.19562i −0.111613 0.355523i
\(670\) 0 0
\(671\) 16.4725 + 28.5312i 0.635913 + 1.10143i
\(672\) 0 0
\(673\) −3.02784 5.24438i −0.116715 0.202156i 0.801749 0.597661i \(-0.203903\pi\)
−0.918464 + 0.395505i \(0.870570\pi\)
\(674\) 0 0
\(675\) −23.3813 + 9.58347i −0.899948 + 0.368868i
\(676\) 0 0
\(677\) 5.52459 9.56887i 0.212327 0.367761i −0.740115 0.672480i \(-0.765229\pi\)
0.952442 + 0.304719i \(0.0985624\pi\)
\(678\) 0 0
\(679\) 2.25822 0.0866626
\(680\) 0 0
\(681\) −33.4649 7.46239i −1.28238 0.285960i
\(682\) 0 0
\(683\) 6.80171 + 11.7809i 0.260260 + 0.450784i 0.966311 0.257377i \(-0.0828584\pi\)
−0.706051 + 0.708161i \(0.749525\pi\)
\(684\) 0 0
\(685\) 2.14234 + 3.71065i 0.0818547 + 0.141777i
\(686\) 0 0
\(687\) 9.37534 + 29.8634i 0.357692 + 1.13936i
\(688\) 0 0
\(689\) 5.90935 25.0111i 0.225128 0.952846i
\(690\) 0 0
\(691\) 22.7560 + 39.4146i 0.865679 + 1.49940i 0.866371 + 0.499401i \(0.166447\pi\)
−0.000691486 1.00000i \(0.500220\pi\)
\(692\) 0 0
\(693\) −0.236136 2.77812i −0.00897007 0.105532i
\(694\) 0 0
\(695\) 1.96825 0.0746600
\(696\) 0 0
\(697\) 5.07983 + 8.79852i 0.192412 + 0.333268i
\(698\) 0 0
\(699\) 30.4660 + 6.79367i 1.15233 + 0.256960i
\(700\) 0 0
\(701\) −2.09001 −0.0789388 −0.0394694 0.999221i \(-0.512567\pi\)
−0.0394694 + 0.999221i \(0.512567\pi\)
\(702\) 0 0
\(703\) −4.52727 −0.170749
\(704\) 0 0
\(705\) 1.14885 + 0.256183i 0.0432681 + 0.00964843i
\(706\) 0 0
\(707\) −0.877947 1.52065i −0.0330186 0.0571899i
\(708\) 0 0
\(709\) 30.9501 1.16236 0.581178 0.813776i \(-0.302592\pi\)
0.581178 + 0.813776i \(0.302592\pi\)
\(710\) 0 0
\(711\) −31.3247 + 21.8186i −1.17477 + 0.818263i
\(712\) 0 0
\(713\) 1.67495 + 2.90111i 0.0627275 + 0.108647i
\(714\) 0 0
\(715\) −4.08725 3.85075i −0.152855 0.144010i
\(716\) 0 0
\(717\) 0.104562 + 0.333064i 0.00390495 + 0.0124385i
\(718\) 0 0
\(719\) −24.5017 42.4382i −0.913759 1.58268i −0.808708 0.588210i \(-0.799833\pi\)
−0.105051 0.994467i \(-0.533501\pi\)
\(720\) 0 0
\(721\) 0.698421 + 1.20970i 0.0260105 + 0.0450516i
\(722\) 0 0
\(723\) −1.55922 0.347694i −0.0579882 0.0129309i
\(724\) 0 0
\(725\) 18.0015 0.668561
\(726\) 0 0
\(727\) −4.70130 + 8.14289i −0.174361 + 0.302003i −0.939940 0.341339i \(-0.889119\pi\)
0.765579 + 0.643342i \(0.222453\pi\)
\(728\) 0 0
\(729\) 6.79455 + 26.1311i 0.251650 + 0.967818i
\(730\) 0 0
\(731\) 14.3654 + 24.8816i 0.531324 + 0.920281i
\(732\) 0 0
\(733\) 11.3717 + 19.6963i 0.420022 + 0.727499i 0.995941 0.0900077i \(-0.0286892\pi\)
−0.575919 + 0.817506i \(0.695356\pi\)
\(734\) 0 0
\(735\) −1.33456 4.25100i −0.0492260 0.156800i
\(736\) 0 0
\(737\) 24.5350 + 42.4959i 0.903759 + 1.56536i
\(738\) 0 0
\(739\) 24.6444 42.6853i 0.906558 1.57021i 0.0877471 0.996143i \(-0.472033\pi\)
0.818811 0.574063i \(-0.194633\pi\)
\(740\) 0 0
\(741\) 2.81678 0.203675i 0.103477 0.00748217i
\(742\) 0 0
\(743\) −32.6289 −1.19704 −0.598519 0.801109i \(-0.704244\pi\)
−0.598519 + 0.801109i \(0.704244\pi\)
\(744\) 0 0
\(745\) −6.57339 −0.240830
\(746\) 0 0
\(747\) −27.2983 + 19.0141i −0.998793 + 0.695690i
\(748\) 0 0
\(749\) 0.573289 0.992965i 0.0209475 0.0362822i
\(750\) 0 0
\(751\) 6.73072 0.245607 0.122804 0.992431i \(-0.460811\pi\)
0.122804 + 0.992431i \(0.460811\pi\)
\(752\) 0 0
\(753\) −4.76284 15.1711i −0.173568 0.552867i
\(754\) 0 0
\(755\) 6.33954 0.230720
\(756\) 0 0
\(757\) −17.1722 + 29.7432i −0.624135 + 1.08103i 0.364572 + 0.931175i \(0.381215\pi\)
−0.988707 + 0.149859i \(0.952118\pi\)
\(758\) 0 0
\(759\) −4.48129 14.2743i −0.162661 0.518125i
\(760\) 0 0
\(761\) −13.6369 + 23.6198i −0.494337 + 0.856217i −0.999979 0.00652664i \(-0.997922\pi\)
0.505642 + 0.862744i \(0.331256\pi\)
\(762\) 0 0
\(763\) 3.00900 0.108933
\(764\) 0 0
\(765\) −2.27307 + 1.58326i −0.0821830 + 0.0572429i
\(766\) 0 0
\(767\) 12.6409 + 11.9094i 0.456436 + 0.430025i
\(768\) 0 0
\(769\) 39.8446 1.43683 0.718417 0.695612i \(-0.244867\pi\)
0.718417 + 0.695612i \(0.244867\pi\)
\(770\) 0 0
\(771\) −11.9509 2.66496i −0.430403 0.0959762i
\(772\) 0 0
\(773\) 7.98669 + 13.8334i 0.287261 + 0.497551i 0.973155 0.230151i \(-0.0739219\pi\)
−0.685894 + 0.727702i \(0.740589\pi\)
\(774\) 0 0
\(775\) −7.93729 −0.285116
\(776\) 0 0
\(777\) 2.59041 2.81993i 0.0929304 0.101164i
\(778\) 0 0
\(779\) −0.920671 1.59465i −0.0329865 0.0571342i
\(780\) 0 0
\(781\) −29.0058 + 50.2395i −1.03791 + 1.79771i
\(782\) 0 0
\(783\) 2.58130 19.0606i 0.0922481 0.681170i
\(784\) 0 0
\(785\) −1.19607 + 2.07166i −0.0426897 + 0.0739407i
\(786\) 0 0
\(787\) 27.1931 47.0999i 0.969331 1.67893i 0.271832 0.962345i \(-0.412371\pi\)
0.697499 0.716586i \(-0.254296\pi\)
\(788\) 0 0
\(789\) −0.971682 3.09511i −0.0345928 0.110189i
\(790\) 0 0
\(791\) 0.254589 0.440962i 0.00905216 0.0156788i
\(792\) 0 0
\(793\) 6.48986 27.4680i 0.230462 0.975418i
\(794\) 0 0
\(795\) −1.36846 4.35898i −0.0485343 0.154597i
\(796\) 0 0
\(797\) 22.9718 39.7884i 0.813704 1.40938i −0.0965501 0.995328i \(-0.530781\pi\)
0.910255 0.414049i \(-0.135886\pi\)
\(798\) 0 0
\(799\) −4.58202 −0.162100
\(800\) 0 0
\(801\) −0.561927 + 0.391399i −0.0198547 + 0.0138294i
\(802\) 0 0
\(803\) −18.0703 31.2987i −0.637688 1.10451i
\(804\) 0 0
\(805\) 0.0838638 + 0.145256i 0.00295581 + 0.00511961i
\(806\) 0 0
\(807\) 13.9954 + 44.5798i 0.492661 + 1.56928i
\(808\) 0 0
\(809\) 0.753915 1.30582i 0.0265062 0.0459101i −0.852468 0.522779i \(-0.824895\pi\)
0.878974 + 0.476869i \(0.158228\pi\)
\(810\) 0 0
\(811\) 34.4445 1.20951 0.604755 0.796411i \(-0.293271\pi\)
0.604755 + 0.796411i \(0.293271\pi\)
\(812\) 0 0
\(813\) −12.1201 + 13.1940i −0.425070 + 0.462733i
\(814\) 0 0
\(815\) 0.243251 0.421323i 0.00852071 0.0147583i
\(816\) 0 0
\(817\) −2.60360 4.50956i −0.0910884 0.157770i
\(818\) 0 0
\(819\) −1.48484 + 1.87104i −0.0518844 + 0.0653795i
\(820\) 0 0
\(821\) −9.36575 16.2220i −0.326867 0.566150i 0.655021 0.755610i \(-0.272660\pi\)
−0.981888 + 0.189460i \(0.939326\pi\)
\(822\) 0 0
\(823\) 8.17238 14.1550i 0.284871 0.493411i −0.687707 0.725989i \(-0.741383\pi\)
0.972578 + 0.232577i \(0.0747159\pi\)
\(824\) 0 0
\(825\) 34.5994 + 7.71538i 1.20460 + 0.268615i
\(826\) 0 0
\(827\) 3.88733 0.135176 0.0675878 0.997713i \(-0.478470\pi\)
0.0675878 + 0.997713i \(0.478470\pi\)
\(828\) 0 0
\(829\) −4.20485 + 7.28302i −0.146041 + 0.252950i −0.929761 0.368164i \(-0.879986\pi\)
0.783720 + 0.621114i \(0.213320\pi\)
\(830\) 0 0
\(831\) 15.5569 + 3.46905i 0.539662 + 0.120340i
\(832\) 0 0
\(833\) 8.67220 + 15.0207i 0.300474 + 0.520436i
\(834\) 0 0
\(835\) −3.44014 5.95849i −0.119051 0.206202i
\(836\) 0 0
\(837\) −1.13815 + 8.40425i −0.0393404 + 0.290493i
\(838\) 0 0
\(839\) 3.36871 0.116301 0.0581504 0.998308i \(-0.481480\pi\)
0.0581504 + 0.998308i \(0.481480\pi\)
\(840\) 0 0
\(841\) 7.64872 13.2480i 0.263749 0.456826i
\(842\) 0 0
\(843\) 10.0224 10.9104i 0.345188 0.375773i
\(844\) 0 0
\(845\) 0.286410 + 4.80233i 0.00985280 + 0.165205i
\(846\) 0 0
\(847\) −0.741131 + 1.28368i −0.0254656 + 0.0441077i
\(848\) 0 0
\(849\) 28.4051 + 6.33409i 0.974860 + 0.217386i
\(850\) 0 0
\(851\) 10.2736 17.7944i 0.352175 0.609985i
\(852\) 0 0
\(853\) 6.68642 11.5812i 0.228939 0.396533i −0.728555 0.684987i \(-0.759808\pi\)
0.957494 + 0.288454i \(0.0931411\pi\)
\(854\) 0 0
\(855\) 0.411972 0.286951i 0.0140892 0.00981353i
\(856\) 0 0
\(857\) 8.35202 14.4661i 0.285300 0.494153i −0.687382 0.726296i \(-0.741240\pi\)
0.972682 + 0.232143i \(0.0745736\pi\)
\(858\) 0 0
\(859\) 10.2946 + 17.8308i 0.351247 + 0.608378i 0.986468 0.163952i \(-0.0524244\pi\)
−0.635221 + 0.772330i \(0.719091\pi\)
\(860\) 0 0
\(861\) 1.52006 + 0.338960i 0.0518034 + 0.0115517i
\(862\) 0 0
\(863\) 6.86690 0.233752 0.116876 0.993147i \(-0.462712\pi\)
0.116876 + 0.993147i \(0.462712\pi\)
\(864\) 0 0
\(865\) 0.382639 + 0.662751i 0.0130101 + 0.0225342i
\(866\) 0 0
\(867\) −12.6245 + 13.7431i −0.428751 + 0.466740i
\(868\) 0 0
\(869\) 53.5537 1.81668
\(870\) 0 0
\(871\) 9.66636 40.9124i 0.327532 1.38626i
\(872\) 0 0
\(873\) 27.7719 + 13.0339i 0.939937 + 0.441132i
\(874\) 0 0
\(875\) −0.806021 −0.0272485
\(876\) 0 0
\(877\) 1.51694 2.62741i 0.0512233 0.0887213i −0.839277 0.543704i \(-0.817021\pi\)
0.890500 + 0.454983i \(0.150355\pi\)
\(878\) 0 0
\(879\) −20.3257 + 22.1266i −0.685568 + 0.746312i
\(880\) 0 0
\(881\) 22.4166 38.8267i 0.755234 1.30810i −0.190024 0.981780i \(-0.560856\pi\)
0.945258 0.326325i \(-0.105810\pi\)
\(882\) 0 0
\(883\) −4.01343 −0.135063 −0.0675314 0.997717i \(-0.521512\pi\)
−0.0675314 + 0.997717i \(0.521512\pi\)
\(884\) 0 0
\(885\) 3.01347 + 0.671977i 0.101297 + 0.0225883i
\(886\) 0 0
\(887\) −39.9321 −1.34079 −0.670394 0.742006i \(-0.733875\pi\)
−0.670394 + 0.742006i \(0.733875\pi\)
\(888\) 0 0
\(889\) 1.16179 2.01228i 0.0389653 0.0674898i
\(890\) 0 0
\(891\) 13.1306 35.5286i 0.439892 1.19025i
\(892\) 0 0
\(893\) 0.830448 0.0277899
\(894\) 0 0
\(895\) −6.68078 −0.223314
\(896\) 0 0
\(897\) −5.59149 + 11.5335i −0.186695 + 0.385093i
\(898\) 0 0
\(899\) 3.02089 5.23233i 0.100752 0.174508i
\(900\) 0 0
\(901\) 8.89249 + 15.4022i 0.296252 + 0.513123i
\(902\) 0 0
\(903\) 4.29862 + 0.958556i 0.143049 + 0.0318988i
\(904\) 0 0
\(905\) −2.32000 4.01836i −0.0771194 0.133575i
\(906\) 0 0
\(907\) −28.9682 50.1744i −0.961874 1.66601i −0.717789 0.696260i \(-0.754846\pi\)
−0.244084 0.969754i \(-0.578487\pi\)
\(908\) 0 0
\(909\) −2.02029 23.7685i −0.0670087 0.788350i
\(910\) 0 0
\(911\) 16.7679 29.0429i 0.555546 0.962234i −0.442315 0.896860i \(-0.645843\pi\)
0.997861 0.0653740i \(-0.0208240\pi\)
\(912\) 0 0
\(913\) 46.6700 1.54455
\(914\) 0 0
\(915\) −1.50289 4.78719i −0.0496841 0.158260i
\(916\) 0 0
\(917\) −0.428430 0.742063i −0.0141480 0.0245051i
\(918\) 0 0
\(919\) 6.42095 + 11.1214i 0.211807 + 0.366861i 0.952280 0.305225i \(-0.0987317\pi\)
−0.740473 + 0.672086i \(0.765398\pi\)
\(920\) 0 0
\(921\) 8.42410 + 1.87850i 0.277583 + 0.0618988i
\(922\) 0 0
\(923\) 47.6014 14.2870i 1.56682 0.470263i
\(924\) 0 0
\(925\) 24.3424 + 42.1622i 0.800372 + 1.38629i
\(926\) 0 0
\(927\) 1.60717 + 18.9082i 0.0527864 + 0.621026i
\(928\) 0 0
\(929\) 38.2646 1.25542 0.627711 0.778447i \(-0.283992\pi\)
0.627711 + 0.778447i \(0.283992\pi\)
\(930\) 0 0
\(931\) −1.57175 2.72236i −0.0515122 0.0892217i
\(932\) 0 0
\(933\) −14.3780 45.7984i −0.470714 1.49937i
\(934\) 0 0
\(935\) 3.88610 0.127089
\(936\) 0 0
\(937\) −24.2557 −0.792398 −0.396199 0.918165i \(-0.629671\pi\)
−0.396199 + 0.918165i \(0.629671\pi\)
\(938\) 0 0
\(939\) 16.3506 17.7994i 0.533583 0.580860i
\(940\) 0 0
\(941\) 29.6711 + 51.3919i 0.967250 + 1.67533i 0.703444 + 0.710751i \(0.251645\pi\)
0.263807 + 0.964576i \(0.415022\pi\)
\(942\) 0 0
\(943\) 8.35701 0.272142
\(944\) 0 0
\(945\) −0.0569866 + 0.420795i −0.00185377 + 0.0136885i
\(946\) 0 0
\(947\) 13.5820 + 23.5248i 0.441357 + 0.764453i 0.997790 0.0664391i \(-0.0211638\pi\)
−0.556433 + 0.830892i \(0.687830\pi\)
\(948\) 0 0
\(949\) −7.11939 + 30.1325i −0.231105 + 0.978141i
\(950\) 0 0
\(951\) 35.7928 38.9642i 1.16066 1.26350i
\(952\) 0 0
\(953\) 22.4206 + 38.8335i 0.726273 + 1.25794i 0.958448 + 0.285267i \(0.0920824\pi\)
−0.232175 + 0.972674i \(0.574584\pi\)
\(954\) 0 0
\(955\) 1.18275 + 2.04859i 0.0382730 + 0.0662908i
\(956\) 0 0
\(957\) −18.2544 + 19.8718i −0.590080 + 0.642364i
\(958\) 0 0
\(959\) −2.55679 −0.0825629
\(960\) 0 0
\(961\) 14.1680 24.5397i 0.457033 0.791604i
\(962\) 0 0
\(963\) 12.7816 8.90274i 0.411880 0.286887i
\(964\) 0 0
\(965\) −0.673723 1.16692i −0.0216879 0.0375646i
\(966\) 0 0
\(967\) −11.8394 20.5064i −0.380729 0.659443i 0.610437 0.792065i \(-0.290994\pi\)
−0.991167 + 0.132622i \(0.957660\pi\)
\(968\) 0 0
\(969\) −1.32214 + 1.43929i −0.0424734 + 0.0462367i
\(970\) 0 0
\(971\) −24.3425 42.1624i −0.781187 1.35306i −0.931251 0.364379i \(-0.881281\pi\)
0.150063 0.988676i \(-0.452052\pi\)
\(972\) 0 0
\(973\) −0.587253 + 1.01715i −0.0188265 + 0.0326084i
\(974\) 0 0
\(975\) −17.0421 25.1374i −0.545785 0.805040i
\(976\) 0 0
\(977\) −7.78019 −0.248910 −0.124455 0.992225i \(-0.539718\pi\)
−0.124455 + 0.992225i \(0.539718\pi\)
\(978\) 0 0
\(979\) 0.960686 0.0307037
\(980\) 0 0
\(981\) 37.0051 + 17.3672i 1.18148 + 0.554493i
\(982\) 0 0
\(983\) −27.3156 + 47.3121i −0.871234 + 1.50902i −0.0105121 + 0.999945i \(0.503346\pi\)
−0.860722 + 0.509076i \(0.829987\pi\)
\(984\) 0 0
\(985\) 3.82101 0.121747
\(986\) 0 0
\(987\) −0.475165 + 0.517266i −0.0151247 + 0.0164648i
\(988\) 0 0
\(989\) 23.6331 0.751489
\(990\) 0 0
\(991\) −11.7645 + 20.3767i −0.373712 + 0.647288i −0.990133 0.140128i \(-0.955248\pi\)
0.616421 + 0.787416i \(0.288582\pi\)
\(992\) 0 0
\(993\) 6.52260 + 1.45449i 0.206989 + 0.0461567i
\(994\) 0 0
\(995\) 1.55874 2.69981i 0.0494153 0.0855898i
\(996\) 0 0
\(997\) 27.3208 0.865257 0.432629 0.901572i \(-0.357586\pi\)
0.432629 + 0.901572i \(0.357586\pi\)
\(998\) 0 0
\(999\) 48.1332 19.7287i 1.52287 0.624188i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.529.3 yes 40
3.2 odd 2 2808.2.s.f.1153.12 40
9.4 even 3 936.2.r.f.841.15 yes 40
9.5 odd 6 2808.2.r.f.2089.12 40
13.3 even 3 936.2.r.f.601.15 40
39.29 odd 6 2808.2.r.f.289.12 40
117.68 odd 6 2808.2.s.f.1225.12 40
117.94 even 3 inner 936.2.s.f.913.3 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.15 40 13.3 even 3
936.2.r.f.841.15 yes 40 9.4 even 3
936.2.s.f.529.3 yes 40 1.1 even 1 trivial
936.2.s.f.913.3 yes 40 117.94 even 3 inner
2808.2.r.f.289.12 40 39.29 odd 6
2808.2.r.f.2089.12 40 9.5 odd 6
2808.2.s.f.1153.12 40 3.2 odd 2
2808.2.s.f.1225.12 40 117.68 odd 6