Properties

Label 936.2.r.f.601.15
Level $936$
Weight $2$
Character 936.601
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(601,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.r (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.15
Character \(\chi\) \(=\) 936.601
Dual form 936.2.r.f.841.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17173 - 1.27555i) q^{3} +(-0.185033 - 0.320487i) q^{5} +(-0.110414 - 0.191243i) q^{7} +(-0.254080 - 2.98922i) q^{9} +4.20860 q^{11} +(3.45336 + 1.03649i) q^{13} +(-0.625609 - 0.139505i) q^{15} +(-1.24758 + 2.16087i) q^{17} +(0.226112 - 0.391637i) q^{19} +(-0.373317 - 0.0832466i) q^{21} +(1.02622 - 1.77746i) q^{23} +(2.43153 - 4.21153i) q^{25} +(-4.11063 - 3.17848i) q^{27} -3.70170 q^{29} +(-0.816082 - 1.41349i) q^{31} +(4.93135 - 5.36829i) q^{33} +(-0.0408606 + 0.0707727i) q^{35} +(-5.00558 - 8.66991i) q^{37} +(5.36851 - 3.19046i) q^{39} +(2.03588 - 3.52625i) q^{41} +(5.75733 + 9.97199i) q^{43} +(-0.910994 + 0.634535i) q^{45} +(0.918184 - 1.59034i) q^{47} +(3.47562 - 6.01995i) q^{49} +(1.29447 + 4.12331i) q^{51} -7.12781 q^{53} +(-0.778731 - 1.34880i) q^{55} +(-0.234611 - 0.747311i) q^{57} -4.81685 q^{59} +(3.91401 + 6.77926i) q^{61} +(-0.543614 + 0.378644i) q^{63} +(-0.306806 - 1.29854i) q^{65} +(5.82974 - 10.0974i) q^{67} +(-1.06479 - 3.39171i) q^{69} +(-6.89204 + 11.9374i) q^{71} +8.58734 q^{73} +(-2.52293 - 8.03633i) q^{75} +(-0.464689 - 0.804865i) q^{77} +(-6.36242 + 11.0200i) q^{79} +(-8.87089 + 1.51900i) q^{81} +(-5.54460 + 9.60353i) q^{83} +0.923373 q^{85} +(-4.33740 + 4.72172i) q^{87} +(-0.114134 - 0.197686i) q^{89} +(-0.183079 - 0.774874i) q^{91} +(-2.75922 - 0.615283i) q^{93} -0.167353 q^{95} +(-5.11306 - 8.85609i) q^{97} +(-1.06932 - 12.5804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{5} + 7 q^{7} + 6 q^{9} + 11 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} - q^{23} - 23 q^{25} - 3 q^{27} - 24 q^{29} + 8 q^{31} + 4 q^{33} - 12 q^{35} + 18 q^{37} + 6 q^{39} - 3 q^{41} + 8 q^{43}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17173 1.27555i 0.676501 0.736442i
\(4\) 0 0
\(5\) −0.185033 0.320487i −0.0827494 0.143326i 0.821681 0.569948i \(-0.193037\pi\)
−0.904430 + 0.426622i \(0.859703\pi\)
\(6\) 0 0
\(7\) −0.110414 0.191243i −0.0417327 0.0722831i 0.844405 0.535706i \(-0.179954\pi\)
−0.886137 + 0.463423i \(0.846621\pi\)
\(8\) 0 0
\(9\) −0.254080 2.98922i −0.0846933 0.996407i
\(10\) 0 0
\(11\) 4.20860 1.26894 0.634470 0.772948i \(-0.281219\pi\)
0.634470 + 0.772948i \(0.281219\pi\)
\(12\) 0 0
\(13\) 3.45336 + 1.03649i 0.957790 + 0.287470i
\(14\) 0 0
\(15\) −0.625609 0.139505i −0.161531 0.0360202i
\(16\) 0 0
\(17\) −1.24758 + 2.16087i −0.302582 + 0.524087i −0.976720 0.214518i \(-0.931182\pi\)
0.674138 + 0.738605i \(0.264515\pi\)
\(18\) 0 0
\(19\) 0.226112 0.391637i 0.0518735 0.0898476i −0.838923 0.544251i \(-0.816814\pi\)
0.890796 + 0.454403i \(0.150147\pi\)
\(20\) 0 0
\(21\) −0.373317 0.0832466i −0.0814645 0.0181659i
\(22\) 0 0
\(23\) 1.02622 1.77746i 0.213981 0.370626i −0.738976 0.673732i \(-0.764690\pi\)
0.952957 + 0.303106i \(0.0980236\pi\)
\(24\) 0 0
\(25\) 2.43153 4.21153i 0.486305 0.842305i
\(26\) 0 0
\(27\) −4.11063 3.17848i −0.791091 0.611699i
\(28\) 0 0
\(29\) −3.70170 −0.687388 −0.343694 0.939082i \(-0.611678\pi\)
−0.343694 + 0.939082i \(0.611678\pi\)
\(30\) 0 0
\(31\) −0.816082 1.41349i −0.146573 0.253871i 0.783386 0.621536i \(-0.213491\pi\)
−0.929959 + 0.367664i \(0.880158\pi\)
\(32\) 0 0
\(33\) 4.93135 5.36829i 0.858438 0.934500i
\(34\) 0 0
\(35\) −0.0408606 + 0.0707727i −0.00690671 + 0.0119628i
\(36\) 0 0
\(37\) −5.00558 8.66991i −0.822912 1.42533i −0.903505 0.428578i \(-0.859015\pi\)
0.0805930 0.996747i \(-0.474319\pi\)
\(38\) 0 0
\(39\) 5.36851 3.19046i 0.859650 0.510883i
\(40\) 0 0
\(41\) 2.03588 3.52625i 0.317951 0.550707i −0.662110 0.749407i \(-0.730339\pi\)
0.980060 + 0.198700i \(0.0636720\pi\)
\(42\) 0 0
\(43\) 5.75733 + 9.97199i 0.877985 + 1.52071i 0.853549 + 0.521013i \(0.174446\pi\)
0.0244362 + 0.999701i \(0.492221\pi\)
\(44\) 0 0
\(45\) −0.910994 + 0.634535i −0.135803 + 0.0945909i
\(46\) 0 0
\(47\) 0.918184 1.59034i 0.133931 0.231975i −0.791258 0.611483i \(-0.790573\pi\)
0.925189 + 0.379508i \(0.123907\pi\)
\(48\) 0 0
\(49\) 3.47562 6.01995i 0.496517 0.859992i
\(50\) 0 0
\(51\) 1.29447 + 4.12331i 0.181263 + 0.577379i
\(52\) 0 0
\(53\) −7.12781 −0.979080 −0.489540 0.871981i \(-0.662835\pi\)
−0.489540 + 0.871981i \(0.662835\pi\)
\(54\) 0 0
\(55\) −0.778731 1.34880i −0.105004 0.181872i
\(56\) 0 0
\(57\) −0.234611 0.747311i −0.0310750 0.0989838i
\(58\) 0 0
\(59\) −4.81685 −0.627101 −0.313550 0.949572i \(-0.601518\pi\)
−0.313550 + 0.949572i \(0.601518\pi\)
\(60\) 0 0
\(61\) 3.91401 + 6.77926i 0.501137 + 0.867995i 0.999999 + 0.00131357i \(0.000418122\pi\)
−0.498862 + 0.866681i \(0.666249\pi\)
\(62\) 0 0
\(63\) −0.543614 + 0.378644i −0.0684889 + 0.0477046i
\(64\) 0 0
\(65\) −0.306806 1.29854i −0.0380546 0.161064i
\(66\) 0 0
\(67\) 5.82974 10.0974i 0.712216 1.23359i −0.251807 0.967777i \(-0.581025\pi\)
0.964023 0.265817i \(-0.0856418\pi\)
\(68\) 0 0
\(69\) −1.06479 3.39171i −0.128186 0.408313i
\(70\) 0 0
\(71\) −6.89204 + 11.9374i −0.817935 + 1.41670i 0.0892667 + 0.996008i \(0.471548\pi\)
−0.907201 + 0.420697i \(0.861786\pi\)
\(72\) 0 0
\(73\) 8.58734 1.00507 0.502536 0.864556i \(-0.332400\pi\)
0.502536 + 0.864556i \(0.332400\pi\)
\(74\) 0 0
\(75\) −2.52293 8.03633i −0.291323 0.927955i
\(76\) 0 0
\(77\) −0.464689 0.804865i −0.0529562 0.0917229i
\(78\) 0 0
\(79\) −6.36242 + 11.0200i −0.715828 + 1.23985i 0.246812 + 0.969063i \(0.420617\pi\)
−0.962639 + 0.270786i \(0.912716\pi\)
\(80\) 0 0
\(81\) −8.87089 + 1.51900i −0.985654 + 0.168778i
\(82\) 0 0
\(83\) −5.54460 + 9.60353i −0.608599 + 1.05412i 0.382873 + 0.923801i \(0.374935\pi\)
−0.991472 + 0.130323i \(0.958399\pi\)
\(84\) 0 0
\(85\) 0.923373 0.100154
\(86\) 0 0
\(87\) −4.33740 + 4.72172i −0.465019 + 0.506221i
\(88\) 0 0
\(89\) −0.114134 0.197686i −0.0120982 0.0209546i 0.859913 0.510441i \(-0.170518\pi\)
−0.872011 + 0.489486i \(0.837184\pi\)
\(90\) 0 0
\(91\) −0.183079 0.774874i −0.0191919 0.0812289i
\(92\) 0 0
\(93\) −2.75922 0.615283i −0.286118 0.0638019i
\(94\) 0 0
\(95\) −0.167353 −0.0171700
\(96\) 0 0
\(97\) −5.11306 8.85609i −0.519153 0.899199i −0.999752 0.0222590i \(-0.992914\pi\)
0.480599 0.876940i \(-0.340419\pi\)
\(98\) 0 0
\(99\) −1.06932 12.5804i −0.107471 1.26438i
\(100\) 0 0
\(101\) 7.95139 0.791193 0.395596 0.918424i \(-0.370538\pi\)
0.395596 + 0.918424i \(0.370538\pi\)
\(102\) 0 0
\(103\) 3.16273 + 5.47801i 0.311633 + 0.539764i 0.978716 0.205219i \(-0.0657908\pi\)
−0.667083 + 0.744983i \(0.732457\pi\)
\(104\) 0 0
\(105\) 0.0423967 + 0.135047i 0.00413749 + 0.0131792i
\(106\) 0 0
\(107\) 2.59608 + 4.49654i 0.250973 + 0.434697i 0.963794 0.266648i \(-0.0859162\pi\)
−0.712821 + 0.701346i \(0.752583\pi\)
\(108\) 0 0
\(109\) 13.6259 1.30513 0.652564 0.757733i \(-0.273693\pi\)
0.652564 + 0.757733i \(0.273693\pi\)
\(110\) 0 0
\(111\) −16.9242 3.77394i −1.60637 0.358207i
\(112\) 0 0
\(113\) −2.30577 −0.216908 −0.108454 0.994101i \(-0.534590\pi\)
−0.108454 + 0.994101i \(0.534590\pi\)
\(114\) 0 0
\(115\) −0.759538 −0.0708272
\(116\) 0 0
\(117\) 2.22086 10.5862i 0.205318 0.978695i
\(118\) 0 0
\(119\) 0.551001 0.0505102
\(120\) 0 0
\(121\) 6.71228 0.610207
\(122\) 0 0
\(123\) −2.11241 6.72870i −0.190470 0.606706i
\(124\) 0 0
\(125\) −3.64999 −0.326465
\(126\) 0 0
\(127\) 5.26106 + 9.11243i 0.466844 + 0.808597i 0.999283 0.0378713i \(-0.0120577\pi\)
−0.532439 + 0.846469i \(0.678724\pi\)
\(128\) 0 0
\(129\) 19.4659 + 4.34073i 1.71388 + 0.382180i
\(130\) 0 0
\(131\) −1.94010 3.36036i −0.169508 0.293596i 0.768739 0.639562i \(-0.220884\pi\)
−0.938247 + 0.345967i \(0.887551\pi\)
\(132\) 0 0
\(133\) −0.0998637 −0.00865929
\(134\) 0 0
\(135\) −0.258058 + 1.90553i −0.0222101 + 0.164002i
\(136\) 0 0
\(137\) 5.78907 + 10.0270i 0.494594 + 0.856662i 0.999981 0.00623124i \(-0.00198348\pi\)
−0.505387 + 0.862893i \(0.668650\pi\)
\(138\) 0 0
\(139\) 5.31863 0.451121 0.225560 0.974229i \(-0.427579\pi\)
0.225560 + 0.974229i \(0.427579\pi\)
\(140\) 0 0
\(141\) −0.952701 3.03465i −0.0802319 0.255564i
\(142\) 0 0
\(143\) 14.5338 + 4.36215i 1.21538 + 0.364782i
\(144\) 0 0
\(145\) 0.684938 + 1.18635i 0.0568810 + 0.0985207i
\(146\) 0 0
\(147\) −3.60627 11.4871i −0.297440 0.947441i
\(148\) 0 0
\(149\) −17.7627 −1.45518 −0.727589 0.686014i \(-0.759359\pi\)
−0.727589 + 0.686014i \(0.759359\pi\)
\(150\) 0 0
\(151\) −8.56540 + 14.8357i −0.697043 + 1.20731i 0.272445 + 0.962171i \(0.412168\pi\)
−0.969487 + 0.245142i \(0.921166\pi\)
\(152\) 0 0
\(153\) 6.77629 + 3.18025i 0.547830 + 0.257108i
\(154\) 0 0
\(155\) −0.302005 + 0.523087i −0.0242576 + 0.0420154i
\(156\) 0 0
\(157\) −3.23205 5.59807i −0.257946 0.446775i 0.707746 0.706467i \(-0.249712\pi\)
−0.965691 + 0.259692i \(0.916379\pi\)
\(158\) 0 0
\(159\) −8.35190 + 9.09191i −0.662348 + 0.721036i
\(160\) 0 0
\(161\) −0.453236 −0.0357200
\(162\) 0 0
\(163\) 0.657316 1.13851i 0.0514850 0.0891746i −0.839134 0.543924i \(-0.816938\pi\)
0.890619 + 0.454750i \(0.150271\pi\)
\(164\) 0 0
\(165\) −2.63293 0.587122i −0.204974 0.0457074i
\(166\) 0 0
\(167\) −9.29599 + 16.1011i −0.719346 + 1.24594i 0.241914 + 0.970298i \(0.422225\pi\)
−0.961259 + 0.275645i \(0.911108\pi\)
\(168\) 0 0
\(169\) 10.8514 + 7.15872i 0.834722 + 0.550671i
\(170\) 0 0
\(171\) −1.22814 0.576390i −0.0939181 0.0440777i
\(172\) 0 0
\(173\) 1.03397 + 1.79089i 0.0786116 + 0.136159i 0.902651 0.430373i \(-0.141618\pi\)
−0.824040 + 0.566532i \(0.808285\pi\)
\(174\) 0 0
\(175\) −1.07390 −0.0811792
\(176\) 0 0
\(177\) −5.64407 + 6.14416i −0.424234 + 0.461823i
\(178\) 0 0
\(179\) 9.02646 + 15.6343i 0.674669 + 1.16856i 0.976565 + 0.215221i \(0.0690471\pi\)
−0.301896 + 0.953341i \(0.597620\pi\)
\(180\) 0 0
\(181\) 12.5383 0.931962 0.465981 0.884795i \(-0.345701\pi\)
0.465981 + 0.884795i \(0.345701\pi\)
\(182\) 0 0
\(183\) 13.2335 + 2.95096i 0.978248 + 0.218141i
\(184\) 0 0
\(185\) −1.85240 + 3.20845i −0.136191 + 0.235890i
\(186\) 0 0
\(187\) −5.25054 + 9.09421i −0.383958 + 0.665034i
\(188\) 0 0
\(189\) −0.153990 + 1.13708i −0.0112011 + 0.0827103i
\(190\) 0 0
\(191\) 3.19606 + 5.53573i 0.231259 + 0.400552i 0.958179 0.286170i \(-0.0923823\pi\)
−0.726920 + 0.686722i \(0.759049\pi\)
\(192\) 0 0
\(193\) −1.82055 + 3.15328i −0.131046 + 0.226978i −0.924080 0.382199i \(-0.875167\pi\)
0.793034 + 0.609177i \(0.208500\pi\)
\(194\) 0 0
\(195\) −2.01586 1.13020i −0.144359 0.0809352i
\(196\) 0 0
\(197\) −5.16259 8.94187i −0.367820 0.637082i 0.621405 0.783490i \(-0.286562\pi\)
−0.989224 + 0.146408i \(0.953229\pi\)
\(198\) 0 0
\(199\) 4.21204 7.29547i 0.298584 0.517162i −0.677228 0.735773i \(-0.736819\pi\)
0.975812 + 0.218611i \(0.0701524\pi\)
\(200\) 0 0
\(201\) −6.04889 19.2676i −0.426656 1.35903i
\(202\) 0 0
\(203\) 0.408720 + 0.707924i 0.0286865 + 0.0496865i
\(204\) 0 0
\(205\) −1.50682 −0.105241
\(206\) 0 0
\(207\) −5.57396 2.61597i −0.387417 0.181823i
\(208\) 0 0
\(209\) 0.951612 1.64824i 0.0658244 0.114011i
\(210\) 0 0
\(211\) −6.17693 + 10.6988i −0.425238 + 0.736533i −0.996443 0.0842744i \(-0.973143\pi\)
0.571205 + 0.820807i \(0.306476\pi\)
\(212\) 0 0
\(213\) 7.15112 + 22.7786i 0.489987 + 1.56076i
\(214\) 0 0
\(215\) 2.13060 3.69030i 0.145306 0.251677i
\(216\) 0 0
\(217\) −0.180214 + 0.312140i −0.0122337 + 0.0211894i
\(218\) 0 0
\(219\) 10.0621 10.9536i 0.679932 0.740177i
\(220\) 0 0
\(221\) −6.54804 + 6.16915i −0.440469 + 0.414982i
\(222\) 0 0
\(223\) −5.56458 −0.372632 −0.186316 0.982490i \(-0.559655\pi\)
−0.186316 + 0.982490i \(0.559655\pi\)
\(224\) 0 0
\(225\) −13.2070 6.19830i −0.880466 0.413220i
\(226\) 0 0
\(227\) −9.89776 17.1434i −0.656937 1.13785i −0.981404 0.191952i \(-0.938518\pi\)
0.324467 0.945897i \(-0.394815\pi\)
\(228\) 0 0
\(229\) −9.03568 15.6502i −0.597094 1.03420i −0.993248 0.116013i \(-0.962988\pi\)
0.396153 0.918184i \(-0.370345\pi\)
\(230\) 0 0
\(231\) −1.57114 0.350351i −0.103374 0.0230514i
\(232\) 0 0
\(233\) −18.0216 −1.18063 −0.590317 0.807172i \(-0.700997\pi\)
−0.590317 + 0.807172i \(0.700997\pi\)
\(234\) 0 0
\(235\) −0.679579 −0.0443308
\(236\) 0 0
\(237\) 6.60159 + 21.0281i 0.428819 + 1.36592i
\(238\) 0 0
\(239\) −0.100774 0.174546i −0.00651853 0.0112904i 0.862748 0.505635i \(-0.168742\pi\)
−0.869266 + 0.494344i \(0.835408\pi\)
\(240\) 0 0
\(241\) −0.461164 0.798760i −0.0297062 0.0514527i 0.850790 0.525506i \(-0.176124\pi\)
−0.880496 + 0.474053i \(0.842791\pi\)
\(242\) 0 0
\(243\) −8.45675 + 13.0952i −0.542501 + 0.840055i
\(244\) 0 0
\(245\) −2.57242 −0.164346
\(246\) 0 0
\(247\) 1.18677 1.11810i 0.0755124 0.0711430i
\(248\) 0 0
\(249\) 5.75303 + 18.3252i 0.364584 + 1.16131i
\(250\) 0 0
\(251\) 4.59028 7.95060i 0.289736 0.501838i −0.684011 0.729472i \(-0.739766\pi\)
0.973747 + 0.227635i \(0.0730991\pi\)
\(252\) 0 0
\(253\) 4.31893 7.48061i 0.271529 0.470302i
\(254\) 0 0
\(255\) 1.08195 1.17781i 0.0677542 0.0737575i
\(256\) 0 0
\(257\) −3.53467 + 6.12223i −0.220487 + 0.381895i −0.954956 0.296748i \(-0.904098\pi\)
0.734469 + 0.678642i \(0.237431\pi\)
\(258\) 0 0
\(259\) −1.10537 + 1.91456i −0.0686846 + 0.118965i
\(260\) 0 0
\(261\) 0.940527 + 11.0652i 0.0582172 + 0.684918i
\(262\) 0 0
\(263\) −1.87296 −0.115491 −0.0577457 0.998331i \(-0.518391\pi\)
−0.0577457 + 0.998331i \(0.518391\pi\)
\(264\) 0 0
\(265\) 1.31888 + 2.28437i 0.0810183 + 0.140328i
\(266\) 0 0
\(267\) −0.385893 0.0860509i −0.0236163 0.00526623i
\(268\) 0 0
\(269\) −13.4883 + 23.3625i −0.822399 + 1.42444i 0.0814922 + 0.996674i \(0.474031\pi\)
−0.903891 + 0.427763i \(0.859302\pi\)
\(270\) 0 0
\(271\) 5.17186 + 8.95793i 0.314168 + 0.544155i 0.979260 0.202606i \(-0.0649410\pi\)
−0.665092 + 0.746761i \(0.731608\pi\)
\(272\) 0 0
\(273\) −1.20291 0.674419i −0.0728037 0.0408177i
\(274\) 0 0
\(275\) 10.2333 17.7246i 0.617092 1.06883i
\(276\) 0 0
\(277\) 4.60119 + 7.96949i 0.276458 + 0.478840i 0.970502 0.241093i \(-0.0775058\pi\)
−0.694044 + 0.719933i \(0.744173\pi\)
\(278\) 0 0
\(279\) −4.01790 + 2.79859i −0.240545 + 0.167547i
\(280\) 0 0
\(281\) −4.27672 + 7.40750i −0.255128 + 0.441894i −0.964930 0.262507i \(-0.915451\pi\)
0.709802 + 0.704401i \(0.248784\pi\)
\(282\) 0 0
\(283\) 8.40124 14.5514i 0.499402 0.864989i −0.500598 0.865680i \(-0.666887\pi\)
1.00000 0.000690699i \(0.000219856\pi\)
\(284\) 0 0
\(285\) −0.196093 + 0.213468i −0.0116155 + 0.0126447i
\(286\) 0 0
\(287\) −0.899160 −0.0530758
\(288\) 0 0
\(289\) 5.38711 + 9.33074i 0.316889 + 0.548867i
\(290\) 0 0
\(291\) −17.2876 3.85498i −1.01342 0.225983i
\(292\) 0 0
\(293\) −17.3467 −1.01340 −0.506701 0.862122i \(-0.669135\pi\)
−0.506701 + 0.862122i \(0.669135\pi\)
\(294\) 0 0
\(295\) 0.891279 + 1.54374i 0.0518922 + 0.0898800i
\(296\) 0 0
\(297\) −17.3000 13.3769i −1.00385 0.776208i
\(298\) 0 0
\(299\) 5.38621 5.07455i 0.311493 0.293469i
\(300\) 0 0
\(301\) 1.27138 2.20210i 0.0732813 0.126927i
\(302\) 0 0
\(303\) 9.31691 10.1424i 0.535243 0.582667i
\(304\) 0 0
\(305\) 1.44844 2.50878i 0.0829376 0.143652i
\(306\) 0 0
\(307\) −4.98311 −0.284401 −0.142201 0.989838i \(-0.545418\pi\)
−0.142201 + 0.989838i \(0.545418\pi\)
\(308\) 0 0
\(309\) 10.6934 + 2.38453i 0.608325 + 0.135651i
\(310\) 0 0
\(311\) 13.8571 + 24.0011i 0.785762 + 1.36098i 0.928543 + 0.371226i \(0.121062\pi\)
−0.142781 + 0.989754i \(0.545604\pi\)
\(312\) 0 0
\(313\) −6.97711 + 12.0847i −0.394369 + 0.683068i −0.993020 0.117942i \(-0.962370\pi\)
0.598651 + 0.801010i \(0.295704\pi\)
\(314\) 0 0
\(315\) 0.221937 + 0.104160i 0.0125047 + 0.00586873i
\(316\) 0 0
\(317\) −15.2734 + 26.4544i −0.857842 + 1.48583i 0.0161410 + 0.999870i \(0.494862\pi\)
−0.873983 + 0.485956i \(0.838471\pi\)
\(318\) 0 0
\(319\) −15.5789 −0.872254
\(320\) 0 0
\(321\) 8.77750 + 1.95731i 0.489913 + 0.109246i
\(322\) 0 0
\(323\) 0.564183 + 0.977193i 0.0313920 + 0.0543725i
\(324\) 0 0
\(325\) 12.7621 12.0237i 0.707915 0.666953i
\(326\) 0 0
\(327\) 15.9660 17.3806i 0.882921 0.961152i
\(328\) 0 0
\(329\) −0.405523 −0.0223572
\(330\) 0 0
\(331\) 1.92916 + 3.34140i 0.106036 + 0.183660i 0.914161 0.405351i \(-0.132851\pi\)
−0.808125 + 0.589011i \(0.799517\pi\)
\(332\) 0 0
\(333\) −24.6445 + 17.1656i −1.35051 + 0.940671i
\(334\) 0 0
\(335\) −4.31479 −0.235742
\(336\) 0 0
\(337\) −4.54153 7.86617i −0.247393 0.428497i 0.715409 0.698706i \(-0.246241\pi\)
−0.962802 + 0.270209i \(0.912907\pi\)
\(338\) 0 0
\(339\) −2.70174 + 2.94113i −0.146739 + 0.159740i
\(340\) 0 0
\(341\) −3.43456 5.94883i −0.185992 0.322147i
\(342\) 0 0
\(343\) −3.08083 −0.166349
\(344\) 0 0
\(345\) −0.889976 + 0.968832i −0.0479147 + 0.0521602i
\(346\) 0 0
\(347\) 31.0555 1.66715 0.833573 0.552409i \(-0.186291\pi\)
0.833573 + 0.552409i \(0.186291\pi\)
\(348\) 0 0
\(349\) −14.3262 −0.766865 −0.383432 0.923569i \(-0.625258\pi\)
−0.383432 + 0.923569i \(0.625258\pi\)
\(350\) 0 0
\(351\) −10.9010 15.2370i −0.581854 0.813293i
\(352\) 0 0
\(353\) 25.2920 1.34616 0.673079 0.739571i \(-0.264971\pi\)
0.673079 + 0.739571i \(0.264971\pi\)
\(354\) 0 0
\(355\) 5.10103 0.270735
\(356\) 0 0
\(357\) 0.645626 0.702832i 0.0341702 0.0371978i
\(358\) 0 0
\(359\) 7.28756 0.384623 0.192311 0.981334i \(-0.438402\pi\)
0.192311 + 0.981334i \(0.438402\pi\)
\(360\) 0 0
\(361\) 9.39775 + 16.2774i 0.494618 + 0.856704i
\(362\) 0 0
\(363\) 7.86500 8.56188i 0.412806 0.449382i
\(364\) 0 0
\(365\) −1.58894 2.75213i −0.0831692 0.144053i
\(366\) 0 0
\(367\) −23.8323 −1.24403 −0.622017 0.783004i \(-0.713686\pi\)
−0.622017 + 0.783004i \(0.713686\pi\)
\(368\) 0 0
\(369\) −11.0580 5.18974i −0.575657 0.270167i
\(370\) 0 0
\(371\) 0.787012 + 1.36314i 0.0408596 + 0.0707709i
\(372\) 0 0
\(373\) −12.3161 −0.637706 −0.318853 0.947804i \(-0.603298\pi\)
−0.318853 + 0.947804i \(0.603298\pi\)
\(374\) 0 0
\(375\) −4.27681 + 4.65576i −0.220854 + 0.240422i
\(376\) 0 0
\(377\) −12.7833 3.83676i −0.658373 0.197603i
\(378\) 0 0
\(379\) −7.07147 12.2481i −0.363237 0.629145i 0.625255 0.780421i \(-0.284995\pi\)
−0.988492 + 0.151276i \(0.951662\pi\)
\(380\) 0 0
\(381\) 17.7880 + 3.96657i 0.911305 + 0.203213i
\(382\) 0 0
\(383\) −8.17316 −0.417629 −0.208814 0.977955i \(-0.566960\pi\)
−0.208814 + 0.977955i \(0.566960\pi\)
\(384\) 0 0
\(385\) −0.171966 + 0.297854i −0.00876420 + 0.0151800i
\(386\) 0 0
\(387\) 28.3457 19.7436i 1.44089 1.00362i
\(388\) 0 0
\(389\) 18.8420 32.6353i 0.955326 1.65467i 0.221706 0.975114i \(-0.428838\pi\)
0.733620 0.679559i \(-0.237829\pi\)
\(390\) 0 0
\(391\) 2.56057 + 4.43503i 0.129493 + 0.224289i
\(392\) 0 0
\(393\) −6.55961 1.46274i −0.330888 0.0737853i
\(394\) 0 0
\(395\) 4.70904 0.236937
\(396\) 0 0
\(397\) 8.81974 15.2762i 0.442650 0.766692i −0.555235 0.831693i \(-0.687372\pi\)
0.997885 + 0.0650010i \(0.0207051\pi\)
\(398\) 0 0
\(399\) −0.117014 + 0.127382i −0.00585801 + 0.00637706i
\(400\) 0 0
\(401\) 15.7403 27.2630i 0.786034 1.36145i −0.142345 0.989817i \(-0.545464\pi\)
0.928379 0.371634i \(-0.121202\pi\)
\(402\) 0 0
\(403\) −1.35316 5.72716i −0.0674055 0.285290i
\(404\) 0 0
\(405\) 2.12823 + 2.56194i 0.105753 + 0.127304i
\(406\) 0 0
\(407\) −21.0665 36.4882i −1.04423 1.80865i
\(408\) 0 0
\(409\) −35.9638 −1.77829 −0.889147 0.457622i \(-0.848701\pi\)
−0.889147 + 0.457622i \(0.848701\pi\)
\(410\) 0 0
\(411\) 19.5732 + 4.36466i 0.965475 + 0.215293i
\(412\) 0 0
\(413\) 0.531849 + 0.921190i 0.0261706 + 0.0453288i
\(414\) 0 0
\(415\) 4.10374 0.201445
\(416\) 0 0
\(417\) 6.23202 6.78421i 0.305183 0.332224i
\(418\) 0 0
\(419\) 13.6871 23.7068i 0.668661 1.15815i −0.309618 0.950861i \(-0.600201\pi\)
0.978279 0.207294i \(-0.0664655\pi\)
\(420\) 0 0
\(421\) 8.31205 14.3969i 0.405104 0.701661i −0.589229 0.807966i \(-0.700568\pi\)
0.994334 + 0.106304i \(0.0339018\pi\)
\(422\) 0 0
\(423\) −4.98718 2.34058i −0.242485 0.113803i
\(424\) 0 0
\(425\) 6.06703 + 10.5084i 0.294294 + 0.509732i
\(426\) 0 0
\(427\) 0.864324 1.49705i 0.0418276 0.0724475i
\(428\) 0 0
\(429\) 22.5939 13.4274i 1.09084 0.648280i
\(430\) 0 0
\(431\) 6.96462 + 12.0631i 0.335474 + 0.581058i 0.983576 0.180496i \(-0.0577703\pi\)
−0.648102 + 0.761554i \(0.724437\pi\)
\(432\) 0 0
\(433\) −19.6355 + 34.0097i −0.943621 + 1.63440i −0.185133 + 0.982714i \(0.559271\pi\)
−0.758489 + 0.651686i \(0.774062\pi\)
\(434\) 0 0
\(435\) 2.31581 + 0.516407i 0.111035 + 0.0247598i
\(436\) 0 0
\(437\) −0.464079 0.803808i −0.0221999 0.0384514i
\(438\) 0 0
\(439\) 35.9687 1.71669 0.858347 0.513070i \(-0.171492\pi\)
0.858347 + 0.513070i \(0.171492\pi\)
\(440\) 0 0
\(441\) −18.8780 8.85984i −0.898954 0.421897i
\(442\) 0 0
\(443\) −7.79412 + 13.4998i −0.370310 + 0.641395i −0.989613 0.143757i \(-0.954082\pi\)
0.619303 + 0.785152i \(0.287415\pi\)
\(444\) 0 0
\(445\) −0.0422371 + 0.0731569i −0.00200223 + 0.00346797i
\(446\) 0 0
\(447\) −20.8132 + 22.6573i −0.984429 + 1.07165i
\(448\) 0 0
\(449\) 18.9254 32.7797i 0.893143 1.54697i 0.0570564 0.998371i \(-0.481829\pi\)
0.836086 0.548598i \(-0.184838\pi\)
\(450\) 0 0
\(451\) 8.56819 14.8405i 0.403460 0.698814i
\(452\) 0 0
\(453\) 8.88739 + 28.3091i 0.417566 + 1.33008i
\(454\) 0 0
\(455\) −0.214462 + 0.202052i −0.0100541 + 0.00947235i
\(456\) 0 0
\(457\) −6.75011 −0.315757 −0.157878 0.987459i \(-0.550465\pi\)
−0.157878 + 0.987459i \(0.550465\pi\)
\(458\) 0 0
\(459\) 11.9966 4.91712i 0.559953 0.229512i
\(460\) 0 0
\(461\) −11.1795 19.3634i −0.520681 0.901845i −0.999711 0.0240468i \(-0.992345\pi\)
0.479030 0.877798i \(-0.340988\pi\)
\(462\) 0 0
\(463\) −1.62174 2.80893i −0.0753686 0.130542i 0.825878 0.563849i \(-0.190680\pi\)
−0.901246 + 0.433307i \(0.857347\pi\)
\(464\) 0 0
\(465\) 0.313358 + 0.998143i 0.0145316 + 0.0462878i
\(466\) 0 0
\(467\) 15.5291 0.718603 0.359302 0.933221i \(-0.383015\pi\)
0.359302 + 0.933221i \(0.383015\pi\)
\(468\) 0 0
\(469\) −2.57475 −0.118891
\(470\) 0 0
\(471\) −10.9277 2.43680i −0.503524 0.112282i
\(472\) 0 0
\(473\) 24.2303 + 41.9681i 1.11411 + 1.92969i
\(474\) 0 0
\(475\) −1.09959 1.90455i −0.0504527 0.0873867i
\(476\) 0 0
\(477\) 1.81103 + 21.3066i 0.0829215 + 0.975562i
\(478\) 0 0
\(479\) 3.64033 0.166331 0.0831654 0.996536i \(-0.473497\pi\)
0.0831654 + 0.996536i \(0.473497\pi\)
\(480\) 0 0
\(481\) −8.29981 35.1285i −0.378439 1.60172i
\(482\) 0 0
\(483\) −0.531072 + 0.578127i −0.0241646 + 0.0263057i
\(484\) 0 0
\(485\) −1.89217 + 3.27734i −0.0859192 + 0.148816i
\(486\) 0 0
\(487\) 10.2651 17.7797i 0.465157 0.805676i −0.534051 0.845452i \(-0.679331\pi\)
0.999209 + 0.0397759i \(0.0126644\pi\)
\(488\) 0 0
\(489\) −0.682026 2.17247i −0.0308423 0.0982424i
\(490\) 0 0
\(491\) 21.6613 37.5185i 0.977561 1.69319i 0.306351 0.951918i \(-0.400892\pi\)
0.671210 0.741267i \(-0.265775\pi\)
\(492\) 0 0
\(493\) 4.61815 7.99887i 0.207991 0.360251i
\(494\) 0 0
\(495\) −3.83400 + 2.67050i −0.172326 + 0.120030i
\(496\) 0 0
\(497\) 3.04392 0.136538
\(498\) 0 0
\(499\) −7.22040 12.5061i −0.323229 0.559850i 0.657923 0.753085i \(-0.271435\pi\)
−0.981152 + 0.193235i \(0.938102\pi\)
\(500\) 0 0
\(501\) 9.64545 + 30.7238i 0.430927 + 1.37264i
\(502\) 0 0
\(503\) 10.9732 19.0061i 0.489269 0.847439i −0.510655 0.859786i \(-0.670597\pi\)
0.999924 + 0.0123470i \(0.00393026\pi\)
\(504\) 0 0
\(505\) −1.47127 2.54832i −0.0654708 0.113399i
\(506\) 0 0
\(507\) 21.8463 5.45342i 0.970228 0.242195i
\(508\) 0 0
\(509\) 2.76993 4.79766i 0.122775 0.212652i −0.798086 0.602544i \(-0.794154\pi\)
0.920861 + 0.389891i \(0.127487\pi\)
\(510\) 0 0
\(511\) −0.948165 1.64227i −0.0419443 0.0726497i
\(512\) 0 0
\(513\) −2.17427 + 0.891182i −0.0959963 + 0.0393467i
\(514\) 0 0
\(515\) 1.17042 2.02723i 0.0515749 0.0893303i
\(516\) 0 0
\(517\) 3.86427 6.69311i 0.169950 0.294362i
\(518\) 0 0
\(519\) 3.49593 + 0.779562i 0.153454 + 0.0342190i
\(520\) 0 0
\(521\) −22.2041 −0.972779 −0.486390 0.873742i \(-0.661686\pi\)
−0.486390 + 0.873742i \(0.661686\pi\)
\(522\) 0 0
\(523\) −10.1092 17.5096i −0.442043 0.765641i 0.555798 0.831317i \(-0.312413\pi\)
−0.997841 + 0.0656764i \(0.979080\pi\)
\(524\) 0 0
\(525\) −1.25833 + 1.36982i −0.0549178 + 0.0597838i
\(526\) 0 0
\(527\) 4.07250 0.177401
\(528\) 0 0
\(529\) 9.39376 + 16.2705i 0.408424 + 0.707411i
\(530\) 0 0
\(531\) 1.22387 + 14.3986i 0.0531112 + 0.624848i
\(532\) 0 0
\(533\) 10.6855 10.0672i 0.462842 0.436060i
\(534\) 0 0
\(535\) 0.960723 1.66402i 0.0415357 0.0719419i
\(536\) 0 0
\(537\) 30.5190 + 6.80548i 1.31699 + 0.293678i
\(538\) 0 0
\(539\) 14.6275 25.3355i 0.630050 1.09128i
\(540\) 0 0
\(541\) 27.3228 1.17470 0.587349 0.809334i \(-0.300172\pi\)
0.587349 + 0.809334i \(0.300172\pi\)
\(542\) 0 0
\(543\) 14.6915 15.9933i 0.630473 0.686336i
\(544\) 0 0
\(545\) −2.52125 4.36694i −0.107999 0.187059i
\(546\) 0 0
\(547\) −17.0211 + 29.4815i −0.727771 + 1.26054i 0.230052 + 0.973178i \(0.426110\pi\)
−0.957823 + 0.287358i \(0.907223\pi\)
\(548\) 0 0
\(549\) 19.2702 13.4223i 0.822433 0.572850i
\(550\) 0 0
\(551\) −0.836996 + 1.44972i −0.0356572 + 0.0617602i
\(552\) 0 0
\(553\) 2.81001 0.119494
\(554\) 0 0
\(555\) 1.92203 + 6.12228i 0.0815857 + 0.259876i
\(556\) 0 0
\(557\) −15.8408 27.4371i −0.671196 1.16255i −0.977565 0.210633i \(-0.932447\pi\)
0.306369 0.951913i \(-0.400886\pi\)
\(558\) 0 0
\(559\) 9.54630 + 40.4043i 0.403766 + 1.70892i
\(560\) 0 0
\(561\) 5.44792 + 17.3533i 0.230011 + 0.732659i
\(562\) 0 0
\(563\) −37.8657 −1.59585 −0.797925 0.602757i \(-0.794069\pi\)
−0.797925 + 0.602757i \(0.794069\pi\)
\(564\) 0 0
\(565\) 0.426644 + 0.738968i 0.0179490 + 0.0310886i
\(566\) 0 0
\(567\) 1.26997 + 1.52878i 0.0533338 + 0.0642026i
\(568\) 0 0
\(569\) −12.2613 −0.514020 −0.257010 0.966409i \(-0.582737\pi\)
−0.257010 + 0.966409i \(0.582737\pi\)
\(570\) 0 0
\(571\) −9.51424 16.4791i −0.398158 0.689631i 0.595340 0.803474i \(-0.297017\pi\)
−0.993499 + 0.113843i \(0.963684\pi\)
\(572\) 0 0
\(573\) 10.8061 + 2.40966i 0.451430 + 0.100665i
\(574\) 0 0
\(575\) −4.99055 8.64388i −0.208120 0.360475i
\(576\) 0 0
\(577\) −14.0939 −0.586735 −0.293368 0.956000i \(-0.594776\pi\)
−0.293368 + 0.956000i \(0.594776\pi\)
\(578\) 0 0
\(579\) 1.88898 + 6.01701i 0.0785035 + 0.250058i
\(580\) 0 0
\(581\) 2.44881 0.101594
\(582\) 0 0
\(583\) −29.9981 −1.24239
\(584\) 0 0
\(585\) −3.80368 + 1.24704i −0.157263 + 0.0515590i
\(586\) 0 0
\(587\) −23.8250 −0.983361 −0.491681 0.870776i \(-0.663617\pi\)
−0.491681 + 0.870776i \(0.663617\pi\)
\(588\) 0 0
\(589\) −0.738102 −0.0304130
\(590\) 0 0
\(591\) −17.4550 3.89233i −0.718004 0.160109i
\(592\) 0 0
\(593\) 0.951141 0.0390587 0.0195293 0.999809i \(-0.493783\pi\)
0.0195293 + 0.999809i \(0.493783\pi\)
\(594\) 0 0
\(595\) −0.101954 0.176589i −0.00417969 0.00723943i
\(596\) 0 0
\(597\) −4.37038 13.9210i −0.178868 0.569750i
\(598\) 0 0
\(599\) 3.59422 + 6.22538i 0.146856 + 0.254362i 0.930064 0.367398i \(-0.119751\pi\)
−0.783208 + 0.621760i \(0.786418\pi\)
\(600\) 0 0
\(601\) −29.1543 −1.18923 −0.594613 0.804012i \(-0.702695\pi\)
−0.594613 + 0.804012i \(0.702695\pi\)
\(602\) 0 0
\(603\) −31.6646 14.8608i −1.28948 0.605180i
\(604\) 0 0
\(605\) −1.24200 2.15120i −0.0504943 0.0874587i
\(606\) 0 0
\(607\) −25.7206 −1.04397 −0.521984 0.852956i \(-0.674808\pi\)
−0.521984 + 0.852956i \(0.674808\pi\)
\(608\) 0 0
\(609\) 1.38191 + 0.308154i 0.0559977 + 0.0124870i
\(610\) 0 0
\(611\) 4.81919 4.54034i 0.194964 0.183682i
\(612\) 0 0
\(613\) 10.8372 + 18.7706i 0.437711 + 0.758138i 0.997513 0.0704890i \(-0.0224560\pi\)
−0.559802 + 0.828627i \(0.689123\pi\)
\(614\) 0 0
\(615\) −1.76559 + 1.92203i −0.0711956 + 0.0775039i
\(616\) 0 0
\(617\) 23.8698 0.960961 0.480480 0.877005i \(-0.340462\pi\)
0.480480 + 0.877005i \(0.340462\pi\)
\(618\) 0 0
\(619\) 14.1119 24.4426i 0.567206 0.982430i −0.429634 0.903003i \(-0.641358\pi\)
0.996841 0.0794271i \(-0.0253091\pi\)
\(620\) 0 0
\(621\) −9.86802 + 4.04467i −0.395990 + 0.162307i
\(622\) 0 0
\(623\) −0.0252040 + 0.0436546i −0.00100978 + 0.00174899i
\(624\) 0 0
\(625\) −11.4823 19.8879i −0.459290 0.795514i
\(626\) 0 0
\(627\) −0.987385 3.14513i −0.0394323 0.125604i
\(628\) 0 0
\(629\) 24.9794 0.995992
\(630\) 0 0
\(631\) 1.90270 3.29557i 0.0757453 0.131195i −0.825665 0.564161i \(-0.809200\pi\)
0.901410 + 0.432966i \(0.142533\pi\)
\(632\) 0 0
\(633\) 6.40913 + 20.4151i 0.254740 + 0.811428i
\(634\) 0 0
\(635\) 1.94694 3.37221i 0.0772621 0.133822i
\(636\) 0 0
\(637\) 18.2422 17.1866i 0.722780 0.680958i
\(638\) 0 0
\(639\) 37.4345 + 17.5688i 1.48089 + 0.695011i
\(640\) 0 0
\(641\) 18.1734 + 31.4773i 0.717806 + 1.24328i 0.961867 + 0.273517i \(0.0881869\pi\)
−0.244061 + 0.969760i \(0.578480\pi\)
\(642\) 0 0
\(643\) −9.88970 −0.390012 −0.195006 0.980802i \(-0.562473\pi\)
−0.195006 + 0.980802i \(0.562473\pi\)
\(644\) 0 0
\(645\) −2.21069 7.04174i −0.0870458 0.277268i
\(646\) 0 0
\(647\) −5.31723 9.20972i −0.209042 0.362071i 0.742371 0.669989i \(-0.233701\pi\)
−0.951413 + 0.307918i \(0.900368\pi\)
\(648\) 0 0
\(649\) −20.2722 −0.795753
\(650\) 0 0
\(651\) 0.186989 + 0.595618i 0.00732867 + 0.0233441i
\(652\) 0 0
\(653\) 0.379579 0.657450i 0.0148541 0.0257280i −0.858503 0.512809i \(-0.828605\pi\)
0.873357 + 0.487081i \(0.161938\pi\)
\(654\) 0 0
\(655\) −0.717968 + 1.24356i −0.0280533 + 0.0485898i
\(656\) 0 0
\(657\) −2.18187 25.6695i −0.0851229 1.00146i
\(658\) 0 0
\(659\) 13.3701 + 23.1576i 0.520824 + 0.902094i 0.999707 + 0.0242150i \(0.00770862\pi\)
−0.478883 + 0.877879i \(0.658958\pi\)
\(660\) 0 0
\(661\) 4.46739 7.73775i 0.173761 0.300964i −0.765970 0.642876i \(-0.777741\pi\)
0.939732 + 0.341912i \(0.111074\pi\)
\(662\) 0 0
\(663\) 0.196531 + 15.5810i 0.00763263 + 0.605115i
\(664\) 0 0
\(665\) 0.0184781 + 0.0320051i 0.000716551 + 0.00124110i
\(666\) 0 0
\(667\) −3.79875 + 6.57962i −0.147088 + 0.254764i
\(668\) 0 0
\(669\) −6.52020 + 7.09792i −0.252086 + 0.274422i
\(670\) 0 0
\(671\) 16.4725 + 28.5312i 0.635913 + 1.10143i
\(672\) 0 0
\(673\) 6.05569 0.233430 0.116715 0.993165i \(-0.462764\pi\)
0.116715 + 0.993165i \(0.462764\pi\)
\(674\) 0 0
\(675\) −23.3813 + 9.58347i −0.899948 + 0.368868i
\(676\) 0 0
\(677\) 5.52459 9.56887i 0.212327 0.367761i −0.740115 0.672480i \(-0.765229\pi\)
0.952442 + 0.304719i \(0.0985624\pi\)
\(678\) 0 0
\(679\) −1.12911 + 1.95568i −0.0433313 + 0.0750520i
\(680\) 0 0
\(681\) −33.4649 7.46239i −1.28238 0.285960i
\(682\) 0 0
\(683\) 6.80171 11.7809i 0.260260 0.450784i −0.706051 0.708161i \(-0.749525\pi\)
0.966311 + 0.257377i \(0.0828584\pi\)
\(684\) 0 0
\(685\) 2.14234 3.71065i 0.0818547 0.141777i
\(686\) 0 0
\(687\) −30.5502 6.81243i −1.16556 0.259910i
\(688\) 0 0
\(689\) −24.6149 7.38788i −0.937753 0.281456i
\(690\) 0 0
\(691\) −45.5120 −1.73136 −0.865679 0.500599i \(-0.833113\pi\)
−0.865679 + 0.500599i \(0.833113\pi\)
\(692\) 0 0
\(693\) −2.28785 + 1.59356i −0.0869083 + 0.0605343i
\(694\) 0 0
\(695\) −0.984125 1.70455i −0.0373300 0.0646574i
\(696\) 0 0
\(697\) 5.07983 + 8.79852i 0.192412 + 0.333268i
\(698\) 0 0
\(699\) −21.1165 + 22.9875i −0.798700 + 0.869468i
\(700\) 0 0
\(701\) −2.09001 −0.0789388 −0.0394694 0.999221i \(-0.512567\pi\)
−0.0394694 + 0.999221i \(0.512567\pi\)
\(702\) 0 0
\(703\) −4.52727 −0.170749
\(704\) 0 0
\(705\) −0.796286 + 0.866840i −0.0299898 + 0.0326471i
\(706\) 0 0
\(707\) −0.877947 1.52065i −0.0330186 0.0571899i
\(708\) 0 0
\(709\) −15.4751 26.8036i −0.581178 1.00663i −0.995340 0.0964272i \(-0.969259\pi\)
0.414162 0.910203i \(-0.364075\pi\)
\(710\) 0 0
\(711\) 34.5579 + 16.2187i 1.29602 + 0.608249i
\(712\) 0 0
\(713\) −3.34991 −0.125455
\(714\) 0 0
\(715\) −1.29122 5.46504i −0.0482890 0.204381i
\(716\) 0 0
\(717\) −0.340723 0.0759784i −0.0127245 0.00283746i
\(718\) 0 0
\(719\) −24.5017 + 42.4382i −0.913759 + 1.58268i −0.105051 + 0.994467i \(0.533501\pi\)
−0.808708 + 0.588210i \(0.799833\pi\)
\(720\) 0 0
\(721\) 0.698421 1.20970i 0.0260105 0.0450516i
\(722\) 0 0
\(723\) −1.55922 0.347694i −0.0579882 0.0129309i
\(724\) 0 0
\(725\) −9.00077 + 15.5898i −0.334280 + 0.578990i
\(726\) 0 0
\(727\) −4.70130 + 8.14289i −0.174361 + 0.302003i −0.939940 0.341339i \(-0.889119\pi\)
0.765579 + 0.643342i \(0.222453\pi\)
\(728\) 0 0
\(729\) 6.79455 + 26.1311i 0.251650 + 0.967818i
\(730\) 0 0
\(731\) −28.7308 −1.06265
\(732\) 0 0
\(733\) 11.3717 + 19.6963i 0.420022 + 0.727499i 0.995941 0.0900077i \(-0.0286892\pi\)
−0.575919 + 0.817506i \(0.695356\pi\)
\(734\) 0 0
\(735\) −3.01419 + 3.28126i −0.111180 + 0.121031i
\(736\) 0 0
\(737\) 24.5350 42.4959i 0.903759 1.56536i
\(738\) 0 0
\(739\) 24.6444 + 42.6853i 0.906558 + 1.57021i 0.818811 + 0.574063i \(0.194633\pi\)
0.0877471 + 0.996143i \(0.472033\pi\)
\(740\) 0 0
\(741\) −0.0356194 2.82391i −0.00130851 0.103739i
\(742\) 0 0
\(743\) 16.3144 28.2574i 0.598519 1.03667i −0.394521 0.918887i \(-0.629089\pi\)
0.993040 0.117778i \(-0.0375772\pi\)
\(744\) 0 0
\(745\) 3.28669 + 5.69272i 0.120415 + 0.208565i
\(746\) 0 0
\(747\) 30.1158 + 14.1340i 1.10188 + 0.517135i
\(748\) 0 0
\(749\) 0.573289 0.992965i 0.0209475 0.0362822i
\(750\) 0 0
\(751\) −3.36536 + 5.82897i −0.122804 + 0.212702i −0.920872 0.389864i \(-0.872522\pi\)
0.798069 + 0.602567i \(0.205855\pi\)
\(752\) 0 0
\(753\) −4.76284 15.1711i −0.173568 0.552867i
\(754\) 0 0
\(755\) 6.33954 0.230720
\(756\) 0 0
\(757\) −17.1722 29.7432i −0.624135 1.08103i −0.988707 0.149859i \(-0.952118\pi\)
0.364572 0.931175i \(-0.381215\pi\)
\(758\) 0 0
\(759\) −4.48129 14.2743i −0.162661 0.518125i
\(760\) 0 0
\(761\) 27.2738 0.988674 0.494337 0.869270i \(-0.335411\pi\)
0.494337 + 0.869270i \(0.335411\pi\)
\(762\) 0 0
\(763\) −1.50450 2.60587i −0.0544665 0.0943388i
\(764\) 0 0
\(765\) −0.234610 2.76017i −0.00848236 0.0997940i
\(766\) 0 0
\(767\) −16.6343 4.99260i −0.600631 0.180273i
\(768\) 0 0
\(769\) −19.9223 + 34.5065i −0.718417 + 1.24434i 0.243209 + 0.969974i \(0.421800\pi\)
−0.961627 + 0.274361i \(0.911534\pi\)
\(770\) 0 0
\(771\) 3.66755 + 11.6823i 0.132084 + 0.420728i
\(772\) 0 0
\(773\) 7.98669 13.8334i 0.287261 0.497551i −0.685894 0.727702i \(-0.740589\pi\)
0.973155 + 0.230151i \(0.0739219\pi\)
\(774\) 0 0
\(775\) −7.93729 −0.285116
\(776\) 0 0
\(777\) 1.14693 + 3.65333i 0.0411458 + 0.131062i
\(778\) 0 0
\(779\) −0.920671 1.59465i −0.0329865 0.0571342i
\(780\) 0 0
\(781\) −29.0058 + 50.2395i −1.03791 + 1.79771i
\(782\) 0 0
\(783\) 15.2163 + 11.7658i 0.543786 + 0.420474i
\(784\) 0 0
\(785\) −1.19607 + 2.07166i −0.0426897 + 0.0739407i
\(786\) 0 0
\(787\) −54.3863 −1.93866 −0.969331 0.245759i \(-0.920963\pi\)
−0.969331 + 0.245759i \(0.920963\pi\)
\(788\) 0 0
\(789\) −2.19461 + 2.38906i −0.0781301 + 0.0850527i
\(790\) 0 0
\(791\) 0.254589 + 0.440962i 0.00905216 + 0.0156788i
\(792\) 0 0
\(793\) 6.48986 + 27.4680i 0.230462 + 0.975418i
\(794\) 0 0
\(795\) 4.45922 + 0.994369i 0.158152 + 0.0352666i
\(796\) 0 0
\(797\) −45.9437 −1.62741 −0.813704 0.581279i \(-0.802553\pi\)
−0.813704 + 0.581279i \(0.802553\pi\)
\(798\) 0 0
\(799\) 2.29101 + 3.96815i 0.0810501 + 0.140383i
\(800\) 0 0
\(801\) −0.561927 + 0.391399i −0.0198547 + 0.0138294i
\(802\) 0 0
\(803\) 36.1406 1.27538
\(804\) 0 0
\(805\) 0.0838638 + 0.145256i 0.00295581 + 0.00511961i
\(806\) 0 0
\(807\) 13.9954 + 44.5798i 0.492661 + 1.56928i
\(808\) 0 0
\(809\) 0.753915 + 1.30582i 0.0265062 + 0.0459101i 0.878974 0.476869i \(-0.158228\pi\)
−0.852468 + 0.522779i \(0.824895\pi\)
\(810\) 0 0
\(811\) 34.4445 1.20951 0.604755 0.796411i \(-0.293271\pi\)
0.604755 + 0.796411i \(0.293271\pi\)
\(812\) 0 0
\(813\) 17.4864 + 3.89931i 0.613274 + 0.136755i
\(814\) 0 0
\(815\) −0.486502 −0.0170414
\(816\) 0 0
\(817\) 5.20720 0.182177
\(818\) 0 0
\(819\) −2.26975 + 0.744144i −0.0793116 + 0.0260025i
\(820\) 0 0
\(821\) 18.7315 0.653734 0.326867 0.945070i \(-0.394007\pi\)
0.326867 + 0.945070i \(0.394007\pi\)
\(822\) 0 0
\(823\) −16.3448 −0.569742 −0.284871 0.958566i \(-0.591951\pi\)
−0.284871 + 0.958566i \(0.591951\pi\)
\(824\) 0 0
\(825\) −10.6180 33.8217i −0.369671 1.17752i
\(826\) 0 0
\(827\) 3.88733 0.135176 0.0675878 0.997713i \(-0.478470\pi\)
0.0675878 + 0.997713i \(0.478470\pi\)
\(828\) 0 0
\(829\) −4.20485 7.28302i −0.146041 0.252950i 0.783720 0.621114i \(-0.213320\pi\)
−0.929761 + 0.368164i \(0.879986\pi\)
\(830\) 0 0
\(831\) 15.5569 + 3.46905i 0.539662 + 0.120340i
\(832\) 0 0
\(833\) 8.67220 + 15.0207i 0.300474 + 0.520436i
\(834\) 0 0
\(835\) 6.88028 0.238102
\(836\) 0 0
\(837\) −1.13815 + 8.40425i −0.0393404 + 0.290493i
\(838\) 0 0
\(839\) −1.68435 2.91739i −0.0581504 0.100719i 0.835485 0.549514i \(-0.185187\pi\)
−0.893635 + 0.448794i \(0.851854\pi\)
\(840\) 0 0
\(841\) −15.2974 −0.527498
\(842\) 0 0
\(843\) 4.43749 + 14.1348i 0.152835 + 0.486828i
\(844\) 0 0
\(845\) 0.286410 4.80233i 0.00985280 0.165205i
\(846\) 0 0
\(847\) −0.741131 1.28368i −0.0254656 0.0441077i
\(848\) 0 0
\(849\) −8.71706 27.7666i −0.299169 0.952946i
\(850\) 0 0
\(851\) −20.5472 −0.704350
\(852\) 0 0
\(853\) 6.68642 11.5812i 0.228939 0.396533i −0.728555 0.684987i \(-0.759808\pi\)
0.957494 + 0.288454i \(0.0931411\pi\)
\(854\) 0 0
\(855\) 0.0425210 + 0.500254i 0.00145419 + 0.0171083i
\(856\) 0 0
\(857\) 8.35202 14.4661i 0.285300 0.494153i −0.687382 0.726296i \(-0.741240\pi\)
0.972682 + 0.232143i \(0.0745736\pi\)
\(858\) 0 0
\(859\) 10.2946 + 17.8308i 0.351247 + 0.608378i 0.986468 0.163952i \(-0.0524244\pi\)
−0.635221 + 0.772330i \(0.719091\pi\)
\(860\) 0 0
\(861\) −1.05358 + 1.14693i −0.0359058 + 0.0390872i
\(862\) 0 0
\(863\) 6.86690 0.233752 0.116876 0.993147i \(-0.462712\pi\)
0.116876 + 0.993147i \(0.462712\pi\)
\(864\) 0 0
\(865\) 0.382639 0.662751i 0.0130101 0.0225342i
\(866\) 0 0
\(867\) 18.2141 + 4.06160i 0.618584 + 0.137939i
\(868\) 0 0
\(869\) −26.7768 + 46.3788i −0.908342 + 1.57329i
\(870\) 0 0
\(871\) 30.5980 28.8275i 1.03677 0.976784i
\(872\) 0 0
\(873\) −25.1737 + 17.5342i −0.852000 + 0.593444i
\(874\) 0 0
\(875\) 0.403011 + 0.698035i 0.0136242 + 0.0235979i
\(876\) 0 0
\(877\) −3.03387 −0.102447 −0.0512233 0.998687i \(-0.516312\pi\)
−0.0512233 + 0.998687i \(0.516312\pi\)
\(878\) 0 0
\(879\) −20.3257 + 22.1266i −0.685568 + 0.746312i
\(880\) 0 0
\(881\) 22.4166 + 38.8267i 0.755234 + 1.30810i 0.945258 + 0.326325i \(0.105810\pi\)
−0.190024 + 0.981780i \(0.560856\pi\)
\(882\) 0 0
\(883\) −4.01343 −0.135063 −0.0675314 0.997717i \(-0.521512\pi\)
−0.0675314 + 0.997717i \(0.521512\pi\)
\(884\) 0 0
\(885\) 3.01347 + 0.671977i 0.101297 + 0.0225883i
\(886\) 0 0
\(887\) 19.9660 34.5822i 0.670394 1.16116i −0.307399 0.951581i \(-0.599459\pi\)
0.977793 0.209575i \(-0.0672081\pi\)
\(888\) 0 0
\(889\) 1.16179 2.01228i 0.0389653 0.0674898i
\(890\) 0 0
\(891\) −37.3340 + 6.39286i −1.25074 + 0.214169i
\(892\) 0 0
\(893\) −0.415224 0.719189i −0.0138949 0.0240667i
\(894\) 0 0
\(895\) 3.34039 5.78573i 0.111657 0.193396i
\(896\) 0 0
\(897\) −0.161660 12.8164i −0.00539768 0.427928i
\(898\) 0 0
\(899\) 3.02089 + 5.23233i 0.100752 + 0.174508i
\(900\) 0 0
\(901\) 8.89249 15.4022i 0.296252 0.513123i
\(902\) 0 0
\(903\) −1.31918 4.20199i −0.0438995 0.139834i
\(904\) 0 0
\(905\) −2.32000 4.01836i −0.0771194 0.133575i
\(906\) 0 0
\(907\) 57.9364 1.92375 0.961874 0.273494i \(-0.0881793\pi\)
0.961874 + 0.273494i \(0.0881793\pi\)
\(908\) 0 0
\(909\) −2.02029 23.7685i −0.0670087 0.788350i
\(910\) 0 0
\(911\) 16.7679 29.0429i 0.555546 0.962234i −0.442315 0.896860i \(-0.645843\pi\)
0.997861 0.0653740i \(-0.0208240\pi\)
\(912\) 0 0
\(913\) −23.3350 + 40.4174i −0.772275 + 1.33762i
\(914\) 0 0
\(915\) −1.50289 4.78719i −0.0496841 0.158260i
\(916\) 0 0
\(917\) −0.428430 + 0.742063i −0.0141480 + 0.0245051i
\(918\) 0 0
\(919\) 6.42095 11.1214i 0.211807 0.366861i −0.740473 0.672086i \(-0.765398\pi\)
0.952280 + 0.305225i \(0.0987317\pi\)
\(920\) 0 0
\(921\) −5.83888 + 6.35623i −0.192398 + 0.209445i
\(922\) 0 0
\(923\) −36.1736 + 34.0805i −1.19067 + 1.12177i
\(924\) 0 0
\(925\) −48.6848 −1.60074
\(926\) 0 0
\(927\) 15.5714 10.8459i 0.511431 0.356228i
\(928\) 0 0
\(929\) −19.1323 33.1381i −0.627711 1.08723i −0.988010 0.154390i \(-0.950659\pi\)
0.360299 0.932837i \(-0.382675\pi\)
\(930\) 0 0
\(931\) −1.57175 2.72236i −0.0515122 0.0892217i
\(932\) 0 0
\(933\) 46.8516 + 10.4475i 1.53385 + 0.342036i
\(934\) 0 0
\(935\) 3.88610 0.127089
\(936\) 0 0
\(937\) −24.2557 −0.792398 −0.396199 0.918165i \(-0.629671\pi\)
−0.396199 + 0.918165i \(0.629671\pi\)
\(938\) 0 0
\(939\) 7.23939 + 23.0597i 0.236249 + 0.752526i
\(940\) 0 0
\(941\) 29.6711 + 51.3919i 0.967250 + 1.67533i 0.703444 + 0.710751i \(0.251645\pi\)
0.263807 + 0.964576i \(0.415022\pi\)
\(942\) 0 0
\(943\) −4.17851 7.23739i −0.136071 0.235682i
\(944\) 0 0
\(945\) 0.392913 0.161046i 0.0127814 0.00523882i
\(946\) 0 0
\(947\) −27.1641 −0.882715 −0.441357 0.897331i \(-0.645503\pi\)
−0.441357 + 0.897331i \(0.645503\pi\)
\(948\) 0 0
\(949\) 29.6552 + 8.90066i 0.962648 + 0.288928i
\(950\) 0 0
\(951\) 15.8476 + 50.4796i 0.513894 + 1.63691i
\(952\) 0 0
\(953\) 22.4206 38.8335i 0.726273 1.25794i −0.232175 0.972674i \(-0.574584\pi\)
0.958448 0.285267i \(-0.0920824\pi\)
\(954\) 0 0
\(955\) 1.18275 2.04859i 0.0382730 0.0662908i
\(956\) 0 0
\(957\) −18.2544 + 19.8718i −0.590080 + 0.642364i
\(958\) 0 0
\(959\) 1.27839 2.21424i 0.0412814 0.0715016i
\(960\) 0 0
\(961\) 14.1680 24.5397i 0.457033 0.791604i
\(962\) 0 0
\(963\) 12.7816 8.90274i 0.411880 0.286887i
\(964\) 0 0
\(965\) 1.34745 0.0433758
\(966\) 0 0
\(967\) −11.8394 20.5064i −0.380729 0.659443i 0.610437 0.792065i \(-0.290994\pi\)
−0.991167 + 0.132622i \(0.957660\pi\)
\(968\) 0 0
\(969\) 1.90754 + 0.425364i 0.0612789 + 0.0136647i
\(970\) 0 0
\(971\) −24.3425 + 42.1624i −0.781187 + 1.35306i 0.150063 + 0.988676i \(0.452052\pi\)
−0.931251 + 0.364379i \(0.881281\pi\)
\(972\) 0 0
\(973\) −0.587253 1.01715i −0.0188265 0.0326084i
\(974\) 0 0
\(975\) −0.383039 30.3673i −0.0122671 0.972533i
\(976\) 0 0
\(977\) 3.89009 6.73784i 0.124455 0.215563i −0.797065 0.603894i \(-0.793615\pi\)
0.921520 + 0.388331i \(0.126948\pi\)
\(978\) 0 0
\(979\) −0.480343 0.831979i −0.0153518 0.0265902i
\(980\) 0 0
\(981\) −3.46208 40.7310i −0.110536 1.30044i
\(982\) 0 0
\(983\) −27.3156 + 47.3121i −0.871234 + 1.50902i −0.0105121 + 0.999945i \(0.503346\pi\)
−0.860722 + 0.509076i \(0.829987\pi\)
\(984\) 0 0
\(985\) −1.91050 + 3.30909i −0.0608737 + 0.105436i
\(986\) 0 0
\(987\) −0.475165 + 0.517266i −0.0151247 + 0.0164648i
\(988\) 0 0
\(989\) 23.6331 0.751489
\(990\) 0 0
\(991\) −11.7645 20.3767i −0.373712 0.647288i 0.616421 0.787416i \(-0.288582\pi\)
−0.990133 + 0.140128i \(0.955248\pi\)
\(992\) 0 0
\(993\) 6.52260 + 1.45449i 0.206989 + 0.0461567i
\(994\) 0 0
\(995\) −3.11747 −0.0988306
\(996\) 0 0
\(997\) −13.6604 23.6605i −0.432629 0.749335i 0.564470 0.825454i \(-0.309081\pi\)
−0.997099 + 0.0761187i \(0.975747\pi\)
\(998\) 0 0
\(999\) −6.98106 + 51.5489i −0.220871 + 1.63094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.r.f.601.15 40
3.2 odd 2 2808.2.r.f.289.12 40
9.4 even 3 936.2.s.f.913.3 yes 40
9.5 odd 6 2808.2.s.f.1225.12 40
13.9 even 3 936.2.s.f.529.3 yes 40
39.35 odd 6 2808.2.s.f.1153.12 40
117.22 even 3 inner 936.2.r.f.841.15 yes 40
117.113 odd 6 2808.2.r.f.2089.12 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.15 40 1.1 even 1 trivial
936.2.r.f.841.15 yes 40 117.22 even 3 inner
936.2.s.f.529.3 yes 40 13.9 even 3
936.2.s.f.913.3 yes 40 9.4 even 3
2808.2.r.f.289.12 40 3.2 odd 2
2808.2.r.f.2089.12 40 117.113 odd 6
2808.2.s.f.1153.12 40 39.35 odd 6
2808.2.s.f.1225.12 40 9.5 odd 6