Properties

Label 936.2.s.f.529.12
Level $936$
Weight $2$
Character 936.529
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.12
Character \(\chi\) \(=\) 936.529
Dual form 936.2.s.f.913.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.348515 - 1.69663i) q^{3} +(1.65071 + 2.85912i) q^{5} +1.86626 q^{7} +(-2.75708 - 1.18260i) q^{9} +(0.938166 + 1.62495i) q^{11} +(0.230589 + 3.59817i) q^{13} +(5.42615 - 1.80420i) q^{15} +(-2.21681 - 3.83963i) q^{17} +(3.24988 + 5.62896i) q^{19} +(0.650419 - 3.16634i) q^{21} +3.76346 q^{23} +(-2.94970 + 5.10903i) q^{25} +(-2.96731 + 4.26557i) q^{27} +(-0.668020 - 1.15705i) q^{29} +(1.73294 + 3.00154i) q^{31} +(3.08390 - 1.02540i) q^{33} +(3.08066 + 5.33585i) q^{35} +(-0.457982 + 0.793248i) q^{37} +(6.18511 + 0.862792i) q^{39} +2.32732 q^{41} -3.74484 q^{43} +(-1.16995 - 9.83493i) q^{45} +(5.05850 - 8.76158i) q^{47} -3.51708 q^{49} +(-7.28700 + 2.42293i) q^{51} -9.98182 q^{53} +(-3.09728 + 5.36465i) q^{55} +(10.6829 - 3.55206i) q^{57} +(-1.46596 + 2.53912i) q^{59} +14.3492 q^{61} +(-5.14542 - 2.20703i) q^{63} +(-9.90695 + 6.59882i) q^{65} +8.96043 q^{67} +(1.31162 - 6.38518i) q^{69} +(-1.03307 - 1.78932i) q^{71} +2.56896 q^{73} +(7.64009 + 6.78510i) q^{75} +(1.75086 + 3.03258i) q^{77} +(7.05149 - 12.2135i) q^{79} +(6.20293 + 6.52102i) q^{81} +(1.35281 - 2.34313i) q^{83} +(7.31863 - 12.6762i) q^{85} +(-2.19589 + 0.730133i) q^{87} +(4.60157 - 7.97016i) q^{89} +(0.430338 + 6.71512i) q^{91} +(5.69645 - 1.89407i) q^{93} +(-10.7292 + 18.5836i) q^{95} -10.3552 q^{97} +(-0.664931 - 5.58959i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.348515 1.69663i 0.201215 0.979547i
\(4\) 0 0
\(5\) 1.65071 + 2.85912i 0.738221 + 1.27864i 0.953296 + 0.302038i \(0.0976670\pi\)
−0.215075 + 0.976597i \(0.569000\pi\)
\(6\) 0 0
\(7\) 1.86626 0.705380 0.352690 0.935740i \(-0.385267\pi\)
0.352690 + 0.935740i \(0.385267\pi\)
\(8\) 0 0
\(9\) −2.75708 1.18260i −0.919025 0.394199i
\(10\) 0 0
\(11\) 0.938166 + 1.62495i 0.282868 + 0.489941i 0.972090 0.234609i \(-0.0753809\pi\)
−0.689222 + 0.724550i \(0.742048\pi\)
\(12\) 0 0
\(13\) 0.230589 + 3.59817i 0.0639538 + 0.997953i
\(14\) 0 0
\(15\) 5.42615 1.80420i 1.40102 0.465841i
\(16\) 0 0
\(17\) −2.21681 3.83963i −0.537655 0.931246i −0.999030 0.0440408i \(-0.985977\pi\)
0.461374 0.887206i \(-0.347357\pi\)
\(18\) 0 0
\(19\) 3.24988 + 5.62896i 0.745574 + 1.29137i 0.949926 + 0.312475i \(0.101158\pi\)
−0.204352 + 0.978898i \(0.565509\pi\)
\(20\) 0 0
\(21\) 0.650419 3.16634i 0.141933 0.690953i
\(22\) 0 0
\(23\) 3.76346 0.784735 0.392367 0.919809i \(-0.371656\pi\)
0.392367 + 0.919809i \(0.371656\pi\)
\(24\) 0 0
\(25\) −2.94970 + 5.10903i −0.589939 + 1.02181i
\(26\) 0 0
\(27\) −2.96731 + 4.26557i −0.571058 + 0.820909i
\(28\) 0 0
\(29\) −0.668020 1.15705i −0.124048 0.214858i 0.797312 0.603567i \(-0.206254\pi\)
−0.921361 + 0.388709i \(0.872921\pi\)
\(30\) 0 0
\(31\) 1.73294 + 3.00154i 0.311245 + 0.539093i 0.978632 0.205618i \(-0.0659206\pi\)
−0.667387 + 0.744711i \(0.732587\pi\)
\(32\) 0 0
\(33\) 3.08390 1.02540i 0.536838 0.178499i
\(34\) 0 0
\(35\) 3.08066 + 5.33585i 0.520726 + 0.901924i
\(36\) 0 0
\(37\) −0.457982 + 0.793248i −0.0752917 + 0.130409i −0.901213 0.433376i \(-0.857322\pi\)
0.825921 + 0.563785i \(0.190655\pi\)
\(38\) 0 0
\(39\) 6.18511 + 0.862792i 0.990410 + 0.138157i
\(40\) 0 0
\(41\) 2.32732 0.363466 0.181733 0.983348i \(-0.441829\pi\)
0.181733 + 0.983348i \(0.441829\pi\)
\(42\) 0 0
\(43\) −3.74484 −0.571082 −0.285541 0.958366i \(-0.592173\pi\)
−0.285541 + 0.958366i \(0.592173\pi\)
\(44\) 0 0
\(45\) −1.16995 9.83493i −0.174406 1.46610i
\(46\) 0 0
\(47\) 5.05850 8.76158i 0.737858 1.27801i −0.215600 0.976482i \(-0.569171\pi\)
0.953458 0.301525i \(-0.0974958\pi\)
\(48\) 0 0
\(49\) −3.51708 −0.502439
\(50\) 0 0
\(51\) −7.28700 + 2.42293i −1.02038 + 0.339278i
\(52\) 0 0
\(53\) −9.98182 −1.37111 −0.685554 0.728022i \(-0.740440\pi\)
−0.685554 + 0.728022i \(0.740440\pi\)
\(54\) 0 0
\(55\) −3.09728 + 5.36465i −0.417638 + 0.723370i
\(56\) 0 0
\(57\) 10.6829 3.55206i 1.41498 0.470482i
\(58\) 0 0
\(59\) −1.46596 + 2.53912i −0.190852 + 0.330565i −0.945533 0.325527i \(-0.894458\pi\)
0.754681 + 0.656092i \(0.227792\pi\)
\(60\) 0 0
\(61\) 14.3492 1.83723 0.918614 0.395156i \(-0.129310\pi\)
0.918614 + 0.395156i \(0.129310\pi\)
\(62\) 0 0
\(63\) −5.14542 2.20703i −0.648262 0.278060i
\(64\) 0 0
\(65\) −9.90695 + 6.59882i −1.22881 + 0.818483i
\(66\) 0 0
\(67\) 8.96043 1.09469 0.547345 0.836907i \(-0.315638\pi\)
0.547345 + 0.836907i \(0.315638\pi\)
\(68\) 0 0
\(69\) 1.31162 6.38518i 0.157900 0.768685i
\(70\) 0 0
\(71\) −1.03307 1.78932i −0.122602 0.212354i 0.798191 0.602405i \(-0.205791\pi\)
−0.920793 + 0.390051i \(0.872457\pi\)
\(72\) 0 0
\(73\) 2.56896 0.300674 0.150337 0.988635i \(-0.451964\pi\)
0.150337 + 0.988635i \(0.451964\pi\)
\(74\) 0 0
\(75\) 7.64009 + 6.78510i 0.882202 + 0.783476i
\(76\) 0 0
\(77\) 1.75086 + 3.03258i 0.199529 + 0.345595i
\(78\) 0 0
\(79\) 7.05149 12.2135i 0.793355 1.37413i −0.130524 0.991445i \(-0.541666\pi\)
0.923879 0.382685i \(-0.125001\pi\)
\(80\) 0 0
\(81\) 6.20293 + 6.52102i 0.689214 + 0.724558i
\(82\) 0 0
\(83\) 1.35281 2.34313i 0.148490 0.257192i −0.782179 0.623053i \(-0.785892\pi\)
0.930670 + 0.365861i \(0.119225\pi\)
\(84\) 0 0
\(85\) 7.31863 12.6762i 0.793817 1.37493i
\(86\) 0 0
\(87\) −2.19589 + 0.730133i −0.235424 + 0.0782785i
\(88\) 0 0
\(89\) 4.60157 7.97016i 0.487766 0.844835i −0.512135 0.858905i \(-0.671145\pi\)
0.999901 + 0.0140698i \(0.00447869\pi\)
\(90\) 0 0
\(91\) 0.430338 + 6.71512i 0.0451117 + 0.703936i
\(92\) 0 0
\(93\) 5.69645 1.89407i 0.590694 0.196406i
\(94\) 0 0
\(95\) −10.7292 + 18.5836i −1.10080 + 1.90664i
\(96\) 0 0
\(97\) −10.3552 −1.05141 −0.525703 0.850668i \(-0.676198\pi\)
−0.525703 + 0.850668i \(0.676198\pi\)
\(98\) 0 0
\(99\) −0.664931 5.58959i −0.0668281 0.561775i
\(100\) 0 0
\(101\) −7.33258 12.7004i −0.729619 1.26374i −0.957045 0.289941i \(-0.906364\pi\)
0.227426 0.973795i \(-0.426969\pi\)
\(102\) 0 0
\(103\) −3.71350 6.43197i −0.365902 0.633760i 0.623019 0.782207i \(-0.285906\pi\)
−0.988920 + 0.148447i \(0.952573\pi\)
\(104\) 0 0
\(105\) 10.1266 3.36710i 0.988255 0.328595i
\(106\) 0 0
\(107\) 4.77286 8.26684i 0.461410 0.799185i −0.537622 0.843186i \(-0.680677\pi\)
0.999031 + 0.0440009i \(0.0140105\pi\)
\(108\) 0 0
\(109\) 9.07781 0.869497 0.434748 0.900552i \(-0.356837\pi\)
0.434748 + 0.900552i \(0.356837\pi\)
\(110\) 0 0
\(111\) 1.18623 + 1.05348i 0.112592 + 0.0999921i
\(112\) 0 0
\(113\) −6.40794 + 11.0989i −0.602808 + 1.04409i 0.389586 + 0.920990i \(0.372618\pi\)
−0.992394 + 0.123104i \(0.960715\pi\)
\(114\) 0 0
\(115\) 6.21238 + 10.7602i 0.579308 + 1.00339i
\(116\) 0 0
\(117\) 3.61944 10.1931i 0.334617 0.942354i
\(118\) 0 0
\(119\) −4.13714 7.16574i −0.379251 0.656882i
\(120\) 0 0
\(121\) 3.73969 6.47733i 0.339972 0.588848i
\(122\) 0 0
\(123\) 0.811104 3.94858i 0.0731348 0.356032i
\(124\) 0 0
\(125\) −2.96928 −0.265581
\(126\) 0 0
\(127\) −1.84439 + 3.19458i −0.163663 + 0.283473i −0.936180 0.351522i \(-0.885664\pi\)
0.772516 + 0.634995i \(0.218998\pi\)
\(128\) 0 0
\(129\) −1.30513 + 6.35358i −0.114910 + 0.559402i
\(130\) 0 0
\(131\) −8.37547 14.5067i −0.731768 1.26746i −0.956127 0.292953i \(-0.905362\pi\)
0.224359 0.974507i \(-0.427971\pi\)
\(132\) 0 0
\(133\) 6.06512 + 10.5051i 0.525913 + 0.910908i
\(134\) 0 0
\(135\) −17.0939 1.44265i −1.47121 0.124163i
\(136\) 0 0
\(137\) −2.09939 −0.179363 −0.0896814 0.995971i \(-0.528585\pi\)
−0.0896814 + 0.995971i \(0.528585\pi\)
\(138\) 0 0
\(139\) −3.92420 + 6.79692i −0.332846 + 0.576507i −0.983069 0.183237i \(-0.941342\pi\)
0.650222 + 0.759744i \(0.274676\pi\)
\(140\) 0 0
\(141\) −13.1022 11.6359i −1.10340 0.979921i
\(142\) 0 0
\(143\) −5.63052 + 3.75038i −0.470848 + 0.313622i
\(144\) 0 0
\(145\) 2.20542 3.81990i 0.183150 0.317225i
\(146\) 0 0
\(147\) −1.22575 + 5.96716i −0.101098 + 0.492163i
\(148\) 0 0
\(149\) −9.51840 + 16.4864i −0.779778 + 1.35061i 0.152292 + 0.988336i \(0.451335\pi\)
−0.932070 + 0.362279i \(0.881999\pi\)
\(150\) 0 0
\(151\) −9.78217 + 16.9432i −0.796062 + 1.37882i 0.126101 + 0.992017i \(0.459754\pi\)
−0.922163 + 0.386802i \(0.873580\pi\)
\(152\) 0 0
\(153\) 1.57118 + 13.2077i 0.127022 + 1.06778i
\(154\) 0 0
\(155\) −5.72117 + 9.90936i −0.459536 + 0.795939i
\(156\) 0 0
\(157\) −10.9030 18.8845i −0.870152 1.50715i −0.861839 0.507182i \(-0.830687\pi\)
−0.00831272 0.999965i \(-0.502646\pi\)
\(158\) 0 0
\(159\) −3.47881 + 16.9354i −0.275888 + 1.34307i
\(160\) 0 0
\(161\) 7.02359 0.553536
\(162\) 0 0
\(163\) 5.93328 + 10.2767i 0.464731 + 0.804937i 0.999189 0.0402575i \(-0.0128178\pi\)
−0.534459 + 0.845195i \(0.679484\pi\)
\(164\) 0 0
\(165\) 8.02236 + 7.12459i 0.624540 + 0.554649i
\(166\) 0 0
\(167\) −14.2224 −1.10056 −0.550279 0.834981i \(-0.685479\pi\)
−0.550279 + 0.834981i \(0.685479\pi\)
\(168\) 0 0
\(169\) −12.8937 + 1.65939i −0.991820 + 0.127646i
\(170\) 0 0
\(171\) −2.30337 19.3628i −0.176143 1.48071i
\(172\) 0 0
\(173\) −17.8530 −1.35734 −0.678669 0.734444i \(-0.737443\pi\)
−0.678669 + 0.734444i \(0.737443\pi\)
\(174\) 0 0
\(175\) −5.50490 + 9.53477i −0.416131 + 0.720761i
\(176\) 0 0
\(177\) 3.79702 + 3.37211i 0.285402 + 0.253463i
\(178\) 0 0
\(179\) −3.04421 + 5.27273i −0.227535 + 0.394102i −0.957077 0.289834i \(-0.906400\pi\)
0.729542 + 0.683936i \(0.239733\pi\)
\(180\) 0 0
\(181\) −5.73434 −0.426230 −0.213115 0.977027i \(-0.568361\pi\)
−0.213115 + 0.977027i \(0.568361\pi\)
\(182\) 0 0
\(183\) 5.00091 24.3452i 0.369678 1.79965i
\(184\) 0 0
\(185\) −3.02398 −0.222328
\(186\) 0 0
\(187\) 4.15947 7.20442i 0.304171 0.526839i
\(188\) 0 0
\(189\) −5.53776 + 7.96066i −0.402813 + 0.579053i
\(190\) 0 0
\(191\) 12.2730 0.888043 0.444021 0.896016i \(-0.353551\pi\)
0.444021 + 0.896016i \(0.353551\pi\)
\(192\) 0 0
\(193\) −24.8533 −1.78898 −0.894490 0.447089i \(-0.852461\pi\)
−0.894490 + 0.447089i \(0.852461\pi\)
\(194\) 0 0
\(195\) 7.74301 + 19.1082i 0.554488 + 1.36836i
\(196\) 0 0
\(197\) −3.80810 + 6.59582i −0.271316 + 0.469932i −0.969199 0.246279i \(-0.920792\pi\)
0.697883 + 0.716211i \(0.254125\pi\)
\(198\) 0 0
\(199\) 11.5276 + 19.9664i 0.817172 + 1.41538i 0.907757 + 0.419495i \(0.137793\pi\)
−0.0905851 + 0.995889i \(0.528874\pi\)
\(200\) 0 0
\(201\) 3.12284 15.2025i 0.220268 1.07230i
\(202\) 0 0
\(203\) −1.24670 2.15935i −0.0875011 0.151556i
\(204\) 0 0
\(205\) 3.84173 + 6.65407i 0.268318 + 0.464740i
\(206\) 0 0
\(207\) −10.3761 4.45065i −0.721191 0.309342i
\(208\) 0 0
\(209\) −6.09786 + 10.5618i −0.421798 + 0.730575i
\(210\) 0 0
\(211\) 19.7639 1.36061 0.680303 0.732931i \(-0.261848\pi\)
0.680303 + 0.732931i \(0.261848\pi\)
\(212\) 0 0
\(213\) −3.39585 + 1.12912i −0.232680 + 0.0773661i
\(214\) 0 0
\(215\) −6.18164 10.7069i −0.421585 0.730206i
\(216\) 0 0
\(217\) 3.23412 + 5.60166i 0.219546 + 0.380265i
\(218\) 0 0
\(219\) 0.895319 4.35856i 0.0605000 0.294524i
\(220\) 0 0
\(221\) 13.3045 8.86183i 0.894955 0.596111i
\(222\) 0 0
\(223\) 2.78358 + 4.82131i 0.186402 + 0.322859i 0.944048 0.329807i \(-0.106984\pi\)
−0.757646 + 0.652666i \(0.773651\pi\)
\(224\) 0 0
\(225\) 14.1745 10.5977i 0.944964 0.706511i
\(226\) 0 0
\(227\) 8.50166 0.564275 0.282138 0.959374i \(-0.408957\pi\)
0.282138 + 0.959374i \(0.408957\pi\)
\(228\) 0 0
\(229\) −7.46686 12.9330i −0.493424 0.854635i 0.506547 0.862212i \(-0.330922\pi\)
−0.999971 + 0.00757686i \(0.997588\pi\)
\(230\) 0 0
\(231\) 5.75536 1.91366i 0.378675 0.125909i
\(232\) 0 0
\(233\) −24.2714 −1.59007 −0.795037 0.606561i \(-0.792549\pi\)
−0.795037 + 0.606561i \(0.792549\pi\)
\(234\) 0 0
\(235\) 33.4005 2.17881
\(236\) 0 0
\(237\) −18.2643 16.2203i −1.18639 1.05362i
\(238\) 0 0
\(239\) −6.45026 11.1722i −0.417232 0.722668i 0.578428 0.815734i \(-0.303667\pi\)
−0.995660 + 0.0930660i \(0.970333\pi\)
\(240\) 0 0
\(241\) −9.61902 −0.619615 −0.309808 0.950799i \(-0.600265\pi\)
−0.309808 + 0.950799i \(0.600265\pi\)
\(242\) 0 0
\(243\) 13.2255 8.25137i 0.848419 0.529326i
\(244\) 0 0
\(245\) −5.80568 10.0557i −0.370911 0.642437i
\(246\) 0 0
\(247\) −19.5046 + 12.9916i −1.24105 + 0.826636i
\(248\) 0 0
\(249\) −3.50395 3.11183i −0.222054 0.197204i
\(250\) 0 0
\(251\) −6.13449 10.6253i −0.387206 0.670660i 0.604867 0.796327i \(-0.293226\pi\)
−0.992073 + 0.125667i \(0.959893\pi\)
\(252\) 0 0
\(253\) 3.53075 + 6.11544i 0.221976 + 0.384474i
\(254\) 0 0
\(255\) −18.9562 16.8348i −1.18708 1.05424i
\(256\) 0 0
\(257\) 18.7126 1.16726 0.583629 0.812021i \(-0.301632\pi\)
0.583629 + 0.812021i \(0.301632\pi\)
\(258\) 0 0
\(259\) −0.854713 + 1.48041i −0.0531093 + 0.0919879i
\(260\) 0 0
\(261\) 0.473463 + 3.98006i 0.0293067 + 0.246360i
\(262\) 0 0
\(263\) −10.3025 17.8444i −0.635277 1.10033i −0.986456 0.164024i \(-0.947553\pi\)
0.351179 0.936308i \(-0.385781\pi\)
\(264\) 0 0
\(265\) −16.4771 28.5392i −1.01218 1.75315i
\(266\) 0 0
\(267\) −11.9187 10.5849i −0.729410 0.647783i
\(268\) 0 0
\(269\) 8.82631 + 15.2876i 0.538150 + 0.932103i 0.999004 + 0.0446269i \(0.0142099\pi\)
−0.460854 + 0.887476i \(0.652457\pi\)
\(270\) 0 0
\(271\) 7.84835 13.5937i 0.476753 0.825761i −0.522892 0.852399i \(-0.675147\pi\)
0.999645 + 0.0266382i \(0.00848020\pi\)
\(272\) 0 0
\(273\) 11.5430 + 1.61019i 0.698615 + 0.0974534i
\(274\) 0 0
\(275\) −11.0692 −0.667499
\(276\) 0 0
\(277\) 8.98946 0.540124 0.270062 0.962843i \(-0.412956\pi\)
0.270062 + 0.962843i \(0.412956\pi\)
\(278\) 0 0
\(279\) −1.22823 10.3248i −0.0735323 0.618132i
\(280\) 0 0
\(281\) 9.17862 15.8978i 0.547551 0.948385i −0.450891 0.892579i \(-0.648894\pi\)
0.998442 0.0558064i \(-0.0177729\pi\)
\(282\) 0 0
\(283\) −3.03135 −0.180195 −0.0900974 0.995933i \(-0.528718\pi\)
−0.0900974 + 0.995933i \(0.528718\pi\)
\(284\) 0 0
\(285\) 27.7901 + 24.6801i 1.64614 + 1.46193i
\(286\) 0 0
\(287\) 4.34338 0.256381
\(288\) 0 0
\(289\) −1.32849 + 2.30101i −0.0781465 + 0.135354i
\(290\) 0 0
\(291\) −3.60892 + 17.5688i −0.211559 + 1.02990i
\(292\) 0 0
\(293\) −1.47905 + 2.56180i −0.0864073 + 0.149662i −0.905990 0.423299i \(-0.860872\pi\)
0.819583 + 0.572961i \(0.194205\pi\)
\(294\) 0 0
\(295\) −9.67951 −0.563563
\(296\) 0 0
\(297\) −9.71517 0.819914i −0.563732 0.0475762i
\(298\) 0 0
\(299\) 0.867811 + 13.5416i 0.0501868 + 0.783128i
\(300\) 0 0
\(301\) −6.98883 −0.402830
\(302\) 0 0
\(303\) −24.1033 + 8.01436i −1.38470 + 0.460413i
\(304\) 0 0
\(305\) 23.6864 + 41.0261i 1.35628 + 2.34914i
\(306\) 0 0
\(307\) 7.39083 0.421817 0.210909 0.977506i \(-0.432358\pi\)
0.210909 + 0.977506i \(0.432358\pi\)
\(308\) 0 0
\(309\) −12.2068 + 4.05878i −0.694423 + 0.230896i
\(310\) 0 0
\(311\) −7.06555 12.2379i −0.400651 0.693947i 0.593154 0.805089i \(-0.297883\pi\)
−0.993805 + 0.111142i \(0.964549\pi\)
\(312\) 0 0
\(313\) 5.69278 9.86019i 0.321775 0.557331i −0.659079 0.752073i \(-0.729054\pi\)
0.980854 + 0.194743i \(0.0623872\pi\)
\(314\) 0 0
\(315\) −2.18343 18.3545i −0.123023 1.03416i
\(316\) 0 0
\(317\) 5.58479 9.67314i 0.313673 0.543298i −0.665482 0.746414i \(-0.731774\pi\)
0.979155 + 0.203117i \(0.0651071\pi\)
\(318\) 0 0
\(319\) 1.25343 2.17100i 0.0701785 0.121553i
\(320\) 0 0
\(321\) −12.3623 10.9789i −0.689997 0.612781i
\(322\) 0 0
\(323\) 14.4087 24.9567i 0.801724 1.38863i
\(324\) 0 0
\(325\) −19.0633 9.43543i −1.05744 0.523383i
\(326\) 0 0
\(327\) 3.16375 15.4016i 0.174956 0.851713i
\(328\) 0 0
\(329\) 9.44047 16.3514i 0.520470 0.901480i
\(330\) 0 0
\(331\) −17.0316 −0.936139 −0.468069 0.883692i \(-0.655050\pi\)
−0.468069 + 0.883692i \(0.655050\pi\)
\(332\) 0 0
\(333\) 2.20078 1.64544i 0.120602 0.0901693i
\(334\) 0 0
\(335\) 14.7911 + 25.6189i 0.808123 + 1.39971i
\(336\) 0 0
\(337\) 15.2871 + 26.4780i 0.832739 + 1.44235i 0.895858 + 0.444340i \(0.146562\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(338\) 0 0
\(339\) 16.5974 + 14.7400i 0.901445 + 0.800566i
\(340\) 0 0
\(341\) −3.25157 + 5.63189i −0.176083 + 0.304984i
\(342\) 0 0
\(343\) −19.6276 −1.05979
\(344\) 0 0
\(345\) 20.4211 6.79001i 1.09943 0.365562i
\(346\) 0 0
\(347\) 14.4392 25.0094i 0.775137 1.34258i −0.159581 0.987185i \(-0.551014\pi\)
0.934718 0.355391i \(-0.115652\pi\)
\(348\) 0 0
\(349\) 13.4698 + 23.3304i 0.721022 + 1.24885i 0.960590 + 0.277968i \(0.0896608\pi\)
−0.239568 + 0.970880i \(0.577006\pi\)
\(350\) 0 0
\(351\) −16.0325 9.69328i −0.855750 0.517389i
\(352\) 0 0
\(353\) 14.1482 + 24.5054i 0.753032 + 1.30429i 0.946347 + 0.323153i \(0.104743\pi\)
−0.193314 + 0.981137i \(0.561924\pi\)
\(354\) 0 0
\(355\) 3.41059 5.90732i 0.181015 0.313528i
\(356\) 0 0
\(357\) −13.5994 + 4.52181i −0.719758 + 0.239320i
\(358\) 0 0
\(359\) 18.9967 1.00261 0.501304 0.865271i \(-0.332854\pi\)
0.501304 + 0.865271i \(0.332854\pi\)
\(360\) 0 0
\(361\) −11.6235 + 20.1324i −0.611762 + 1.05960i
\(362\) 0 0
\(363\) −9.68626 8.60229i −0.508397 0.451503i
\(364\) 0 0
\(365\) 4.24061 + 7.34494i 0.221963 + 0.384452i
\(366\) 0 0
\(367\) −12.9955 22.5089i −0.678361 1.17496i −0.975474 0.220113i \(-0.929357\pi\)
0.297113 0.954842i \(-0.403976\pi\)
\(368\) 0 0
\(369\) −6.41659 2.75228i −0.334034 0.143278i
\(370\) 0 0
\(371\) −18.6287 −0.967152
\(372\) 0 0
\(373\) 15.7252 27.2369i 0.814222 1.41027i −0.0956638 0.995414i \(-0.530497\pi\)
0.909885 0.414860i \(-0.136169\pi\)
\(374\) 0 0
\(375\) −1.03484 + 5.03776i −0.0534388 + 0.260149i
\(376\) 0 0
\(377\) 4.00921 2.67045i 0.206485 0.137535i
\(378\) 0 0
\(379\) 5.08601 8.80922i 0.261251 0.452499i −0.705324 0.708885i \(-0.749198\pi\)
0.966575 + 0.256386i \(0.0825318\pi\)
\(380\) 0 0
\(381\) 4.77721 + 4.24260i 0.244744 + 0.217355i
\(382\) 0 0
\(383\) 14.3383 24.8346i 0.732651 1.26899i −0.223095 0.974797i \(-0.571616\pi\)
0.955746 0.294193i \(-0.0950507\pi\)
\(384\) 0 0
\(385\) −5.78034 + 10.0118i −0.294593 + 0.510250i
\(386\) 0 0
\(387\) 10.3248 + 4.42863i 0.524839 + 0.225120i
\(388\) 0 0
\(389\) −7.19376 + 12.4600i −0.364738 + 0.631745i −0.988734 0.149683i \(-0.952175\pi\)
0.623996 + 0.781428i \(0.285508\pi\)
\(390\) 0 0
\(391\) −8.34287 14.4503i −0.421917 0.730782i
\(392\) 0 0
\(393\) −27.5315 + 9.15422i −1.38878 + 0.461770i
\(394\) 0 0
\(395\) 46.5599 2.34268
\(396\) 0 0
\(397\) −0.0814812 0.141130i −0.00408942 0.00708309i 0.863973 0.503537i \(-0.167968\pi\)
−0.868063 + 0.496454i \(0.834635\pi\)
\(398\) 0 0
\(399\) 19.9370 6.62906i 0.998099 0.331868i
\(400\) 0 0
\(401\) −9.65865 −0.482330 −0.241165 0.970484i \(-0.577529\pi\)
−0.241165 + 0.970484i \(0.577529\pi\)
\(402\) 0 0
\(403\) −10.4005 + 6.92754i −0.518084 + 0.345085i
\(404\) 0 0
\(405\) −8.40511 + 28.4992i −0.417653 + 1.41614i
\(406\) 0 0
\(407\) −1.71865 −0.0851904
\(408\) 0 0
\(409\) −11.1303 + 19.2782i −0.550358 + 0.953247i 0.447891 + 0.894088i \(0.352175\pi\)
−0.998249 + 0.0591591i \(0.981158\pi\)
\(410\) 0 0
\(411\) −0.731667 + 3.56187i −0.0360905 + 0.175694i
\(412\) 0 0
\(413\) −2.73586 + 4.73865i −0.134623 + 0.233174i
\(414\) 0 0
\(415\) 8.93239 0.438474
\(416\) 0 0
\(417\) 10.1642 + 9.02673i 0.497742 + 0.442041i
\(418\) 0 0
\(419\) 14.3294 0.700038 0.350019 0.936743i \(-0.386175\pi\)
0.350019 + 0.936743i \(0.386175\pi\)
\(420\) 0 0
\(421\) 0.334370 0.579145i 0.0162962 0.0282258i −0.857762 0.514047i \(-0.828146\pi\)
0.874058 + 0.485821i \(0.161479\pi\)
\(422\) 0 0
\(423\) −24.3081 + 18.1742i −1.18190 + 0.883658i
\(424\) 0 0
\(425\) 26.1557 1.26874
\(426\) 0 0
\(427\) 26.7793 1.29594
\(428\) 0 0
\(429\) 4.40067 + 10.8599i 0.212466 + 0.524323i
\(430\) 0 0
\(431\) −19.1537 + 33.1752i −0.922601 + 1.59799i −0.127228 + 0.991874i \(0.540608\pi\)
−0.795374 + 0.606119i \(0.792725\pi\)
\(432\) 0 0
\(433\) 2.75906 + 4.77883i 0.132592 + 0.229656i 0.924675 0.380757i \(-0.124337\pi\)
−0.792083 + 0.610413i \(0.791003\pi\)
\(434\) 0 0
\(435\) −5.71231 5.07306i −0.273884 0.243234i
\(436\) 0 0
\(437\) 12.2308 + 21.1844i 0.585078 + 1.01339i
\(438\) 0 0
\(439\) 15.0911 + 26.1385i 0.720257 + 1.24752i 0.960897 + 0.276907i \(0.0893095\pi\)
−0.240639 + 0.970615i \(0.577357\pi\)
\(440\) 0 0
\(441\) 9.69684 + 4.15929i 0.461754 + 0.198061i
\(442\) 0 0
\(443\) −11.2133 + 19.4221i −0.532762 + 0.922770i 0.466507 + 0.884518i \(0.345512\pi\)
−0.999268 + 0.0382523i \(0.987821\pi\)
\(444\) 0 0
\(445\) 30.3835 1.44031
\(446\) 0 0
\(447\) 24.6539 + 21.8949i 1.16609 + 1.03559i
\(448\) 0 0
\(449\) −9.68866 16.7813i −0.457236 0.791956i 0.541577 0.840651i \(-0.317827\pi\)
−0.998814 + 0.0486945i \(0.984494\pi\)
\(450\) 0 0
\(451\) 2.18341 + 3.78178i 0.102813 + 0.178077i
\(452\) 0 0
\(453\) 25.3371 + 22.5016i 1.19044 + 1.05722i
\(454\) 0 0
\(455\) −18.4889 + 12.3151i −0.866775 + 0.577341i
\(456\) 0 0
\(457\) −19.1187 33.1146i −0.894335 1.54903i −0.834626 0.550818i \(-0.814316\pi\)
−0.0597094 0.998216i \(-0.519017\pi\)
\(458\) 0 0
\(459\) 22.9562 + 1.93739i 1.07150 + 0.0904296i
\(460\) 0 0
\(461\) −40.1158 −1.86838 −0.934189 0.356780i \(-0.883875\pi\)
−0.934189 + 0.356780i \(0.883875\pi\)
\(462\) 0 0
\(463\) 8.04452 + 13.9335i 0.373861 + 0.647546i 0.990156 0.139970i \(-0.0447005\pi\)
−0.616295 + 0.787515i \(0.711367\pi\)
\(464\) 0 0
\(465\) 14.8186 + 13.1602i 0.687194 + 0.610292i
\(466\) 0 0
\(467\) 7.11182 0.329096 0.164548 0.986369i \(-0.447383\pi\)
0.164548 + 0.986369i \(0.447383\pi\)
\(468\) 0 0
\(469\) 16.7225 0.772173
\(470\) 0 0
\(471\) −35.8398 + 11.9167i −1.65141 + 0.549094i
\(472\) 0 0
\(473\) −3.51328 6.08518i −0.161541 0.279797i
\(474\) 0 0
\(475\) −38.3447 −1.75937
\(476\) 0 0
\(477\) 27.5206 + 11.8045i 1.26008 + 0.540490i
\(478\) 0 0
\(479\) 9.17751 + 15.8959i 0.419331 + 0.726303i 0.995872 0.0907654i \(-0.0289313\pi\)
−0.576541 + 0.817068i \(0.695598\pi\)
\(480\) 0 0
\(481\) −2.95985 1.46498i −0.134957 0.0667974i
\(482\) 0 0
\(483\) 2.44782 11.9164i 0.111380 0.542215i
\(484\) 0 0
\(485\) −17.0934 29.6066i −0.776170 1.34437i
\(486\) 0 0
\(487\) −14.3769 24.9015i −0.651479 1.12839i −0.982764 0.184864i \(-0.940816\pi\)
0.331285 0.943531i \(-0.392518\pi\)
\(488\) 0 0
\(489\) 19.5036 6.48496i 0.881985 0.293260i
\(490\) 0 0
\(491\) 24.5019 1.10575 0.552877 0.833263i \(-0.313530\pi\)
0.552877 + 0.833263i \(0.313530\pi\)
\(492\) 0 0
\(493\) −2.96175 + 5.12990i −0.133390 + 0.231039i
\(494\) 0 0
\(495\) 14.8837 11.1279i 0.668971 0.500162i
\(496\) 0 0
\(497\) −1.92797 3.33934i −0.0864813 0.149790i
\(498\) 0 0
\(499\) −16.7052 28.9342i −0.747827 1.29527i −0.948862 0.315690i \(-0.897764\pi\)
0.201036 0.979584i \(-0.435569\pi\)
\(500\) 0 0
\(501\) −4.95670 + 24.1300i −0.221449 + 1.07805i
\(502\) 0 0
\(503\) −9.85083 17.0621i −0.439227 0.760763i 0.558403 0.829570i \(-0.311414\pi\)
−0.997630 + 0.0688067i \(0.978081\pi\)
\(504\) 0 0
\(505\) 24.2079 41.9294i 1.07724 1.86583i
\(506\) 0 0
\(507\) −1.67826 + 22.4540i −0.0745340 + 0.997218i
\(508\) 0 0
\(509\) −6.06570 −0.268857 −0.134429 0.990923i \(-0.542920\pi\)
−0.134429 + 0.990923i \(0.542920\pi\)
\(510\) 0 0
\(511\) 4.79434 0.212089
\(512\) 0 0
\(513\) −33.6541 2.84025i −1.48587 0.125400i
\(514\) 0 0
\(515\) 12.2598 21.2346i 0.540232 0.935710i
\(516\) 0 0
\(517\) 18.9829 0.834865
\(518\) 0 0
\(519\) −6.22203 + 30.2898i −0.273117 + 1.32958i
\(520\) 0 0
\(521\) 20.0607 0.878876 0.439438 0.898273i \(-0.355178\pi\)
0.439438 + 0.898273i \(0.355178\pi\)
\(522\) 0 0
\(523\) 15.6061 27.0306i 0.682408 1.18196i −0.291836 0.956468i \(-0.594266\pi\)
0.974244 0.225497i \(-0.0724004\pi\)
\(524\) 0 0
\(525\) 14.2584 + 12.6628i 0.622287 + 0.552648i
\(526\) 0 0
\(527\) 7.68320 13.3077i 0.334685 0.579692i
\(528\) 0 0
\(529\) −8.83640 −0.384191
\(530\) 0 0
\(531\) 7.04452 5.26690i 0.305706 0.228564i
\(532\) 0 0
\(533\) 0.536653 + 8.37408i 0.0232450 + 0.362722i
\(534\) 0 0
\(535\) 31.5145 1.36249
\(536\) 0 0
\(537\) 7.88490 + 7.00251i 0.340258 + 0.302181i
\(538\) 0 0
\(539\) −3.29960 5.71508i −0.142124 0.246166i
\(540\) 0 0
\(541\) 23.6592 1.01719 0.508594 0.861007i \(-0.330166\pi\)
0.508594 + 0.861007i \(0.330166\pi\)
\(542\) 0 0
\(543\) −1.99850 + 9.72902i −0.0857638 + 0.417512i
\(544\) 0 0
\(545\) 14.9848 + 25.9545i 0.641880 + 1.11177i
\(546\) 0 0
\(547\) −13.4497 + 23.2955i −0.575066 + 0.996044i 0.420968 + 0.907075i \(0.361690\pi\)
−0.996034 + 0.0889686i \(0.971643\pi\)
\(548\) 0 0
\(549\) −39.5618 16.9693i −1.68846 0.724234i
\(550\) 0 0
\(551\) 4.34198 7.52052i 0.184974 0.320385i
\(552\) 0 0
\(553\) 13.1599 22.7936i 0.559616 0.969284i
\(554\) 0 0
\(555\) −1.05390 + 5.13057i −0.0447357 + 0.217780i
\(556\) 0 0
\(557\) 9.16528 15.8747i 0.388346 0.672634i −0.603882 0.797074i \(-0.706380\pi\)
0.992227 + 0.124440i \(0.0397134\pi\)
\(558\) 0 0
\(559\) −0.863517 13.4746i −0.0365229 0.569913i
\(560\) 0 0
\(561\) −10.7736 9.56791i −0.454860 0.403958i
\(562\) 0 0
\(563\) −5.71682 + 9.90183i −0.240935 + 0.417312i −0.960981 0.276614i \(-0.910788\pi\)
0.720046 + 0.693927i \(0.244121\pi\)
\(564\) 0 0
\(565\) −42.3106 −1.78002
\(566\) 0 0
\(567\) 11.5763 + 12.1699i 0.486158 + 0.511088i
\(568\) 0 0
\(569\) 0.701197 + 1.21451i 0.0293957 + 0.0509148i 0.880349 0.474327i \(-0.157308\pi\)
−0.850953 + 0.525241i \(0.823975\pi\)
\(570\) 0 0
\(571\) −20.3941 35.3237i −0.853468 1.47825i −0.878059 0.478552i \(-0.841162\pi\)
0.0245910 0.999698i \(-0.492172\pi\)
\(572\) 0 0
\(573\) 4.27732 20.8227i 0.178688 0.869880i
\(574\) 0 0
\(575\) −11.1011 + 19.2276i −0.462946 + 0.801846i
\(576\) 0 0
\(577\) −11.7497 −0.489146 −0.244573 0.969631i \(-0.578648\pi\)
−0.244573 + 0.969631i \(0.578648\pi\)
\(578\) 0 0
\(579\) −8.66174 + 42.1667i −0.359969 + 1.75239i
\(580\) 0 0
\(581\) 2.52469 4.37290i 0.104742 0.181418i
\(582\) 0 0
\(583\) −9.36461 16.2200i −0.387842 0.671763i
\(584\) 0 0
\(585\) 35.1180 6.47751i 1.45195 0.267812i
\(586\) 0 0
\(587\) 7.12235 + 12.3363i 0.293971 + 0.509173i 0.974745 0.223321i \(-0.0716897\pi\)
−0.680774 + 0.732494i \(0.738356\pi\)
\(588\) 0 0
\(589\) −11.2637 + 19.5093i −0.464113 + 0.803867i
\(590\) 0 0
\(591\) 9.86345 + 8.75965i 0.405728 + 0.360324i
\(592\) 0 0
\(593\) −26.9551 −1.10691 −0.553457 0.832878i \(-0.686692\pi\)
−0.553457 + 0.832878i \(0.686692\pi\)
\(594\) 0 0
\(595\) 13.6585 23.6571i 0.559942 0.969848i
\(596\) 0 0
\(597\) 37.8931 12.5995i 1.55086 0.515662i
\(598\) 0 0
\(599\) −14.1367 24.4855i −0.577609 1.00045i −0.995753 0.0920675i \(-0.970652\pi\)
0.418144 0.908381i \(-0.362681\pi\)
\(600\) 0 0
\(601\) 14.6530 + 25.3797i 0.597708 + 1.03526i 0.993159 + 0.116774i \(0.0372552\pi\)
−0.395450 + 0.918487i \(0.629411\pi\)
\(602\) 0 0
\(603\) −24.7046 10.5966i −1.00605 0.431526i
\(604\) 0 0
\(605\) 24.6926 1.00390
\(606\) 0 0
\(607\) 15.2475 26.4094i 0.618877 1.07193i −0.370814 0.928707i \(-0.620921\pi\)
0.989691 0.143219i \(-0.0457453\pi\)
\(608\) 0 0
\(609\) −4.09810 + 1.36262i −0.166063 + 0.0552161i
\(610\) 0 0
\(611\) 32.6921 + 16.1810i 1.32258 + 0.654614i
\(612\) 0 0
\(613\) −1.13510 + 1.96606i −0.0458464 + 0.0794083i −0.888038 0.459770i \(-0.847932\pi\)
0.842192 + 0.539178i \(0.181265\pi\)
\(614\) 0 0
\(615\) 12.6284 4.19893i 0.509225 0.169317i
\(616\) 0 0
\(617\) 2.49748 4.32577i 0.100545 0.174149i −0.811364 0.584541i \(-0.801275\pi\)
0.911909 + 0.410392i \(0.134608\pi\)
\(618\) 0 0
\(619\) −20.1821 + 34.9564i −0.811187 + 1.40502i 0.100848 + 0.994902i \(0.467845\pi\)
−0.912034 + 0.410114i \(0.865489\pi\)
\(620\) 0 0
\(621\) −11.1673 + 16.0533i −0.448129 + 0.644196i
\(622\) 0 0
\(623\) 8.58773 14.8744i 0.344060 0.595930i
\(624\) 0 0
\(625\) 9.84706 + 17.0556i 0.393882 + 0.682224i
\(626\) 0 0
\(627\) 15.7942 + 14.0267i 0.630761 + 0.560174i
\(628\) 0 0
\(629\) 4.06103 0.161924
\(630\) 0 0
\(631\) 11.3281 + 19.6209i 0.450966 + 0.781096i 0.998446 0.0557225i \(-0.0177462\pi\)
−0.547480 + 0.836819i \(0.684413\pi\)
\(632\) 0 0
\(633\) 6.88802 33.5320i 0.273774 1.33278i
\(634\) 0 0
\(635\) −12.1782 −0.483279
\(636\) 0 0
\(637\) −0.810998 12.6550i −0.0321329 0.501411i
\(638\) 0 0
\(639\) 0.732192 + 6.15500i 0.0289651 + 0.243488i
\(640\) 0 0
\(641\) 16.4220 0.648631 0.324315 0.945949i \(-0.394866\pi\)
0.324315 + 0.945949i \(0.394866\pi\)
\(642\) 0 0
\(643\) −0.826871 + 1.43218i −0.0326086 + 0.0564797i −0.881869 0.471494i \(-0.843715\pi\)
0.849261 + 0.527974i \(0.177048\pi\)
\(644\) 0 0
\(645\) −20.3200 + 6.75641i −0.800100 + 0.266034i
\(646\) 0 0
\(647\) 15.5953 27.0119i 0.613115 1.06195i −0.377597 0.925970i \(-0.623250\pi\)
0.990712 0.135976i \(-0.0434171\pi\)
\(648\) 0 0
\(649\) −5.50126 −0.215943
\(650\) 0 0
\(651\) 10.6310 3.53483i 0.416664 0.138541i
\(652\) 0 0
\(653\) 23.0419 0.901701 0.450850 0.892600i \(-0.351121\pi\)
0.450850 + 0.892600i \(0.351121\pi\)
\(654\) 0 0
\(655\) 27.6510 47.8929i 1.08041 1.87133i
\(656\) 0 0
\(657\) −7.08280 3.03804i −0.276327 0.118525i
\(658\) 0 0
\(659\) 38.6980 1.50746 0.753729 0.657185i \(-0.228253\pi\)
0.753729 + 0.657185i \(0.228253\pi\)
\(660\) 0 0
\(661\) −3.03481 −0.118040 −0.0590202 0.998257i \(-0.518798\pi\)
−0.0590202 + 0.998257i \(0.518798\pi\)
\(662\) 0 0
\(663\) −10.3984 25.6612i −0.403841 0.996597i
\(664\) 0 0
\(665\) −20.0235 + 34.6818i −0.776480 + 1.34490i
\(666\) 0 0
\(667\) −2.51407 4.35449i −0.0973450 0.168607i
\(668\) 0 0
\(669\) 9.15007 3.04240i 0.353762 0.117626i
\(670\) 0 0
\(671\) 13.4619 + 23.3168i 0.519693 + 0.900134i
\(672\) 0 0
\(673\) −4.24403 7.35088i −0.163595 0.283355i 0.772560 0.634942i \(-0.218976\pi\)
−0.936156 + 0.351586i \(0.885642\pi\)
\(674\) 0 0
\(675\) −13.0403 27.7422i −0.501920 1.06780i
\(676\) 0 0
\(677\) −9.65503 + 16.7230i −0.371073 + 0.642717i −0.989731 0.142943i \(-0.954343\pi\)
0.618658 + 0.785661i \(0.287677\pi\)
\(678\) 0 0
\(679\) −19.3254 −0.741641
\(680\) 0 0
\(681\) 2.96295 14.4241i 0.113541 0.552734i
\(682\) 0 0
\(683\) 12.5757 + 21.7818i 0.481196 + 0.833456i 0.999767 0.0215787i \(-0.00686923\pi\)
−0.518571 + 0.855034i \(0.673536\pi\)
\(684\) 0 0
\(685\) −3.46548 6.00239i −0.132409 0.229340i
\(686\) 0 0
\(687\) −24.5447 + 8.16113i −0.936440 + 0.311366i
\(688\) 0 0
\(689\) −2.30169 35.9163i −0.0876876 1.36830i
\(690\) 0 0
\(691\) 24.1688 + 41.8616i 0.919425 + 1.59249i 0.800291 + 0.599612i \(0.204678\pi\)
0.119133 + 0.992878i \(0.461988\pi\)
\(692\) 0 0
\(693\) −1.24093 10.4316i −0.0471392 0.396264i
\(694\) 0 0
\(695\) −25.9109 −0.982857
\(696\) 0 0
\(697\) −5.15922 8.93603i −0.195419 0.338476i
\(698\) 0 0
\(699\) −8.45895 + 41.1795i −0.319947 + 1.55755i
\(700\) 0 0
\(701\) −5.76955 −0.217913 −0.108956 0.994047i \(-0.534751\pi\)
−0.108956 + 0.994047i \(0.534751\pi\)
\(702\) 0 0
\(703\) −5.95355 −0.224542
\(704\) 0 0
\(705\) 11.6406 56.6681i 0.438409 2.13424i
\(706\) 0 0
\(707\) −13.6845 23.7022i −0.514658 0.891414i
\(708\) 0 0
\(709\) 26.2836 0.987102 0.493551 0.869717i \(-0.335699\pi\)
0.493551 + 0.869717i \(0.335699\pi\)
\(710\) 0 0
\(711\) −33.8852 + 25.3346i −1.27079 + 0.950121i
\(712\) 0 0
\(713\) 6.52185 + 11.2962i 0.244245 + 0.423045i
\(714\) 0 0
\(715\) −20.0171 9.90753i −0.748598 0.370521i
\(716\) 0 0
\(717\) −21.2030 + 7.05000i −0.791841 + 0.263287i
\(718\) 0 0
\(719\) −21.7139 37.6096i −0.809793 1.40260i −0.913007 0.407943i \(-0.866246\pi\)
0.103215 0.994659i \(-0.467087\pi\)
\(720\) 0 0
\(721\) −6.93035 12.0037i −0.258100 0.447042i
\(722\) 0 0
\(723\) −3.35237 + 16.3199i −0.124676 + 0.606942i
\(724\) 0 0
\(725\) 7.88183 0.292724
\(726\) 0 0
\(727\) 14.0746 24.3779i 0.521997 0.904125i −0.477675 0.878536i \(-0.658521\pi\)
0.999673 0.0255891i \(-0.00814616\pi\)
\(728\) 0 0
\(729\) −9.39019 25.3145i −0.347785 0.937574i
\(730\) 0 0
\(731\) 8.30159 + 14.3788i 0.307045 + 0.531818i
\(732\) 0 0
\(733\) −2.35921 4.08627i −0.0871394 0.150930i 0.819161 0.573563i \(-0.194439\pi\)
−0.906301 + 0.422633i \(0.861106\pi\)
\(734\) 0 0
\(735\) −19.0842 + 6.34549i −0.703930 + 0.234057i
\(736\) 0 0
\(737\) 8.40638 + 14.5603i 0.309653 + 0.536334i
\(738\) 0 0
\(739\) −11.0290 + 19.1028i −0.405709 + 0.702709i −0.994404 0.105647i \(-0.966309\pi\)
0.588695 + 0.808355i \(0.299642\pi\)
\(740\) 0 0
\(741\) 15.2443 + 37.6197i 0.560012 + 1.38200i
\(742\) 0 0
\(743\) 24.6938 0.905927 0.452963 0.891529i \(-0.350367\pi\)
0.452963 + 0.891529i \(0.350367\pi\)
\(744\) 0 0
\(745\) −62.8485 −2.30259
\(746\) 0 0
\(747\) −6.50078 + 4.86037i −0.237851 + 0.177832i
\(748\) 0 0
\(749\) 8.90740 15.4281i 0.325469 0.563729i
\(750\) 0 0
\(751\) −8.23189 −0.300386 −0.150193 0.988657i \(-0.547989\pi\)
−0.150193 + 0.988657i \(0.547989\pi\)
\(752\) 0 0
\(753\) −20.1650 + 6.70488i −0.734855 + 0.244339i
\(754\) 0 0
\(755\) −64.5902 −2.35068
\(756\) 0 0
\(757\) 3.82380 6.62301i 0.138978 0.240718i −0.788132 0.615506i \(-0.788951\pi\)
0.927110 + 0.374789i \(0.122285\pi\)
\(758\) 0 0
\(759\) 11.6061 3.85904i 0.421275 0.140074i
\(760\) 0 0
\(761\) −19.4786 + 33.7379i −0.706098 + 1.22300i 0.260196 + 0.965556i \(0.416213\pi\)
−0.966294 + 0.257442i \(0.917121\pi\)
\(762\) 0 0
\(763\) 16.9416 0.613325
\(764\) 0 0
\(765\) −35.1689 + 26.2943i −1.27153 + 0.950674i
\(766\) 0 0
\(767\) −9.47421 4.68928i −0.342094 0.169320i
\(768\) 0 0
\(769\) −20.8158 −0.750637 −0.375318 0.926896i \(-0.622467\pi\)
−0.375318 + 0.926896i \(0.622467\pi\)
\(770\) 0 0
\(771\) 6.52160 31.7482i 0.234870 1.14338i
\(772\) 0 0
\(773\) −12.2723 21.2563i −0.441405 0.764537i 0.556389 0.830922i \(-0.312187\pi\)
−0.997794 + 0.0663855i \(0.978853\pi\)
\(774\) 0 0
\(775\) −20.4466 −0.734464
\(776\) 0 0
\(777\) 2.21381 + 1.96607i 0.0794201 + 0.0705324i
\(778\) 0 0
\(779\) 7.56351 + 13.1004i 0.270991 + 0.469370i
\(780\) 0 0
\(781\) 1.93838 3.35737i 0.0693606 0.120136i
\(782\) 0 0
\(783\) 6.91768 + 0.583819i 0.247218 + 0.0208640i
\(784\) 0 0
\(785\) 35.9953 62.3457i 1.28473 2.22521i
\(786\) 0 0
\(787\) −16.2635 + 28.1691i −0.579730 + 1.00412i 0.415780 + 0.909465i \(0.363508\pi\)
−0.995510 + 0.0946561i \(0.969825\pi\)
\(788\) 0 0
\(789\) −33.8658 + 11.2604i −1.20565 + 0.400881i
\(790\) 0 0
\(791\) −11.9589 + 20.7134i −0.425208 + 0.736483i
\(792\) 0 0
\(793\) 3.30876 + 51.6309i 0.117498 + 1.83347i
\(794\) 0 0
\(795\) −54.1628 + 18.0091i −1.92096 + 0.638719i
\(796\) 0 0
\(797\) 25.9161 44.8880i 0.917995 1.59001i 0.115539 0.993303i \(-0.463140\pi\)
0.802456 0.596711i \(-0.203526\pi\)
\(798\) 0 0
\(799\) −44.8549 −1.58685
\(800\) 0 0
\(801\) −22.1124 + 16.5325i −0.781302 + 0.584148i
\(802\) 0 0
\(803\) 2.41011 + 4.17443i 0.0850509 + 0.147312i
\(804\) 0 0
\(805\) 11.5939 + 20.0812i 0.408632 + 0.707771i
\(806\) 0 0
\(807\) 29.0135 9.64699i 1.02132 0.339590i
\(808\) 0 0
\(809\) −15.9371 + 27.6039i −0.560319 + 0.970500i 0.437150 + 0.899389i \(0.355988\pi\)
−0.997468 + 0.0711115i \(0.977345\pi\)
\(810\) 0 0
\(811\) −7.14832 −0.251011 −0.125506 0.992093i \(-0.540055\pi\)
−0.125506 + 0.992093i \(0.540055\pi\)
\(812\) 0 0
\(813\) −20.3282 18.0533i −0.712942 0.633158i
\(814\) 0 0
\(815\) −19.5883 + 33.9279i −0.686148 + 1.18844i
\(816\) 0 0
\(817\) −12.1703 21.0795i −0.425784 0.737480i
\(818\) 0 0
\(819\) 6.75481 19.0230i 0.236032 0.664718i
\(820\) 0 0
\(821\) 5.17418 + 8.96194i 0.180580 + 0.312774i 0.942078 0.335393i \(-0.108869\pi\)
−0.761498 + 0.648167i \(0.775536\pi\)
\(822\) 0 0
\(823\) −19.4635 + 33.7119i −0.678457 + 1.17512i 0.296989 + 0.954881i \(0.404018\pi\)
−0.975446 + 0.220240i \(0.929316\pi\)
\(824\) 0 0
\(825\) −3.85779 + 18.7803i −0.134311 + 0.653847i
\(826\) 0 0
\(827\) 19.5838 0.680994 0.340497 0.940246i \(-0.389405\pi\)
0.340497 + 0.940246i \(0.389405\pi\)
\(828\) 0 0
\(829\) −8.13898 + 14.0971i −0.282678 + 0.489613i −0.972044 0.234801i \(-0.924556\pi\)
0.689365 + 0.724414i \(0.257890\pi\)
\(830\) 0 0
\(831\) 3.13296 15.2517i 0.108681 0.529077i
\(832\) 0 0
\(833\) 7.79669 + 13.5043i 0.270139 + 0.467895i
\(834\) 0 0
\(835\) −23.4770 40.6634i −0.812455 1.40721i
\(836\) 0 0
\(837\) −17.9455 1.51451i −0.620286 0.0523491i
\(838\) 0 0
\(839\) 51.0299 1.76175 0.880873 0.473352i \(-0.156956\pi\)
0.880873 + 0.473352i \(0.156956\pi\)
\(840\) 0 0
\(841\) 13.6075 23.5689i 0.469224 0.812720i
\(842\) 0 0
\(843\) −23.7738 21.1133i −0.818813 0.727181i
\(844\) 0 0
\(845\) −26.0281 34.1253i −0.895394 1.17395i
\(846\) 0 0
\(847\) 6.97923 12.0884i 0.239809 0.415362i
\(848\) 0 0
\(849\) −1.05647 + 5.14306i −0.0362579 + 0.176509i
\(850\) 0 0
\(851\) −1.72359 + 2.98535i −0.0590840 + 0.102337i
\(852\) 0 0
\(853\) 16.9863 29.4212i 0.581601 1.00736i −0.413689 0.910418i \(-0.635760\pi\)
0.995290 0.0969437i \(-0.0309067\pi\)
\(854\) 0 0
\(855\) 51.5582 38.5480i 1.76325 1.31831i
\(856\) 0 0
\(857\) 7.27876 12.6072i 0.248638 0.430653i −0.714510 0.699625i \(-0.753350\pi\)
0.963148 + 0.268972i \(0.0866838\pi\)
\(858\) 0 0
\(859\) −2.44195 4.22958i −0.0833181 0.144311i 0.821355 0.570417i \(-0.193218\pi\)
−0.904673 + 0.426106i \(0.859885\pi\)
\(860\) 0 0
\(861\) 1.51373 7.36908i 0.0515878 0.251138i
\(862\) 0 0
\(863\) 44.0094 1.49810 0.749048 0.662515i \(-0.230511\pi\)
0.749048 + 0.662515i \(0.230511\pi\)
\(864\) 0 0
\(865\) −29.4701 51.0438i −1.00201 1.73554i
\(866\) 0 0
\(867\) 3.44096 + 3.05589i 0.116861 + 0.103783i
\(868\) 0 0
\(869\) 26.4619 0.897658
\(870\) 0 0
\(871\) 2.06617 + 32.2412i 0.0700096 + 1.09245i
\(872\) 0 0
\(873\) 28.5499 + 12.2460i 0.966269 + 0.414464i
\(874\) 0 0
\(875\) −5.54145 −0.187335
\(876\) 0 0
\(877\) −0.444327 + 0.769597i −0.0150039 + 0.0259874i −0.873430 0.486950i \(-0.838109\pi\)
0.858426 + 0.512937i \(0.171443\pi\)
\(878\) 0 0
\(879\) 3.83094 + 3.40222i 0.129214 + 0.114754i
\(880\) 0 0
\(881\) −18.0334 + 31.2348i −0.607561 + 1.05233i 0.384080 + 0.923300i \(0.374519\pi\)
−0.991641 + 0.129027i \(0.958815\pi\)
\(882\) 0 0
\(883\) −42.4663 −1.42910 −0.714552 0.699582i \(-0.753369\pi\)
−0.714552 + 0.699582i \(0.753369\pi\)
\(884\) 0 0
\(885\) −3.37345 + 16.4225i −0.113397 + 0.552036i
\(886\) 0 0
\(887\) −4.02334 −0.135091 −0.0675453 0.997716i \(-0.521517\pi\)
−0.0675453 + 0.997716i \(0.521517\pi\)
\(888\) 0 0
\(889\) −3.44211 + 5.96192i −0.115445 + 0.199956i
\(890\) 0 0
\(891\) −4.77697 + 16.1973i −0.160034 + 0.542629i
\(892\) 0 0
\(893\) 65.7581 2.20051
\(894\) 0 0
\(895\) −20.1005 −0.671884
\(896\) 0 0
\(897\) 23.2774 + 3.24708i 0.777210 + 0.108417i
\(898\) 0 0
\(899\) 2.31528 4.01018i 0.0772189 0.133747i
\(900\) 0 0
\(901\) 22.1278 + 38.3265i 0.737184 + 1.27684i
\(902\) 0 0
\(903\) −2.43571 + 11.8574i −0.0810554 + 0.394591i
\(904\) 0 0
\(905\) −9.46573 16.3951i −0.314652 0.544993i
\(906\) 0 0
\(907\) 13.7481 + 23.8125i 0.456500 + 0.790681i 0.998773 0.0495215i \(-0.0157696\pi\)
−0.542273 + 0.840202i \(0.682436\pi\)
\(908\) 0 0
\(909\) 5.19701 + 43.6874i 0.172374 + 1.44902i
\(910\) 0 0
\(911\) −3.01144 + 5.21596i −0.0997734 + 0.172813i −0.911591 0.411099i \(-0.865145\pi\)
0.811817 + 0.583911i \(0.198478\pi\)
\(912\) 0 0
\(913\) 5.07664 0.168012
\(914\) 0 0
\(915\) 77.8609 25.8888i 2.57400 0.855856i
\(916\) 0 0
\(917\) −15.6308 27.0733i −0.516175 0.894040i
\(918\) 0 0
\(919\) −9.16320 15.8711i −0.302266 0.523540i 0.674383 0.738382i \(-0.264410\pi\)
−0.976649 + 0.214842i \(0.931076\pi\)
\(920\) 0 0
\(921\) 2.57581 12.5395i 0.0848759 0.413190i
\(922\) 0 0
\(923\) 6.20008 4.12975i 0.204078 0.135932i
\(924\) 0 0
\(925\) −2.70181 4.67968i −0.0888351 0.153867i
\(926\) 0 0
\(927\) 2.63196 + 22.1250i 0.0864450 + 0.726680i
\(928\) 0 0
\(929\) −11.1744 −0.366621 −0.183310 0.983055i \(-0.558681\pi\)
−0.183310 + 0.983055i \(0.558681\pi\)
\(930\) 0 0
\(931\) −11.4301 19.7975i −0.374606 0.648836i
\(932\) 0 0
\(933\) −23.2256 + 7.72251i −0.760371 + 0.252824i
\(934\) 0 0
\(935\) 27.4644 0.898181
\(936\) 0 0
\(937\) 27.5887 0.901285 0.450642 0.892705i \(-0.351195\pi\)
0.450642 + 0.892705i \(0.351195\pi\)
\(938\) 0 0
\(939\) −14.7450 13.0949i −0.481186 0.427337i
\(940\) 0 0
\(941\) −16.1229 27.9256i −0.525591 0.910350i −0.999556 0.0298061i \(-0.990511\pi\)
0.473965 0.880544i \(-0.342822\pi\)
\(942\) 0 0
\(943\) 8.75875 0.285224
\(944\) 0 0
\(945\) −31.9017 2.69235i −1.03776 0.0875822i
\(946\) 0 0
\(947\) 3.31127 + 5.73529i 0.107602 + 0.186372i 0.914798 0.403911i \(-0.132350\pi\)
−0.807196 + 0.590283i \(0.799016\pi\)
\(948\) 0 0
\(949\) 0.592372 + 9.24354i 0.0192292 + 0.300058i
\(950\) 0 0
\(951\) −14.4653 12.8465i −0.469070 0.416577i
\(952\) 0 0
\(953\) 26.5364 + 45.9624i 0.859598 + 1.48887i 0.872313 + 0.488948i \(0.162619\pi\)
−0.0127147 + 0.999919i \(0.504047\pi\)
\(954\) 0 0
\(955\) 20.2592 + 35.0899i 0.655572 + 1.13548i
\(956\) 0 0
\(957\) −3.24654 2.88322i −0.104946 0.0932014i
\(958\) 0 0
\(959\) −3.91800 −0.126519
\(960\) 0 0
\(961\) 9.49383 16.4438i 0.306253 0.530445i
\(962\) 0 0
\(963\) −22.9355 + 17.1479i −0.739085 + 0.552584i
\(964\) 0 0
\(965\) −41.0256 71.0585i −1.32066 2.28745i
\(966\) 0 0
\(967\) 8.71147 + 15.0887i 0.280142 + 0.485220i 0.971419 0.237369i \(-0.0762851\pi\)
−0.691278 + 0.722589i \(0.742952\pi\)
\(968\) 0 0
\(969\) −37.3205 33.1440i −1.19891 1.06474i
\(970\) 0 0
\(971\) −8.14921 14.1148i −0.261520 0.452967i 0.705126 0.709082i \(-0.250891\pi\)
−0.966646 + 0.256116i \(0.917557\pi\)
\(972\) 0 0
\(973\) −7.32358 + 12.6848i −0.234783 + 0.406656i
\(974\) 0 0
\(975\) −22.6522 + 29.0549i −0.725452 + 0.930502i
\(976\) 0 0
\(977\) 47.1150 1.50734 0.753671 0.657251i \(-0.228281\pi\)
0.753671 + 0.657251i \(0.228281\pi\)
\(978\) 0 0
\(979\) 17.2682 0.551893
\(980\) 0 0
\(981\) −25.0282 10.7354i −0.799089 0.342755i
\(982\) 0 0
\(983\) 3.42744 5.93649i 0.109318 0.189345i −0.806176 0.591676i \(-0.798467\pi\)
0.915494 + 0.402331i \(0.131800\pi\)
\(984\) 0 0
\(985\) −25.1443 −0.801163
\(986\) 0 0
\(987\) −24.4520 21.7156i −0.778316 0.691216i
\(988\) 0 0
\(989\) −14.0935 −0.448148
\(990\) 0 0
\(991\) −0.988777 + 1.71261i −0.0314095 + 0.0544029i −0.881303 0.472552i \(-0.843333\pi\)
0.849893 + 0.526955i \(0.176666\pi\)
\(992\) 0 0
\(993\) −5.93575 + 28.8962i −0.188365 + 0.916992i
\(994\) 0 0
\(995\) −38.0576 + 65.9177i −1.20651 + 2.08973i
\(996\) 0 0
\(997\) −51.9813 −1.64626 −0.823132 0.567850i \(-0.807775\pi\)
−0.823132 + 0.567850i \(0.807775\pi\)
\(998\) 0 0
\(999\) −2.02468 4.30736i −0.0640581 0.136279i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.529.12 yes 40
3.2 odd 2 2808.2.s.f.1153.3 40
9.4 even 3 936.2.r.f.841.16 yes 40
9.5 odd 6 2808.2.r.f.2089.3 40
13.3 even 3 936.2.r.f.601.16 40
39.29 odd 6 2808.2.r.f.289.3 40
117.68 odd 6 2808.2.s.f.1225.3 40
117.94 even 3 inner 936.2.s.f.913.12 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.16 40 13.3 even 3
936.2.r.f.841.16 yes 40 9.4 even 3
936.2.s.f.529.12 yes 40 1.1 even 1 trivial
936.2.s.f.913.12 yes 40 117.94 even 3 inner
2808.2.r.f.289.3 40 39.29 odd 6
2808.2.r.f.2089.3 40 9.5 odd 6
2808.2.s.f.1153.3 40 3.2 odd 2
2808.2.s.f.1225.3 40 117.68 odd 6