Properties

Label 936.2.r.f.601.16
Level $936$
Weight $2$
Character 936.601
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(601,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.r (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.16
Character \(\chi\) \(=\) 936.601
Dual form 936.2.r.f.841.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29506 + 1.15014i) q^{3} +(1.65071 + 2.85912i) q^{5} +(-0.933130 - 1.61623i) q^{7} +(0.354378 + 2.97900i) q^{9} -1.87633 q^{11} +(3.00081 + 1.99878i) q^{13} +(-1.15059 + 5.60128i) q^{15} +(-2.21681 + 3.83963i) q^{17} +(3.24988 - 5.62896i) q^{19} +(0.650419 - 3.16634i) q^{21} +(-1.88173 + 3.25925i) q^{23} +(-2.94970 + 5.10903i) q^{25} +(-2.96731 + 4.26557i) q^{27} +1.33604 q^{29} +(1.73294 + 3.00154i) q^{31} +(-2.42997 - 2.15804i) q^{33} +(3.08066 - 5.33585i) q^{35} +(-0.457982 - 0.793248i) q^{37} +(1.58737 + 6.03989i) q^{39} +(-1.16366 + 2.01552i) q^{41} +(1.87242 + 3.24312i) q^{43} +(-7.93232 + 5.93067i) q^{45} +(5.05850 - 8.76158i) q^{47} +(1.75854 - 3.04588i) q^{49} +(-7.28700 + 2.42293i) q^{51} -9.98182 q^{53} +(-3.09728 - 5.36465i) q^{55} +(10.6829 - 3.55206i) q^{57} +2.93192 q^{59} +(-7.17460 - 12.4268i) q^{61} +(4.48406 - 3.35255i) q^{63} +(-0.761271 + 11.8791i) q^{65} +(-4.48022 + 7.75996i) q^{67} +(-6.18553 + 2.05669i) q^{69} +(-1.03307 + 1.78932i) q^{71} +2.56896 q^{73} +(-9.69611 + 3.22396i) q^{75} +(1.75086 + 3.03258i) q^{77} +(7.05149 - 12.2135i) q^{79} +(-8.74883 + 2.11138i) q^{81} +(1.35281 - 2.34313i) q^{83} -14.6373 q^{85} +(1.73026 + 1.53663i) q^{87} +(4.60157 + 7.97016i) q^{89} +(0.430338 - 6.71512i) q^{91} +(-1.20791 + 5.88030i) q^{93} +21.4585 q^{95} +(5.17758 + 8.96783i) q^{97} +(-0.664931 - 5.58959i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{5} + 7 q^{7} + 6 q^{9} + 11 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} - q^{23} - 23 q^{25} - 3 q^{27} - 24 q^{29} + 8 q^{31} + 4 q^{33} - 12 q^{35} + 18 q^{37} + 6 q^{39} - 3 q^{41} + 8 q^{43}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.29506 + 1.15014i 0.747705 + 0.664031i
\(4\) 0 0
\(5\) 1.65071 + 2.85912i 0.738221 + 1.27864i 0.953296 + 0.302038i \(0.0976670\pi\)
−0.215075 + 0.976597i \(0.569000\pi\)
\(6\) 0 0
\(7\) −0.933130 1.61623i −0.352690 0.610877i 0.634030 0.773309i \(-0.281400\pi\)
−0.986720 + 0.162432i \(0.948066\pi\)
\(8\) 0 0
\(9\) 0.354378 + 2.97900i 0.118126 + 0.992999i
\(10\) 0 0
\(11\) −1.87633 −0.565736 −0.282868 0.959159i \(-0.591286\pi\)
−0.282868 + 0.959159i \(0.591286\pi\)
\(12\) 0 0
\(13\) 3.00081 + 1.99878i 0.832276 + 0.554362i
\(14\) 0 0
\(15\) −1.15059 + 5.60128i −0.297082 + 1.44624i
\(16\) 0 0
\(17\) −2.21681 + 3.83963i −0.537655 + 0.931246i 0.461374 + 0.887206i \(0.347357\pi\)
−0.999030 + 0.0440408i \(0.985977\pi\)
\(18\) 0 0
\(19\) 3.24988 5.62896i 0.745574 1.29137i −0.204352 0.978898i \(-0.565509\pi\)
0.949926 0.312475i \(-0.101158\pi\)
\(20\) 0 0
\(21\) 0.650419 3.16634i 0.141933 0.690953i
\(22\) 0 0
\(23\) −1.88173 + 3.25925i −0.392367 + 0.679600i −0.992761 0.120104i \(-0.961677\pi\)
0.600394 + 0.799704i \(0.295011\pi\)
\(24\) 0 0
\(25\) −2.94970 + 5.10903i −0.589939 + 1.02181i
\(26\) 0 0
\(27\) −2.96731 + 4.26557i −0.571058 + 0.820909i
\(28\) 0 0
\(29\) 1.33604 0.248097 0.124048 0.992276i \(-0.460412\pi\)
0.124048 + 0.992276i \(0.460412\pi\)
\(30\) 0 0
\(31\) 1.73294 + 3.00154i 0.311245 + 0.539093i 0.978632 0.205618i \(-0.0659206\pi\)
−0.667387 + 0.744711i \(0.732587\pi\)
\(32\) 0 0
\(33\) −2.42997 2.15804i −0.423003 0.375666i
\(34\) 0 0
\(35\) 3.08066 5.33585i 0.520726 0.901924i
\(36\) 0 0
\(37\) −0.457982 0.793248i −0.0752917 0.130409i 0.825921 0.563785i \(-0.190655\pi\)
−0.901213 + 0.433376i \(0.857322\pi\)
\(38\) 0 0
\(39\) 1.58737 + 6.03989i 0.254183 + 0.967156i
\(40\) 0 0
\(41\) −1.16366 + 2.01552i −0.181733 + 0.314771i −0.942471 0.334289i \(-0.891504\pi\)
0.760738 + 0.649059i \(0.224837\pi\)
\(42\) 0 0
\(43\) 1.87242 + 3.24312i 0.285541 + 0.494572i 0.972740 0.231897i \(-0.0744934\pi\)
−0.687199 + 0.726469i \(0.741160\pi\)
\(44\) 0 0
\(45\) −7.93232 + 5.93067i −1.18248 + 0.884092i
\(46\) 0 0
\(47\) 5.05850 8.76158i 0.737858 1.27801i −0.215600 0.976482i \(-0.569171\pi\)
0.953458 0.301525i \(-0.0974958\pi\)
\(48\) 0 0
\(49\) 1.75854 3.04588i 0.251220 0.435125i
\(50\) 0 0
\(51\) −7.28700 + 2.42293i −1.02038 + 0.339278i
\(52\) 0 0
\(53\) −9.98182 −1.37111 −0.685554 0.728022i \(-0.740440\pi\)
−0.685554 + 0.728022i \(0.740440\pi\)
\(54\) 0 0
\(55\) −3.09728 5.36465i −0.417638 0.723370i
\(56\) 0 0
\(57\) 10.6829 3.55206i 1.41498 0.470482i
\(58\) 0 0
\(59\) 2.93192 0.381704 0.190852 0.981619i \(-0.438875\pi\)
0.190852 + 0.981619i \(0.438875\pi\)
\(60\) 0 0
\(61\) −7.17460 12.4268i −0.918614 1.59109i −0.801522 0.597965i \(-0.795976\pi\)
−0.117091 0.993121i \(-0.537357\pi\)
\(62\) 0 0
\(63\) 4.48406 3.35255i 0.564938 0.422381i
\(64\) 0 0
\(65\) −0.761271 + 11.8791i −0.0944240 + 1.47342i
\(66\) 0 0
\(67\) −4.48022 + 7.75996i −0.547345 + 0.948030i 0.451110 + 0.892468i \(0.351028\pi\)
−0.998455 + 0.0555617i \(0.982305\pi\)
\(68\) 0 0
\(69\) −6.18553 + 2.05669i −0.744651 + 0.247597i
\(70\) 0 0
\(71\) −1.03307 + 1.78932i −0.122602 + 0.212354i −0.920793 0.390051i \(-0.872457\pi\)
0.798191 + 0.602405i \(0.205791\pi\)
\(72\) 0 0
\(73\) 2.56896 0.300674 0.150337 0.988635i \(-0.451964\pi\)
0.150337 + 0.988635i \(0.451964\pi\)
\(74\) 0 0
\(75\) −9.69611 + 3.22396i −1.11961 + 0.372271i
\(76\) 0 0
\(77\) 1.75086 + 3.03258i 0.199529 + 0.345595i
\(78\) 0 0
\(79\) 7.05149 12.2135i 0.793355 1.37413i −0.130524 0.991445i \(-0.541666\pi\)
0.923879 0.382685i \(-0.125001\pi\)
\(80\) 0 0
\(81\) −8.74883 + 2.11138i −0.972092 + 0.234598i
\(82\) 0 0
\(83\) 1.35281 2.34313i 0.148490 0.257192i −0.782179 0.623053i \(-0.785892\pi\)
0.930670 + 0.365861i \(0.119225\pi\)
\(84\) 0 0
\(85\) −14.6373 −1.58763
\(86\) 0 0
\(87\) 1.73026 + 1.53663i 0.185503 + 0.164744i
\(88\) 0 0
\(89\) 4.60157 + 7.97016i 0.487766 + 0.844835i 0.999901 0.0140698i \(-0.00447869\pi\)
−0.512135 + 0.858905i \(0.671145\pi\)
\(90\) 0 0
\(91\) 0.430338 6.71512i 0.0451117 0.703936i
\(92\) 0 0
\(93\) −1.20791 + 5.88030i −0.125254 + 0.609759i
\(94\) 0 0
\(95\) 21.4585 2.20159
\(96\) 0 0
\(97\) 5.17758 + 8.96783i 0.525703 + 0.910545i 0.999552 + 0.0299384i \(0.00953112\pi\)
−0.473848 + 0.880606i \(0.657136\pi\)
\(98\) 0 0
\(99\) −0.664931 5.58959i −0.0668281 0.561775i
\(100\) 0 0
\(101\) 14.6652 1.45924 0.729619 0.683854i \(-0.239698\pi\)
0.729619 + 0.683854i \(0.239698\pi\)
\(102\) 0 0
\(103\) −3.71350 6.43197i −0.365902 0.633760i 0.623019 0.782207i \(-0.285906\pi\)
−0.988920 + 0.148447i \(0.952573\pi\)
\(104\) 0 0
\(105\) 10.1266 3.36710i 0.988255 0.328595i
\(106\) 0 0
\(107\) 4.77286 + 8.26684i 0.461410 + 0.799185i 0.999031 0.0440009i \(-0.0140105\pi\)
−0.537622 + 0.843186i \(0.680677\pi\)
\(108\) 0 0
\(109\) 9.07781 0.869497 0.434748 0.900552i \(-0.356837\pi\)
0.434748 + 0.900552i \(0.356837\pi\)
\(110\) 0 0
\(111\) 0.319227 1.55405i 0.0302997 0.147504i
\(112\) 0 0
\(113\) 12.8159 1.20562 0.602808 0.797886i \(-0.294049\pi\)
0.602808 + 0.797886i \(0.294049\pi\)
\(114\) 0 0
\(115\) −12.4248 −1.15862
\(116\) 0 0
\(117\) −4.89094 + 9.64773i −0.452167 + 0.891933i
\(118\) 0 0
\(119\) 8.27428 0.758502
\(120\) 0 0
\(121\) −7.47938 −0.679943
\(122\) 0 0
\(123\) −3.82513 + 1.27186i −0.344900 + 0.114679i
\(124\) 0 0
\(125\) −2.96928 −0.265581
\(126\) 0 0
\(127\) −1.84439 3.19458i −0.163663 0.283473i 0.772516 0.634995i \(-0.218998\pi\)
−0.936180 + 0.351522i \(0.885664\pi\)
\(128\) 0 0
\(129\) −1.30513 + 6.35358i −0.114910 + 0.559402i
\(130\) 0 0
\(131\) −8.37547 14.5067i −0.731768 1.26746i −0.956127 0.292953i \(-0.905362\pi\)
0.224359 0.974507i \(-0.427971\pi\)
\(132\) 0 0
\(133\) −12.1302 −1.05183
\(134\) 0 0
\(135\) −17.0939 1.44265i −1.47121 0.124163i
\(136\) 0 0
\(137\) 1.04969 + 1.81812i 0.0896814 + 0.155333i 0.907376 0.420319i \(-0.138082\pi\)
−0.817695 + 0.575652i \(0.804748\pi\)
\(138\) 0 0
\(139\) 7.84840 0.665693 0.332846 0.942981i \(-0.391991\pi\)
0.332846 + 0.942981i \(0.391991\pi\)
\(140\) 0 0
\(141\) 16.6281 5.52884i 1.40034 0.465612i
\(142\) 0 0
\(143\) −5.63052 3.75038i −0.470848 0.313622i
\(144\) 0 0
\(145\) 2.20542 + 3.81990i 0.183150 + 0.317225i
\(146\) 0 0
\(147\) 5.78059 1.92205i 0.476775 0.158528i
\(148\) 0 0
\(149\) 19.0368 1.55956 0.779778 0.626057i \(-0.215332\pi\)
0.779778 + 0.626057i \(0.215332\pi\)
\(150\) 0 0
\(151\) −9.78217 + 16.9432i −0.796062 + 1.37882i 0.126101 + 0.992017i \(0.459754\pi\)
−0.922163 + 0.386802i \(0.873580\pi\)
\(152\) 0 0
\(153\) −12.2238 5.24319i −0.988237 0.423887i
\(154\) 0 0
\(155\) −5.72117 + 9.90936i −0.459536 + 0.795939i
\(156\) 0 0
\(157\) −10.9030 18.8845i −0.870152 1.50715i −0.861839 0.507182i \(-0.830687\pi\)
−0.00831272 0.999965i \(-0.502646\pi\)
\(158\) 0 0
\(159\) −12.9271 11.4804i −1.02518 0.910458i
\(160\) 0 0
\(161\) 7.02359 0.553536
\(162\) 0 0
\(163\) 5.93328 10.2767i 0.464731 0.804937i −0.534459 0.845195i \(-0.679484\pi\)
0.999189 + 0.0402575i \(0.0128178\pi\)
\(164\) 0 0
\(165\) 2.15890 10.5099i 0.168070 0.818192i
\(166\) 0 0
\(167\) 7.11118 12.3169i 0.550279 0.953112i −0.447975 0.894046i \(-0.647855\pi\)
0.998254 0.0590655i \(-0.0188121\pi\)
\(168\) 0 0
\(169\) 5.00975 + 11.9959i 0.385365 + 0.922764i
\(170\) 0 0
\(171\) 17.9203 + 7.68661i 1.37040 + 0.587810i
\(172\) 0 0
\(173\) 8.92649 + 15.4611i 0.678669 + 1.17549i 0.975382 + 0.220522i \(0.0707761\pi\)
−0.296713 + 0.954967i \(0.595891\pi\)
\(174\) 0 0
\(175\) 11.0098 0.832263
\(176\) 0 0
\(177\) 3.79702 + 3.37211i 0.285402 + 0.253463i
\(178\) 0 0
\(179\) −3.04421 5.27273i −0.227535 0.394102i 0.729542 0.683936i \(-0.239733\pi\)
−0.957077 + 0.289834i \(0.906400\pi\)
\(180\) 0 0
\(181\) −5.73434 −0.426230 −0.213115 0.977027i \(-0.568361\pi\)
−0.213115 + 0.977027i \(0.568361\pi\)
\(182\) 0 0
\(183\) 5.00091 24.3452i 0.369678 1.79965i
\(184\) 0 0
\(185\) 1.51199 2.61885i 0.111164 0.192541i
\(186\) 0 0
\(187\) 4.15947 7.20442i 0.304171 0.526839i
\(188\) 0 0
\(189\) 9.66302 + 0.815512i 0.702881 + 0.0593198i
\(190\) 0 0
\(191\) −6.13650 10.6287i −0.444021 0.769068i 0.553962 0.832542i \(-0.313115\pi\)
−0.997983 + 0.0634742i \(0.979782\pi\)
\(192\) 0 0
\(193\) 12.4266 21.5236i 0.894490 1.54930i 0.0600545 0.998195i \(-0.480873\pi\)
0.834435 0.551106i \(-0.185794\pi\)
\(194\) 0 0
\(195\) −14.6484 + 14.5086i −1.04900 + 1.03898i
\(196\) 0 0
\(197\) −3.80810 6.59582i −0.271316 0.469932i 0.697883 0.716211i \(-0.254125\pi\)
−0.969199 + 0.246279i \(0.920792\pi\)
\(198\) 0 0
\(199\) 11.5276 19.9664i 0.817172 1.41538i −0.0905851 0.995889i \(-0.528874\pi\)
0.907757 0.419495i \(-0.137793\pi\)
\(200\) 0 0
\(201\) −14.7272 + 4.89679i −1.03877 + 0.345393i
\(202\) 0 0
\(203\) −1.24670 2.15935i −0.0875011 0.151556i
\(204\) 0 0
\(205\) −7.68346 −0.536636
\(206\) 0 0
\(207\) −10.3761 4.45065i −0.721191 0.309342i
\(208\) 0 0
\(209\) −6.09786 + 10.5618i −0.421798 + 0.730575i
\(210\) 0 0
\(211\) −9.88197 + 17.1161i −0.680303 + 1.17832i 0.294586 + 0.955625i \(0.404818\pi\)
−0.974888 + 0.222694i \(0.928515\pi\)
\(212\) 0 0
\(213\) −3.39585 + 1.12912i −0.232680 + 0.0773661i
\(214\) 0 0
\(215\) −6.18164 + 10.7069i −0.421585 + 0.730206i
\(216\) 0 0
\(217\) 3.23412 5.60166i 0.219546 0.380265i
\(218\) 0 0
\(219\) 3.32696 + 2.95465i 0.224815 + 0.199657i
\(220\) 0 0
\(221\) −14.3268 + 7.09108i −0.963725 + 0.476998i
\(222\) 0 0
\(223\) −5.56716 −0.372805 −0.186402 0.982473i \(-0.559683\pi\)
−0.186402 + 0.982473i \(0.559683\pi\)
\(224\) 0 0
\(225\) −16.2651 6.97661i −1.08434 0.465107i
\(226\) 0 0
\(227\) −4.25083 7.36265i −0.282138 0.488676i 0.689773 0.724025i \(-0.257710\pi\)
−0.971911 + 0.235349i \(0.924377\pi\)
\(228\) 0 0
\(229\) −7.46686 12.9330i −0.493424 0.854635i 0.506547 0.862212i \(-0.330922\pi\)
−0.999971 + 0.00757686i \(0.997588\pi\)
\(230\) 0 0
\(231\) −1.22040 + 5.94111i −0.0802966 + 0.390897i
\(232\) 0 0
\(233\) −24.2714 −1.59007 −0.795037 0.606561i \(-0.792549\pi\)
−0.795037 + 0.606561i \(0.792549\pi\)
\(234\) 0 0
\(235\) 33.4005 2.17881
\(236\) 0 0
\(237\) 23.1793 7.70714i 1.50566 0.500633i
\(238\) 0 0
\(239\) −6.45026 11.1722i −0.417232 0.722668i 0.578428 0.815734i \(-0.303667\pi\)
−0.995660 + 0.0930660i \(0.970333\pi\)
\(240\) 0 0
\(241\) 4.80951 + 8.33031i 0.309808 + 0.536603i 0.978320 0.207098i \(-0.0664020\pi\)
−0.668512 + 0.743701i \(0.733069\pi\)
\(242\) 0 0
\(243\) −13.7587 7.32797i −0.882619 0.470089i
\(244\) 0 0
\(245\) 11.6114 0.741822
\(246\) 0 0
\(247\) 21.0033 10.3957i 1.33641 0.661460i
\(248\) 0 0
\(249\) 4.44690 1.47859i 0.281811 0.0937021i
\(250\) 0 0
\(251\) −6.13449 + 10.6253i −0.387206 + 0.670660i −0.992073 0.125667i \(-0.959893\pi\)
0.604867 + 0.796327i \(0.293226\pi\)
\(252\) 0 0
\(253\) 3.53075 6.11544i 0.221976 0.384474i
\(254\) 0 0
\(255\) −18.9562 16.8348i −1.18708 1.05424i
\(256\) 0 0
\(257\) −9.35628 + 16.2056i −0.583629 + 1.01087i 0.411416 + 0.911448i \(0.365034\pi\)
−0.995045 + 0.0994269i \(0.968299\pi\)
\(258\) 0 0
\(259\) −0.854713 + 1.48041i −0.0531093 + 0.0919879i
\(260\) 0 0
\(261\) 0.473463 + 3.98006i 0.0293067 + 0.246360i
\(262\) 0 0
\(263\) 20.6049 1.27055 0.635277 0.772284i \(-0.280886\pi\)
0.635277 + 0.772284i \(0.280886\pi\)
\(264\) 0 0
\(265\) −16.4771 28.5392i −1.01218 1.75315i
\(266\) 0 0
\(267\) −3.20743 + 15.6143i −0.196292 + 0.955579i
\(268\) 0 0
\(269\) 8.82631 15.2876i 0.538150 0.932103i −0.460854 0.887476i \(-0.652457\pi\)
0.999004 0.0446269i \(-0.0142099\pi\)
\(270\) 0 0
\(271\) 7.84835 + 13.5937i 0.476753 + 0.825761i 0.999645 0.0266382i \(-0.00848020\pi\)
−0.522892 + 0.852399i \(0.675147\pi\)
\(272\) 0 0
\(273\) 8.28061 8.20156i 0.501165 0.496381i
\(274\) 0 0
\(275\) 5.53461 9.58623i 0.333750 0.578072i
\(276\) 0 0
\(277\) −4.49473 7.78510i −0.270062 0.467761i 0.698815 0.715302i \(-0.253711\pi\)
−0.968877 + 0.247541i \(0.920378\pi\)
\(278\) 0 0
\(279\) −8.32746 + 6.22610i −0.498552 + 0.372747i
\(280\) 0 0
\(281\) 9.17862 15.8978i 0.547551 0.948385i −0.450891 0.892579i \(-0.648894\pi\)
0.998442 0.0558064i \(-0.0177729\pi\)
\(282\) 0 0
\(283\) 1.51567 2.62522i 0.0900974 0.156053i −0.817455 0.575993i \(-0.804615\pi\)
0.907552 + 0.419940i \(0.137949\pi\)
\(284\) 0 0
\(285\) 27.7901 + 24.6801i 1.64614 + 1.46193i
\(286\) 0 0
\(287\) 4.34338 0.256381
\(288\) 0 0
\(289\) −1.32849 2.30101i −0.0781465 0.135354i
\(290\) 0 0
\(291\) −3.60892 + 17.5688i −0.211559 + 1.02990i
\(292\) 0 0
\(293\) 2.95811 0.172815 0.0864073 0.996260i \(-0.472461\pi\)
0.0864073 + 0.996260i \(0.472461\pi\)
\(294\) 0 0
\(295\) 4.83976 + 8.38270i 0.281781 + 0.488060i
\(296\) 0 0
\(297\) 5.56765 8.00363i 0.323068 0.464418i
\(298\) 0 0
\(299\) −12.1612 + 6.01923i −0.703303 + 0.348101i
\(300\) 0 0
\(301\) 3.49442 6.05251i 0.201415 0.348861i
\(302\) 0 0
\(303\) 18.9923 + 16.8669i 1.09108 + 0.968978i
\(304\) 0 0
\(305\) 23.6864 41.0261i 1.35628 2.34914i
\(306\) 0 0
\(307\) 7.39083 0.421817 0.210909 0.977506i \(-0.432358\pi\)
0.210909 + 0.977506i \(0.432358\pi\)
\(308\) 0 0
\(309\) 2.58842 12.6008i 0.147250 0.716836i
\(310\) 0 0
\(311\) −7.06555 12.2379i −0.400651 0.693947i 0.593154 0.805089i \(-0.297883\pi\)
−0.993805 + 0.111142i \(0.964549\pi\)
\(312\) 0 0
\(313\) 5.69278 9.86019i 0.321775 0.557331i −0.659079 0.752073i \(-0.729054\pi\)
0.980854 + 0.194743i \(0.0623872\pi\)
\(314\) 0 0
\(315\) 16.9872 + 7.28635i 0.957120 + 0.410539i
\(316\) 0 0
\(317\) 5.58479 9.67314i 0.313673 0.543298i −0.665482 0.746414i \(-0.731774\pi\)
0.979155 + 0.203117i \(0.0651071\pi\)
\(318\) 0 0
\(319\) −2.50686 −0.140357
\(320\) 0 0
\(321\) −3.32682 + 16.1955i −0.185685 + 0.903945i
\(322\) 0 0
\(323\) 14.4087 + 24.9567i 0.801724 + 1.38863i
\(324\) 0 0
\(325\) −19.0633 + 9.43543i −1.05744 + 0.523383i
\(326\) 0 0
\(327\) 11.7563 + 10.4407i 0.650127 + 0.577373i
\(328\) 0 0
\(329\) −18.8809 −1.04094
\(330\) 0 0
\(331\) 8.51578 + 14.7498i 0.468069 + 0.810720i 0.999334 0.0364858i \(-0.0116164\pi\)
−0.531265 + 0.847206i \(0.678283\pi\)
\(332\) 0 0
\(333\) 2.20078 1.64544i 0.120602 0.0901693i
\(334\) 0 0
\(335\) −29.5822 −1.61625
\(336\) 0 0
\(337\) 15.2871 + 26.4780i 0.832739 + 1.44235i 0.895858 + 0.444340i \(0.146562\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(338\) 0 0
\(339\) 16.5974 + 14.7400i 0.901445 + 0.800566i
\(340\) 0 0
\(341\) −3.25157 5.63189i −0.176083 0.304984i
\(342\) 0 0
\(343\) −19.6276 −1.05979
\(344\) 0 0
\(345\) −16.0909 14.2902i −0.866302 0.769356i
\(346\) 0 0
\(347\) −28.8784 −1.55027 −0.775137 0.631794i \(-0.782319\pi\)
−0.775137 + 0.631794i \(0.782319\pi\)
\(348\) 0 0
\(349\) −26.9396 −1.44204 −0.721022 0.692912i \(-0.756327\pi\)
−0.721022 + 0.692912i \(0.756327\pi\)
\(350\) 0 0
\(351\) −17.4303 + 6.86918i −0.930359 + 0.366650i
\(352\) 0 0
\(353\) −28.2964 −1.50606 −0.753032 0.657983i \(-0.771410\pi\)
−0.753032 + 0.657983i \(0.771410\pi\)
\(354\) 0 0
\(355\) −6.82118 −0.362031
\(356\) 0 0
\(357\) 10.7157 + 9.51655i 0.567136 + 0.503669i
\(358\) 0 0
\(359\) 18.9967 1.00261 0.501304 0.865271i \(-0.332854\pi\)
0.501304 + 0.865271i \(0.332854\pi\)
\(360\) 0 0
\(361\) −11.6235 20.1324i −0.611762 1.05960i
\(362\) 0 0
\(363\) −9.68626 8.60229i −0.508397 0.451503i
\(364\) 0 0
\(365\) 4.24061 + 7.34494i 0.221963 + 0.384452i
\(366\) 0 0
\(367\) 25.9910 1.35672 0.678361 0.734729i \(-0.262691\pi\)
0.678361 + 0.734729i \(0.262691\pi\)
\(368\) 0 0
\(369\) −6.41659 2.75228i −0.334034 0.143278i
\(370\) 0 0
\(371\) 9.31433 + 16.1329i 0.483576 + 0.837578i
\(372\) 0 0
\(373\) −31.4505 −1.62844 −0.814222 0.580554i \(-0.802836\pi\)
−0.814222 + 0.580554i \(0.802836\pi\)
\(374\) 0 0
\(375\) −3.84541 3.41507i −0.198576 0.176354i
\(376\) 0 0
\(377\) 4.00921 + 2.67045i 0.206485 + 0.137535i
\(378\) 0 0
\(379\) 5.08601 + 8.80922i 0.261251 + 0.452499i 0.966575 0.256386i \(-0.0825318\pi\)
−0.705324 + 0.708885i \(0.749198\pi\)
\(380\) 0 0
\(381\) 1.28560 6.25848i 0.0658630 0.320632i
\(382\) 0 0
\(383\) −28.6765 −1.46530 −0.732651 0.680604i \(-0.761717\pi\)
−0.732651 + 0.680604i \(0.761717\pi\)
\(384\) 0 0
\(385\) −5.78034 + 10.0118i −0.294593 + 0.510250i
\(386\) 0 0
\(387\) −8.99770 + 6.72722i −0.457379 + 0.341964i
\(388\) 0 0
\(389\) −7.19376 + 12.4600i −0.364738 + 0.631745i −0.988734 0.149683i \(-0.952175\pi\)
0.623996 + 0.781428i \(0.285508\pi\)
\(390\) 0 0
\(391\) −8.34287 14.4503i −0.421917 0.730782i
\(392\) 0 0
\(393\) 5.83795 28.4201i 0.294486 1.43360i
\(394\) 0 0
\(395\) 46.5599 2.34268
\(396\) 0 0
\(397\) −0.0814812 + 0.141130i −0.00408942 + 0.00708309i −0.868063 0.496454i \(-0.834635\pi\)
0.863973 + 0.503537i \(0.167968\pi\)
\(398\) 0 0
\(399\) −15.7094 13.9514i −0.786456 0.698445i
\(400\) 0 0
\(401\) 4.82932 8.36464i 0.241165 0.417710i −0.719881 0.694097i \(-0.755804\pi\)
0.961046 + 0.276387i \(0.0891372\pi\)
\(402\) 0 0
\(403\) −0.799193 + 12.4708i −0.0398106 + 0.621216i
\(404\) 0 0
\(405\) −20.4785 21.5286i −1.01758 1.06977i
\(406\) 0 0
\(407\) 0.859326 + 1.48840i 0.0425952 + 0.0737771i
\(408\) 0 0
\(409\) 22.2606 1.10072 0.550358 0.834929i \(-0.314491\pi\)
0.550358 + 0.834929i \(0.314491\pi\)
\(410\) 0 0
\(411\) −0.731667 + 3.56187i −0.0360905 + 0.175694i
\(412\) 0 0
\(413\) −2.73586 4.73865i −0.134623 0.233174i
\(414\) 0 0
\(415\) 8.93239 0.438474
\(416\) 0 0
\(417\) 10.1642 + 9.02673i 0.497742 + 0.442041i
\(418\) 0 0
\(419\) −7.16471 + 12.4097i −0.350019 + 0.606251i −0.986252 0.165246i \(-0.947158\pi\)
0.636233 + 0.771497i \(0.280492\pi\)
\(420\) 0 0
\(421\) 0.334370 0.579145i 0.0162962 0.0282258i −0.857762 0.514047i \(-0.828146\pi\)
0.874058 + 0.485821i \(0.161479\pi\)
\(422\) 0 0
\(423\) 27.8933 + 11.9643i 1.35622 + 0.581726i
\(424\) 0 0
\(425\) −13.0778 22.6515i −0.634368 1.09876i
\(426\) 0 0
\(427\) −13.3897 + 23.1916i −0.647972 + 1.12232i
\(428\) 0 0
\(429\) −2.97844 11.3328i −0.143801 0.547155i
\(430\) 0 0
\(431\) −19.1537 33.1752i −0.922601 1.59799i −0.795374 0.606119i \(-0.792725\pi\)
−0.127228 0.991874i \(-0.540608\pi\)
\(432\) 0 0
\(433\) 2.75906 4.77883i 0.132592 0.229656i −0.792083 0.610413i \(-0.791003\pi\)
0.924675 + 0.380757i \(0.124337\pi\)
\(434\) 0 0
\(435\) −1.53724 + 7.48354i −0.0737051 + 0.358808i
\(436\) 0 0
\(437\) 12.2308 + 21.1844i 0.585078 + 1.01339i
\(438\) 0 0
\(439\) −30.1821 −1.44051 −0.720257 0.693707i \(-0.755976\pi\)
−0.720257 + 0.693707i \(0.755976\pi\)
\(440\) 0 0
\(441\) 9.69684 + 4.15929i 0.461754 + 0.198061i
\(442\) 0 0
\(443\) −11.2133 + 19.4221i −0.532762 + 0.922770i 0.466507 + 0.884518i \(0.345512\pi\)
−0.999268 + 0.0382523i \(0.987821\pi\)
\(444\) 0 0
\(445\) −15.1917 + 26.3129i −0.720157 + 1.24735i
\(446\) 0 0
\(447\) 24.6539 + 21.8949i 1.16609 + 1.03559i
\(448\) 0 0
\(449\) −9.68866 + 16.7813i −0.457236 + 0.791956i −0.998814 0.0486945i \(-0.984494\pi\)
0.541577 + 0.840651i \(0.317827\pi\)
\(450\) 0 0
\(451\) 2.18341 3.78178i 0.102813 0.178077i
\(452\) 0 0
\(453\) −32.1555 + 10.6917i −1.51080 + 0.502341i
\(454\) 0 0
\(455\) 19.9097 9.85434i 0.933380 0.461978i
\(456\) 0 0
\(457\) 38.2374 1.78867 0.894335 0.447398i \(-0.147649\pi\)
0.894335 + 0.447398i \(0.147649\pi\)
\(458\) 0 0
\(459\) −9.80025 20.8493i −0.457436 0.973162i
\(460\) 0 0
\(461\) 20.0579 + 34.7413i 0.934189 + 1.61806i 0.776074 + 0.630641i \(0.217208\pi\)
0.158114 + 0.987421i \(0.449459\pi\)
\(462\) 0 0
\(463\) 8.04452 + 13.9335i 0.373861 + 0.647546i 0.990156 0.139970i \(-0.0447005\pi\)
−0.616295 + 0.787515i \(0.711367\pi\)
\(464\) 0 0
\(465\) −18.8064 + 6.25313i −0.872125 + 0.289982i
\(466\) 0 0
\(467\) 7.11182 0.329096 0.164548 0.986369i \(-0.447383\pi\)
0.164548 + 0.986369i \(0.447383\pi\)
\(468\) 0 0
\(469\) 16.7225 0.772173
\(470\) 0 0
\(471\) 7.59969 36.9965i 0.350175 1.70471i
\(472\) 0 0
\(473\) −3.51328 6.08518i −0.161541 0.279797i
\(474\) 0 0
\(475\) 19.1723 + 33.2075i 0.879687 + 1.52366i
\(476\) 0 0
\(477\) −3.53734 29.7358i −0.161964 1.36151i
\(478\) 0 0
\(479\) −18.3550 −0.838662 −0.419331 0.907833i \(-0.637735\pi\)
−0.419331 + 0.907833i \(0.637735\pi\)
\(480\) 0 0
\(481\) 0.211211 3.29579i 0.00963038 0.150275i
\(482\) 0 0
\(483\) 9.09599 + 8.07807i 0.413882 + 0.367565i
\(484\) 0 0
\(485\) −17.0934 + 29.6066i −0.776170 + 1.34437i
\(486\) 0 0
\(487\) −14.3769 + 24.9015i −0.651479 + 1.12839i 0.331285 + 0.943531i \(0.392518\pi\)
−0.982764 + 0.184864i \(0.940816\pi\)
\(488\) 0 0
\(489\) 19.5036 6.48496i 0.881985 0.293260i
\(490\) 0 0
\(491\) −12.2509 + 21.2193i −0.552877 + 0.957612i 0.445188 + 0.895437i \(0.353137\pi\)
−0.998065 + 0.0621744i \(0.980196\pi\)
\(492\) 0 0
\(493\) −2.96175 + 5.12990i −0.133390 + 0.231039i
\(494\) 0 0
\(495\) 14.8837 11.1279i 0.668971 0.500162i
\(496\) 0 0
\(497\) 3.85594 0.172963
\(498\) 0 0
\(499\) −16.7052 28.9342i −0.747827 1.29527i −0.948862 0.315690i \(-0.897764\pi\)
0.201036 0.979584i \(-0.435569\pi\)
\(500\) 0 0
\(501\) 23.3755 7.77237i 1.04434 0.347244i
\(502\) 0 0
\(503\) −9.85083 + 17.0621i −0.439227 + 0.760763i −0.997630 0.0688067i \(-0.978081\pi\)
0.558403 + 0.829570i \(0.311414\pi\)
\(504\) 0 0
\(505\) 24.2079 + 41.9294i 1.07724 + 1.86583i
\(506\) 0 0
\(507\) −7.30900 + 21.2974i −0.324604 + 0.945850i
\(508\) 0 0
\(509\) 3.03285 5.25305i 0.134429 0.232837i −0.790950 0.611880i \(-0.790413\pi\)
0.925379 + 0.379043i \(0.123747\pi\)
\(510\) 0 0
\(511\) −2.39717 4.15202i −0.106045 0.183674i
\(512\) 0 0
\(513\) 14.3673 + 30.5655i 0.634334 + 1.34950i
\(514\) 0 0
\(515\) 12.2598 21.2346i 0.540232 0.935710i
\(516\) 0 0
\(517\) −9.49143 + 16.4396i −0.417432 + 0.723014i
\(518\) 0 0
\(519\) −6.22203 + 30.2898i −0.273117 + 1.32958i
\(520\) 0 0
\(521\) 20.0607 0.878876 0.439438 0.898273i \(-0.355178\pi\)
0.439438 + 0.898273i \(0.355178\pi\)
\(522\) 0 0
\(523\) 15.6061 + 27.0306i 0.682408 + 1.18196i 0.974244 + 0.225497i \(0.0724004\pi\)
−0.291836 + 0.956468i \(0.594266\pi\)
\(524\) 0 0
\(525\) 14.2584 + 12.6628i 0.622287 + 0.552648i
\(526\) 0 0
\(527\) −15.3664 −0.669371
\(528\) 0 0
\(529\) 4.41820 + 7.65254i 0.192096 + 0.332719i
\(530\) 0 0
\(531\) 1.03901 + 8.73418i 0.0450891 + 0.379031i
\(532\) 0 0
\(533\) −7.52049 + 3.72229i −0.325749 + 0.161230i
\(534\) 0 0
\(535\) −15.7572 + 27.2923i −0.681245 + 1.17995i
\(536\) 0 0
\(537\) 2.12191 10.3298i 0.0915670 0.445763i
\(538\) 0 0
\(539\) −3.29960 + 5.71508i −0.142124 + 0.246166i
\(540\) 0 0
\(541\) 23.6592 1.01719 0.508594 0.861007i \(-0.330166\pi\)
0.508594 + 0.861007i \(0.330166\pi\)
\(542\) 0 0
\(543\) −7.42633 6.59526i −0.318694 0.283030i
\(544\) 0 0
\(545\) 14.9848 + 25.9545i 0.641880 + 1.11177i
\(546\) 0 0
\(547\) −13.4497 + 23.2955i −0.575066 + 0.996044i 0.420968 + 0.907075i \(0.361690\pi\)
−0.996034 + 0.0889686i \(0.971643\pi\)
\(548\) 0 0
\(549\) 34.4768 25.7769i 1.47143 1.10013i
\(550\) 0 0
\(551\) 4.34198 7.52052i 0.184974 0.320385i
\(552\) 0 0
\(553\) −26.3198 −1.11923
\(554\) 0 0
\(555\) 4.97015 1.65258i 0.210971 0.0701480i
\(556\) 0 0
\(557\) 9.16528 + 15.8747i 0.388346 + 0.672634i 0.992227 0.124440i \(-0.0397134\pi\)
−0.603882 + 0.797074i \(0.706380\pi\)
\(558\) 0 0
\(559\) −0.863517 + 13.4746i −0.0365229 + 0.569913i
\(560\) 0 0
\(561\) 13.6728 4.54622i 0.577268 0.191942i
\(562\) 0 0
\(563\) 11.4336 0.481871 0.240935 0.970541i \(-0.422546\pi\)
0.240935 + 0.970541i \(0.422546\pi\)
\(564\) 0 0
\(565\) 21.1553 + 36.6421i 0.890010 + 1.54154i
\(566\) 0 0
\(567\) 11.5763 + 12.1699i 0.486158 + 0.511088i
\(568\) 0 0
\(569\) −1.40239 −0.0587914 −0.0293957 0.999568i \(-0.509358\pi\)
−0.0293957 + 0.999568i \(0.509358\pi\)
\(570\) 0 0
\(571\) −20.3941 35.3237i −0.853468 1.47825i −0.878059 0.478552i \(-0.841162\pi\)
0.0245910 0.999698i \(-0.492172\pi\)
\(572\) 0 0
\(573\) 4.27732 20.8227i 0.178688 0.869880i
\(574\) 0 0
\(575\) −11.1011 19.2276i −0.462946 0.801846i
\(576\) 0 0
\(577\) −11.7497 −0.489146 −0.244573 0.969631i \(-0.578648\pi\)
−0.244573 + 0.969631i \(0.578648\pi\)
\(578\) 0 0
\(579\) 40.8483 13.5821i 1.69760 0.564452i
\(580\) 0 0
\(581\) −5.04939 −0.209484
\(582\) 0 0
\(583\) 18.7292 0.775685
\(584\) 0 0
\(585\) −35.6575 + 1.94186i −1.47426 + 0.0802861i
\(586\) 0 0
\(587\) −14.2447 −0.587942 −0.293971 0.955814i \(-0.594977\pi\)
−0.293971 + 0.955814i \(0.594977\pi\)
\(588\) 0 0
\(589\) 22.5274 0.928226
\(590\) 0 0
\(591\) 2.65435 12.9218i 0.109186 0.531533i
\(592\) 0 0
\(593\) −26.9551 −1.10691 −0.553457 0.832878i \(-0.686692\pi\)
−0.553457 + 0.832878i \(0.686692\pi\)
\(594\) 0 0
\(595\) 13.6585 + 23.6571i 0.559942 + 0.969848i
\(596\) 0 0
\(597\) 37.8931 12.5995i 1.55086 0.515662i
\(598\) 0 0
\(599\) −14.1367 24.4855i −0.577609 1.00045i −0.995753 0.0920675i \(-0.970652\pi\)
0.418144 0.908381i \(-0.362681\pi\)
\(600\) 0 0
\(601\) −29.3060 −1.19542 −0.597708 0.801714i \(-0.703922\pi\)
−0.597708 + 0.801714i \(0.703922\pi\)
\(602\) 0 0
\(603\) −24.7046 10.5966i −1.00605 0.431526i
\(604\) 0 0
\(605\) −12.3463 21.3844i −0.501948 0.869400i
\(606\) 0 0
\(607\) −30.4950 −1.23775 −0.618877 0.785488i \(-0.712412\pi\)
−0.618877 + 0.785488i \(0.712412\pi\)
\(608\) 0 0
\(609\) 0.868986 4.23036i 0.0352131 0.171423i
\(610\) 0 0
\(611\) 32.6921 16.1810i 1.32258 0.654614i
\(612\) 0 0
\(613\) −1.13510 1.96606i −0.0458464 0.0794083i 0.842192 0.539178i \(-0.181265\pi\)
−0.888038 + 0.459770i \(0.847932\pi\)
\(614\) 0 0
\(615\) −9.95056 8.83701i −0.401245 0.356343i
\(616\) 0 0
\(617\) −4.99497 −0.201090 −0.100545 0.994933i \(-0.532059\pi\)
−0.100545 + 0.994933i \(0.532059\pi\)
\(618\) 0 0
\(619\) −20.1821 + 34.9564i −0.811187 + 1.40502i 0.100848 + 0.994902i \(0.467845\pi\)
−0.912034 + 0.410114i \(0.865489\pi\)
\(620\) 0 0
\(621\) −8.31889 17.6978i −0.333826 0.710190i
\(622\) 0 0
\(623\) 8.58773 14.8744i 0.344060 0.595930i
\(624\) 0 0
\(625\) 9.84706 + 17.0556i 0.393882 + 0.682224i
\(626\) 0 0
\(627\) −20.0446 + 6.66484i −0.800505 + 0.266168i
\(628\) 0 0
\(629\) 4.06103 0.161924
\(630\) 0 0
\(631\) 11.3281 19.6209i 0.450966 0.781096i −0.547480 0.836819i \(-0.684413\pi\)
0.998446 + 0.0557225i \(0.0177462\pi\)
\(632\) 0 0
\(633\) −32.4836 + 10.8008i −1.29111 + 0.429293i
\(634\) 0 0
\(635\) 6.08912 10.5467i 0.241639 0.418532i
\(636\) 0 0
\(637\) 11.3651 5.62517i 0.450301 0.222878i
\(638\) 0 0
\(639\) −5.69648 2.44340i −0.225349 0.0966596i
\(640\) 0 0
\(641\) −8.21101 14.2219i −0.324315 0.561731i 0.657058 0.753840i \(-0.271801\pi\)
−0.981374 + 0.192109i \(0.938467\pi\)
\(642\) 0 0
\(643\) 1.65374 0.0652172 0.0326086 0.999468i \(-0.489619\pi\)
0.0326086 + 0.999468i \(0.489619\pi\)
\(644\) 0 0
\(645\) −20.3200 + 6.75641i −0.800100 + 0.266034i
\(646\) 0 0
\(647\) 15.5953 + 27.0119i 0.613115 + 1.06195i 0.990712 + 0.135976i \(0.0434171\pi\)
−0.377597 + 0.925970i \(0.623250\pi\)
\(648\) 0 0
\(649\) −5.50126 −0.215943
\(650\) 0 0
\(651\) 10.6310 3.53483i 0.416664 0.138541i
\(652\) 0 0
\(653\) −11.5210 + 19.9549i −0.450850 + 0.780896i −0.998439 0.0558518i \(-0.982213\pi\)
0.547589 + 0.836748i \(0.315546\pi\)
\(654\) 0 0
\(655\) 27.6510 47.8929i 1.08041 1.87133i
\(656\) 0 0
\(657\) 0.910382 + 7.65291i 0.0355174 + 0.298568i
\(658\) 0 0
\(659\) −19.3490 33.5134i −0.753729 1.30550i −0.946003 0.324156i \(-0.894920\pi\)
0.192274 0.981341i \(-0.438414\pi\)
\(660\) 0 0
\(661\) 1.51740 2.62822i 0.0590202 0.102226i −0.835006 0.550241i \(-0.814536\pi\)
0.894026 + 0.448015i \(0.147869\pi\)
\(662\) 0 0
\(663\) −26.7098 7.29436i −1.03732 0.283289i
\(664\) 0 0
\(665\) −20.0235 34.6818i −0.776480 1.34490i
\(666\) 0 0
\(667\) −2.51407 + 4.35449i −0.0973450 + 0.168607i
\(668\) 0 0
\(669\) −7.20983 6.40299i −0.278748 0.247554i
\(670\) 0 0
\(671\) 13.4619 + 23.3168i 0.519693 + 0.900134i
\(672\) 0 0
\(673\) 8.48806 0.327191 0.163595 0.986528i \(-0.447691\pi\)
0.163595 + 0.986528i \(0.447691\pi\)
\(674\) 0 0
\(675\) −13.0403 27.7422i −0.501920 1.06780i
\(676\) 0 0
\(677\) −9.65503 + 16.7230i −0.371073 + 0.642717i −0.989731 0.142943i \(-0.954343\pi\)
0.618658 + 0.785661i \(0.287677\pi\)
\(678\) 0 0
\(679\) 9.66270 16.7363i 0.370820 0.642280i
\(680\) 0 0
\(681\) 2.96295 14.4241i 0.113541 0.552734i
\(682\) 0 0
\(683\) 12.5757 21.7818i 0.481196 0.833456i −0.518571 0.855034i \(-0.673536\pi\)
0.999767 + 0.0215787i \(0.00686923\pi\)
\(684\) 0 0
\(685\) −3.46548 + 6.00239i −0.132409 + 0.229340i
\(686\) 0 0
\(687\) 5.20462 25.3369i 0.198569 0.966664i
\(688\) 0 0
\(689\) −29.9536 19.9515i −1.14114 0.760090i
\(690\) 0 0
\(691\) −48.3376 −1.83885 −0.919425 0.393267i \(-0.871345\pi\)
−0.919425 + 0.393267i \(0.871345\pi\)
\(692\) 0 0
\(693\) −8.41358 + 6.29049i −0.319606 + 0.238956i
\(694\) 0 0
\(695\) 12.9555 + 22.4395i 0.491428 + 0.851179i
\(696\) 0 0
\(697\) −5.15922 8.93603i −0.195419 0.338476i
\(698\) 0 0
\(699\) −31.4330 27.9154i −1.18891 1.05586i
\(700\) 0 0
\(701\) −5.76955 −0.217913 −0.108956 0.994047i \(-0.534751\pi\)
−0.108956 + 0.994047i \(0.534751\pi\)
\(702\) 0 0
\(703\) −5.95355 −0.224542
\(704\) 0 0
\(705\) 43.2557 + 38.4151i 1.62911 + 1.44680i
\(706\) 0 0
\(707\) −13.6845 23.7022i −0.514658 0.891414i
\(708\) 0 0
\(709\) −13.1418 22.7623i −0.493551 0.854855i 0.506422 0.862286i \(-0.330968\pi\)
−0.999972 + 0.00743096i \(0.997635\pi\)
\(710\) 0 0
\(711\) 38.8830 + 16.6782i 1.45823 + 0.625480i
\(712\) 0 0
\(713\) −13.0437 −0.488490
\(714\) 0 0
\(715\) 1.42840 22.2891i 0.0534190 0.833565i
\(716\) 0 0
\(717\) 4.49602 21.8873i 0.167907 0.817398i
\(718\) 0 0
\(719\) −21.7139 + 37.6096i −0.809793 + 1.40260i 0.103215 + 0.994659i \(0.467087\pi\)
−0.913007 + 0.407943i \(0.866246\pi\)
\(720\) 0 0
\(721\) −6.93035 + 12.0037i −0.258100 + 0.447042i
\(722\) 0 0
\(723\) −3.35237 + 16.3199i −0.124676 + 0.606942i
\(724\) 0 0
\(725\) −3.94092 + 6.82587i −0.146362 + 0.253506i
\(726\) 0 0
\(727\) 14.0746 24.3779i 0.521997 0.904125i −0.477675 0.878536i \(-0.658521\pi\)
0.999673 0.0255891i \(-0.00814616\pi\)
\(728\) 0 0
\(729\) −9.39019 25.3145i −0.347785 0.937574i
\(730\) 0 0
\(731\) −16.6032 −0.614091
\(732\) 0 0
\(733\) −2.35921 4.08627i −0.0871394 0.150930i 0.819161 0.573563i \(-0.194439\pi\)
−0.906301 + 0.422633i \(0.861106\pi\)
\(734\) 0 0
\(735\) 15.0374 + 13.3546i 0.554664 + 0.492593i
\(736\) 0 0
\(737\) 8.40638 14.5603i 0.309653 0.536334i
\(738\) 0 0
\(739\) −11.0290 19.1028i −0.405709 0.702709i 0.588695 0.808355i \(-0.299642\pi\)
−0.994404 + 0.105647i \(0.966309\pi\)
\(740\) 0 0
\(741\) 39.1571 + 10.6937i 1.43847 + 0.392841i
\(742\) 0 0
\(743\) −12.3469 + 21.3854i −0.452963 + 0.784556i −0.998569 0.0534867i \(-0.982967\pi\)
0.545605 + 0.838042i \(0.316300\pi\)
\(744\) 0 0
\(745\) 31.4243 + 54.4284i 1.15130 + 1.99410i
\(746\) 0 0
\(747\) 7.45959 + 3.19966i 0.272932 + 0.117069i
\(748\) 0 0
\(749\) 8.90740 15.4281i 0.325469 0.563729i
\(750\) 0 0
\(751\) 4.11594 7.12903i 0.150193 0.260142i −0.781105 0.624399i \(-0.785344\pi\)
0.931298 + 0.364257i \(0.118677\pi\)
\(752\) 0 0
\(753\) −20.1650 + 6.70488i −0.734855 + 0.244339i
\(754\) 0 0
\(755\) −64.5902 −2.35068
\(756\) 0 0
\(757\) 3.82380 + 6.62301i 0.138978 + 0.240718i 0.927110 0.374789i \(-0.122285\pi\)
−0.788132 + 0.615506i \(0.788951\pi\)
\(758\) 0 0
\(759\) 11.6061 3.85904i 0.421275 0.140074i
\(760\) 0 0
\(761\) 38.9572 1.41220 0.706098 0.708114i \(-0.250454\pi\)
0.706098 + 0.708114i \(0.250454\pi\)
\(762\) 0 0
\(763\) −8.47078 14.6718i −0.306663 0.531155i
\(764\) 0 0
\(765\) −5.18712 43.6043i −0.187541 1.57652i
\(766\) 0 0
\(767\) 8.79814 + 5.86027i 0.317683 + 0.211602i
\(768\) 0 0
\(769\) 10.4079 18.0270i 0.375318 0.650070i −0.615056 0.788483i \(-0.710867\pi\)
0.990375 + 0.138413i \(0.0442001\pi\)
\(770\) 0 0
\(771\) −30.7555 + 10.2262i −1.10763 + 0.368289i
\(772\) 0 0
\(773\) −12.2723 + 21.2563i −0.441405 + 0.764537i −0.997794 0.0663855i \(-0.978853\pi\)
0.556389 + 0.830922i \(0.312187\pi\)
\(774\) 0 0
\(775\) −20.4466 −0.734464
\(776\) 0 0
\(777\) −2.80957 + 0.934184i −0.100793 + 0.0335137i
\(778\) 0 0
\(779\) 7.56351 + 13.1004i 0.270991 + 0.469370i
\(780\) 0 0
\(781\) 1.93838 3.35737i 0.0693606 0.120136i
\(782\) 0 0
\(783\) −3.96444 + 5.69898i −0.141678 + 0.203665i
\(784\) 0 0
\(785\) 35.9953 62.3457i 1.28473 2.22521i
\(786\) 0 0
\(787\) 32.5269 1.15946 0.579730 0.814809i \(-0.303158\pi\)
0.579730 + 0.814809i \(0.303158\pi\)
\(788\) 0 0
\(789\) 26.6847 + 23.6985i 0.950000 + 0.843687i
\(790\) 0 0
\(791\) −11.9589 20.7134i −0.425208 0.736483i
\(792\) 0 0
\(793\) 3.30876 51.6309i 0.117498 1.83347i
\(794\) 0 0
\(795\) 11.4850 55.9109i 0.407332 1.98296i
\(796\) 0 0
\(797\) −51.8322 −1.83599 −0.917995 0.396591i \(-0.870193\pi\)
−0.917995 + 0.396591i \(0.870193\pi\)
\(798\) 0 0
\(799\) 22.4275 + 38.8455i 0.793426 + 1.37425i
\(800\) 0 0
\(801\) −22.1124 + 16.5325i −0.781302 + 0.584148i
\(802\) 0 0
\(803\) −4.82022 −0.170102
\(804\) 0 0
\(805\) 11.5939 + 20.0812i 0.408632 + 0.707771i
\(806\) 0 0
\(807\) 29.0135 9.64699i 1.02132 0.339590i
\(808\) 0 0
\(809\) −15.9371 27.6039i −0.560319 0.970500i −0.997468 0.0711115i \(-0.977345\pi\)
0.437150 0.899389i \(-0.355988\pi\)
\(810\) 0 0
\(811\) −7.14832 −0.251011 −0.125506 0.992093i \(-0.540055\pi\)
−0.125506 + 0.992093i \(0.540055\pi\)
\(812\) 0 0
\(813\) −5.47053 + 26.6314i −0.191860 + 0.934004i
\(814\) 0 0
\(815\) 39.1766 1.37230
\(816\) 0 0
\(817\) 24.3405 0.851568
\(818\) 0 0
\(819\) 20.1568 1.09771i 0.704336 0.0383572i
\(820\) 0 0
\(821\) −10.3484 −0.361160 −0.180580 0.983560i \(-0.557797\pi\)
−0.180580 + 0.983560i \(0.557797\pi\)
\(822\) 0 0
\(823\) 38.9271 1.35691 0.678457 0.734640i \(-0.262649\pi\)
0.678457 + 0.734640i \(0.262649\pi\)
\(824\) 0 0
\(825\) 18.1931 6.04922i 0.633404 0.210607i
\(826\) 0 0
\(827\) 19.5838 0.680994 0.340497 0.940246i \(-0.389405\pi\)
0.340497 + 0.940246i \(0.389405\pi\)
\(828\) 0 0
\(829\) −8.13898 14.0971i −0.282678 0.489613i 0.689365 0.724414i \(-0.257890\pi\)
−0.972044 + 0.234801i \(0.924556\pi\)
\(830\) 0 0
\(831\) 3.13296 15.2517i 0.108681 0.529077i
\(832\) 0 0
\(833\) 7.79669 + 13.5043i 0.270139 + 0.467895i
\(834\) 0 0
\(835\) 46.9540 1.62491
\(836\) 0 0
\(837\) −17.9455 1.51451i −0.620286 0.0523491i
\(838\) 0 0
\(839\) −25.5149 44.1932i −0.880873 1.52572i −0.850371 0.526183i \(-0.823623\pi\)
−0.0305021 0.999535i \(-0.509711\pi\)
\(840\) 0 0
\(841\) −27.2150 −0.938448
\(842\) 0 0
\(843\) 30.1716 10.0320i 1.03916 0.345522i
\(844\) 0 0
\(845\) −26.0281 + 34.1253i −0.895394 + 1.17395i
\(846\) 0 0
\(847\) 6.97923 + 12.0884i 0.239809 + 0.415362i
\(848\) 0 0
\(849\) 4.98225 1.65660i 0.170991 0.0568544i
\(850\) 0 0
\(851\) 3.44719 0.118168
\(852\) 0 0
\(853\) 16.9863 29.4212i 0.581601 1.00736i −0.413689 0.910418i \(-0.635760\pi\)
0.995290 0.0969437i \(-0.0309067\pi\)
\(854\) 0 0
\(855\) 7.60441 + 63.9247i 0.260065 + 2.18618i
\(856\) 0 0
\(857\) 7.27876 12.6072i 0.248638 0.430653i −0.714510 0.699625i \(-0.753350\pi\)
0.963148 + 0.268972i \(0.0866838\pi\)
\(858\) 0 0
\(859\) −2.44195 4.22958i −0.0833181 0.144311i 0.821355 0.570417i \(-0.193218\pi\)
−0.904673 + 0.426106i \(0.859885\pi\)
\(860\) 0 0
\(861\) 5.62495 + 4.99547i 0.191698 + 0.170245i
\(862\) 0 0
\(863\) 44.0094 1.49810 0.749048 0.662515i \(-0.230511\pi\)
0.749048 + 0.662515i \(0.230511\pi\)
\(864\) 0 0
\(865\) −29.4701 + 51.0438i −1.00201 + 1.73554i
\(866\) 0 0
\(867\) 0.925997 4.50790i 0.0314485 0.153096i
\(868\) 0 0
\(869\) −13.2309 + 22.9167i −0.448829 + 0.777395i
\(870\) 0 0
\(871\) −28.9547 + 14.3312i −0.981094 + 0.485595i
\(872\) 0 0
\(873\) −24.8803 + 18.6020i −0.842071 + 0.629582i
\(874\) 0 0
\(875\) 2.77072 + 4.79904i 0.0936676 + 0.162237i
\(876\) 0 0
\(877\) 0.888654 0.0300077 0.0150039 0.999887i \(-0.495224\pi\)
0.0150039 + 0.999887i \(0.495224\pi\)
\(878\) 0 0
\(879\) 3.83094 + 3.40222i 0.129214 + 0.114754i
\(880\) 0 0
\(881\) −18.0334 31.2348i −0.607561 1.05233i −0.991641 0.129027i \(-0.958815\pi\)
0.384080 0.923300i \(-0.374519\pi\)
\(882\) 0 0
\(883\) −42.4663 −1.42910 −0.714552 0.699582i \(-0.753369\pi\)
−0.714552 + 0.699582i \(0.753369\pi\)
\(884\) 0 0
\(885\) −3.37345 + 16.4225i −0.113397 + 0.552036i
\(886\) 0 0
\(887\) 2.01167 3.48431i 0.0675453 0.116992i −0.830275 0.557354i \(-0.811817\pi\)
0.897820 + 0.440362i \(0.145150\pi\)
\(888\) 0 0
\(889\) −3.44211 + 5.96192i −0.115445 + 0.199956i
\(890\) 0 0
\(891\) 16.4157 3.96165i 0.549947 0.132720i
\(892\) 0 0
\(893\) −32.8790 56.9482i −1.10026 1.90570i
\(894\) 0 0
\(895\) 10.0502 17.4075i 0.335942 0.581869i
\(896\) 0 0
\(897\) −22.6725 6.19178i −0.757013 0.206738i
\(898\) 0 0
\(899\) 2.31528 + 4.01018i 0.0772189 + 0.133747i
\(900\) 0 0
\(901\) 22.1278 38.3265i 0.737184 1.27684i
\(902\) 0 0
\(903\) 11.4867 3.81933i 0.382253 0.127099i
\(904\) 0 0
\(905\) −9.46573 16.3951i −0.314652 0.544993i
\(906\) 0 0
\(907\) −27.4963 −0.912999 −0.456500 0.889724i \(-0.650897\pi\)
−0.456500 + 0.889724i \(0.650897\pi\)
\(908\) 0 0
\(909\) 5.19701 + 43.6874i 0.172374 + 1.44902i
\(910\) 0 0
\(911\) −3.01144 + 5.21596i −0.0997734 + 0.172813i −0.911591 0.411099i \(-0.865145\pi\)
0.811817 + 0.583911i \(0.198478\pi\)
\(912\) 0 0
\(913\) −2.53832 + 4.39650i −0.0840062 + 0.145503i
\(914\) 0 0
\(915\) 77.8609 25.8888i 2.57400 0.855856i
\(916\) 0 0
\(917\) −15.6308 + 27.0733i −0.516175 + 0.894040i
\(918\) 0 0
\(919\) −9.16320 + 15.8711i −0.302266 + 0.523540i −0.976649 0.214842i \(-0.931076\pi\)
0.674383 + 0.738382i \(0.264410\pi\)
\(920\) 0 0
\(921\) 9.57160 + 8.50046i 0.315395 + 0.280100i
\(922\) 0 0
\(923\) −6.67651 + 3.30455i −0.219760 + 0.108771i
\(924\) 0 0
\(925\) 5.40363 0.177670
\(926\) 0 0
\(927\) 17.8448 13.3418i 0.586101 0.438204i
\(928\) 0 0
\(929\) 5.58721 + 9.67732i 0.183310 + 0.317503i 0.943006 0.332776i \(-0.107985\pi\)
−0.759696 + 0.650279i \(0.774652\pi\)
\(930\) 0 0
\(931\) −11.4301 19.7975i −0.374606 0.648836i
\(932\) 0 0
\(933\) 4.92490 23.9752i 0.161234 0.784912i
\(934\) 0 0
\(935\) 27.4644 0.898181
\(936\) 0 0
\(937\) 27.5887 0.901285 0.450642 0.892705i \(-0.351195\pi\)
0.450642 + 0.892705i \(0.351195\pi\)
\(938\) 0 0
\(939\) 18.7131 6.22210i 0.610678 0.203051i
\(940\) 0 0
\(941\) −16.1229 27.9256i −0.525591 0.910350i −0.999556 0.0298061i \(-0.990511\pi\)
0.473965 0.880544i \(-0.342822\pi\)
\(942\) 0 0
\(943\) −4.37938 7.58530i −0.142612 0.247011i
\(944\) 0 0
\(945\) 13.6192 + 28.9739i 0.443033 + 0.942520i
\(946\) 0 0
\(947\) −6.62254 −0.215204 −0.107602 0.994194i \(-0.534317\pi\)
−0.107602 + 0.994194i \(0.534317\pi\)
\(948\) 0 0
\(949\) 7.70896 + 5.13478i 0.250243 + 0.166682i
\(950\) 0 0
\(951\) 18.3581 6.10406i 0.595301 0.197938i
\(952\) 0 0
\(953\) 26.5364 45.9624i 0.859598 1.48887i −0.0127147 0.999919i \(-0.504047\pi\)
0.872313 0.488948i \(-0.162619\pi\)
\(954\) 0 0
\(955\) 20.2592 35.0899i 0.655572 1.13548i
\(956\) 0 0
\(957\) −3.24654 2.88322i −0.104946 0.0932014i
\(958\) 0 0
\(959\) 1.95900 3.39309i 0.0632594 0.109569i
\(960\) 0 0
\(961\) 9.49383 16.4438i 0.306253 0.530445i
\(962\) 0 0
\(963\) −22.9355 + 17.1479i −0.739085 + 0.552584i
\(964\) 0 0
\(965\) 82.0512 2.64132
\(966\) 0 0
\(967\) 8.71147 + 15.0887i 0.280142 + 0.485220i 0.971419 0.237369i \(-0.0762851\pi\)
−0.691278 + 0.722589i \(0.742952\pi\)
\(968\) 0 0
\(969\) −10.0433 + 48.8925i −0.322638 + 1.57065i
\(970\) 0 0
\(971\) −8.14921 + 14.1148i −0.261520 + 0.452967i −0.966646 0.256116i \(-0.917557\pi\)
0.705126 + 0.709082i \(0.250891\pi\)
\(972\) 0 0
\(973\) −7.32358 12.6848i −0.234783 0.406656i
\(974\) 0 0
\(975\) −35.5402 9.70591i −1.13820 0.310838i
\(976\) 0 0
\(977\) −23.5575 + 40.8028i −0.753671 + 1.30540i 0.192361 + 0.981324i \(0.438386\pi\)
−0.946032 + 0.324073i \(0.894948\pi\)
\(978\) 0 0
\(979\) −8.63408 14.9547i −0.275946 0.477953i
\(980\) 0 0
\(981\) 3.21698 + 27.0428i 0.102710 + 0.863409i
\(982\) 0 0
\(983\) 3.42744 5.93649i 0.109318 0.189345i −0.806176 0.591676i \(-0.798467\pi\)
0.915494 + 0.402331i \(0.131800\pi\)
\(984\) 0 0
\(985\) 12.5721 21.7756i 0.400582 0.693828i
\(986\) 0 0
\(987\) −24.4520 21.7156i −0.778316 0.691216i
\(988\) 0 0
\(989\) −14.0935 −0.448148
\(990\) 0 0
\(991\) −0.988777 1.71261i −0.0314095 0.0544029i 0.849893 0.526955i \(-0.176666\pi\)
−0.881303 + 0.472552i \(0.843333\pi\)
\(992\) 0 0
\(993\) −5.93575 + 28.8962i −0.188365 + 0.916992i
\(994\) 0 0
\(995\) 76.1152 2.41301
\(996\) 0 0
\(997\) 25.9907 + 45.0171i 0.823132 + 1.42571i 0.903338 + 0.428929i \(0.141109\pi\)
−0.0802062 + 0.996778i \(0.525558\pi\)
\(998\) 0 0
\(999\) 4.74263 + 0.400255i 0.150050 + 0.0126635i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.r.f.601.16 40
3.2 odd 2 2808.2.r.f.289.3 40
9.4 even 3 936.2.s.f.913.12 yes 40
9.5 odd 6 2808.2.s.f.1225.3 40
13.9 even 3 936.2.s.f.529.12 yes 40
39.35 odd 6 2808.2.s.f.1153.3 40
117.22 even 3 inner 936.2.r.f.841.16 yes 40
117.113 odd 6 2808.2.r.f.2089.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.16 40 1.1 even 1 trivial
936.2.r.f.841.16 yes 40 117.22 even 3 inner
936.2.s.f.529.12 yes 40 13.9 even 3
936.2.s.f.913.12 yes 40 9.4 even 3
2808.2.r.f.289.3 40 3.2 odd 2
2808.2.r.f.2089.3 40 117.113 odd 6
2808.2.s.f.1153.3 40 39.35 odd 6
2808.2.s.f.1225.3 40 9.5 odd 6